JP2005349271A - 同位体選択性吸着剤及び同位体の分離濃縮方法並びに同位体分離濃縮装置 - Google Patents
同位体選択性吸着剤及び同位体の分離濃縮方法並びに同位体分離濃縮装置 Download PDFInfo
- Publication number
- JP2005349271A JP2005349271A JP2004170998A JP2004170998A JP2005349271A JP 2005349271 A JP2005349271 A JP 2005349271A JP 2004170998 A JP2004170998 A JP 2004170998A JP 2004170998 A JP2004170998 A JP 2004170998A JP 2005349271 A JP2005349271 A JP 2005349271A
- Authority
- JP
- Japan
- Prior art keywords
- isotope
- adsorption
- gas
- selective adsorbent
- adsorbent
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Landscapes
- Separation Of Gases By Adsorption (AREA)
- Solid-Sorbent Or Filter-Aiding Compositions (AREA)
Abstract
【課題】アンモニア原料から15NH3を効率的に分離濃縮することができる吸着剤及びこの吸着剤を用いた分離濃縮方法並びにこの吸着剤を用いた分離濃縮装置を提供する。
【解決手段】同位体選択性吸着剤のNa―K−A型ゼオライト又はZn−K−A型ゼオライトは窓径が0.38nmであり、原料ガスに含まれるアンモニア同位体のうち14NH3を選択的に吸着する、ゼオライト系吸着剤を650℃以上800℃以下の温度で熱処理してなるものであり、この同位体選択性吸着剤を用いていわゆる圧力スイング法による分離濃縮方法を採用でき、14NH3を吸着させるとともに15NH3を流過させることにより、高濃度な15NH3を分離濃縮することができる。
【選択図】 図1
【解決手段】同位体選択性吸着剤のNa―K−A型ゼオライト又はZn−K−A型ゼオライトは窓径が0.38nmであり、原料ガスに含まれるアンモニア同位体のうち14NH3を選択的に吸着する、ゼオライト系吸着剤を650℃以上800℃以下の温度で熱処理してなるものであり、この同位体選択性吸着剤を用いていわゆる圧力スイング法による分離濃縮方法を採用でき、14NH3を吸着させるとともに15NH3を流過させることにより、高濃度な15NH3を分離濃縮することができる。
【選択図】 図1
Description
本発明は、同位体選択性吸着剤及び同位体の分離濃縮方法並びに同位体分離濃縮装置に関し、特にアンモニア中の15NH3の分離濃縮法に関するものである。
高速増殖炉の核燃料としては、現在酸化ウラン、酸化プルトニウム混合燃料(MOx燃料)が利用されているが、熱伝導度の向上の観点から窒化物燃料が検討されている。しかしながら、窒化物燃料を構成する14Nは中性子との反応で放射性の14Cに転換して、放射能レベルを上げることとなり、好ましくない。この点15Nは、中性子との反応で非放射性の16Oに転換することから、高速増殖炉窒化物燃料の窒素としての利用が期待されている。また、医療分野や化学分野において、例えば核磁気共鳴(NMR)や磁気共鳴画像表示(MRI)のマーカ試薬としての需要が高まっている。また、農業分野においても窒素肥料の代謝気候のマーカ試薬としての需要がある。
この15Nを分離する方法として、気相吸着法における濃縮は、大気圧でガスを吸着し、真空で再生する方法が提案されている(特許文献1)。
この15Nを分離する方法として、気相吸着法における濃縮は、大気圧でガスを吸着し、真空で再生する方法が提案されている(特許文献1)。
しかし、特許文献1にかかる気相吸着法においても、さらなる分離効率の向上した同位体選択性吸着剤の出現が望まれている。
本発明は、上記事情に鑑みてなされたものであって、アンモニアから15NH3を効率的に分離濃縮することができる吸着剤及びこの吸着剤を用いた分離濃縮方法並びにこの吸着剤を用いた分離濃縮装置を提供することを課題とする。
上述した課題を解決するための本発明の第1の発明は、原料ガスに含まれる14NH3及び15NH3のうち14NH3を選択的に吸着する同位体選択性吸着剤であり、Naの一部をK、Ag、Auのいずれか一種又はこれらの混合物で置換されてなるNa―A型ゼオライト吸着剤を、650℃以上800℃以下の温度で熱処理してなることを特徴とする同位体選択性吸着剤にある。
第2の発明は、第1の発明において、前記K、Ag、Auのいずれか一種又はこれらの混合物の置換率が1〜50mol%の範囲であることを特徴とする同位体選択性吸着剤にある。
第3の発明は、第1又は2の発明において、前記Naの代わりにZnを置換してなることを特徴とする同位体選択性吸着剤にある。
第4の発明は、少なくとも14NH3及び15NH3を含む原料ガスを、第1乃至3のいずれか一つに記載の同位体選択性吸着剤を含む吸着系に接触させて、14NH3を前記同位体選択性吸着剤に吸着させるとともに15NH3を流過させて回収し、吸着済の該同位体選択性吸着剤を吸着時より低圧に導くことにより14NH3富化ガスを脱着させて該同位体選択性吸着剤を再生することを特徴とする同位体の分離濃縮方法にある。
第5の発明は、第4に記載の同位体の分離濃縮方法において、前記同位体選択性吸着剤を低圧に導く前に、前記吸着系中に前記原料ガスの供給方向と同一方向から、前記14NH3富化ガスを供給して当該吸着系内に残留する15NH3を排出するとともに、同位体選択性吸着剤を低圧条件下に導く際に、前記吸着系中に前記原料ガスの供給方向と逆方向から不活性ガスを供給して当該吸着系内の14NH3を脱着することを特徴とする同位体の分離濃縮方法にある。
第6の発明は、第1乃至3のいずれか一つに記載の同位体選択性吸着剤を充填したn個(nは2以上)の吸着系を並列に配置し、各吸着系における工程の進行を1/nずつずらして14NH3の吸着を行うことを特徴とする第4又は5に記載の同位体の分離濃縮方法にある。
第7の発明は、前記吸着時の吸着温度が−200℃以上0℃以下の範囲であることを特徴とする第4乃至6のいずれか一つに記載の同位体の分離濃縮方法にある。
第8の発明は、前記原料ガスの圧力が吸着時に0.1MPa以上の高圧であることを特徴とする第4乃至7のいずれか一つに記載の同位体の分離濃縮方法にある。
第9の発明は、少なくとも14NH3及び15NH3を含む原料ガスを同位体選択性吸着剤に接触させて14NH3を吸着させるとともに15NH3を流過させて回収した後に、吸着時よりも低圧にして前記同位体選択性吸着剤から前記14NH3を脱着させる同位体分離濃縮装置であり、第1乃至3のいずれか一つに記載の同位体選択性吸着剤が充填された少なくとも1以上の吸着塔と、前記原料ガスを前記吸着塔に導入するために前記吸着塔の入口側に接続された入口側流路と、前記吸着塔の出口側に接続されて15NH3富化ガスを回収する出口側流路と、前記吸着塔を低圧にして14NH3富化ガスを脱着させるとともに不活性ガスを該吸着塔出口側から流す再生部と、脱着後の14NH3富化ガスを一時的に貯留し、該14NH3富化ガスを前記吸着塔の入口側に供給する並流パージ部とを具備してなることを特徴とする同位体分離濃縮装置にある。
第10の発明は、第9に記載の同位体分離濃縮装置を複数直列に接続してなることを特徴とする同位体分離濃縮装置にある。
第11の発明は、前記14NH3及び15NH3を含む原料ガスの圧力が吸着時に0.1MPa以上の高圧であることを特徴とする第9又は10に記載の同位体分離濃縮装置にある。
本発明の同位体選択性吸着剤によれば、15NH3の分離係数が高いので、アンモニアガス中の15NH3を選択的に分離濃縮することができる。
また、650℃以上800℃以下の温度で熱処理することにより、ゼオライトの窓径を3.5〜4Åの範囲で微調整することができ、15NH3及び14NH3の分離係数をより高めることができる。
また、650℃以上800℃以下の温度で熱処理することにより、ゼオライトの窓径を3.5〜4Åの範囲で微調整することができ、15NH3及び14NH3の分離係数をより高めることができる。
係る同位体分離濃縮装置によれば、いわゆる圧力スイング法による分離濃縮方法を採用でき、アンモニア中の14NH3を吸着させるとともに15NH3を流過させることにより、高濃度な15NH3を分離濃縮することができる。
以下、この発明につき図面を参照しつつ詳細に説明する。なお、この実施例によりこの発明が限定されるものではない。また、下記実施例における構成要素には、当業者が容易に想定できるもの、あるいは実質的に同一のものが含まれる。
以下、本発明の実施の形態について図面を参照して説明する。
本発明に係る同位体選択性吸着剤は、原料ガスであるアンモニアガスに含まれる15NH3及び14NH3のうち14NH3に対する吸着が高く、15NH3に対する吸着性が低いものであり、ゼオライト系吸着剤を、650℃以上800℃以下の温度で熱処理してなるものを例示できる。
本発明に係る同位体選択性吸着剤は、原料ガスであるアンモニアガスに含まれる15NH3及び14NH3のうち14NH3に対する吸着が高く、15NH3に対する吸着性が低いものであり、ゼオライト系吸着剤を、650℃以上800℃以下の温度で熱処理してなるものを例示できる。
ここで、ゼオライト系吸着剤の例として、例えばNa−A型ゼオライトのNaの一部をKで置換されてなるNa―K−A型ゼオライトを例示することができる。
また、Kの代わりにNaの一部をAg、Auのいずれか一種で置換するようにしてもよい。また、K、Au,Agそれぞれ単独で置換するものでも又これらのいずれかを混合して置換するものでもいずれでもよい。これらはいずれもそのイオン半径が1.3Å前後である(K=1.33Å、Ag=1.26Å、Au=1.37Å、)ので、リンデ型のA型ゼオライトの窓径を任意に調整することができる。
また、Kの代わりにNaの一部をAg、Auのいずれか一種で置換するようにしてもよい。また、K、Au,Agそれぞれ単独で置換するものでも又これらのいずれかを混合して置換するものでもいずれでもよい。これらはいずれもそのイオン半径が1.3Å前後である(K=1.33Å、Ag=1.26Å、Au=1.37Å、)ので、リンデ型のA型ゼオライトの窓径を任意に調整することができる。
ここで、前記K、Ag、Auのいずれか一種又はこれらの混合物の置換率は1〜50mol%の範囲とするのが好ましい。これは吸着するアンモニアの大きさが0.38nm(3.8Å)であるので、これらのイオンを所定量置換することで、この大きさになるように調整することができる。
また、これらのカチオン種の置換率は1〜50mol%の範囲とするのが好ましい。
特にKの場合の単独の置換率は7〜15mol%の範囲、Agの場合の単独の置換率は15〜50mol%の範囲、Auの場合の単独置換率は5〜15mol%の範囲とするのが好ましい。これらの混合物の置換率はアンモニアの大きさに近似するように適宜調整するようにすればよい。
特にKの場合の単独の置換率は7〜15mol%の範囲、Agの場合の単独の置換率は15〜50mol%の範囲、Auの場合の単独置換率は5〜15mol%の範囲とするのが好ましい。これらの混合物の置換率はアンモニアの大きさに近似するように適宜調整するようにすればよい。
また、前記Naの代わりにZnを置換してなるZn―K−A型ゼオライトを用いることもできる。上述したのと同様に、Kの代わりにAg、Auを置換するようにしてもよい。
上記同位体選択性吸着剤は、650℃以上800℃以下の温度で熱処理したものである。
この例の吸着剤の原料となる例えばNa―K−A型ゼオライトは、ゼオライト結晶の窓径が0.4nm程度であるが、Naの少なくとも一部をKで置換することにより、窓径が0.35〜0.40nmの範囲に縮小する。更に650℃以上800℃以下の温度で熱処理することにより、窓径の大きさを0.01nm単位で精密に制御することができる。
この例の吸着剤の原料となる例えばNa―K−A型ゼオライトは、ゼオライト結晶の窓径が0.4nm程度であるが、Naの少なくとも一部をKで置換することにより、窓径が0.35〜0.40nmの範囲に縮小する。更に650℃以上800℃以下の温度で熱処理することにより、窓径の大きさを0.01nm単位で精密に制御することができる。
また、前記Na―K−A型ゼオライトのNaをZnで置換すると窓径が0.35〜0.40nmの範囲に縮小する。なお、Znの置換は50〜90%とすればよい。
この同位体選択性吸着剤の製造方法の一例を以下に示す。
図1に示すように、まずNa−A型ゼオライト粉末を用意し、次にこのNa−A型ゼオライトに対してKによるイオン交換を行う。イオン交換は、Kイオンを含むイオン交換溶液をNa−A型ゼオライトに滴下するバッチ法や、Na―A型ゼオライトをカラムに充填し、先のイオン交換溶液を加圧状態で供給するクロマト法を使用できる。
次にバインダー(カオリン等)及び気孔賦与剤(セルロース等)添加して成形・乾燥し、次に例えば110℃程度で予備加熱を行って表面水分を除去し、次に室温まで冷却して再度水分を表面に付着させる。
次に、650℃以上800℃以下の温度で1〜3時間程度の熱処理を行い、更に室温まで冷却してNa−K−A型ゼオライトが得られる。
また、Znを置換(置換率50%)したZn−K−A型ゼオライトも同様して得られる。
図1に示すように、まずNa−A型ゼオライト粉末を用意し、次にこのNa−A型ゼオライトに対してKによるイオン交換を行う。イオン交換は、Kイオンを含むイオン交換溶液をNa−A型ゼオライトに滴下するバッチ法や、Na―A型ゼオライトをカラムに充填し、先のイオン交換溶液を加圧状態で供給するクロマト法を使用できる。
次にバインダー(カオリン等)及び気孔賦与剤(セルロース等)添加して成形・乾燥し、次に例えば110℃程度で予備加熱を行って表面水分を除去し、次に室温まで冷却して再度水分を表面に付着させる。
次に、650℃以上800℃以下の温度で1〜3時間程度の熱処理を行い、更に室温まで冷却してNa−K−A型ゼオライトが得られる。
また、Znを置換(置換率50%)したZn−K−A型ゼオライトも同様して得られる。
ここで、熱処理温度が650℃未満であると、ゼオライト結晶の窓径を縮小させることができず、15NH3及び14NH3との分離係数が低くなるので好ましくなく、熱処理温度が800℃を超えるとゼオライト自体が熱で破壊されてしまうので好ましくない。
上記同位体選択性吸着剤は、相対的高圧条件で15NH3及び14NH3を含む原料ガスと接触させて14NH3を主に吸着させるとともに14NH3を流過させて回収し、更に相対的低圧に導くことによって14NH3を脱着させて吸着剤を再生する圧力スイング法(PSA)による分離濃縮に適している。即ち、本発明で用いるPSAでは、例えば、吸着圧力として100〜150kPaで14NH3を主に該吸着剤に吸着させた後、1〜20kPaに減圧することにより14NH3を脱着させる。
次に、本発明の実施形態である同位体の分離濃縮装置について説明する。
図2には、本発明に係る同位体分離濃縮装置の一構成例を示す。
この同位体分離濃縮装置は、同位体選択性吸着剤が充填された3つの吸着塔31,32,33と、原料ガスを各吸着塔31〜33に導入するために各吸着塔31〜33の入口側に接続された入口側流路Aと、各吸着塔31〜33の出口側に接続されて15NH3富化ガス(15NH3が濃縮されたガス)を回収する出口側流路Bと、各吸着塔を低圧にして14NH3富化ガスを脱着させるとともに不活性ガスを各吸着塔出口側から流す向流パージ再生部Cと、脱着後の14NH3富化ガス(14NH3が濃縮されたガス)を一時的に貯留し、この14NH3富化ガスを各吸着塔の入口側に供給する並流パージ部Dとを主体として構成されている。
図2には、本発明に係る同位体分離濃縮装置の一構成例を示す。
この同位体分離濃縮装置は、同位体選択性吸着剤が充填された3つの吸着塔31,32,33と、原料ガスを各吸着塔31〜33に導入するために各吸着塔31〜33の入口側に接続された入口側流路Aと、各吸着塔31〜33の出口側に接続されて15NH3富化ガス(15NH3が濃縮されたガス)を回収する出口側流路Bと、各吸着塔を低圧にして14NH3富化ガスを脱着させるとともに不活性ガスを各吸着塔出口側から流す向流パージ再生部Cと、脱着後の14NH3富化ガス(14NH3が濃縮されたガス)を一時的に貯留し、この14NH3富化ガスを各吸着塔の入口側に供給する並流パージ部Dとを主体として構成されている。
各吸着塔31〜33はコールドボックス30内に配置されている。コールドボックス30は、原料ガスの供給時に各吸着塔31〜33内の同位体選択性吸着剤を−200℃以上0℃以下の温度に保つものである。
次に、入口側流路Aは、各吸着塔31〜33の入口側に接続された流路34と、流路34の途中に配置されて原料ガスを各吸着塔31〜33に送るブロア35と、各吸着塔31〜33の入口側(流路34)に設けられた開閉自在なバルブ1,7,13から構成されている。
次に、出口側流路Bは、各吸着塔31〜33の出口側に接続された流路38と、流路38の途中に配置されて15NH3富化ガス40を送るブロア39と、各吸着塔31〜33の出口側(流路38)に設けられた開閉自在なバルブ4,10,16から構成されている。
次に、入口側流路Aは、各吸着塔31〜33の入口側に接続された流路34と、流路34の途中に配置されて原料ガスを各吸着塔31〜33に送るブロア35と、各吸着塔31〜33の入口側(流路34)に設けられた開閉自在なバルブ1,7,13から構成されている。
次に、出口側流路Bは、各吸着塔31〜33の出口側に接続された流路38と、流路38の途中に配置されて15NH3富化ガス40を送るブロア39と、各吸着塔31〜33の出口側(流路38)に設けられた開閉自在なバルブ4,10,16から構成されている。
次に、向流パージ再生部Cは、各吸着塔31〜33の入口側に接続された流路41と、流路41の途中に配置されて各吸着塔31〜33を低圧にして14NH3富化ガス(14NH3が濃縮されたガス)を脱着させる真空ポンプ37と、14NH3富化ガス(並流パージガス)を一時的に貯留するバッファタンク36と、各吸着塔31〜33の入口側(流路41)に設けられた開閉自在なバルブ2,8,14から構成されている。バッファタンク36内に回収された14NH3富化ガスは、並流パージガスとしてバルブ3,9,15を通じて吸着塔31〜33に送り並流パージに使われる。
更に向流パージ再生部Cには、各吸着塔31〜33の出口側に接続された流路42と、流路42に接続されてヘリウム、アルゴン等の向流パージガスを貯留する向流パージタンク43と、ブロア44と、各吸着塔31〜33の出口側(流路42)に設けられた開閉自在なバルブ5,11,17が備えられている。
更に向流パージ再生部Cには、各吸着塔31〜33の出口側に接続された流路42と、流路42に接続されてヘリウム、アルゴン等の向流パージガスを貯留する向流パージタンク43と、ブロア44と、各吸着塔31〜33の出口側(流路42)に設けられた開閉自在なバルブ5,11,17が備えられている。
次に並流パージ部Dは、バッファタンク36内の14NH3富化ガス(並流パージガス)を各吸着塔31〜33の入口側に送る流路45と、各吸着塔31〜33の入口側(流路45)に設けられた開閉自在なバルブ3、9,15と、各吸着塔31〜33の出口側から排出された並流パージガスを入口側流路Aに還流する流路46と、各吸着塔31〜33の出口側(流路46)に設けられた開閉自在なバルブ6,12,18とから構成されている。
並流パージにより吸着塔31〜33から流過した14NH3富化ガスには、少量の15NH3が含まれるため、原料ガスに戻して再び分離濃縮に使用される。このため、15NH3のほとんどは出口側流路Bからのみ系外に取り出されるため、本装置は15NH3に対し閉鎖系を構成し非常に高い濃縮率を達成することとなる。
並流パージにより吸着塔31〜33から流過した14NH3富化ガスには、少量の15NH3が含まれるため、原料ガスに戻して再び分離濃縮に使用される。このため、15NH3のほとんどは出口側流路Bからのみ系外に取り出されるため、本装置は15NH3に対し閉鎖系を構成し非常に高い濃縮率を達成することとなる。
次に、この同位体分離濃縮装置の動作を説明する。
各吸着塔31〜33では、14NH3吸着−並流パージ−減圧−向流パージ−昇圧という操作サイクルが繰り返し行われる。すなわち、各吸着塔では、(1)原料ガスの供給(14NH3吸着及び15NH3回収)、(2)14NH3を高濃度に含む14NH3富化ガスの供給(並流パージ)と、それによる塔内残留15NH3の置換、(3)減圧による14NH3の脱着及び貯留、(4)15NH3を含まない向流パージガスを用いた、塔頂よりの逆洗による塔内洗浄(向流パージ)、そして(5)昇圧という操作サイクルが行われ、14NH3の吸着と15NH3の回収が再び可能な状態となる。このような操作サイクルを繰り返すことで15NH3を効率よく回収できる。
各吸着塔31〜33では、14NH3吸着−並流パージ−減圧−向流パージ−昇圧という操作サイクルが繰り返し行われる。すなわち、各吸着塔では、(1)原料ガスの供給(14NH3吸着及び15NH3回収)、(2)14NH3を高濃度に含む14NH3富化ガスの供給(並流パージ)と、それによる塔内残留15NH3の置換、(3)減圧による14NH3の脱着及び貯留、(4)15NH3を含まない向流パージガスを用いた、塔頂よりの逆洗による塔内洗浄(向流パージ)、そして(5)昇圧という操作サイクルが行われ、14NH3の吸着と15NH3の回収が再び可能な状態となる。このような操作サイクルを繰り返すことで15NH3を効率よく回収できる。
上記操作サイクルを吸着塔31に着目して図2を用いてより詳細に説明すると、まず、バルブ1を開き、ブロワ35によって、流路34から、14NH3と15NH3を含有する原料ガスを、コールドボックス30内の吸着塔31に供給する。このとき原料ガス中に含まれる14NH3が、吸着塔31内の同位体選択性吸着剤によって選択的に吸着される。14NH3が吸着された後の原料ガスは15NH3が高濃度に含まれるとともに14NH3が微量含まれたもの(15NH3富化ガス)となり、この15NH3富化ガスがバルブ4及び流路38を通って回収される。
原料ガスの供給時には、各吸着塔31〜33内の同位体選択性吸着剤を−200℃以上0℃以下の温度に保つことが好ましい。温度が0℃を超えると15NH3の濃縮率が低下してしまうので好ましくなく、温度を−200℃以下にすると、低温に保つためのエネルギーが莫大となるので好ましくない。
なお、この時、吸着塔32,33のいずれか一方では、同位体選択性吸着剤に吸着した14NH3の脱着が行われる。脱着された14NH3富化ガスはバッファタンク36に貯留される。
原料ガスの供給時には、各吸着塔31〜33内の同位体選択性吸着剤を−200℃以上0℃以下の温度に保つことが好ましい。温度が0℃を超えると15NH3の濃縮率が低下してしまうので好ましくなく、温度を−200℃以下にすると、低温に保つためのエネルギーが莫大となるので好ましくない。
なお、この時、吸着塔32,33のいずれか一方では、同位体選択性吸着剤に吸着した14NH3の脱着が行われる。脱着された14NH3富化ガスはバッファタンク36に貯留される。
次に、バルブ1と4を閉じ、バルブ3と6を開き、バッファタンク36から14NH3富化ガスを吸着塔31に供給する。これにより14NH3富化ガスの一部が、吸着塔31内の死容積部に残存する15NH3及び同位体選択性吸着剤に一部吸着された15NH3と置換され(並流パージ)、塔内の15NH3濃度を減少させる。吸着塔31から排出されたガスは、15NH3濃度が高くなっているので、原料ガスの流路34に還流させ、これを別の吸着塔32,33のいずれか一方に供給する。
これは、このとき吸着塔31内には15NH3が残存しているので、この時点で塔内を減圧に導いて14NH3を脱着したとしても15NH3が同時に脱着されて14NH3富化ガスに混入してしまう。そこで、バッファタンク36から、一旦回収した14NH3富化ガスを、原料ガスと同じ方向から吸着塔31に供給する(並流パージ)ことによって、塔内に残存する15NH3を塔外に追い出し、再度入口側の流路34に戻すことができる。この並流パージは、予めバッファタンク36内に回収、貯留しておいた14NH3富化ガスを用いて行うことができる。14NH3富化ガスが未回収である1回目の操作サイクルにおいては、予め14NH3富化ガスをバッファタンク36内に供給しておくことが好ましい。
あるいは、1回目の操作サイクルではこの工程を省略することもできる。
さらに、14NH3富化ガスの除去効果はわずかに低下するが、並流パージを行わなくても、高効率で14NH3を分離濃縮することもできる。この場合、操作は更に簡略化される。したがって、必要な14NH3濃縮率、経済性、操作性等を勘案して並流パージを行うか否かを決定すればよい。
あるいは、1回目の操作サイクルではこの工程を省略することもできる。
さらに、14NH3富化ガスの除去効果はわずかに低下するが、並流パージを行わなくても、高効率で14NH3を分離濃縮することもできる。この場合、操作は更に簡略化される。したがって、必要な14NH3濃縮率、経済性、操作性等を勘案して並流パージを行うか否かを決定すればよい。
次に、吸着塔31のバルブ2を開け、残りのバルブ1及び3〜6を閉じ、真空ポンプ37を用いて吸着塔31内を14NH3吸着時より減圧、好ましくは1〜20kPaに減圧して、吸着した14NH3を含む14NH3富化ガスを脱着させ、バッファタンク36に一時的に貯留する。このバッファタンク36内の14NH3富化ガスは、流路45を介して別の吸着塔の並流パージに用いる。
更に、バルブ5を開き、向流パージタンク43内の向流パージガスを用いて、吸着塔31の塔頂よりの逆洗による塔内洗浄(向流パージ)を行い、吸着塔31内の14NH3を完全に除去する。向流パージに必要なガス量Gp(LN/batch)は、原料ガス量をG0(LN/batch)、吸着圧力(吸着時の圧力)をPa(atm)、再生圧力をPd(atm)とすると、Gp=G0×K×(Pd/Pa)[式中、K=1.2〜1.5]で表される。
これは、真空ポンプ37による単純な減圧で塔内の14NH3の大半は回収されるが、並流パージで塔内14NH3濃度を著しく高めているので単純な減圧だけでは14NH3の除去が不十分な可能性があるので、減圧による14NH3回収に続いて減圧条件下で原料ガスとは逆方向から14NH3を含まない向流パージガスを供給すること(向流パージ)によって塔内の14NH3を完全に除去するためである。この向流パージを行うことで、同位体選択性吸着剤を十分に再生させることができ、再度14NH3の吸着を行う前に14NH3の完全な吸着除去を達成できる。
これは、真空ポンプ37による単純な減圧で塔内の14NH3の大半は回収されるが、並流パージで塔内14NH3濃度を著しく高めているので単純な減圧だけでは14NH3の除去が不十分な可能性があるので、減圧による14NH3回収に続いて減圧条件下で原料ガスとは逆方向から14NH3を含まない向流パージガスを供給すること(向流パージ)によって塔内の14NH3を完全に除去するためである。この向流パージを行うことで、同位体選択性吸着剤を十分に再生させることができ、再度14NH3の吸着を行う前に14NH3の完全な吸着除去を達成できる。
それから、バルブ2を閉じ、向流パージガスで吸着塔32内を吸着圧力にまで昇圧する。これによって再び14NH3の吸着が可能となる。これら一連の操作を繰り返すことによって、15NH3の著しい濃縮を達成することができる。
また、n個の吸着塔において、上述した操作サイクルの工程の進行を1/nずつずらして行うことにより、連続した14NH3吸着及び15NH3の流過回収、並流パージ、向流パージによる14NH3脱着並びに吸着剤の再生を行うことができる。例えば、図2(n=3)の場合、例えば並流パージの際に吸着塔32の出口側から排出されたガスは、原料ガスの流路34に還流され、ブロワ35によって吸着塔31に供給される。このように、本発明の方法を用いることによって、簡単な操作で連続的且つ効率的な15NH3濃縮を行うことができる。
以上、3塔形式の装置を例示して本発明を説明したが、適宜、1又は2、あるいは4つ以上の吸着系を用いて行うことも可能である。また、吸着操作を大気圧下で行い、脱着操作を減圧下で行い、吸着操作を加圧下で行い、脱着操作を大気圧下で行うなどしてもよく、本発明の範囲内で種々の変更が可能である。
次に、原料に高圧ガスを用いて分離濃縮する方法について説明する。
原料ガスを高圧とする場合には、0.1MPa以上、好ましくは2〜3MPaとするのがよい。この場合、図3に示すように、上述した図2に示すようなブロア35が不要となり、真空ポンプ37を昇圧機51とすればよく、その他の構成は同様でよい。また、15NH3富化ガス40を戻す場合には、還流流路46に昇圧機52を介装させて還流するようにすればよい。なお、原料ガスGが所定の高圧に達していない場合には、図2におけるブロア35を設け、昇圧ポンプとするようにしてもよい。よって、高圧の原料ガスを用いない場合においても、原料ガスの圧力が吸着時に少なくとも0.1MPa以上の高圧とするように調整すればよい。
原料ガスを高圧とする場合には、0.1MPa以上、好ましくは2〜3MPaとするのがよい。この場合、図3に示すように、上述した図2に示すようなブロア35が不要となり、真空ポンプ37を昇圧機51とすればよく、その他の構成は同様でよい。また、15NH3富化ガス40を戻す場合には、還流流路46に昇圧機52を介装させて還流するようにすればよい。なお、原料ガスGが所定の高圧に達していない場合には、図2におけるブロア35を設け、昇圧ポンプとするようにしてもよい。よって、高圧の原料ガスを用いない場合においても、原料ガスの圧力が吸着時に少なくとも0.1MPa以上の高圧とするように調整すればよい。
よって、原料ガスが高圧ガスの場合及びその吸着時に高圧とする場合には、その設備は容積として約1/9程度もコンパクト化を図ることができる。さらに、図2に示すような大掛かりな真空ポンプ37が不用となり、簡易な構成の昇圧機51で済むことになる。この結果、1/10の消費電力の削減を図ることができる。
次に、図4に同位体分離濃縮装置の別の構成例を示す。
図4に示す同位体分離濃縮装置100は、図2に示した同位体分離濃縮装置1(1a〜1e)が直列に5つ接続されて構成されている。各同位体分離濃縮装置1a〜1eは、吸着塔31a〜33e、入口側の流路34a〜34e、出口側の流路38a〜38e、向流パージガスを回収、供給する流路41a〜41e、45a〜45e、真空ポンプ36a〜36e、並びに向流パージ後の排ガスを還流する流路46c〜46eとから構成されている。
図4に示す同位体分離濃縮装置100は、図2に示した同位体分離濃縮装置1(1a〜1e)が直列に5つ接続されて構成されている。各同位体分離濃縮装置1a〜1eは、吸着塔31a〜33e、入口側の流路34a〜34e、出口側の流路38a〜38e、向流パージガスを回収、供給する流路41a〜41e、45a〜45e、真空ポンプ36a〜36e、並びに向流パージ後の排ガスを還流する流路46c〜46eとから構成されている。
同位体分離濃縮装置1aに着目すると、この同位体分離濃縮装置1aには、吸着塔31a〜33aに原料ガスを供給する流路34aと、吸着塔31a〜33aから流過した14NH3富化ガスを隣の同位体分離濃縮装置1bに送る流路38aと、並流パージガスを貯留、供給するための流路41a、45a及びバッファタンク36aとから構成されている。
また、同位体分離濃縮装置1aの流路34aには、同位体分離濃縮装置1bから並流パージガス(14NH3富化ガス)を供給する流路46bが接続されている。
また、同位体分離濃縮装置1aの流路34aには、同位体分離濃縮装置1bから並流パージガス(14NH3富化ガス)を供給する流路46bが接続されている。
図4に示す同位体分離濃縮装置100の動作について簡単に説明すると、流路34aから同位体分離濃縮装置1aの吸着塔31a〜33aに原料ガスを供給することにより、吸着塔内の吸着剤に14NH3を吸着させるとともに15NH3を流過させ、この15NH3富化ガスを流路38aにより隣の同位体分離濃縮装置1bに送る。また、後段の同位体分離濃縮装置1bにおける並流パージ後の14NH3富化ガスが流路46bを通って原料ガスに混合され、吸着塔31a〜33aに供給される。
吸着剤に吸着された14NH3は真空ポンプ37aによって脱着されてバッファタンク36aに貯留され、並流パージに用いられる。
流路38aを通して送られた15NH3を含む15NH3富化ガスは、同位体分離濃縮装置1bの手前にて、後段の同位体分離濃縮装置1cから流路46cを通って送られた並流パージ後の14NH3富化ガスと混合され、同位体分離濃縮装置1bの吸着塔31b〜33bに供給される。
各同位体分離濃縮装置1a〜1dを経て濃縮された15NH3富化ガスは流路38eを通って回収される。
吸着剤に吸着された14NH3は真空ポンプ37aによって脱着されてバッファタンク36aに貯留され、並流パージに用いられる。
流路38aを通して送られた15NH3を含む15NH3富化ガスは、同位体分離濃縮装置1bの手前にて、後段の同位体分離濃縮装置1cから流路46cを通って送られた並流パージ後の14NH3富化ガスと混合され、同位体分離濃縮装置1bの吸着塔31b〜33bに供給される。
各同位体分離濃縮装置1a〜1dを経て濃縮された15NH3富化ガスは流路38eを通って回収される。
上記の同位体分離濃縮装置100によれば、直列に接続した複数の同位体分離濃縮装置1a〜1eによって、15NH3富化ガスを順次濃縮することができ、高純度の15NH3を得ることができる。
次に実施例により本発明を更に詳細に説明する。
[最適な吸着剤の選定]
図5には、本実施例で使用する同位体分離濃縮装置を示す。この同位体分離濃縮装置200は単カラム式の分離濃縮装置であり、同位体選択性吸着剤が充填されたカラム201と、カラム201を収納するエタノールバス202と、エタノールバス202内のエタノール(冷媒)を冷却するクーラー203と、カラムの入口側に接続された流路204と、カラムの出口側に接続された流路205とを主体として構成されている。
カラム201は、内径10mm、長さ300mmのステンレス製で、内部に同位体選択性吸着剤が充填されている。
図5には、本実施例で使用する同位体分離濃縮装置を示す。この同位体分離濃縮装置200は単カラム式の分離濃縮装置であり、同位体選択性吸着剤が充填されたカラム201と、カラム201を収納するエタノールバス202と、エタノールバス202内のエタノール(冷媒)を冷却するクーラー203と、カラムの入口側に接続された流路204と、カラムの出口側に接続された流路205とを主体として構成されている。
カラム201は、内径10mm、長さ300mmのステンレス製で、内部に同位体選択性吸着剤が充填されている。
流路204には、分岐バルブ204aを介してヘリウム供給源206と、15NH3と14NH3を含むアンモニア(NH3)供給源207とが接続され、ヘリウムと15NH3と14NH3との混合ガスからなる原料ガスをカラム201に供給できるようになっている。また、流路204にはバルブV1が設けられている。
また、カラム201とバルブV1の間には別の流路208が接続され、この流路208の先には真空ポンプ209が接続されている。また流路208にはバルブV3が設けられている。バルブV3を開き、真空ポンプ209を作動させることで、カラム201内を低圧にできるようになっている。
また、カラム201とバルブV1の間には別の流路208が接続され、この流路208の先には真空ポンプ209が接続されている。また流路208にはバルブV3が設けられている。バルブV3を開き、真空ポンプ209を作動させることで、カラム201内を低圧にできるようになっている。
次に流路205には出口タンク210が備えられ、出口タンク210とカラム201の間にバルブV2が設けられている。これにより、出口タンク210にカラムを流過した15NH3富化ガスを貯蔵できるようになっている。
また、カラム201とバルブV2の間には別の流路211が接続され、この流路211の先には前述のヘリウムタンク206が接続されている。また流路211のカラム201側は2本の流路に分岐され、各流路にバルブV4、V5がそれぞれ設けられている。バルブV2を閉じ、バルブV4,V5を開くことで、カラム201内にヘリウムを供給できるようになっている。
また、カラム201とバルブV2の間には別の流路211が接続され、この流路211の先には前述のヘリウムタンク206が接続されている。また流路211のカラム201側は2本の流路に分岐され、各流路にバルブV4、V5がそれぞれ設けられている。バルブV2を閉じ、バルブV4,V5を開くことで、カラム201内にヘリウムを供給できるようになっている。
本実施例では、同位体選択性吸着剤は、Na−K−A型ゼオライト(K置換率:7%)、Zn−K−A型ゼオライト(Zn置換率:50%)、Na−A型ゼオライト、K−A型ゼオライトの各種のゼオライト系吸着剤を用いた。
図5に示す同位体分離濃縮装置200を用いて14NH3の吸着と15NH3の濃縮を行った。以下に実験手順を示す。尚、初期状態ではバルブV1〜V5及び分岐バルブ204aは全て閉じた状態である。
まず、カラム201を−30℃〜−78℃に保ち、更にカラム201内を120kPaに保った状態で、分岐バルブ204a及びバルブV1、V2を開き、ヘリウム及びメタンの混合ガスからなる原料ガスを、625Nml/分の流量でカラム201に供給した。原料ガスのヘリウム:アンモニアの体積比は、9:1とした。また、吸着時間は60〜120秒とした。
このとき原料ガス中に含まれる14NH3の大部分がカラム201内の同位体選択性吸着剤に吸着され、15NH3の大部分が未吸着の14NH3と共にカラム201を流過する。カラム201を流過した15NH3を主成分とする15NH3富化ガスは、バルブV2及び流路205を通して出口タンク210に回収した。
まず、カラム201を−30℃〜−78℃に保ち、更にカラム201内を120kPaに保った状態で、分岐バルブ204a及びバルブV1、V2を開き、ヘリウム及びメタンの混合ガスからなる原料ガスを、625Nml/分の流量でカラム201に供給した。原料ガスのヘリウム:アンモニアの体積比は、9:1とした。また、吸着時間は60〜120秒とした。
このとき原料ガス中に含まれる14NH3の大部分がカラム201内の同位体選択性吸着剤に吸着され、15NH3の大部分が未吸着の14NH3と共にカラム201を流過する。カラム201を流過した15NH3を主成分とする15NH3富化ガスは、バルブV2及び流路205を通して出口タンク210に回収した。
次に、バルブV1とV2を閉じ、バルブV3を開き、真空ポンプ209を作動させてカラム201内の圧力を5kPaにして同位体選択性吸着剤から14NH3を脱着させた。脱着時間は60秒とした。
次に真空ポンプ209を作動させたままでバルブV5を開き、ヘリウムをカラム201に供給して向流パージを行った。パージ時間は15秒とした。
最後に、バルブV3とV5を閉じ、バルブV4を開き、カラム201をヘリウムで120kPaに昇圧した。
このようにして15NH3の分離濃縮を行い、流過率、同位体濃縮率を測定した。
次に真空ポンプ209を作動させたままでバルブV5を開き、ヘリウムをカラム201に供給して向流パージを行った。パージ時間は15秒とした。
最後に、バルブV3とV5を閉じ、バルブV4を開き、カラム201をヘリウムで120kPaに昇圧した。
このようにして15NH3の分離濃縮を行い、流過率、同位体濃縮率を測定した。
[試験例1:14NH3流過率%(出口14NH3/出口14NH3)と15NH3濃縮率との関係]
上述したゼオライトを用い、14NH3流過率%(出口14NH3/出口14NH3)と15NH3濃縮率との関係を試験した。
その結果を、図6に示す。図6に示すように、Na―K−A型ゼオライト及びZn−K−A型ゼオライトは共に、15NH3濃縮が良好であることが判明した。
上述したゼオライトを用い、14NH3流過率%(出口14NH3/出口14NH3)と15NH3濃縮率との関係を試験した。
その結果を、図6に示す。図6に示すように、Na―K−A型ゼオライト及びZn−K−A型ゼオライトは共に、15NH3濃縮が良好であることが判明した。
[試験例2:窓径と15NH3濃縮率との関係]
上述したゼオライトを用い、窓径と15NH3濃縮率との関係を試験した。
その結果を、図7に示す。図7に示すように、Na―K−A型ゼオライト及びZn−K−A型ゼオライト、は窓径が0.38nm(3.8Å)であり、15NH3濃縮に好適であることが判明した。
上述したゼオライトを用い、窓径と15NH3濃縮率との関係を試験した。
その結果を、図7に示す。図7に示すように、Na―K−A型ゼオライト及びZn−K−A型ゼオライト、は窓径が0.38nm(3.8Å)であり、15NH3濃縮に好適であることが判明した。
[試験例3:焼成温度と15NH3濃縮率との関係]
上述したNa−K−A型ゼオライトを用い、焼成を650−800℃の範囲で行い、15NH3濃縮率との関係を試験した。
その結果を、図8に示す。図8に示すように、680〜720℃の範囲において、15NH3濃縮が良好であることが判明した。
上述したNa−K−A型ゼオライトを用い、焼成を650−800℃の範囲で行い、15NH3濃縮率との関係を試験した。
その結果を、図8に示す。図8に示すように、680〜720℃の範囲において、15NH3濃縮が良好であることが判明した。
[試験例4:K交換率と15NH3濃縮率との関係]
上述したNa―Xゼオライトを用い、Kの交換率を0−15%の範囲で行い、15NH3濃縮率との関係を試験した。
その結果を、図9に示す。図9に示すように、Kの交換率が5−10%の範囲において、15NH3濃縮が良好であることが判明した。
上述したNa―Xゼオライトを用い、Kの交換率を0−15%の範囲で行い、15NH3濃縮率との関係を試験した。
その結果を、図9に示す。図9に示すように、Kの交換率が5−10%の範囲において、15NH3濃縮が良好であることが判明した。
[実施例1]
次に、図2に示した装置を用いて、アンモニア(NH3:15NH3/(14NH3+15NH3)=0.0036)ガスからの15NH3の濃縮を行った。
先ず、吸着塔31、32、33の三塔から構成される吸着塔に原料ガスとしてアンモニアVol%、Heガス90Vol%の混合ガスを用いた。この原料ガスをブロワ−35で120KPa程度に圧縮して塔内に供給した。吸着塔には14NH3を選択的に吸着する吸着剤としてNa―K−A(K交換率7mol%、処理温度720℃、熱処理時間1時間、ペレット直径1.6mmφ)のペレットが1kg/塔充填されており、原料ガスを5LN/batch(吸着時間5分の場合1LN/分)で供給すると、Na―K−Aは14NH3を選択的に吸着するため、塔出口からは15NH3濃縮ガスが流過して回収される。
この時吸着塔31には吸着した14NH3以外に15NH3が共吸着されており、吸着剤及び死容積部には14NH3、15NH3が残存する。このためこのまま減圧に導いても共吸着15NH3の損失が大きい。
次に、図2に示した装置を用いて、アンモニア(NH3:15NH3/(14NH3+15NH3)=0.0036)ガスからの15NH3の濃縮を行った。
先ず、吸着塔31、32、33の三塔から構成される吸着塔に原料ガスとしてアンモニアVol%、Heガス90Vol%の混合ガスを用いた。この原料ガスをブロワ−35で120KPa程度に圧縮して塔内に供給した。吸着塔には14NH3を選択的に吸着する吸着剤としてNa―K−A(K交換率7mol%、処理温度720℃、熱処理時間1時間、ペレット直径1.6mmφ)のペレットが1kg/塔充填されており、原料ガスを5LN/batch(吸着時間5分の場合1LN/分)で供給すると、Na―K−Aは14NH3を選択的に吸着するため、塔出口からは15NH3濃縮ガスが流過して回収される。
この時吸着塔31には吸着した14NH3以外に15NH3が共吸着されており、吸着剤及び死容積部には14NH3、15NH3が残存する。このためこのまま減圧に導いても共吸着15NH3の損失が大きい。
このため脱着した14NH3リッチガスを吸着塔31の入口からパージガスとして流過すると(並流パージ)塔内に残存する15NH3のかなりの部分が塔後方から流過する。このガスは還流流路46を介して吸着工程入口に戻すことにより次の吸着工程で15NH3と14NH3の分離に回される。
ここで、15NH3に着目すると吸着工程における15NH3の損失は殆ど無く供給された15NH3の90%以上が吸着工程出口から15NH3濃縮ガスとして回収される。ここで並流パージにより塔内の14NH3濃度は著しく上昇しているので、真空ポンプ37により吸着塔31を減圧に導くと、吸着した14NH3(及び共吸着した15NH3)は脱着される。
単純な減圧での塔内の14NH3の大半は回収されるが、並流パージ後の塔内の14NH3濃度は著しく上昇しているため、単純な減圧だけでは14NH3の除去は不十分であり、14NH3の減圧脱着に続いて塔頂からHeガスを減圧条件下流過すると(向流パージ)、塔内の14NH3は完全に除去されて次の吸着工程で高度な14NH3吸着が可能となる。これにより、出口から流過する15NH3濃度も向上することになる。
本実施例では、濃縮する15NH3に着目すると脱着工程以外からの系外への排出はなく、共吸着した15NH3は並流パージにより吸着工程入口に還流することで閉鎖系を構成し、著しい15NH3濃縮が達成される。
本実施例では、濃縮する15NH3に着目すると脱着工程以外からの系外への排出はなく、共吸着した15NH3は並流パージにより吸着工程入口に還流することで閉鎖系を構成し、著しい15NH3濃縮が達成される。
アンモニア(NH3:15NH3/(14NH3+15NH3)=0.0036)ガスからの並流パージ率と15NH3濃縮率との関係を下記表1に示す。
以上のように、本発明にかかる同位体選択性吸着剤は、アンモニア原料から15NH3を効率的に分離濃縮することができるので、この吸着剤を用いて15NH3を良好に分離する分離濃縮装置に用いて適している。
1 同位体分離濃縮装置
31、32、33 吸着塔
A 入口側流路
B 出口側流路
C 再生部
D 並流パージ部
31、32、33 吸着塔
A 入口側流路
B 出口側流路
C 再生部
D 並流パージ部
Claims (11)
- 原料ガスに含まれる14NH3及び15NH3のうち14NH3を選択的に吸着する同位体選択性吸着剤であり、
Naの一部をK、Ag、Auのいずれか一種又はこれらの混合物で置換されてなるNa―A型ゼオライト吸着剤を、650℃以上800℃以下の温度で熱処理してなることを特徴とする同位体選択性吸着剤。 - 請求項1において、
前記K、Ag、Auのいずれか一種又はこれらの混合物の置換率が1〜50mol%の範囲であることを特徴とする同位体選択性吸着剤。 - 請求項1又は2において、
前記Naの代わりにZnを置換してなることを特徴とする同位体選択性吸着剤。 - 少なくとも14NH3及び15NH3を含む原料ガスを、請求項1乃至3のいずれか一つに記載の同位体選択性吸着剤を含む吸着系に接触させて、14NH3を前記同位体選択性吸着剤に吸着させるとともに15NH3を流過させて回収し、
吸着済の該同位体選択性吸着剤を吸着時より低圧に導くことにより14NH3富化ガスを脱着させて該同位体選択性吸着剤を再生することを特徴とする同位体の分離濃縮方法。 - 請求項4に記載の同位体の分離濃縮方法において、前記同位体選択性吸着剤を低圧に導く前に、前記吸着系中に前記原料ガスの供給方向と同一方向から、前記14NH3富化ガスを供給して当該吸着系内に残留する15NH3を排出するとともに、
同位体選択性吸着剤を低圧条件下に導く際に、前記吸着系中に前記原料ガスの供給方向と逆方向から不活性ガスを供給して当該吸着系内の14NH3を脱着することを特徴とする同位体の分離濃縮方法。 - 請求項1乃至3のいずれか一つに記載の同位体選択性吸着剤を充填したn個(nは2以上)の吸着系を並列に配置し、各吸着系における工程の進行を1/nずつずらして14NH3の吸着を行うことを特徴とする請求項4又は請求項5に記載の同位体の分離濃縮方法。
- 前記吸着時の吸着温度が−200℃以上0℃以下の範囲であることを特徴とする請求項4乃至請求項6のいずれか一つに記載の同位体の分離濃縮方法。
- 前記原料ガスの圧力が吸着時に0.1MPa以上の高圧であることを特徴とする第4乃至7のいずれか一つに記載の同位体の分離濃縮方法。
- 少なくとも14NH3及び15NH3を含む原料ガスを同位体選択性吸着剤に接触させて14NH3を吸着させるとともに15NH3を流過させて回収した後に、吸着時よりも低圧にして前記同位体選択性吸着剤から前記14NH3を脱着させる同位体分離濃縮装置であり、
請求項1乃至3のいずれか一つに記載の同位体選択性吸着剤が充填された少なくとも1以上の吸着塔と、
前記原料ガスを前記吸着塔に導入するために前記吸着塔の入口側に接続された入口側流路と、
前記吸着塔の出口側に接続されて15NH3富化ガスを回収する出口側流路と、
前記吸着塔を低圧にして14NH3富化ガスを脱着させるとともに不活性ガスを該吸着塔出口側から流す再生部と、
脱着後の14NH3富化ガスを一時的に貯留し、該14NH3富化ガスを前記吸着塔の入口側に供給する並流パージ部とを具備してなることを特徴とする同位体分離濃縮装置。 - 請求項9に記載の同位体分離濃縮装置を複数直列に接続してなることを特徴とする同位体分離濃縮装置。
- 前記14NH3及び15NH3を含む原料ガスの圧力が吸着時に0.1MPa以上の高圧であることを特徴とする第9又は10に記載の同位体分離濃縮装置。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004170998A JP2005349271A (ja) | 2004-06-09 | 2004-06-09 | 同位体選択性吸着剤及び同位体の分離濃縮方法並びに同位体分離濃縮装置 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004170998A JP2005349271A (ja) | 2004-06-09 | 2004-06-09 | 同位体選択性吸着剤及び同位体の分離濃縮方法並びに同位体分離濃縮装置 |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2005349271A true JP2005349271A (ja) | 2005-12-22 |
Family
ID=35584166
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2004170998A Pending JP2005349271A (ja) | 2004-06-09 | 2004-06-09 | 同位体選択性吸着剤及び同位体の分離濃縮方法並びに同位体分離濃縮装置 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2005349271A (ja) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011148670A (ja) * | 2010-01-25 | 2011-08-04 | Taiyo Nippon Sanso Corp | 高圧且つ高純度の窒素ガス供給装置及び供給方法 |
JP2014073461A (ja) * | 2012-10-04 | 2014-04-24 | Metawater Co Ltd | 混合ガスの精製方法及び精製装置 |
-
2004
- 2004-06-09 JP JP2004170998A patent/JP2005349271A/ja active Pending
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011148670A (ja) * | 2010-01-25 | 2011-08-04 | Taiyo Nippon Sanso Corp | 高圧且つ高純度の窒素ガス供給装置及び供給方法 |
JP2014073461A (ja) * | 2012-10-04 | 2014-04-24 | Metawater Co Ltd | 混合ガスの精製方法及び精製装置 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101388266B1 (ko) | 고로가스의 분리방법 및 장치 | |
JP5392745B2 (ja) | キセノンの濃縮方法、キセノン濃縮装置、及び空気液化分離装置 | |
KR101686085B1 (ko) | 흡착 작업으로부터 nf3를 회수하는 방법 | |
WO2009008565A1 (en) | Pressure swing adsorption apparatus and method for hydrogen purification using the same | |
CA2055520A1 (en) | Hydrogen and carbon monoxide production by hydrocarbon steam reforming and pressure swing adsorption purification | |
WO2006132040A1 (ja) | 高純度水素製造方法 | |
ES2280310T3 (es) | Metodo para la separacion de gas hidrogeno. | |
CN103523822A (zh) | 氦气的纯化方法及纯化装置 | |
Das et al. | Development of a helium purification system using pressure swing adsorption | |
JP5665120B2 (ja) | アルゴンガスの精製方法および精製装置 | |
US5833737A (en) | Enrichment of krypton in oxygen/nitrogen mix gas | |
JP2001270708A (ja) | 希ガスの回収方法 | |
JP2005349271A (ja) | 同位体選択性吸着剤及び同位体の分離濃縮方法並びに同位体分離濃縮装置 | |
CN103224225B (zh) | 氩气的纯化方法及纯化装置 | |
JP4119712B2 (ja) | 同位体選択性吸着剤及び同位体の分離濃縮方法並びに同位体分離濃縮装置 | |
JP4508716B2 (ja) | 同位体選択性吸着剤及び同位体分離濃縮方法並びに同位体分離濃縮装置 | |
JP2004160294A (ja) | 重水素分離濃縮方法 | |
JP2006007004A (ja) | 同位体選択性吸着剤及び同位体分離濃縮方法並びに同位体分離濃縮装置 | |
JP2006159163A (ja) | 高圧原料ガスからのメタン同位体の分離方法並びに分離装置 | |
JPH0230607A (ja) | 高純度窒素の製造方法 | |
JP2006159002A (ja) | 同位体選択性吸着剤及び同位体分離濃縮方法並びに同位体分離濃縮装置 | |
US11786859B2 (en) | Air separation sorbent and vacuum assisted pressure swing adsorption process using the same | |
JP2004174420A (ja) | 同位体の分離濃縮方法及び同位体分離濃縮装置 | |
JP2004041985A (ja) | 同位体の分離濃縮方法並びに同位体分離濃縮装置 | |
JPH0531331A (ja) | 水素同位体の分離方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20060721 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20090811 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20091215 |