JPH08103636A - Low-temperature denitrator - Google Patents

Low-temperature denitrator

Info

Publication number
JPH08103636A
JPH08103636A JP6242935A JP24293594A JPH08103636A JP H08103636 A JPH08103636 A JP H08103636A JP 6242935 A JP6242935 A JP 6242935A JP 24293594 A JP24293594 A JP 24293594A JP H08103636 A JPH08103636 A JP H08103636A
Authority
JP
Japan
Prior art keywords
catalyst
denitration
low
temperature
exhaust gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6242935A
Other languages
Japanese (ja)
Inventor
Yoshinori Nagai
良憲 永井
Isato Morita
勇人 森田
Tomihisa Ishikawa
富久 石川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Power Ltd
Original Assignee
Babcock Hitachi KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Babcock Hitachi KK filed Critical Babcock Hitachi KK
Priority to JP6242935A priority Critical patent/JPH08103636A/en
Publication of JPH08103636A publication Critical patent/JPH08103636A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE: To oxidize an appropriate amt. of NO to NO2 and then to allow the formed NO2 to react efficiently with NO on a denitration catalyst by providing an oxidation catalyst to oxidize nitrogen monoxide in a waste gas on the upstream side of the denitration catalyst. CONSTITUTION: An NO oxidation catalyst (a) is packed on the upstream side in a catalytic denitrator 8 to convert a part of NO to NO2 and then NO is allowed to react efficiently with NO2 under almost equimolar conditions by a denitration catalyst (b) set on the downstream side in the denitrator 8 and removed. In this case, since the waste gas is controlled to >=180 deg.C or preferably to 200-250 deg.C, ammonia is never formed on the catalyst. Accordingly, the denitration performance is drastically improved by the operating temp. in the system where NO and NO2 coexist in 1:1 ratio compared with an NO single system, and hence the amt. of catalyst is reduced.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、選択的接触還元法によ
る排煙脱硝装置に係わり、特に低温域で排ガス中の窒素
酸化物を除去する脱硝装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a flue gas denitration device by a selective catalytic reduction method, and more particularly to a denitration device for removing nitrogen oxides in exhaust gas in a low temperature range.

【0002】[0002]

【従来の技術】発電所、各種工場、自動車などから排出
される排煙中のNOxは、光化学スモッグの原因物質で
あり、その効果的な除去方法として、アンモニア(NH
3)を還元剤とした選択的接触還元による排煙脱硝法が
火力発電所を中心に幅広く用いられている。
2. Description of the Related Art NOx in smoke emitted from power plants, various factories, automobiles, etc. is a causative substance of photochemical smog, and ammonia (NH
Flue gas denitration method by selective catalytic reduction using 3 ) as a reducing agent is widely used mainly in thermal power plants.

【0003】他方、都市ゴミ焼却設備についても、人口
の増加、埋め立て用地の減少あるいは埋め立てコストの
増加等の諸事情から今後更にこうしたプラントの増加が
見込まれており、特に都市部近郊に設置される為、上記
火力発電所と同様に十分な排煙処理が要求されることか
ら、排煙脱硝装置が必要となってきている。
On the other hand, as for the municipal waste incineration facility, such an increase in the number of plants is expected in the future due to various factors such as an increase in the population, a decrease in the landfill site, or an increase in the landfill cost. Especially, the plant will be installed near the urban area. For this reason, a sufficient flue gas treatment is required as in the case of the above-mentioned thermal power plant, so that a flue gas denitration device is required.

【0004】都市ゴミ焼却設備では、季節により処理す
るゴミの性状が異なり、その排ガス量あるいは排ガス含
有水分量が大きく変化する。加えて、焼却設備から排出
される硫黄酸化物(SOx)、塩化水素(HCI)及び
ダイオキシン(DXN)等の有害ガスを効果的に除去す
るため、図2に示す様にバグフィルタ6を脱硝装置8の
前流側に配置するシステムが一般的であり、これらの有
害物質の除去性能からあるいはバグフィルタ6の焼損防
止の観点から、バグフィルタ6の運転温度は150°C
〜200°Cで制御されるため、脱硝装置8は排ガス再
加熱器7で再加熱を行った後でさえ200°C〜230
°C近辺で運転しなければならない。こうしたプラント
に脱硝装置8を設置する場合には、低温域で脱硝性能が
高い触媒を使用することが望まれる。
In the municipal waste incineration facility, the nature of the waste to be treated changes depending on the season, and the amount of exhaust gas or the amount of water contained in exhaust gas greatly changes. In addition, in order to effectively remove harmful gases such as sulfur oxides (SOx), hydrogen chloride (HCI) and dioxin (DXN) discharged from the incineration facility, the bag filter 6 has a denitration device as shown in FIG. The system arranged on the upstream side of 8 is generally used, and the operating temperature of the bag filter 6 is 150 ° C. from the viewpoint of the removal performance of these harmful substances or from the viewpoint of preventing the bag filter 6 from burning.
Since the temperature is controlled at ˜200 ° C., the denitration device 8 is kept at 200 ° C. to 230 ° C. even after reheating with the exhaust gas reheater 7.
You must drive near ° C. When the denitration device 8 is installed in such a plant, it is desired to use a catalyst having high denitration performance in a low temperature range.

【0005】しかしながら、脱硝触媒は一般的に図4に
示す様に反応温度が低くなるにつれ、その性能が低下す
るため、要求される脱硝装置8の性能を満足するために
は、充填する触媒量を多くしなければならないという問
題があった。
However, the performance of the denitration catalyst generally decreases as the reaction temperature becomes lower as shown in FIG. 4. Therefore, in order to satisfy the required performance of the denitration device 8, the amount of the catalyst to be charged must be increased. There was a problem that I had to increase.

【0006】[0006]

【発明が解決しようとする課題】上記従来技術は、18
0〜250°Cの比較的低温域に設置される脱硝装置に
対して、少ない触媒量で効率良く窒素酸化物を除去する
という点に於いて十分な配慮がされておらず、脱硝装置
が大型化する及び/または、触媒層の圧力損失が高くな
り、脱硝装置後流の誘引通風機として大容量のものが必
要となるという問題点があった。
SUMMARY OF THE INVENTION The above-mentioned prior art is 18
For denitration equipment installed in a relatively low temperature range of 0 to 250 ° C, sufficient consideration has not been given to the efficient removal of nitrogen oxides with a small amount of catalyst, resulting in a large denitration equipment. And / or the pressure loss of the catalyst layer becomes high, and there is a problem in that a large-capacity induced draft fan downstream of the denitration device is required.

【0007】本発明の目的は、上記した従来技術の欠点
をなくし、より少ない触媒で効率よく窒素酸化物を除去
する脱硝装置を提供することである。
An object of the present invention is to eliminate the above-mentioned drawbacks of the prior art, and to provide a denitration apparatus for efficiently removing nitrogen oxides with less catalyst.

【0008】[0008]

【課題を解決するための手段】上記目的は、比較的低温
域(180〜250°C)にて脱硝するものにおいて、
脱硝触媒の前流側に排ガス中の一酸化窒素(NO)を二
酸化窒素(NO2)に酸化するNO酸化触媒を設置する
こと、または、一酸化窒素を二酸化窒素に酸化する機能
を併せもつ脱硝触媒を設置することによって達成され
る。
[Means for Solving the Problems] The above object is to denitrate in a relatively low temperature range (180 to 250 ° C.),
An NO oxidation catalyst that oxidizes nitric oxide (NO) in exhaust gas to nitrogen dioxide (NO 2 ) is installed on the upstream side of the denitration catalyst, or denitration that also has the function of oxidizing nitric oxide to nitrogen dioxide This is achieved by installing a catalyst.

【0009】[0009]

【作用】上記の様に、都市ゴミ焼却設備などに脱硝装置
を設置する場合には、バグフィルタあるいは電気集塵機
出口の比較的低温(200〜250°C)に於いて、よ
り効果的に排ガス中の窒素酸化物を除去する、活性の高
い触媒が望まれる。
As described above, when the denitration device is installed in the municipal waste incineration facility, etc., it is more effective in the exhaust gas at a relatively low temperature (200 to 250 ° C) at the outlet of the bag filter or the electrostatic precipitator. A highly active catalyst that removes nitrogen oxides is desired.

【0010】都市ゴミ焼却設備に設置する脱硝触媒とし
ては、酸化チタン系の触媒に低温活性の高い五酸化バナ
ジウム(V25)等をはじめとする各種成分を添加した
もの、あるいは、金属イオン(例えば銅)で置換された
ゼオライト系の触媒が一般的に用いられている。
The denitration catalyst to be installed in the municipal refuse incineration facility is a titanium oxide type catalyst to which various components such as vanadium pentoxide (V 2 O 5 ) having high low temperature activity are added, or a metal ion. Zeolite-based catalysts substituted with (eg, copper) are commonly used.

【0011】酸化チタン系触媒に活性成分を添加した触
媒を使用する場合には、活性成分の量やその製造法を適
正化するだけでは低温域での活性向上には限度がある。
他方、ゼオライト系触媒を使用する場合には、極めて高
い脱硝性能を有するものの、脱硝装置部に流入してくる
排ガス中の硫黄酸化物(SOx)により短期間で著しく
性能が低下するため実用化には適さない。
When a catalyst prepared by adding an active ingredient to a titanium oxide type catalyst is used, there is a limit to improving the activity in a low temperature range only by optimizing the amount of the active ingredient and the production method thereof.
On the other hand, when a zeolite-based catalyst is used, it has extremely high denitrification performance, but the performance will be significantly reduced in a short period of time due to the sulfur oxides (SOx) in the exhaust gas flowing into the denitrification equipment, making it suitable for practical use. Is not suitable.

【0012】脱硝反応は図5に示すように、排ガス中の
NO:NO2が1:1の時、最もその速度が速く、即ち
NOx除去性能が高くなる。したがって、低温での脱硝
活性に加え、NOとNO2の存在割合を制御することが
できれば脱硝性能の向上が期待できる。
As shown in FIG. 5, when the NO: NO 2 in the exhaust gas is 1: 1, the denitration reaction has the highest speed, that is, the NOx removal performance is high. Therefore, if the presence ratio of NO and NO 2 can be controlled in addition to the denitration activity at low temperature, improvement of denitration performance can be expected.

【0013】一般に、焼却炉より都市ゴミの焼却により
生成するNOxの90〜95%は一酸化窒素(NO)で
ある。ここで、NOからNO2への転化は、通常の化学
反応(酸化反応)とは異なり低温ほどその速度が速くな
る反応であるから低温域に設置される脱硝装置にとって
はむしろ好都合ではあるが、例えば都市ゴミ焼却システ
ム(図2)で最も低温度ゾーンとなるバクフィルタ部で
の温度150°Cに於いてでさえNO濃度1000pp
m,02濃度3%でNOの10%がNO2に酸化されるの
には約20分要し、実システムに於いては、生成したN
Oはほとんどそのままの状態で脱硝装置に流入すること
となる。
Generally, 90 to 95% of NOx produced by incineration of municipal waste from an incinerator is nitric oxide (NO). Here, the conversion of NO to NO 2 is a reaction in which, unlike a normal chemical reaction (oxidation reaction), the rate increases at lower temperatures, so it is rather convenient for a denitration device installed in a low temperature region. For example, the NO concentration is 1000 pp even at a temperature of 150 ° C in the tap filter, which is the lowest temperature zone in the municipal waste incineration system (Fig. 2).
It took about 20 minutes for 10% of NO to be oxidized to NO 2 at a concentration of 3% m, 0 2 , and in the actual system, the generated N
O will flow into the denitration device in almost the same state.

【0014】本発明は、こうした状況に臨みてなされた
ものである。
The present invention has been made in view of such a situation.

【0015】本発明によれば、化学平衡的に酸化側に片
寄った低温域でも、酸化されにくいNOをNO2に酸化
するための触媒を脱硝触媒の前流側に設置しているの
で、NOの適正量をNO2に酸化させ引き続いて生成し
たNO2とNOが脱硝触媒上で効率よく反応する。故
に、必要な除去性能を満足するための触媒量は少なくて
良い。
According to the present invention, the catalyst for oxidizing NO, which is hard to be oxidized, to NO 2 is installed on the upstream side of the denitration catalyst even in a low temperature range which is deviated to the oxidation side in a chemical equilibrium. The appropriate amount of NO 2 is oxidized to NO 2 , and subsequently NO 2 and NO produced efficiently react on the denitration catalyst. Therefore, the amount of catalyst required to satisfy the required removal performance may be small.

【0016】なお、本発明に於いてNOをNO2に酸化
する触媒としては、図6に示す様に、Ti−Mn,Ti
−Pt,Ti−Co,Ti−Cr系等が挙げられる。
As a catalyst for oxidizing NO to NO 2 in the present invention, as shown in FIG. 6, Ti--Mn, Ti
-Pt, Ti-Co, Ti-Cr system etc. are mentioned.

【0017】酸化生成物であるNO2は、図7に示すよ
うにNH3共存下で排ガス温度か180°C以下の低温
では、NH3と気相で反応し硝酸アンモニウム(NH4
3)を生じる。
As shown in FIG. 7, NO 2 which is an oxidation product reacts with NH 3 in the gas phase in the presence of NH 3 at the exhaust gas temperature or at a low temperature of 180 ° C. or lower to react with ammonium nitrate (NH 4 N
Produces O 3 ).

【0018】NH3+HNO3=NH4NO3 また、脱硝触媒が存在する場合にもほぼ同様な温度で硝
酸アンモニウムを生じ、長期間の低温運用に於いてはこ
の硝酸アンモニウムが触媒の有効な細孔を閉塞するため
脱硝性能の低下を招き好ましくない。
NH 3 + HNO 3 = NH 4 NO 3 Further , ammonium nitrate is produced at almost the same temperature in the presence of a denitration catalyst, and in long-term low temperature operation, this ammonium nitrate forms effective pores of the catalyst. This is not preferable because it causes blockage of denitration performance.

【0019】[0019]

【実施例】以下に本発明の実施例を図面を用いて説明す
る。
Embodiments of the present invention will be described below with reference to the drawings.

【0020】第1図は、本発明にもとずくバグフィルタ
後流の低温域に脱硝装置を適用した場合のシステムを示
す。
FIG. 1 shows a system in which a denitration device is applied to a low temperature region downstream of a bag filter according to the present invention.

【0021】都市ゴミは焼却炉1で焼却される。都市ゴ
ミの焼却に伴い窒素酸化物(NOx)が生成するので焼
却炉1内にアンモニア、アンモニア水あるいは尿素水等
の還元剤を注入して高温域でNOxを除去する無触媒脱
硝装置2が設置される場合もある。焼却炉1からの排ガ
スは、排熱回収ボイラやガス冷却塔3、さらに空気予熱
器4で減温され有害ガス除去装置5に導入される。有害
ガス除去装置5では通常、消石灰[Ca(OH)2]が
排ガス中に注入され次式に示す反応により排ガス中の硫
黄酸化物(SOx)や塩化水素(HCl)がバグフィル
タ6で除去される。
The municipal waste is incinerated in the incinerator 1. Nitrogen oxides (NOx) are generated with the incineration of municipal waste, so a non-catalytic denitration device 2 for injecting a reducing agent such as ammonia, ammonia water or urea water into the incinerator 1 to remove NOx in a high temperature range is installed. It may be done. Exhaust gas from the incinerator 1 is reduced in temperature by an exhaust heat recovery boiler, a gas cooling tower 3, and an air preheater 4 and introduced into a harmful gas removing device 5. In the harmful gas removing device 5, normally, slaked lime [Ca (OH) 2 ] is injected into the exhaust gas, and sulfur oxide (SOx) and hydrogen chloride (HCl) in the exhaust gas are removed by the bag filter 6 by the reaction shown by the following formula. It

【0022】 Ca(OH)2+SO2=CaSO3+H2O Ca(OH)2+2HC1=CaCl2+2H2O また、バグフィルタ6では同時に焼却炉1より排出され
るダストおよびダイオキシン(DXN)も除去される。
バグフィルタ6は、これらの有害物質を効率よく除去す
るために通常120〜160°Cの低温で運用される。
Ca (OH) 2 + SO 2 = CaSO 3 + H 2 O Ca (OH) 2 + 2HC1 = CaCl 2 + 2H 2 O In addition, the bag filter 6 also removes dust and dioxin (DXN) discharged from the incinerator 1 at the same time. To be done.
The bag filter 6 is usually operated at a low temperature of 120 to 160 ° C in order to efficiently remove these harmful substances.

【0023】さらに、排ガス中のNOxを除去するため
に触媒脱硝装置8が設置されるが、排ガス温度が120
〜160°Cの低温では触媒の活性が低く触媒量が多く
ないこうした温度域ではバクフィルタ6より流出するS
OxやHClが触媒脱硝装置8の還元剤であるアンモニ
ア等と反応して酸性硫安や塩化アンモニウムを生じ、触
媒の有効な細孔を閉塞してしまい触媒活性が低下するた
め好ましくない。
Further, a catalytic denitration device 8 is installed to remove NOx in the exhaust gas, but the exhaust gas temperature is 120
At a low temperature of up to 160 ° C, the catalyst activity is low and the amount of catalyst is not large.
Ox and HCl react with the reducing agent of the catalyst denitration unit 8 such as ammonia to generate acidic ammonium sulfate and ammonium chloride, which block the effective pores of the catalyst and reduce the catalytic activity, which is not preferable.

【0024】そこで、排ガス再加熱器7等を触媒脱硝装
置8の前流に設置して排ガス温度を180〜250°C
程度に昇温して脱硝処理するのが一般的である。
Therefore, the exhaust gas reheater 7 and the like are installed in the upstream of the catalytic denitration device 8 to adjust the exhaust gas temperature to 180 to 250 ° C.
In general, the temperature is raised to some extent and denitration treatment is performed.

【0025】本発明では、触媒脱硝装置8内の前流側に
一酸化窒素(NO)の酸化触媒(a)を充填しているの
でNOの一部はNO2に変わり、さらに当該触媒脱硝装
置8内の後流側に設置される脱硝触媒(b)によりNO
とNO2がほぼ等量の条件下で効率よく反応除去され
る。この際、排ガス温度180°C以上好ましくは20
0〜250°Cで制御されているので触媒上で硝酸アン
モニウムが生成することはない。
In the present invention, since the nitric oxide (NO) oxidation catalyst (a) is filled in the upstream side of the catalytic denitration device 8, a part of NO is changed to NO 2 , and the catalytic denitration device is further changed. NO by the denitration catalyst (b) installed on the downstream side of 8
And NO 2 are efficiently removed by reaction under substantially equal amounts. At this time, the exhaust gas temperature is 180 ° C or higher, preferably 20
Since it is controlled at 0 to 250 ° C, ammonium nitrate is not formed on the catalyst.

【0026】本発明を適用した場合、その運用温度によ
り図8に示すようにNO単独系に比べNOとNO2
1:1で共存する系では大幅な脱硝性能の向上が認めら
れるので触媒量の低減が可能となる。
When the present invention is applied, as shown in FIG. 8, a system in which NO and NO 2 coexist at a ratio of 1: 1 as shown in FIG. Can be reduced.

【0027】図3は、本発明にもとづく他の実施例とし
て、一酸化窒素(NO)の酸化触媒(a)をガス冷却塔
3、あるいは空気予熱器4の後流域に設置した場合のシ
ステムを示す。
FIG. 3 shows, as another embodiment based on the present invention, a system in which a nitric oxide (NO) oxidation catalyst (a) is installed in the gas cooling tower 3 or in the downstream region of the air preheater 4. Show.

【0028】本実施例によれば、一酸化窒素(NO)の
酸化触媒(a)が図6に示すように300〜350°C
のNOの酸化性能が高い温度域に充填されるため、より
少ない酸化触媒(a)の量で効果的にNO2が生成され
ることになる。
According to this embodiment, the nitric oxide (NO) oxidation catalyst (a) is 300 to 350 ° C. as shown in FIG.
Since the NO oxidation performance of NO is filled in a high temperature range, NO 2 is effectively generated with a smaller amount of the oxidation catalyst (a).

【0029】前記実施例では酸化触媒と脱硝触媒とを別
に設けたが、NOの酸化機能と脱硝機能を併せ持つ触媒
を用いることも可能である。
Although the oxidation catalyst and the denitration catalyst are separately provided in the above embodiment, it is possible to use a catalyst having both the NO oxidation function and the NOx removal function.

【0030】[0030]

【発明の効果】本発明により以下に示す効果が期待でき
る。
According to the present invention, the following effects can be expected.

【0031】(a)より少ない触媒量で効率よく脱硝反
応を行うことができる。
The denitration reaction can be efficiently carried out with a smaller amount of catalyst than (a).

【0032】(b)脱硝反応器がコンパクトにできる。(B) The denitration reactor can be made compact.

【0033】(c)脱硝装置での圧力損失が少ないので
小容量の誘引通風機で運転できる。
(C) Since the pressure loss in the denitration device is small, it is possible to operate with a small capacity induction fan.

【0034】(d)経時的な触媒の劣化に対して、経済
的な触媒の積増法が適用し易くなる。
(D) It becomes easy to apply the economical catalyst multiplication method to the deterioration of the catalyst with time.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例に係る脱硝システムのフローチ
ャートである。
FIG. 1 is a flowchart of a denitration system according to an embodiment of the present invention.

【図2】従来の脱硝システムのフローチャートである。FIG. 2 is a flowchart of a conventional denitration system.

【図3】本発明の他の実施例に係る脱硝システムのフロ
ーチャートである。
FIG. 3 is a flowchart of a denitration system according to another embodiment of the present invention.

【図4】脱硝触媒の温度特性図である。FIG. 4 is a temperature characteristic diagram of a denitration catalyst.

【図5】NOx組成変化と脱硝率との関係を示す特性図
である。
FIG. 5 is a characteristic diagram showing a relationship between a NOx composition change and a denitration rate.

【図6】NO酸化触媒の温度特性図である。FIG. 6 is a temperature characteristic diagram of a NO oxidation catalyst.

【図7】NH4NO3の析分席布を示す特性図である。FIG. 7 is a characteristic diagram showing an NH 4 NO 3 deposition cloth.

【図8】NOx組成と脱硝率との関係を示す温度特性図
である。
FIG. 8 is a temperature characteristic diagram showing the relationship between the NOx composition and the denitration rate.

【符号の説明】 1 焼却炉 3 ガス冷却塔 4 空気予熱器 5 有害ガス除去装置 6 バグフィルタ 7 排ガス再加熱器 8 脱硝装置 a NO酸化触媒 b 脱硝触媒[Explanation of symbols] 1 incinerator 3 gas cooling tower 4 air preheater 5 harmful gas removal device 6 bag filter 7 exhaust gas reheater 8 denitration device a NO oxidation catalyst b denitration catalyst

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 B01J 23/34 A 23/42 A 23/75 B01D 53/36 102 G B01J 23/74 311 A ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Internal reference number FI Technical display location B01J 23/34 A 23/42 A 23/75 B01D 53/36 102 G B01J 23/74 311 A

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 排ガス中の窒素酸物を低温域で還元剤を
添加して脱硝触媒の下で選択的に接触還元させる低温脱
硝装置において、 前記脱硝触媒の前流側に、排ガス中の一酸化窒素を酸化
する酸化触媒を設けたことを特徴とする低温脱硝装置。
1. A low-temperature denitration device for selectively catalytically reducing nitrogen oxides in exhaust gas in a low temperature range by adding a reducing agent under a denitration catalyst. A low-temperature denitration device equipped with an oxidation catalyst for oxidizing nitric oxide.
【請求項2】 請求項1記載において、前記酸化触媒が
Ti−Mn系、Ti−Pt系、Ti−Co系、Ti−C
r系合金のグループから選択された触媒であることを特
徴とする低温脱硝装置。
2. The oxidation catalyst according to claim 1, wherein the oxidation catalyst is Ti—Mn type, Ti—Pt type, Ti—Co type, Ti—C.
A low-temperature denitration device, which is a catalyst selected from the group of r-based alloys.
【請求項3】 排ガス中の窒素酸化物を低温域で還元剤
を添加して、脱硝触媒の下で選択的に接触還元させる低
温脱硝装置において、 前記脱硝触媒が排ガス中の一酸化窒素を酸化する酸化機
能を併せ持っていることを特徴とする低温脱硝装置。
3. A low-temperature denitration device for selectively reducing catalytically reducing nitrogen oxides in exhaust gas in a low temperature range under a denitration catalyst, wherein the denitration catalyst oxidizes nitric oxide in the exhaust gas. A low-temperature denitration device characterized by having an oxidizing function that
JP6242935A 1994-10-06 1994-10-06 Low-temperature denitrator Pending JPH08103636A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6242935A JPH08103636A (en) 1994-10-06 1994-10-06 Low-temperature denitrator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6242935A JPH08103636A (en) 1994-10-06 1994-10-06 Low-temperature denitrator

Publications (1)

Publication Number Publication Date
JPH08103636A true JPH08103636A (en) 1996-04-23

Family

ID=17096412

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6242935A Pending JPH08103636A (en) 1994-10-06 1994-10-06 Low-temperature denitrator

Country Status (1)

Country Link
JP (1) JPH08103636A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002502927A (en) * 1998-02-06 2002-01-29 ジョンソン、マッセイ、パブリック、リミテッド、カンパニー NOx reduction mechanism in exhaust gas
JP2006320854A (en) * 2005-05-20 2006-11-30 Hino Motors Ltd Selective reduction type catalyst and exhaust gas purifier of engine for use therein
WO2011162030A1 (en) 2010-06-24 2011-12-29 エヌ・イー ケムキャット株式会社 Exhaust gas catalytic purging unit using selective reduction catalyst, exhaust gas purging method, and diesel automobile equipped with exhaust gas catalytic purging unit
US8105542B2 (en) 2007-06-19 2012-01-31 Hino Motors, Ltd. Engine exhaust gas purifier
JP2012061470A (en) * 2000-04-22 2012-03-29 Umicore Ag & Co Kg Method and catalyst for reducing nitrogen oxide contained in lean exhaust gas of internal combustion engine, and method for manufacturing catalyst thereof
WO2012147376A1 (en) 2011-04-28 2012-11-01 エヌ・イー ケムキャット株式会社 Off gas purification device
WO2013111457A1 (en) 2012-01-23 2013-08-01 エヌ・イーケムキャット株式会社 Alumina material containing barium sulfate and exhaust gas purifying catalyst using same
WO2013172128A1 (en) 2012-05-14 2013-11-21 エヌ・イーケムキャット株式会社 Exhaust gas purifier
US8833062B1 (en) 2013-03-15 2014-09-16 Daimier Ag Catalytic reduction of NOx
US8850802B1 (en) 2013-03-15 2014-10-07 Daimler Ag Catalytic reduction of NOx
EP2990115A1 (en) 2014-08-25 2016-03-02 N.E. Chemcat Corporation Urea hydrolysis catalyst, selective reduction catalyst containing urea hydrolysis material, and exhaust gas cleaning apparatus
DE102018121503A1 (en) 2017-09-05 2019-03-07 Umicore Ag & Co. Kg Exhaust gas purification with NO oxidation catalyst and SCR-active particle filter

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014058976A (en) * 1998-02-06 2014-04-03 Johnson Matthey Plc SYSTEM FOR REDUCTION OF NOx IN EXHAUST GAS
US6805849B1 (en) 1998-02-06 2004-10-19 Johnson Matthey Public Limited Company System for NOx reduction in exhaust gases
US7498010B2 (en) 1998-02-06 2009-03-03 Johnson Matthey Public Limited Company Catalytic reduction of NOx
JP2011089521A (en) * 1998-02-06 2011-05-06 Johnson Matthey Plc SYSTEM FOR NOx REDUCTION IN EXHAUST GAS
JP2002502927A (en) * 1998-02-06 2002-01-29 ジョンソン、マッセイ、パブリック、リミテッド、カンパニー NOx reduction mechanism in exhaust gas
US8142747B2 (en) 1998-02-06 2012-03-27 Anders Andreasson Catalytic reduction of NOx
US9073010B2 (en) 1998-02-06 2015-07-07 Daimler Ag Catalytic reduction of NOx
JP2012211586A (en) * 1998-02-06 2012-11-01 Johnson Matthey Plc SYSTEM FOR NOx REDUCTION IN EXHAUST GAS
US8480986B2 (en) 1998-02-06 2013-07-09 Daimler Ag Catalytic reduction of NOx
JP2012061470A (en) * 2000-04-22 2012-03-29 Umicore Ag & Co Kg Method and catalyst for reducing nitrogen oxide contained in lean exhaust gas of internal combustion engine, and method for manufacturing catalyst thereof
JP2006320854A (en) * 2005-05-20 2006-11-30 Hino Motors Ltd Selective reduction type catalyst and exhaust gas purifier of engine for use therein
US8105542B2 (en) 2007-06-19 2012-01-31 Hino Motors, Ltd. Engine exhaust gas purifier
WO2011162030A1 (en) 2010-06-24 2011-12-29 エヌ・イー ケムキャット株式会社 Exhaust gas catalytic purging unit using selective reduction catalyst, exhaust gas purging method, and diesel automobile equipped with exhaust gas catalytic purging unit
WO2012147376A1 (en) 2011-04-28 2012-11-01 エヌ・イー ケムキャット株式会社 Off gas purification device
US9523302B2 (en) 2011-04-28 2016-12-20 N.E. Chemcat Corporation Off gas purification device
WO2013111457A1 (en) 2012-01-23 2013-08-01 エヌ・イーケムキャット株式会社 Alumina material containing barium sulfate and exhaust gas purifying catalyst using same
WO2013172128A1 (en) 2012-05-14 2013-11-21 エヌ・イーケムキャット株式会社 Exhaust gas purifier
US9480948B2 (en) 2012-05-14 2016-11-01 N.E. Chemcat Corporation Exhaust gas purifier
US8833062B1 (en) 2013-03-15 2014-09-16 Daimier Ag Catalytic reduction of NOx
US8850802B1 (en) 2013-03-15 2014-10-07 Daimler Ag Catalytic reduction of NOx
EP2990115A1 (en) 2014-08-25 2016-03-02 N.E. Chemcat Corporation Urea hydrolysis catalyst, selective reduction catalyst containing urea hydrolysis material, and exhaust gas cleaning apparatus
DE102018121503A1 (en) 2017-09-05 2019-03-07 Umicore Ag & Co. Kg Exhaust gas purification with NO oxidation catalyst and SCR-active particle filter

Similar Documents

Publication Publication Date Title
AU693966B2 (en) Regeneration of catalyst/absorber
JP3935547B2 (en) Exhaust gas treatment method and exhaust gas treatment apparatus
US7572420B2 (en) Method for removing mercury in exhaust gas and system therefor
US7438876B2 (en) Multi-stage heat absorbing reactor and process for SCR of NOx and for oxidation of elemental mercury
JP2004237244A (en) Method and system for removing mercury in exhaust gas
JPH08103636A (en) Low-temperature denitrator
JP2006205128A (en) Removal apparatus of trace harmful substance in exhaust gas and its operation method
JP2018126674A (en) Exhaust gas treatment system and exhaust gas treatment method
JP3556728B2 (en) Exhaust gas denitration method and apparatus
JP4959650B2 (en) Exhaust gas treatment apparatus and exhaust gas treatment system
TWI744524B (en) Method and system for the removal of particulate matter and noxious compounds from flue-gas
JP3366417B2 (en) Prevention method of ammonium sulfate precipitation in selective reduction denitration method
KR100550603B1 (en) NOx REMOVAL APPARATUS and METHOD USING DRY SCRUBBER
JPH0587291B2 (en)
CA2391710C (en) Method and device for catalytically treating exhaust gas containing dust and oxygen
JPH0975674A (en) Exhaust gas purifying apparatus
RU2759275C2 (en) Method and system for removing nitrogenous compounds from flue gas using cloth filter bags and scr catalyst
JPH11128686A (en) Apparatus for denitrificating stack gas
KR100406510B1 (en) Method and system for removing nitrogen oxide using oxidation catalyst
JP3568566B2 (en) Method of using denitration equipment for exhaust gas containing nitrogen dioxide and nitric oxide
JP3713634B2 (en) Nitrogen oxide removal method and flue gas denitration equipment in exhaust gas
JPH08257363A (en) Exhaust gas treatment method
JPH01159034A (en) Denitration of exhaust gas from diesel engine
JP2003220317A (en) Method for treating combustion exhaust gas and system thereof
KR200234632Y1 (en) System for removing nitrogen oxide using oxidation catalyst

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040507

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040518

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20041019