JP2006159163A - 高圧原料ガスからのメタン同位体の分離方法並びに分離装置 - Google Patents

高圧原料ガスからのメタン同位体の分離方法並びに分離装置 Download PDF

Info

Publication number
JP2006159163A
JP2006159163A JP2004358858A JP2004358858A JP2006159163A JP 2006159163 A JP2006159163 A JP 2006159163A JP 2004358858 A JP2004358858 A JP 2004358858A JP 2004358858 A JP2004358858 A JP 2004358858A JP 2006159163 A JP2006159163 A JP 2006159163A
Authority
JP
Japan
Prior art keywords
gas
adsorption
methane
pressure
selective adsorbent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2004358858A
Other languages
English (en)
Inventor
Akinori Yasutake
昭典 安武
Haruma Asakawa
春馬 朝川
Masaki Iijima
正樹 飯嶋
Shinji Karasawa
伸二 柄沢
Satoyuki Yoshida
智行 吉田
Jun Izumi
順 泉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Tokyo Electric Power Company Holdings Inc
Original Assignee
Tokyo Electric Power Co Inc
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Electric Power Co Inc, Mitsubishi Heavy Industries Ltd filed Critical Tokyo Electric Power Co Inc
Priority to JP2004358858A priority Critical patent/JP2006159163A/ja
Publication of JP2006159163A publication Critical patent/JP2006159163A/ja
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Separation Of Gases By Adsorption (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

【課題】メタン同位体をコンパクトに分離濃縮することが可能な分離方法及び分離装置を提供する。
【解決手段】高圧の原料ガスに含まれるメタン同位体のうち12CHを選択的に吸着する選択性吸着剤を含む吸着系に接触させて、12CHを前記選択性吸着剤に吸着させるとともに、12CH以外のガスを流過させて回収し、該選択性吸着剤を吸着時より低圧に導くことにより12CH富化ガスを脱着させて該選択性吸着剤を再生することにより、メタン同位体を率よく分離することができる。
【選択図】 図1

Description

本発明は、高圧原料ガスからのメタン同位体の分離方法並びに分離装置に関するものである。
炭素同位体の1つである13Cは、医療分野や原子力産業の分野において需要が高まっている。特に医療分野においては、核磁気共鳴法や磁気共鳴画像表示法による診断を行う際のマーカー試薬としての需要が高まっている。また最近では、この13Cを原料として製造された尿素を腫瘍マーカーとして用いる診断方法が開発されており、13Cの需要はますます高まっている。
13Cは、天然存在比が約1.1%と微量であるので、上記の用途で利用するにはこれを分離濃縮する必要があり、最近ではメタンガスから13CHを分離濃縮して13CHを抽出する手法が採られている。
また、気相吸着法における濃縮は、大気圧でガスを吸着し、真空で再生する方法が提案されている(特許文献1)。
特開平10−128071号公報
しかし、13CHの分離濃縮方法は、高度な技術を要するとともに多大なエネルギーを消費することで知られている。即ち、従来の13CHの分離濃縮方法である液化精密蒸留法は、13CH12CHの蒸気圧の差を利用して分離するものであるが、その分離係数が1.003〜1.005と通常のガス分離の場合と比べて極端に少なく、また分離する際に−150℃以下の低温にする必要があって分離効率が少なく、このため分離に掛かる手間と消費電力が大きいものであった。
また、気相吸着法におけるガスでの分離では、吸着塔、配管の容量が大規模となり、さらに多消費電力型の真空ポンプを使用する必要があるという、問題がある。
本発明は、前記問題に鑑み、メタン同位体成分をコンパクトに分離濃縮することが可能な高圧原料ガスからのメタン同位体の分離方法並びに分離装置を提供することを課題とする。
上述した課題を解決するための本発明の第1の発明は、高圧の原料メタンガスに含まれるメタン同位体(12CH13CH又は12CHD)のうち12CHを選択的に吸着する選択性吸着剤を含む吸着系に接触させて、12CHを前記選択性吸着剤に吸着させるとともに、12CH以外のガスを流過させて回収し、該選択性吸着剤を吸着時より低圧に導くことにより12CH富化ガスを脱着させて該選択性吸着剤を再生することを特徴とする高圧原料ガスからのメタン同位体の分離方法にある。
第2の発明は、第1の発明に記載の高圧原料ガスからのメタン同位体の分離方法において、前記選択性吸着剤を低圧に導く前に、前記吸着系中に前記原料ガスの供給方向と同一方向から、前記12CH富化ガスを供給して当該吸着系内に残留する12CH以外のガスを流過させて回収するとともに、選択性吸着剤を低圧条件下に導く際に、前記吸着系中に前記原料ガスの供給方向と逆方向から不活性ガスを供給して当該吸着系内の12CHを脱着することを特徴とする高圧原料ガスからのメタン同位体の分離方法にある。
第3の発明は、選択性吸着剤を充填したn個(nは2以上)の吸着系を並列に配置し、各吸着系における工程の進行を1/nずつずらして12CHの吸着を行うことを特徴とする請求項1又は請求項2に記載の高圧原料ガスからのメタン同位体の分離方法にある。
第4の発明は、高圧原料ガスが0.1Mpa以上のガスであることを特徴とする請求項1乃至請求項3のいずれか一つに記載の高圧原料ガスからのメタン同位体の分離方法にある。
第5の発明は、前記吸着時の吸着温度が0℃以下の範囲であることを特徴とする第1乃至請求項4のいずれか一つに記載の高圧原料ガスからのメタン同位体の分離方法にある。
第6の発明は、メタン同位体(12CH13CH又は12CHD)を含む高圧の原料メタンガスを選択性吸着剤に接触させて、12CHを吸着させるとともに12CH以外のガスを流過させて回収した後に、吸着時よりも低圧にして前記選択性吸着剤から前記12CHを脱着させる分離装置であり、選択性吸着剤が充填された少なくとも1以上の吸着塔と、前記高圧の原料ガスを前記吸着塔に導入するために前記吸着塔の入口側に接続された入口側流路と、前記吸着塔の出口側に接続されて12CH以外の富化ガスを回収する出口側流路と、前記吸着塔を低圧にして12CH富化ガスを脱着させるとともに不活性ガスを該吸着塔出口側から流す再生部と、脱着後の12CH富化ガスを一時的に貯留し、該12CH富化ガスを前記吸着塔の入口側に供給する並流パージ部とを具備してなることを特徴とする高圧原料ガスからのメタン同位体の分離装置にある。
第7の発明は、第6の発明に記載の高圧原料ガスからのメタン分離装置を複数直列に接続してなることを特徴とする高圧原料ガスからのメタン同位体の分離装置にある。
本発明によれば、高圧原料ガス中のメタン同位体(12CH13CH又は12CHD)の12CHを高圧条件で分離することができるので、吸着塔及び配管等の分離設備のコンパクト化を図ると共に、従来のような大型の真空ポンプが不用となり、消費電力の省力化を図ることができる。
係る分離装置によれば、いわゆる圧力スイング法による分離方法を採用でき、高圧の原料ガス中に12CHを吸着させることにより、高濃度な12CHの分離をすることができる。
以下、この発明につき図面を参照しつつ詳細に説明する。なお、この実施形態及び実施例によりこの発明が限定されるものではない。また、下記実施形態及び実施例における構成要素には、当業者が容易に想定できるもの、あるいは実質的に同一のものが含まれる。
[実施の形態]
本発明に係る12CHを選択的に吸着する選択性吸着剤は、Na−A型等のA型ゼオライト、ペンタシルゼオライト、モルデナイト等を挙げることができる。
本発明にかかるメタンの同位体として、12CH13CH12CHD等を挙げることができ、これらの内で12CHが易吸着成分となり、選択性吸着剤に吸着され、それ以外のメタン同位体(13CH又は12CHD)が回収される。
また、このようにして回収された13CH及び12CHDは、そのまま用いても良いが、その目的に応じて別途別々に分離され、各々の用途に使用するようにしてもよい。
次に、同位体としてメタンの中の13CH12CHとを分離する同位体の分離濃縮装置について説明する。
本発明に係る同位体選択性吸着剤は、原料ガスに含まれる12CH13CHのうち12CHに対する吸着が高く、13CHに対する吸着性が低いものであり、例えばNaの少なくとも一部がCa又はZnで置換されてなるNa−A型ゼオライトを、650℃以上800℃以下の温度で熱処理してなるものを用いた。
図1には、本発明に係る同位体分離濃縮装置の一構成例を示す。この同位体分離濃縮装置は、同位体選択性吸着剤が充填された3つの吸着塔31,32,33と、高圧原料ガスを各吸着塔31〜33に導入するために各吸着塔31〜33の入口側に接続された入口側流路Aと、各吸着塔31〜33の出口側に接続されて13CH富化ガス(13CHが濃縮されたガス)を回収する出口側流路Bと、各吸着塔を低圧にして12CH富化ガスを脱着させるとともに不活性ガスを各吸着塔出口側から流す向流パージ再生部Cと、脱着後の12CH富化ガス(12CHが濃縮されたガス)を一時的に貯留し、この12CH富化ガスを各吸着塔の入口側に供給する並流パージ部Dとを主体として構成されている。
ここで、本発明で高圧原料ガスとは0.1MPa以上のガスをいう。なお、メタン原料は通常液化天然ガス及びメタンを主成分とする都市ガス等のガスを蒸発して供給されるものであり、2〜3MPa程度の高圧としている。よって、本発明では、高圧原料ガスをそのままの状態用いることで、同位体分離が可能となる。
各吸着塔31〜33はコールドボックス30内に配置されている。コールドボックス30は、原料ガスの供給時に各吸着塔31〜33内の同位体選択性吸着剤を−200℃以上0℃以下の温度に保つものである。
次に、入口側流路Aは、各吸着塔31〜33の入口側に接続された流路34と、流路34の途中に配置されて原料ガスを各吸着塔31〜33に送るブロワ35と、各吸着塔31〜33の入口側(流路34)に設けられた開閉自在なバルブ1,7,13から構成されている。なお、ブロワ35は高圧原料ガスの圧力が所定圧力以下の場合に使用すればよく、2MPa程度の場合には不用となる。
次に、出口側流路Bは、各吸着塔31〜33の出口側に接続された流路38と、各吸着塔31〜33の出口側(流路38)に設けられた開閉自在なバルブ4,10,16から構成されている。
次に、向流パージ再生部Cは、各吸着塔31〜33の入口側に接続された流路41と、流路41の途中に配置されて各吸着塔31〜33を低圧にして12CH富化ガス(12CHが濃縮されたガス)を脱着させる真空ポンプ37と、12CH富化ガス(並流パージガス)を一時的に貯留するバッファタンク36と、各吸着塔31〜33の入口側(流路41)に設けられた開閉自在なバルブ2,8,14から構成されている。バッファタンク36内に回収された12CH富化ガスは、並流パージガスとしてバルブ3,9,15を通じて吸着塔31〜33に送り並流パージに使われる。
更に向流パージ再生部Cには、各吸着塔31〜33の出口側に接続された流路42と、流路42に接続されてヘリウム、アルゴン等の向流パージガスを貯留する向流パージタンク43と、ブロワ44と、各吸着塔31〜33の出口側(流路42)に設けられた開閉自在なバルブ5,11,17が備えられている。
次に並流パージ部Dは、バッファタンク36内の12CH富化ガス(並流パージガス)を各吸着塔31〜33の入口側に送る流路45と、各吸着塔31〜33の入口側(流路45)に設けられた開閉自在なバルブ3、9,15と、各吸着塔31〜33の出口側から排出された並流パージガスを入口側流路Aに還流する流路46と、各吸着塔31〜33の出口側(流路46)に設けられた開閉自在なバルブ6,12,18とから構成されている。
並流パージにより吸着塔31〜33から流過した12CH富化ガスには、少量の13CHが含まれるため、還流流路46を介して原料ガスに戻して再び分離濃縮に使用される。なお、原料ガスGは高圧であるので、還流流路46には昇圧機47が介装されている。このため、13CHのほとんどは出口側流路Bからのみ系外に取り出されるため、本装置は13CHに対し閉鎖系を構成し非常に高い濃縮率を達成することとなる。
次に、この同位体分離濃縮装置の動作を説明する。
各吸着塔31〜33では、12CH吸着−並流パージ−減圧−向流パージ−昇圧という操作サイクルが繰り返し行われる。すなわち、各吸着塔では、(1)原料ガスの供給(12CH吸着及び13CH回収)、(2)12CHを高濃度に含む12CH富化ガスの供給(並流パージ)と、それによる塔内残留13CHの置換、(3)減圧による12CHの脱着及び貯留、(4)13CHを含まない向流パージガスを用いた、塔頂よりの逆洗による塔内洗浄(向流パージ)、そして(5)昇圧という操作サイクルが行われ、12CHの吸着と13CHの回収が再び可能な状態となる。このような操作サイクルを繰り返すことで13CHを効率よく回収できる。
上記操作サイクルを吸着塔31に着目して図1を用いてより詳細に説明すると、まず、バルブ1を開き、ブロワ35によって1Mpa程度に圧縮し、流路34から12CH及び13CHを含有する原料ガスを、コールドボックス30内の吸着塔31に供給する。このとき原料ガス中に含まれる12CHが、吸着塔31内の同位体選択性吸着剤によって選択的に吸着される。12CHが吸着された後の原料ガスは13CHが高濃度に含まれるとともに12CHが微量含まれたもの(13CH富化ガス)となり、この13CH富化ガスがバルブ4及び流路38を通って回収される。
原料ガスの供給時には、各吸着塔31〜33内の同位体選択性吸着剤を−155℃以上0℃以下の温度に保つことが好ましい。温度が0℃を超えると13CHの濃縮率が低下してしまうので好ましくなく、温度を−155℃以下にすると、低温に保つためのエネルギーが莫大となるので好ましくない。
なお、この時、吸着塔32,33のいずれか一方では、同位体選択性吸着剤に吸着した12CHの脱着が行われる。脱着された12CH富化ガスはバッファタンク36に貯留される。
次に、バルブ1と4を閉じ、バルブ3と6を開き、バッファタンク36から12CH富化ガスを吸着塔31に供給する。これにより12CH富化ガスの一部が、吸着塔31内の死容積部に残存する13CH及び同位体選択性吸着剤に一部吸着された13CHと置換され(並流パージ)、塔内の13CH濃度を減少させる。吸着塔31から排出されたガスは、13CH濃度が高くなっているので、昇圧機47、還流流路46を介して原料ガスの流路34に還流させ、これを別の吸着塔32,33のいずれか一方に供給する。
これは、このとき吸着塔31内のデッドスペースには13CHが残存しているので、この時点で塔内を減圧に導いて12CHを脱着したとしても13CHが同時に脱着されて12CH富化ガスに混入してしまう。そこで、バッファタンク36から、一旦回収した12CH富化ガスを、原料ガスと同じ方向から吸着塔31に供給する(並流パージ)ことによって、塔内に残存する13CHを塔外に追い出し、再度入口側の流路34に戻すことができる。この並流パージは、予めバッファタンク36内に回収、貯留しておいた12CH富化ガスを用いて行うことができる。12CH富化ガスが未回収である1回目の操作サイクルにおいては、予め12CH富化ガスをバッファタンク36内に供給しておくことが好ましい。
あるいは、1回目の操作サイクルではこの工程を省略することもできる。
さらに、13CH富化ガスの除去効果はわずかに低下するが、並流パージを行わなくても、高効率で13CHを分離濃縮することもできる。この場合、操作は更に簡略化される。したがって、必要な13CH濃縮率、経済性、操作性等を勘案して並流パージを行うか否かを決定すればよい。
次に、吸着塔31のバルブ2を開け、残りのバルブ1及び3〜6を閉じ、真空ポンプ37を用いて吸着塔31内を12CH吸着時より減圧、好ましくは0.1kPa程度に減圧して、吸着した12CHを含む12CH富化ガスを脱着させ、バッファタンク36に一時的に貯留する。このバッファタンク36内の12CH富化ガスは、流路45を介して別の吸着塔の並流パージに用いる。
更に、バルブ5を開き、向流パージタンク43内の向流パージガスを用いて、吸着塔31の塔頂よりの逆洗による塔内洗浄(向流パージ)を行い、吸着塔31内の12CHを完全に除去する。向流パージに必要なガス量Gp(LN/batch)は、原料ガス量をG0(LN/batch)、吸着圧力(吸着時の圧力)をPa(atm)、再生圧力をPd(atm)とすると、Gp=G0×K×(Pd/Pa)[式中、K=1.2〜1.5]で表される。
これは、真空ポンプ37による単純な減圧で塔内の12CHの大半は回収されるが、並流パージで塔内12CH濃度を著しく高めているので単純な減圧だけでは12CHの除去が不十分な可能性があるので、減圧による12CH回収に続いて減圧条件下で原料ガスとは逆方向から12CHを含まない向流パージガスを供給すること(向流パージ)によって塔内の12CHを完全に除去するためである。この向流パージを行うことで、同位体選択性吸着剤を十分に再生させることができ、再度12CHの吸着を行う前に12CHの完全な吸着除去を達成できる。
それから、バルブ2を閉じ、向流パージガスで吸着塔32内を吸着圧力にまで昇圧する。これによって再び12CHの吸着が可能となる。これら一連の操作を繰り返すことによって、13CHの著しい濃縮を達成することができる。
また、n個の吸着塔において、上述した操作サイクルの工程の進行を1/nずつずらして行うことにより、連続した12CH吸着及び13CHの流過回収、並流パージ、向流パージによる12CH脱着並びに吸着剤の再生を行うことができる。例えば、図1(n=3)の場合、例えば並流パージの際に吸着塔32の出口側から排出されたガスは、昇圧機47、還流流路46を介して原料ガスの流路34に還流され、ブロワ35によって吸着塔31に供給される。このように、本発明の方法を用いることによって、簡単な操作で連続的且つ効率的な13CH濃縮を行うことができる。
以上、3塔形式の装置を例示して本発明を説明したが、適宜、1又は2、あるいは4つ以上の吸着系を用いて行うことも可能である。
次に、図2に同位体分離濃縮装置の別の構成例を示す。
図2に示す同位体分離濃縮装置100は、図1に示した同位体分離濃縮装置1(1a〜1e)が直列に5つ接続されて構成されている。各同位体分離濃縮装置1a〜1eは、吸着塔31a〜33e、入口側の流路34a〜34e、出口側の流路38a〜38e、向流パージガスを回収、供給する流路41a〜41e、45a〜45e、真空ポンプ37a〜37e、並びに向流パージ後の排ガスを還流する流路46b〜46eとから構成されている。
同位体分離濃縮装置1aに着目すると、この同位体分離濃縮装置1aには、吸着塔31a〜33aに原料ガスを供給する流路34aと、吸着塔31a〜33aから流過した13CH富化ガスを隣の同位体分離濃縮装置1bに送る流路38aと、並流パージガスを貯留、供給するための流路41a、45a及びバッファタンク36aとから構成されている。
また、同位体分離濃縮装置1aの流路34aには、同位体分離濃縮装置1bから並流パージガス(12CH富化ガス)を供給する流路46bが接続されている。
図2に示す同位体分離濃縮装置100の動作について簡単に説明すると、流路34aから同位体分離濃縮装置1aの吸着塔31a〜33aに高圧の原料ガスを供給することにより、吸着塔内の吸着剤に12CHを吸着させるとともに13CHを流過させ、この13CH富化ガスを流路38aを通して隣の同位体分離濃縮装置1bに送る。また、後段の同位体分離濃縮装置1bにおける並流パージ後の12CH富化ガスは、昇圧機47aが介装された流路46bを通って原料ガスに混合され、吸着塔31a〜33aに供給される。
吸着剤に吸着された12CHは真空ポンプ37aによって脱着されてバッファタンク36aに貯留され、並流パージに用いられる。
流路38aを通して送られた13CHを含む13CH富化ガスは、同位体分離濃縮装置1bの手前にて、後段の同位体分離濃縮装置1cから流路46cを通って送られた並流パージ後の12CH富化ガスと混合され、同位体分離濃縮装置1bの吸着塔31b〜33bに供給される。
各同位体分離濃縮装置1a〜1dを経て濃縮された13CH富化ガスは流路38eを通って回収される。
上記の同位体分離濃縮装置100によれば、直列に接続した複数の同位体分離濃縮装置1a〜1eによって、13CH富化ガスを順次濃縮することができ、高純度の13CHを得ることができる。
次に、図1に示した装置を用いて、メタン(CH13CH/(12CH13CH)=0.011)ガスからの13CHの濃縮を行った。
先ず、吸着塔31、32、33の三塔から構成される吸着塔に原料ガスとしてCH10Vol%、Heガス90Vol%の混合ガスを用いた。この原料ガスをブロワ35で1MPa程度に圧縮して塔内に供給した。吸着塔には12CHを選択的に吸着する吸着剤としてCa−Na−A(Ca交換率96%、処理温度720℃、熱処理時間1時間、ペレット直径1.6mmφ)のペレットが1kg/塔充填されており、原料ガスを1MPa程度に圧縮して、5LN/batch(吸着時間5分の場合1LN/分)で供給すると、Ca−Na−Aは12CHを選択的に吸着するため、塔出口からは13CH濃縮ガスが流過して回収される。
この時吸着塔31には吸着した12CH以外に13CHが共吸着されており,吸着剤及び死容積部には13CH12CHが残存する。このためこのまま減圧に導いても共吸着13CHの損失が大きい。
このため脱着した12CHリッチガスを吸着塔31の入口からパージガスとして流過すると(並流パージ)塔内に残存する13CHのかなりの部分が塔後方から流過する。このガスは還流流路46を介して吸着工程入口に戻すことにより次の吸着工程で13CH12CHの分離に回される。
ここで、13CHに着目すると吸着工程における13CHの損失は殆ど無く供給された13CHの90%以上が吸着工程出口から13CH濃縮ガスとして回収される。ここで並流パージにより塔内の12CH濃度は著しく上昇しているので、真空ポンプ37により吸着塔31を減圧に導くと、吸着した12CH(及び共吸着した13CH)は脱着される。
単純な減圧での塔内の12CHの大半は回収されるが、並流パージ後の塔内の12CH濃度は著しく上昇しているため、単純な減圧だけでは12CHの除去は不十分であり、12CHの減圧脱着に続いて塔頂からHeガスを減圧条件下流過すると(向流パージ)、塔内の12CHは完全に除去されて次の吸着工程で高度な12CH吸着が可能となる。これにより、出口から流過する13CH濃度も向上することになる。なお、向流パージに必要なガス量Gp(lN/batch)は入口ガス量をG0(lN/batch)とし、吸着圧力をPa(atm)とし、再生圧力をPd(atm)とすると、Gp=G0×K×(Pd/Pa)となる。ここで、K=1.2〜1.5である。
本実施例では、濃縮する13CHに着目すると脱着工程以外からの系外への排出はなく、共吸着した13CHは並流パージにより吸着工程入口に還流することで閉鎖系を構成し、著しい13CH濃縮が達成される。
メタン(CH13CH/(12CH13CH)=0.011)ガスからの並流パージ率と13CH濃縮率との関係を下記表1に示す。
Figure 2006159163
また、メタンは通常液化天然ガスおよびメタンを主成分とする都市ガスなどのガスを蒸発して供給され、2〜3MPa程度の高圧であるので、高圧原料ガスをそのままの状態で同位体分離が可能となる。また、その設備は容積として約1/9程度もコンパクト化を図ることができる。さらに、従来のように多消費電力型の大掛かりな真空ポンプが不用となるので、1/10の消費電力の削減を図ることができる。
本発明にかかるメタン同位体の分離方法によれば、高圧原料ガス中の12CHを吸着し、その吸着圧力よりも低圧とすることで、12CHを脱着し、12CHとそれ以外のメタン同位体とを分離することができ、高圧原料ガスを用いるので、設備のコンパクト化を図ることができる。
本発明の実施形態である同位体分離濃縮装置の一例を示す模式図である。 本発明の実施形態である同位体分離濃縮装置の別の例を示す模式図である。
符号の説明
100、200 同位体分離濃縮装置
31、32、33 吸着塔
A 入口側流路
B 出口側流路
C 向流パージ再生部
D 並流パージ部

Claims (7)

  1. 高圧の原料メタンガスに含まれるメタン同位体(12CH13CH又は12CHD)のうち12CHを選択的に吸着する選択性吸着剤を含む吸着系に接触させて、12CHを前記選択性吸着剤に吸着させるとともに、12CH以外のガスを流過させて回収し、該選択性吸着剤を吸着時より低圧に導くことにより12CH富化ガスを脱着させて該選択性吸着剤を再生することを特徴とする高圧原料ガスからのメタン同位体の分離方法。
  2. 請求項1に記載の高圧原料ガスからのメタン同位体の分離方法において、前記選択性吸着剤を低圧に導く前に、前記吸着系中に前記原料ガスの供給方向と同一方向から、前記12CH富化ガスを供給して当該吸着系内に残留する12CH以外のガスを流過させて回収するとともに、
    選択性吸着剤を低圧条件下に導く際に、前記吸着系中に前記原料ガスの供給方向と逆方向から不活性ガスを供給して当該吸着系内の12CHを脱着することを特徴とする高圧原料ガスからのメタン同位体の分離方法。
  3. 選択性吸着剤を充填したn個(nは2以上)の吸着系を並列に配置し、各吸着系における工程の進行を1/nずつずらして12CHの吸着を行うことを特徴とする請求項1又は請求項2に記載の高圧原料ガスからのメタン同位体の分離方法。
  4. 高圧原料ガスが0.1Mpa以上のガスであることを特徴とする請求項1乃至請求項3のいずれか一つに記載の高圧原料ガスからのメタン同位体の分離方法。
  5. 前記吸着時の吸着温度が0℃以下の範囲であることを特徴とする請求項1乃至請求項4のいずれか一つに記載の高圧原料ガスからのメタン同位体の分離方法。
  6. メタン同位体(12CH13CH又は12CHD)を含む高圧の原料メタンガスを選択性吸着剤に接触させて、12CHを吸着させるとともに12CH以外のガスを流過させて回収した後に、吸着時よりも低圧にして前記選択性吸着剤から前記12CHを脱着させる分離装置であり、
    選択性吸着剤が充填された少なくとも1以上の吸着塔と、
    前記高圧の原料ガスを前記吸着塔に導入するために前記吸着塔の入口側に接続された入口側流路と、
    前記吸着塔の出口側に接続されて12CH以外の富化ガスを回収する出口側流路と、
    前記吸着塔を低圧にして12CH富化ガスを脱着させるとともに不活性ガスを該吸着塔出口側から流す再生部と、
    脱着後の12CH富化ガスを一時的に貯留し、該12CH富化ガスを前記吸着塔の入口側に供給する並流パージ部とを具備してなることを特徴とする高圧原料ガスからのメタン同位体の分離装置。
  7. 請求項6に記載の高圧原料ガスからのメタン分離装置を複数直列に接続してなることを特徴とする高圧原料ガスからのメタン同位体の分離装置。
JP2004358858A 2004-12-10 2004-12-10 高圧原料ガスからのメタン同位体の分離方法並びに分離装置 Withdrawn JP2006159163A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004358858A JP2006159163A (ja) 2004-12-10 2004-12-10 高圧原料ガスからのメタン同位体の分離方法並びに分離装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004358858A JP2006159163A (ja) 2004-12-10 2004-12-10 高圧原料ガスからのメタン同位体の分離方法並びに分離装置

Publications (1)

Publication Number Publication Date
JP2006159163A true JP2006159163A (ja) 2006-06-22

Family

ID=36661742

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004358858A Withdrawn JP2006159163A (ja) 2004-12-10 2004-12-10 高圧原料ガスからのメタン同位体の分離方法並びに分離装置

Country Status (1)

Country Link
JP (1) JP2006159163A (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015146211A1 (ja) * 2014-03-28 2015-10-01 住友精化株式会社 ヘリウムガスの精製方法および精製システム

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015146211A1 (ja) * 2014-03-28 2015-10-01 住友精化株式会社 ヘリウムガスの精製方法および精製システム
CN105939960A (zh) * 2014-03-28 2016-09-14 住友精化株式会社 氦气的纯化方法和纯化系统
KR20160138377A (ko) * 2014-03-28 2016-12-05 스미또모 세이까 가부시키가이샤 헬륨 가스의 정제 방법 및 정제 시스템
JPWO2015146211A1 (ja) * 2014-03-28 2017-04-13 住友精化株式会社 ヘリウムガスの精製方法および精製システム
KR102276346B1 (ko) 2014-03-28 2021-07-13 스미또모 세이까 가부시키가이샤 헬륨 가스의 정제 방법 및 정제 시스템

Similar Documents

Publication Publication Date Title
KR101388266B1 (ko) 고로가스의 분리방법 및 장치
US4299596A (en) Adsorption process for the separation of gaseous mixtures
US6752851B2 (en) Gas separating and purifying method and its apparatus
KR100838166B1 (ko) 가스 분리 방법 및 그 장치
KR101686085B1 (ko) 흡착 작업으로부터 nf3를 회수하는 방법
EP1602402A1 (en) Off-gas feed method and object gas purification system
JP2010042381A (ja) キセノン吸着剤、キセノン濃縮方法、キセノン濃縮装置および空気液化分離装置
JP2005162546A (ja) アンモニアの精製方法及び精製装置
JP5647388B2 (ja) 高炉ガスの分離方法、および高炉ガスの分離装置
JP4481112B2 (ja) 圧力変動吸着式ガス分離方法及び装置
WO2002051524A1 (fr) Procede de separation de gaz hydrogene
JP2017014101A (ja) 吸着分離によって空気から酸素を分離して取得する方法およびそのための装置
JP7374925B2 (ja) ガス分離装置及びガス分離方法
JP2006159163A (ja) 高圧原料ガスからのメタン同位体の分離方法並びに分離装置
JP4508716B2 (ja) 同位体選択性吸着剤及び同位体分離濃縮方法並びに同位体分離濃縮装置
JP2004160294A (ja) 重水素分離濃縮方法
JP4119712B2 (ja) 同位体選択性吸着剤及び同位体の分離濃縮方法並びに同位体分離濃縮装置
JP2006007004A (ja) 同位体選択性吸着剤及び同位体分離濃縮方法並びに同位体分離濃縮装置
JP2587334B2 (ja) Ch4を含まないcoガスの分離方法
JP2005349271A (ja) 同位体選択性吸着剤及び同位体の分離濃縮方法並びに同位体分離濃縮装置
JP2004148270A (ja) 圧力変動吸着装置並びにこの装置を用いた高濃度酸素及び高濃度窒素の製造方法
JP2004174420A (ja) 同位体の分離濃縮方法及び同位体分離濃縮装置
JP7319830B2 (ja) 窒素製造方法及び装置
KR20240109299A (ko) 암모니아 분해로부터 고순도의 수소 정제용 압력변동흡착장치 및 이를 이용한 수소 정제 방법
JP2004041985A (ja) 同位体の分離濃縮方法並びに同位体分離濃縮装置

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20080304