JP2006159360A - 基板製造方法及び半導体基板 - Google Patents

基板製造方法及び半導体基板 Download PDF

Info

Publication number
JP2006159360A
JP2006159360A JP2004355857A JP2004355857A JP2006159360A JP 2006159360 A JP2006159360 A JP 2006159360A JP 2004355857 A JP2004355857 A JP 2004355857A JP 2004355857 A JP2004355857 A JP 2004355857A JP 2006159360 A JP2006159360 A JP 2006159360A
Authority
JP
Japan
Prior art keywords
ingot
cutting
region
wire
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004355857A
Other languages
English (en)
Inventor
Masahiro Nakayama
雅博 中山
Yoshinobu Oyama
佳伸 大山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP2004355857A priority Critical patent/JP2006159360A/ja
Publication of JP2006159360A publication Critical patent/JP2006159360A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Processing Of Stones Or Stones Resemblance Materials (AREA)
  • Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)
  • Mechanical Treatment Of Semiconductor (AREA)

Abstract

【課題】 基板表面における割れ、欠け、及びソーマークの発生を抑え、基板表面を平坦にできる基板製造方法、及び半導体基板を提供する。
【解決手段】 インゴット3をワイヤ列21に送りながら、インゴット3とワイヤ列21との間に砥液23を供給しつつインゴット3を切削する。このとき、インゴット3の中心軸Oに対し切削開始点Dの反対側に位置するインゴット3の第1の領域3dを切削する際の送り速度の時間平均値を、インゴット3の中心軸Oに対し切削開始点D側に位置するインゴット3の第2の領域3cを切削する際の送り速度の時間平均値よりも小さくする。これにより、第1の領域3dにおいては、切削箇所への砥液23の供給が比較的少なくても切削抵抗を小さく抑え、滑らかに切削することができる。
【選択図】 図1

Description

本発明は、基板製造方法及び半導体基板に関するものである。
半導体基板の製造工程には、インゴットを板状に切断(スライス)する工程が含まれる。インゴットを板状に切断する方法の一つとして、走行するワイヤ列を用いてインゴットを切削する方法がある。図11は、走行するワイヤ列を用いてインゴットを切削するための装置(マルチワイヤソー)の構成の一例を示す概略図である。図11に示すマルチワイヤソー100は、ガイドローラ101a〜101cと、一本のワイヤがガイドローラ101a〜101cに螺旋状に掛け回されてなるワイヤ列102と、ワイヤ列102の下方に配置され、インゴット103を上方に送るワーク支持台104と、インゴット103の上方から砥液(スラリー)を噴射するスラリーノズル105とを備える。
ガイドローラ101a〜101cが回転すると、ワイヤ列102が延伸方向に走行する。ここにインゴット103が下方から押し付けられると同時にスラリーノズル105から砥液が噴射されると、ワイヤ列102とインゴット103との間に浸入した砥液の作用によってインゴット103が切削される。そして、インゴット103を更に上方へ送ることにより、インゴット103が板状に切断される。
上記したマルチワイヤソーの他にも、走行するワイヤ列を用いてインゴットを切断するための装置としては、例えば特許文献1に開示された半導体棒の切断装置がある。この装置は、ウェハの切断面を平行に且つ平坦度よく形成することを目的としており、ワイヤ列の走行方向を鉛直方向に対して傾けて設定することにより、加工液(スラリー)をワイヤ全体に流す構成となっている。
また、特許文献2に開示されたマルチワイヤソーは、ウェハ板厚のばらつきを小さくすることを目的としており、ワイヤ列によってインゴットを切削する際に、インゴットを切断面内の方向に揺動させている。
また、特許文献3に開示されたワイヤソー及び切断方法は、長時間にわたって良好にワークを切断することを目的としており、ワイヤに砥液中を走行させつつ、ワークの切断を砥液中にて行っている。
特開平05−309644号公報 特開平10−249699号公報 特開2003−165046号公報
図11に示したような構成のマルチワイヤソー100には、次の問題点がある。すなわち、インゴット103を切削する際の切削深さが深くなるほど、切削抵抗が増してしまい滑らかな切削ができなくなる。これは、切削深さが深くなるほど、砥液が供給される切削開始側のインゴット103表面に対して切削箇所が遠くなることに加え、切削により形成された溝の上部が閉じてしまう等の現象によって、砥液が切削箇所まで達しにくくなるためと考えられる。従って、ウェハの表面に割れや欠けが発生したり、ソーマークが残るといった不具合が生じることとなり、ウェハ製造時の歩留まりが低く抑えられてしまう。
なお、上記各特許文献に記載された発明は、いずれも切削抵抗を減じてインゴットを好適に切削することを課題としている。しかしながら、特許文献1に開示された装置では、ワイヤ列が往復走行する場合には砥液の供給が途絶えてしまい逆効果である。また、特許文献2に開示された装置では、インゴットを揺動させるための機構が必要となり、装置の構成が複雑となる。また、特許文献3に開示された装置では、砥液中の砥粒が沈降して切削が困難となるばかりでなく、切削箇所の砥液の温度管理も難しくなってしまう。
本発明は、上記の問題点を鑑みてなされたものであり、ワイヤ列が往復走行する場合であっても簡易な装置によって基板表面における割れ、欠け、及びソーマークの発生を抑え、基板表面を平坦にできる基板製造方法、及び半導体基板を提供することを目的とする。
上記した課題を解決するために、本発明による基板製造方法は、走行するワイヤ列を用いてインゴットを切断することにより基板を製造する方法であって、インゴット及びワイヤ列のうち少なくとも一方をワイヤ列の走行方向と交差する方向に送りながら、インゴットに砥液を供給しつつインゴットを切削することによりインゴットを切断する工程を備え、インゴットを切削する際に、インゴットの中心軸に対し切削開始点の反対側に位置するインゴットの第1の領域を切削する際の送り速度の時間平均値を、インゴットの中心軸に対し切削開始点側に位置するインゴットの第2の領域を切削する際の送り速度の時間平均値よりも小さくすることを特徴とする。
インゴットを切削する過程における後半部分(すなわち、インゴットの中心軸に対し切削開始点の反対側に位置する第1の領域)では、前半部分(インゴットの中心軸に対し切削開始点側に位置する第2の領域)と比較して、インゴットとワイヤ列との間に砥液が供給されにくい。上記した基板製造方法では、インゴットを切削する際に、上記第1の領域を切削する際の送り速度の時間平均値を、上記第2の領域を切削する際の送り速度の時間平均値よりも小さくしている。これにより、第1の領域においては、切削箇所への砥液の供給が比較的少なくても切削抵抗を小さく抑え、滑らかに切削することができる。従って、切断面における割れ、欠け、及びソーマークの発生が抑制されるので、基板表面を平坦に形成することができる。
また、上記した基板製造方法は、特許文献1に開示された装置のようにワイヤ列を傾ける必要がなく、ワイヤ列が往復走行する場合にも適用できる。また、上記した基板製造方法は、特許文献2に開示された装置のようにインゴットを揺動させる必要がなく、簡易な装置によって実施できる。また、上記した基板製造方法は、特許文献3に記載された発明のように切削箇所を砥液中に浸す必要がないので、砥粒の沈降といった問題がなく、砥液の温度管理も容易である。
また、基板製造方法は、インゴットの第1の領域を切削する際の送り動作を断続的に停止させることにより、第1の領域を切削する際の送り速度の時間平均値を第2の領域を切削する際の送り速度の時間平均値よりも小さくすることを特徴としてもよい。これにより、送り動作を停止させている間にインゴットとワイヤとの間に砥液が浸入するので切削中の砥液の不足を効果的に防止できる。従って、第1の領域を切削する際に切削箇所への砥液の供給が比較的少なくても切削抵抗をより小さく抑え、滑らかに切削することができる。
また、基板製造方法は、インゴットの第1の領域を切削する際の送り動作を切削方向に対して断続的に逆向きとすることにより、第1の領域を切削する際の送り速度の時間平均値を第2の領域を切削する際の送り速度の時間平均値よりも小さくすることを特徴としてもよい。送り動作を断続的に逆向きとすると、ワイヤがインゴットの切削箇所から一時的に離れるので、インゴットとワイヤとの間に砥液を呼び込み、切削中の砥液の不足を更に効果的に防止できる。従って、第1の領域を切削する際に切削箇所への砥液の供給が比較的少なくても切削抵抗を更に小さく抑え、滑らかに切削することができる。
また、基板製造方法は、インゴットの第1の領域を切削する際に、インゴットの第1の領域の外周面に向けて砥液を噴射しながら第1の領域を切削することを特徴としてもよい。これにより、第1の領域を切削する際に、切削箇所への砥液の供給量を増し、切削抵抗をより小さく抑えて滑らかに切削することができる。
また、基板製造方法は、ワイヤ列に直径78μm以下のワイヤを用いることを特徴としてもよい。上記した基板製造方法によれば、インゴットの第1の領域においても切削抵抗を小さく抑えて滑らかに切削することができるので、このように細いワイヤを用いることが可能となる。そして、このように細いワイヤを用いることにより、走行するワイヤの慣性を小さくし、基板表面における割れ、欠け、及びソーマークを更に抑制することができる。
また、本発明による第1の半導体基板は、走行するワイヤ列を用いてインゴットを切断することにより形成された半導体基板であって、外径d(mm)及び厚さth(μm)が9≦(th/d)≦20を満たすことを特徴とする。
また、本発明による第2の半導体基板は、インゴットを切断することにより形成され、少なくともその一方の表面が研磨された半導体基板であって、外径d(mm)及び厚さth(μm)が7≦(th/d)≦18を満たすことを特徴とする。
本発明による基板製造方法及び半導体基板によれば、ワイヤ列が往復走行する場合であっても簡易な装置によって基板表面における割れ、欠け、及びソーマークの発生を抑え、基板表面を平坦にできる。
以下、添付図面を参照しながら本発明による基板製造方法及び半導体基板の実施の形態を詳細に説明する。なお、図面の説明において同一の要素には同一の符号を付し、重複する説明を省略する。
(実施の形態)
図1は、本実施形態による基板製造方法に用いられるマルチワイヤソー1の構成を示す概略図である。また、図2は、マルチワイヤソー1が備えるワイヤ列21を示す要部拡大斜視図である。図1を参照すると、マルチワイヤソー1は、筐体10と、筐体10に支持されたワーク支持台11、ガイドローラ12a〜12c、スラリーノズル13a〜13c、及びワイヤ列21とを備える。
ワーク支持台11は、加工対象物(ワーク)であるインゴット3を支持するための構成要素である。ワーク支持台11は、他の構成要素(ガイドローラ12a〜12c、スラリーノズル13a〜13c、及びワイヤ列21)に対して下方に配置されている。ワーク支持台11上にはインゴット3に固着された支持材31が固定されており、インゴット3は、支持材31を介してワーク支持台11の上方に固定されている。ワーク支持台11は、図示しない駆動手段によって鉛直上方に移動することができ、これによってインゴット3を鉛直上方(図中の矢印A)へ送ることができる。
インゴット3は、Si、GaAs、InP、GaNといった半導体材料からなる円柱状の塊である。インゴット3の外径dは、例えば103mmといった値である。インゴット3は、その中心軸が鉛直方向及びワイヤ列21の走行方向と直交するようにワーク支持台11によって固定されている。
ガイドローラ12a〜12cは、それぞれ同一の回転方向となるように、鉛直面内に想定される三角形の各頂点に相当する位置に配置されている。具体的には、ガイドローラ12aはワーク支持台11の鉛直上方に配置されており、ガイドローラ12b及び12cはガイドローラ12aよりも下方で且つガイドローラ12aとワーク支持台11とを結ぶ直線の左右に互いに離れて配置されている。
ガイドローラ12a〜12cは、外周面に複数本の溝を有している。そして、ガイドローラ12a〜12cの複数本の溝に一本のワイヤ22が螺旋状に掛け回されることにより、ワイヤ列21が構成されている(図2参照)。ワイヤ列21におけるワイヤ中心間の間隔w(μm)は、例えば300μm〜900μmといった値である。ワイヤ列21は、ガイドローラ12a〜12cが正回転及び逆回転を交互に繰り返すことによって二方向に往復走行する。ガイドローラ12bとガイドローラ12cとの間を走行するワイヤ列21は、ワーク支持台11の移動によって上方に送られてくるインゴット3と交差する位置を走行するように配置されている。
スラリーノズル13a〜13cは、ラッピングオイルに遊離砥粒が混入されてなる砥液23(スラリー)をインゴット3に向けて噴射するための砥液供給手段である。スラリーノズル13a及び13bは、それぞれインゴット3の左右に、且つ斜め下方に離れて配置されており、インゴット3の切断終了側の外周面3b(すなわち、インゴット3の外周面のうちインゴット3の中心軸よりも下方の面)に向けて砥液23を噴射する。また、スラリーノズル13cは、インゴット3の鉛直上方に配置されており、インゴット3の切断開始点側の外周面3a(すなわち、インゴット3の外周面のうちインゴット3の中心軸よりも上方の面)に向けて砥液23を噴射する。
続いて、本実施形態による基板製造方法について説明する。なお、以下に説明する基板製造方法は、上記したマルチワイヤソー1を用いて好適に実施できる。図3は、インゴット3の中心軸Oと直交する断面を示す断面図である。また、図4は、本実施形態におけるインゴット3の送り速度と切削量(インゴット3の切削開始点Dからの切削深さ)との関係を示すグラフである。
まず、ガイドローラ12a〜12cを正方向及び逆方向に交互に回転させ、ワイヤ列21の往復走行を開始する。そして、インゴット3が取り付けられたワーク支持台11を上方に移動させ、インゴット3をワイヤ列21へ送る。このとき、スラリーノズル13cからの砥液23の噴射を開始する。
インゴット3の切削開始点D(すなわちインゴット3の最高点)がワイヤ列21に接すると、インゴット3とワイヤ列21との間に浸入した砥液23の作用によってインゴット3が切削され始める。本実施形態においては、図4に示すように、ワイヤ列21がインゴット3の中心軸Oに達するまでインゴット3の送り速度を一定値Vとする。従って、インゴット3の第2の領域3cを切削する際の送り速度の時間平均値がVとなる。なお、インゴット3の第2の領域3cとは、インゴット3の中心軸Oに対し切削開始点D側に位置する全領域である。
続いて、ワイヤ列21がインゴット3を切削しながら中心軸Oに達すると、インゴット3の送り速度をVよりも小さい一定値Vに変更する。そして、この送り速度Vをワイヤ列21がインゴット3の切削終了点Dに達するまで維持する。従って、インゴット3の第1の領域3dを切削する際の送り速度の時間平均値はVとなる。なお、インゴット3の第1の領域3dとは、インゴット3の中心軸Oに対し切削開始点Dの反対側(すなわち切削終了点D側)に位置する全領域である。また、ワイヤ列21がインゴット3の中心軸Oを通過した後、スラリーノズル13a及び13bからの砥液23の噴射を開始する。そして、第1の領域3dを切削する間、インゴット3の第1の領域3dの外周面3bに向けてスラリーノズル13a及び13bから砥液23を噴射し続ける。こうして、インゴット3が板状に切断され、未研磨の半導体基板(第1の半導体基板)が完成する。
その後、切り出された半導体基板の両面または片面を機械的及び化学的に研磨する。具体的には、まず、インゴット3から切り出された半導体基板の切断面を、水溶性洗浄剤や炭化水素系洗浄剤等を用いて洗浄する。次に、半導体基板の表面(片面または両面)を酸性又はアルカリ性の溶液及び酸化剤を用いてエッチングすることにより、加工歪みを除去し、反りを低減する。そして、例えばダイヤモンド固定砥石を備えたNC制御方式の面取り装置を用いて、半導体基板の周囲をベベリング(面取り)する。そして、基板側面にオリエンテーションフラット(OF)面を形成し、面取り及びOF面加工によるダメージをエッチングにより除去する。
続いて、固定砥粒または遊離砥粒を用いて基板表面に研磨(ラッピング)を施し、基板厚さを調整するとともに、加工歪みを除去し、表面粗さを小さくする。続いて、基板表面を再びエッチングすることにより、加工歪みを除去し、反りを低減する。最後に、基板表面に再び研磨(コロイダルシリカ研磨剤に次亜塩素酸ナトリウム(NaOCl)を含むアルカリ溶液を用いた一次ポリッシング、及び次亜塩素酸ナトリウムを含むアルカリ溶液を用いて研磨布上で研磨する仕上げポリッシング)を施し、基板厚さを調整するとともに、加工歪みを除去し、表面粗さを小さくする。こうして、研磨済の半導体基板(第2の半導体基板)が完成する。
なお、インゴット3を切削する際の送り速度は、第1の領域3dに対する送り速度の時間平均値が第2の領域3cにおける送り速度の時間平均値よりも小さければよく、図4に示した形態に限られるものではない。例えば、送り速度を変化させる位置は中心軸Oに限らず、第2の領域3cの途中(図3のDなど)で送り速度を下げてもよく、第1の領域3dの途中(図3のDなど)で送り速度を下げても良い。或いは、D、O、Dの各位置で送り速度を段階的に下げてもよい。
本実施形態による基板製造方法によれば、以下の効果が得られる。すなわち、本実施形態による基板製造方法では、インゴット3を切削する際に、第1の領域3dを切削する際の送り速度の時間平均値を、第2の領域3cを切削する際の送り速度の時間平均値よりも小さくしている。これにより、第1の領域3dにおいては、切削箇所への砥液23の供給が比較的少なくても切削抵抗を小さく抑え、滑らかに切削することができる。従って、切断面における割れ、欠け、及びソーマークの発生が抑制されるので、基板(第1の半導体基板)の表面を平坦に形成することができる。
また、本実施形態による基板製造方法は、ワイヤ列21を傾ける必要がないので本実施形態のようにワイヤ列21が往復走行する場合にも適用できる。なお、ワイヤ列21が一方向にのみ走行する場合にも適用できることは勿論である。また、本実施形態による基板製造方法は、インゴット3を揺動させる必要がないので簡易な装置によって実施できる。また、本実施形態による基板製造方法は、切削箇所を砥液中に浸す必要がなく、スラリーノズル13a〜13cから砥液23を噴出させることにより砥液23を供給することができる。従って、砥粒の沈降といった問題がなく、砥液23の温度管理も容易である。
また、本実施形態のように、インゴット3の第1の領域3dを切削する際には、インゴット3の第1の領域3dの外周面3bに向けて砥液23を噴射しながら切削することが好ましい。これにより、第1の領域3dを切削する際に、切削箇所への砥液23の供給量を増し、切削抵抗をより小さく抑えて滑らかに切削することができる。
(第1の変形例)
図5は、インゴット3を切削する際の送り速度分布の第1変形例を示すグラフである。なお、図5は、本変形例におけるインゴット3の送り速度と切削開始時刻(t)からの経過時間との関係を示している。本変形例では、第1の領域3dを切削する際の送り動作を断続的に停止させている。すなわち、第1の領域3dを切削する際の送り速度を断続的にゼロとしている。具体的には、ワイヤ列21がインゴット3の中心軸Oに達する時刻tまでは送り速度を一定値Vとし、時刻tからワイヤ列21がインゴット3の切削終了点Dに達する時刻tまで、インゴット3の送り速度をVからゼロに下げる操作を複数回繰り返す。これにより、第1の領域3dを切削する際の送り速度の時間平均値が、第2の領域3cを切削する際の送り速度の時間平均値よりも小さくなっている。
本変形例のように、インゴット3の第1の領域3dを切削する際の送り動作を断続的に停止させることにより、送り動作を停止させている間にインゴット3とワイヤ列21との間に砥液23が浸入するので、第1の領域3dを切削する際の砥液23の不足を効果的に防止できる。従って、第1の領域3dを切削する際に切削箇所への砥液23の供給が比較的少なくても切削抵抗をより小さく抑え、滑らかに切削することができる。
(第2の変形例)
図6は、インゴット3を切削する際の送り速度分布の第2変形例を示すグラフである。なお、図6は、本変形例におけるインゴット3の送り速度と切削開始時刻(t)からの経過時間との関係を示すグラフである。本変形例では、第1の領域3dを切削する際の送り動作を切削方向(すなわち送り速度が正となる向き)に対して断続的に逆向き(すなわち送り速度が負となる向き)としている。具体的には、ワイヤ列21がインゴット3の中心軸Oに達する時刻tまでは送り速度を一定値Vとし、時刻tからワイヤ列21がインゴット3の切削終了点Dに達する時刻tまで、インゴット3の送り速度をVからV(<0)に下げる操作を複数回繰り返す。これにより、第1の領域3dを切削する際の送り速度の時間平均値が、第2の領域3cを切削する際の送り速度の時間平均値よりも小さくなっている。
本変形例のように、インゴット3の第1の領域3dを切削する際の送り動作を切削方向に対して断続的に逆向きとすると、ワイヤ列21がインゴット3の切削箇所から一時的に離れるので、インゴット3とワイヤ列21との間に砥液23を呼び込み、第1の領域3dを切削する際の砥液23の不足を更に効果的に防止できる。従って、第1の領域3dを切削する際に切削箇所への砥液23の供給が比較的少なくても切削抵抗を更に小さく抑え、滑らかに切削することができる。
(第3の変形例)
図7は、インゴット3を切削する際の送り速度分布の第3変形例を示すグラフである。なお、図7は、本変形例におけるインゴット3の送り速度と切削量との関係を示すグラフである。本変形例では、切削開始点Dでの送り速度Vから切削終了点Dでの送り速度V(<V)まで送り速度を一定の変化率で下げることによって、第1の領域3dに対する送り速度の時間平均値を第2の領域3cにおける送り速度の時間平均値よりも小さくしている。このように、送り速度を連続的に下げることによっても、上記実施形態と同様の効果を得ることができる。
(第1の実施例)
図8は、上記実施形態及び変形例の第1実施例を示す図表である。また、図9は、本実施例において形成された半導体基板(未研磨の第1の半導体基板)であるウェハ33の形状を示す斜視図である。ウェハ33は、研磨による薄化処理が行われていない状態のウェハであり、スライスウェハと呼ばれる。本実施例では、ウェハ33の材料(すなわち、インゴット3の材料)をGaAsとし、ウェハ33の外径(インゴット3の外径)を103mmとした。また、マルチワイヤソー1のワイヤ列21の線速を毎分320mとした。
まず、実施例1としてウェハ33の厚さthを620μmに設定し、ワイヤ列21のワイヤ径を100μmとし、砥液23をスラリーノズル13cからのみ噴射し、送り速度を図5に示したグラフ(V=8mm)のように設定してウェハ33を形成した。その結果、クラック・割れ発生率及びソーマーク発生率を非常に小さく(それぞれ1%及び2%)できた。これに対し、比較例1として、送り速度を毎時8mmで一定としてウェハ33を形成した結果、ソーマーク発生率が倍(4%)に悪化した。
続いて、実施例2としてウェハ33の厚さthを460μmに設定した。これは、ウェハ33の薄さの指標である値(th/d)が20となる数値である。そして、送り速度を図5に示したグラフ(V=8mm)のように設定し、他の条件を実施例1と同様にしてウェハ33を形成した。その結果、クラック・割れ発生率及びソーマーク発生率を、ウェハ33の薄さの割に小さく(それぞれ15%及び5%)できた。これに対し、比較例2として、送り速度を毎時8mmで一定としてウェハ33を形成した結果、クラック・割れ発生率及びソーマーク発生率がそれぞれ25%及び10%に悪化した。
続いて、実施例3として送り速度を図6に示したグラフ(V=8mm)のように設定し、他の条件を実施例2と同様にしてウェハ33を形成した。その結果、クラック・割れ発生率及びソーマーク発生率をさらに小さく(それぞれ5%及び2%)できた。
続いて、実施例4としてウェハ33の厚さthを360μmに設定した。これは、値(th/d)が12となる数値である。そして、インゴット3の第1の領域3dを切削する際には砥液23をスラリーノズル13a及び13bからも噴射し、他の条件を実施例3と同様にしてウェハ33を形成した。その結果、クラック・割れ発生率及びソーマーク発生率を、ウェハ33の薄さの割に小さく(それぞれ7%及び3%)できた。
続いて、実施例5としてウェハ33の厚さthを310μmに設定した。これは、値(th/d)が9となる数値である。そして、他の条件を実施例4と同様にしてウェハ33を形成した。その結果、クラック・割れ発生率及びソーマーク発生率を、ウェハ33の薄さの割に小さく(それぞれ9%及び4%)できた。
続いて、実施例6としてワイヤ列21のワイヤ径を82μmと細くし、他の条件を実施例5と同様にしてウェハ33を形成した。その結果、クラック・割れ発生率及びソーマーク発生率を、ウェハ33の薄さの割に更に小さく(それぞれ9%及び3%)できた。
続いて、実施例7としてワイヤ列21のワイヤ径を78μmと更に細くし、他の条件を実施例5と同様にしてウェハ33を形成した。その結果、クラック・割れ発生率及びソーマーク発生率を、ウェハ33の薄さの割に更に小さく(それぞれ7%及び2%)できた。
続いて、実施例8としてワイヤ列21のワイヤ径を73μmと更に細くし、他の条件を実施例5と同様にしてウェハ33を形成した。その結果、クラック・割れ発生率及びソーマーク発生率を、ウェハ33の薄さの割に小さく(それぞれ7%及び2%)できた。
続いて、実施例9としてウェハ33の厚さthを270μmに設定した。これは、値(th/d)が7となる数値である。そして、他の条件を実施例8と同様にしてウェハ33を形成した。その結果、クラック・割れ発生率及びソーマーク発生率を、ウェハ33の薄さの割に小さく(それぞれ13%及び5%)できた。
上記した実施例7〜9では、ワイヤ列21のワイヤ径を78μm以下としている。上記実施形態の基板製造方法によれば、インゴット3の第1の領域3dにおいても切削抵抗を小さく抑えて滑らかに切削することができるので、このように細いワイヤを用いることが可能となる。そして、このように細いワイヤを用いることにより、走行するワイヤ列21の慣性を小さくし、基板表面における割れ、クラック、及びソーマークの発生率を更に小さくすることができる。
また、上記した実施例2〜8では、ウェハ33の外径d(mm)及び厚さth(μm)が9≦(th/d)≦20を満たしている。上記実施形態の基板製造方法によれば、インゴット3の第1の領域3dにおいても切削抵抗を小さく抑えて滑らかに切削することができるので、このようにワイヤ列21のワイヤ間隔を小さくし、ウェハ33を薄くすることが可能となる。
(第2の実施例)
図10は、上記実施形態及び変形例の第2実施例を示す図表である。なお、本実施例では、上記第1実施例の図8における実施例1〜9によって形成された未研磨のウェハ33の片面を研磨することにより、第2の半導体基板として研磨済のウェハを形成した(実施例10〜15)。なお、ウェハ33を研磨したことにより、ウェハの外径は103mmから100mmに減少した。
実施例10として、図8の実施例2及び3によって形成されたウェハ33の片面を、厚さthが420μmとなるまで研磨した。これは、値(th/d)が18となる数値である。その結果、クラック・割れ発生率を非常に小さく(2%)できた。
また、実施例11として、図8の実施例2及び3によって形成されたウェハ33の片面を、厚さthが380μmとなるまで研磨した。これは、値(th/d)が14となる数値である。その結果、クラック・割れ発生率を非常に小さく(3%)できた。
また、実施例12として、図8の実施例4によって形成されたウェハ33の片面を、厚さthが320μmとなるまで研磨した。これは、値(th/d)が10となる数値である。その結果、クラック・割れ発生率をウェハの薄さの割に小さく(5%)できた。
また、実施例13として、図8の実施例5〜8によって形成されたウェハ33の片面を、厚さthが270μmとなるまで研磨した。これは、値(th/d)が7となる数値である。その結果、クラック・割れ発生率をウェハの薄さの割に小さく(10%)できた。
また、実施例14として、図8の実施例9によって形成されたウェハ33の片面を、厚さthが230μmとなるまで研磨した。これは、値(th/d)が5となる数値である。その結果、クラック・割れ発生率が比較的大きく(15%)なった。なお、クラック・割れ発生率は、量産性を考慮すると10%以下が好ましい。
また、実施例15として、図8の実施例1によって形成されたウェハ33の片面を、厚さthが560μmとなるまで研磨した。これは、値(th/d)が31となる数値である。その結果、クラック・割れ発生率を非常に小さく(2%)できたものの、厚さthを420μm(値(th/d)=18)とした実施例10と比較して、クラック・割れ発生率が同等となった。
上記実施例10〜13では、研磨済ウェハの外径d(mm)及び厚さth(μm)が7≦(th/d)≦18を満たしている。一般的に、ウェハを研磨する場合、研磨に時間を掛ければより薄くすることは可能である。しかしながら、そのような方法で所望の薄さのウェハを得ようとすると、研磨工程に長時間を要するので、現実的ではない。上記実施形態の基板製造方法によれば、第1実施例(実施例1〜9)において示したように未研磨のウェハ33を薄く形成することが可能なので、本実施例のように非常に薄い研磨済ウェハを比較的短時間で製造することができ、量産が可能となる。
本発明による基板製造方法及び半導体基板は、上記した実施形態及び変形例に限られるものではなく、他にも様々な変形が可能である。例えば、上記実施形態ではインゴットとして円柱状の塊を例示しているが、インゴットは角柱状など他の形状であってもよい。また、上記実施形態ではワイヤ列に対してインゴットを下方から送り込む、いわゆるアッパーカット法を例示しているが、ワイヤ列に対してインゴットを上方から送り込む、いわゆるダウンカット法でも本発明を適用できる。また、上記実施形態ではインゴットを移動する方法を例示しているが、ワイヤ列をインゴットへ向けて移動する方法でもよい。
図1は、本実施形態による基板製造方法に用いられるマルチワイヤソーの構成を示す概略図である。 図2は、マルチワイヤソーが備えるワイヤ列を示す要部拡大斜視図である。 図3は、インゴットの中心軸と直交する断面を示す断面図である。 図4は、本実施形態におけるインゴットの送り速度と切削量(インゴットの切削開始点からの切削深さ)との関係を示すグラフである。 図5は、インゴットを切削する際の送り速度分布の第1変形例を示すグラフである。 図6は、インゴットを切削する際の送り速度分布の第2変形例を示すグラフである。 図7は、インゴットを切削する際の送り速度分布の第3変形例を示すグラフである。 図8は、上記実施形態及び変形例の第1実施例を示す図表である。 図9は、第1実施例において形成された半導体基板であるウェハの形状を示す斜視図である。 図10は、上記実施形態及び変形例の第2実施例を示す図表である。 図11は、従来のマルチワイヤソーの構成の一例を示す概略図である。
符号の説明
1…マルチワイヤソー、3…インゴット、3a,3b…外周面、3c…第2の領域、3d…第1の領域、10…筐体、11…ワーク支持台、12a〜12c…ガイドローラ、13a〜13c…スラリーノズル、21…ワイヤ列、23…砥液、31…支持材、33…ウェハ。

Claims (7)

  1. 走行するワイヤ列を用いてインゴットを切断することにより基板を製造する方法であって、
    前記インゴット及び前記ワイヤ列のうち少なくとも一方を前記ワイヤ列の走行方向と交差する方向に送りながら、前記インゴットに砥液を供給しつつ前記インゴットを切削することにより前記インゴットを切断する工程を備え、
    前記インゴットを切削する際に、前記インゴットの中心軸に対し切削開始点の反対側に位置する前記インゴットの第1の領域を切削する際の送り速度の時間平均値を、前記インゴットの中心軸に対し前記切削開始点側に位置する前記インゴットの第2の領域を切削する際の送り速度の時間平均値よりも小さくすることを特徴とする、基板製造方法。
  2. 前記インゴットの前記第1の領域を切削する際の送り動作を断続的に停止させることにより、前記第1の領域を切削する際の送り速度の時間平均値を前記第2の領域を切削する際の送り速度の時間平均値よりも小さくすることを特徴とする、請求項1に記載の基板製造方法。
  3. 前記インゴットの前記第1の領域を切削する際の送り動作を切削方向に対して断続的に逆向きとすることにより、前記第1の領域を切削する際の送り速度の時間平均値を前記第2の領域を切削する際の送り速度の時間平均値よりも小さくすることを特徴とする、請求項1に記載の基板製造方法。
  4. 前記インゴットの前記第1の領域を切削する際に、前記インゴットの前記第1の領域の外周面に向けて前記砥液を噴射しながら前記第1の領域を切削することを特徴とする、請求項1〜3のいずれか一項に記載の基板製造方法。
  5. 前記ワイヤ列に、直径78μm以下のワイヤを用いることを特徴とする、請求項1〜4のいずれか一項に記載の基板製造方法。
  6. 走行するワイヤ列を用いてインゴットを切断することにより形成された半導体基板であって、
    外径d(mm)及び厚さth(μm)が9≦(th/d)≦20を満たすことを特徴とする、半導体基板。
  7. インゴットを切断することにより形成され、少なくともその一方の表面が研磨された半導体基板であって、
    外径d(mm)及び厚さth(μm)が7≦(th/d)≦18を満たすことを特徴とする、半導体基板。
JP2004355857A 2004-12-08 2004-12-08 基板製造方法及び半導体基板 Pending JP2006159360A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004355857A JP2006159360A (ja) 2004-12-08 2004-12-08 基板製造方法及び半導体基板

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004355857A JP2006159360A (ja) 2004-12-08 2004-12-08 基板製造方法及び半導体基板

Publications (1)

Publication Number Publication Date
JP2006159360A true JP2006159360A (ja) 2006-06-22

Family

ID=36661914

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004355857A Pending JP2006159360A (ja) 2004-12-08 2004-12-08 基板製造方法及び半導体基板

Country Status (1)

Country Link
JP (1) JP2006159360A (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008028259A (ja) * 2006-07-24 2008-02-07 Mitsubishi Chemicals Corp 単結晶GaN基板の製造方法
JP2013163260A (ja) * 2012-02-09 2013-08-22 Siltronic Ag 被加工物から多数の薄片を同時にスライスするための装置および方法
CN110524734A (zh) * 2019-08-22 2019-12-03 安徽一路明光电科技有限公司 一种led用单晶硅片线切割装置
CN113799277A (zh) * 2021-08-10 2021-12-17 威科赛乐微电子股份有限公司 一种晶体多线切割方法

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008028259A (ja) * 2006-07-24 2008-02-07 Mitsubishi Chemicals Corp 単結晶GaN基板の製造方法
JP2013163260A (ja) * 2012-02-09 2013-08-22 Siltronic Ag 被加工物から多数の薄片を同時にスライスするための装置および方法
TWI507282B (zh) * 2012-02-09 2015-11-11 Siltronic Ag 從工件同時切割多個切片之設備和方法
US9346188B2 (en) 2012-02-09 2016-05-24 Siltronic Ag Apparatus and method for simultaneously slicing a multiplicity of slices from a workpiece
CN110524734A (zh) * 2019-08-22 2019-12-03 安徽一路明光电科技有限公司 一种led用单晶硅片线切割装置
CN110524734B (zh) * 2019-08-22 2021-05-28 安徽一路明光电科技有限公司 一种led用单晶硅片线切割装置
CN113799277A (zh) * 2021-08-10 2021-12-17 威科赛乐微电子股份有限公司 一种晶体多线切割方法
CN113799277B (zh) * 2021-08-10 2024-04-19 威科赛乐微电子股份有限公司 一种晶体多线切割方法

Similar Documents

Publication Publication Date Title
JP4525353B2 (ja) Iii族窒化物基板の製造方法
EP1717001B1 (en) Method for manufacturing semiconductor wafers, method for their slicing and wire saw used for the same
KR101002250B1 (ko) 에피택셜 웨이퍼 제조 방법
JP3656317B2 (ja) ワイヤソーによるワーク切断方法及び装置
KR102103330B1 (ko) 잉곳의 절단방법 및 와이어 쏘
JP2009302410A (ja) 半導体ウェーハの製造方法
JP6079554B2 (ja) 半導体ウェーハの製造方法
JP2010030000A (ja) グルーブローラの構造
JPH10217095A (ja) ワイヤーソーによるワークの切断方法およびワイヤーソー
JP5003696B2 (ja) Iii族窒化物基板及びその製造方法
JP3775044B2 (ja) ワイヤソー加工方法およびワイヤソー加工装置
JP2006159360A (ja) 基板製造方法及び半導体基板
JP2013094872A (ja) 被加工物の切断方法
JP4349369B2 (ja) ワイヤソー加工方法
JP5371355B2 (ja) 基板の製造方法および太陽電池素子
JP2006224266A (ja) ワイヤソーを用いたインゴット切断方法
JP2006205661A (ja) 基板製造方法
JP2011230274A (ja) ソーワイヤおよびそれを用いたシリコンインゴットの切断方法
JP4325655B2 (ja) 化合物半導体基板の製造方法
KR101897082B1 (ko) 잉곳 절단 장치 및 잉곳 절단 방법
JP2008188721A (ja) 基板の製造方法及びワイヤソー装置
JPH10128737A (ja) ワイヤソーの被加工物切断方法
JP2004342985A (ja) 研磨装置および研磨パッドのドレッシング方法
JP2016101611A (ja) 基板の製造方法
JP5430144B2 (ja) 基板の製造方法および太陽電池素子