JP2006158048A - モータ制御装置 - Google Patents

モータ制御装置 Download PDF

Info

Publication number
JP2006158048A
JP2006158048A JP2004342910A JP2004342910A JP2006158048A JP 2006158048 A JP2006158048 A JP 2006158048A JP 2004342910 A JP2004342910 A JP 2004342910A JP 2004342910 A JP2004342910 A JP 2004342910A JP 2006158048 A JP2006158048 A JP 2006158048A
Authority
JP
Japan
Prior art keywords
motor
battery
voltage
sensor
magnetic pole
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2004342910A
Other languages
English (en)
Inventor
Junji Kato
淳司 加藤
Hidetaka Inoue
秀毅 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2004342910A priority Critical patent/JP2006158048A/ja
Publication of JP2006158048A publication Critical patent/JP2006158048A/ja
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/02Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles characterised by the form of the current used in the control circuit
    • B60L15/025Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles characterised by the form of the current used in the control circuit using field orientation; Vector control; Direct Torque Control [DTC]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/10Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines
    • B60L50/16Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines with provision for separate direct mechanical propulsion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2220/00Electrical machine types; Structures or applications thereof
    • B60L2220/10Electrical machine types
    • B60L2220/16DC brushless machines
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors

Abstract

【課題】 バッテリ残量が少なくなりバッテリ電圧が低下しても低回転領域でバッテリに充電することが可能なモータ制御装置を提供する。
【解決手段】 パワードライブユニット3を介してバッテリ2からの電力を授受するモータ1の制御を回転子の磁極位置を検出する磁極センサ7の検出結果に基づいて行うモータ制御装置において、モータ1の磁束成分と、この成分と直交するトルク成分との座標系を用いたベクトル制御を行う際に、前記モータ1に電力を供給するバッテリ2の電圧が所定値以下の場合には、予め設定された充電量に基づいて前記磁束成分と前記トルク成分とを決定することを特徴とする。
【選択図】 図1

Description

この発明は、ベクトル制御を用いてモータを制御するモータ制御装置に関するものである。
従来から、ハイブリッド車両に走行用として用いられる3相ブラシレスDCモータ(以下、単にモータと呼ぶ)をベクトル制御するためのモータ制御装置が知られている。このモータ制御装置は、回転子の界磁方向をd軸、これと直交する方向をq軸とするdq座標系上の等価回路を用いてモータの制御処理を行うものである(例えば、特許文献1参照。)。
具体的には、上記dq座標系を用いたベクトル制御では、モータはd軸上のd軸電機子とq軸上のq軸電機子とから成る2相の等価回路に変換して扱われ、d軸電機子を流れるd軸電流とq軸電機子に流れるq軸電流とをそれぞれ指令値に従わせるようにフィードバック制御則により、d軸電機子の印加電圧指令値とq軸電圧指令値とを生成している。
この場合、モータの実際の電機子の各相を流れる電流は、電流検出器により検出され、これを磁極位置センサの検出結果に基づいて座標変換することで、実際の電機子電流に対応するd軸電流及びq軸電流を検出している。そして、d軸電流及びq軸電流の検出値と、d軸電流及びq軸電流の指令値とに基づいて、これらを一致させるようにフィードバック制御則によりdq座標系でのd軸電圧指令値とq軸電圧指令値とを求めている。さらに、回転子の磁極位置に基づいて、d軸電圧指令値とq軸電圧指令値とを、実際の電機子の各相の印加電圧の指令値に変換し、この指令値に応じてインバータの各相のPWMデューティを制御している。
このようなモータ制御装置では、バッテリ電圧が著しく低下した状態で電流のフィードバック制御を行うと制御が不安定になることがあるため、バッテリ電圧に応じてモータの上限トルクを段階的に低下させ、最終的には電流のフィードバック制御を停止させるべくモータの制御自体を停止させてしまうものがある。この一例を図7に基づいて説明すると、同図は縦軸をトルク制限割合、横軸を電圧とした場合のモータの制御領域を示したものであり、前記バッテリ電圧が第一の電圧Va(例えば、バッテリ残量SOC約90%に相当する電圧)よりも高い領域ではトルク制限割合が100%の通常のベクトル制御を行い、バッテリ電圧が第一の電圧よりも下の領域では前記バッテリ電圧が低下するのに応じてトルク制限割合を徐々に低下させるトルク制限つきのベクトル制御を行い、そして、バッテリ電圧が第二の電圧Vb(例えば、バッテリ残量SOC約70%に相当する電圧)を下回った場合にはトルク制限割合を0%つまりモータに給電するインバータのゲートを全てOFFにしてモータの制御を停止している。
特開2004−129359号公報
しかしながら、このように、バッテリ電圧が低下した状態でトルク制限割合を0%にしてしまうと、エンジン回転数が低回転の領域ではバッテリを充電することができないという問題がある。
そこで、この発明は、バッテリ残量が少なくなりバッテリ電圧が低下してもエンジン回転数が低回転領域でバッテリに充電することが可能なモータ制御装置を提供するものである。
上記の課題を解決するために、請求項1に記載した発明は、インバータ(例えば、実施の形態におけるインバータ回路3a)を介してバッテリ(例えば、実施の形態におけるバッテリ2)からの電力を授受するモータ(例えば、実施の形態におけるモータ1)の制御を、回転子の磁極位置を検出する磁極位置センサ(例えば、実施の形態における磁極センサ7)の検出結果に基づいて行うモータ制御装置において、モータの磁束成分と、この成分と直交するトルク成分との座標系を用いたベクトル制御を行う際に、前記モータに電力を供給するバッテリの電圧が所定値(例えば、実施の形態における電圧V1)以下の場合には、予め設定された充電量に基づいて前記磁束成分と前記トルク成分とを決定することを特徴とする。
このように構成することで、バッテリ電圧が低下してもインバータの回生動作によりバッテリを充電することができる。
請求項2に記載した発明は、インバータを介してバッテリからの電力を授受するモータの制御を、回転子の磁極位置を検出する磁極位置センサの検出結果に基づいて行うモータの制御装置において、前記磁極位置センサの検出結果に基づいて、前記モータの磁束成分と、この成分と直交するトルク成分との座標系を用いたベクトル制御を行う際に、前記バッテリの電圧が所定値以下の場合には、前記インバータのデューティ比を予め決められたデューティ比に設定することを特徴とする。
このように構成することで、インバータを停止させることなく予め決められたデューティ比で回生動作させることができる。
請求項3に記載した発明は、前記インバータのデューティ比を制御する際に、スイッチングのON時間を制御することでモータを制御することを特徴とする。
このように構成することで、モータやインバータにおける通電量を低下させることができる。
請求項4に記載した発明は、前記モータはエンジンを備えたハイブリッド車両の駆動及び回生動作を行うモータであって、前記バッテリの電流を検出する電流センサ(例えば、実施の形態における電流センサ4b)とエンジン回転数を検出するエンジン回転数センサ(例えば、実施の形態におけるエンジン回転数センサS1)とを設け、バッテリの電圧を検出する電圧センサ(例えば、実施の形態におけるバッテリ電圧センサ4a)又は前記モータの磁極位置センサが故障した場合には、前記エンジン回転数センサ又は前記電流センサの検出結果に基づいてモータを制御することを特徴とする。
このように構成することで、バッテリの電圧センサや磁極位置センサが故障してもエンジンの回転数センサ又は電流センサの検出結果に基づいてモータの発電量を推定してモータ制御を行うことができる。
請求項1に記載した発明によれば、バッテリ電圧が低下してもインバータの回生動作によりバッテリを充電することができるため、バッテリ上がりを防止して商品性を向上することができる効果がある。
請求項2に記載した発明によれば、インバータを停止させることなく予め決められたデューティ比で回生動作させることができるため、最低限の発電量を維持することができるため、バッテリ上がりを防止して商品性を向上することができる効果がある。
請求項3に記載した発明によれば、請求項2の効果に加え、モータやインバータにおける通電量を低下させることができるため、モータやインバータの過熱と、バッテリへの過充電とを防止しつつバッテリへの充電を行うことができる効果がある。
請求項4に記載した発明によれば、上述の効果に加え、バッテリの電圧センサや磁極位置センサが故障してもエンジンの回転数センサ又は電流センサの検出結果に基づいてモータの発電量を推定してモータ制御を行うことができるため、バッテリ上がりを防止して商品性を向上することができる効果がある。
次に、この発明の実施の形態を図面に基づいて説明する。この実施の形態では本発明のモータ制御装置を、駆動源としてエンジンとモータとを備え、モータの回転子とエンジンのクランクシャフトが直結されたタイプのハイブリッド車両に適用した一例を示している。
図1は本発明のモータ制御装置の構成を示し、同図において1はモータを示している。このモータ1は3相の電機子巻線を備えたいわゆる三相ブラシレスタイプのモータで、このモータ1の回転子にはエンジンのクランクシャフトが直接的に結合され、バッテリ2から直流の電力を得るととともに、該直流電力を3相の交流電力へ変換してモータ1を駆動し、一方、モータ1の回生電力を直流電力へ変換してバッテリ2を充電するインバータ回路(INV)3aを有したパワードライブユニット(PDU)3が接続されている。前記バッテリ2にはこの電圧を検出するバッテリ電圧センサ4aと電流センサ4bとが接続され、この検出信号は後述する制御装置5に向けて出力されている。
また、前記モータ1と前記パワードライブユニット3とを接続する3相の電源ラインには、モータ1のU相とW相との相電流を測定するために相電流センサ6,6が取り付けられ、前記モータ1にはモータ1の回転子の回転角度を電圧変化として出力するレゾルバ等の磁極センサ7が取り付けられている。前記相電流センサ6,6と前記磁極センサ7とパワードライブユニット3とは、様々な制御処理を行う制御装置(ECU)5に接続されている。
前記磁極センサ7にはこの磁極センサ7の検出信号を回転子の角速度(ω)及び回転子の角度(θ)の信号に変換するR/D変換器8が接続され、このR/D変換器8には後述する2つのフィードバック制御器9,9の出力信号の干渉を除去する非干渉制御器10と3相の電流信号をd,q座標上のトルク分電流Idと磁束分電流Iqとに変換する3相/d,q変換器11が接続されている。前記3相/d,q変換器11にはトルク電流指令値、界磁電流指令値と前記トルク分電流Id、磁束分電流Iqとのそれぞれの偏差ΔId,ΔIqを演算する電流演算器12,12が接続されている。そして、前記電流演算器12,12にはフィードバック制御器9,9が接続され、さらに、このフィードバック制御器9,9には各入力信号の電圧値の偏差を演算する電圧演算器13,13が接続されている。
一方、前記非干渉制御器10には前記3相/d,q変換器11と前記電圧演算器13,13とが接続され、さらに、前記電圧演算器13,13にはd,q軸電圧Vd,Vqを3相電圧に変換するd,q/3相電圧変換器14が接続されている。そして、前記d,q/3相電圧変換器14にはパワードライブユニット3のPWMデューティを設定するPWMタイマ15が接続されており、このPWMタイマ15には前述したパワードライブユニット3が接続されている。さらに、前記PWMタイマ15には詳細を後述するオープン制御時のPWMデューティをPWMタイマ15に対して出力するオープン制御装置16が接続されており、このオープン制御装置16にはエンジン回転数センサS1や角速度センサS2等の各種センサからの検出信号に基づいてエンジンを制御するエンジンECU17が接続されている。
図2は縦軸をトルク制限割合(%)、横軸をバッテリ電圧(V)とした場合のモータ1の制御領域を示している。ここで、バッテリ電圧センサ4aにより検出されるバッテリ電圧が電圧V1(例えば、残容量SOC70〜90%に相当する電圧)よりも高電圧の領域では相電流のフィードバック制御を用いたベクトル制御によってモータ1を制御する領域(以下、単にフィードバック制御領域と呼ぶ)が設定されている。このフィードバック制御領域は100%のトルク制限割合、つまり、モータ1の最高トルク、最大出力電力の範囲内でトルクが目標トルクとなるように制御される領域である。
ここで、前記フィードバック制御領域において前記モータ1の突極性を考慮した場合、モータ極対数をP、鎖交磁束をφとすると、モータ1のトルクTとトルク分電流Id,磁束分電流Iqとの関係は
Figure 2006158048
となり、トルク分電流Idは
Figure 2006158048
となる。そして、磁束分電流Iqに対する最適なトルク分電流Idは
Figure 2006158048
と表すことができる。
一方、バッテリ電圧がV1以下の低電圧の領域では前記フィードバック制御を行わない電圧オープン(OPEN)制御領域が設定されている。この電圧オープン制御領域は前記オープン制御装置16で行われるものであり、目標トルク等のトルクをパラメータとした制御は行われず、エンジンが低回転領域であっても一定の電力量、つまり、一定の充電電圧が得られるようにパワードライブユニット3によってモータ1の回生制御が行われるようになっている。
上述した前記電圧オープン制御領域での制御方法としては、大別して3つの態様がある。以下、この3つの態様について順次説明する。まず、第一の態様を図3に基づいて具体的に説明する。
図3は縦軸をq軸電圧(Vq)、横軸をd軸電圧(Vd)とした場合のオープン制御領域での充電電圧のベクトルを示している。この図3では、予め決められた充電電圧のベクトルを、前記エンジン回転数に基づいて算出されるモータ1の逆起電力分(ωφ)の電圧のベクトルとd軸電圧である回生分(ωLqIq=Vd1)の電圧のベクトルとで表している。前記d軸電圧Vd1は車両の補機類の電力消費分(例えば、1kw〜2kW程度)を補うために最低限必要な充電電圧を決定するものである。
したがって、上記電圧オープン制御の第一の態様は予め決められた充電電圧となるようにエンジン回転数センサS1の検出結果に基づいてモータ発電量に対応したd軸電圧Vdを図示しない回転数マップを用いて持ち替えることで一定の電力量を確保することができるのである。尚、モータ1の回転数と電流指令値とから一定の充電電圧が得られるように非干渉制御器10によって非干渉電圧を演算してd軸電圧Vdを決定するようにしても良い。同様に、q軸電圧Vqも非干渉電圧を演算して決定しても良い。
次に、図4に基づいて電圧オープン制御領域の第二の態様を説明する。
図4は縦軸を電圧、横軸を時間とした場合のパワードライブユニット3のインバータ回路3aのゲート信号を示している。この図4ではインバータ回路3aのスイッチング動作を50%デューティで所定時間行う50%デューティ区間とスイッチング動作を行わないゲートOFF区間とを交互に設け、50%デューティのスイッチング動作が一定時間毎に断続的に行われるようになっている。ここで、前記ゲートOFF区間の長さはエンジン回転数センサS1、角速度センサS2、バッテリ電圧センサ4a、電流センサ4b等の検出結果に基づいてバッテリ2が過充電とならないように制御される。
したがって、この第二の態様はバッテリ2に対して一定の電力を供給するために、パワードライブユニット3のインバータ回路3aを用いて予め設定されたデューティ比でスイッチング動作を断続的に行い、バッテリ2への充電を行いつつパワードライブユニット3が過熱しないように、且つ、バッテリ2が過充電とならないようにしているのである。尚、上記第二の態様ではパワードライブユニット3からの出力が0電圧である50%デューティとしたがこれに限られるものではなく、例えば、前記バッテリ2が過充電とならないデューティ比であれば適宜選択して用いても良い。
次に、図5、図6に基づいて電圧オープン制御領域の第三の態様を説明する。この第三の態様は、モータ1からバッテリ2に対して補機類の消費電力に相当する一定電力を供給するものであり、パワードライブユニット3のインバータ回路3aの上アームと下アームとが両方OFFの状態となるいわゆるデッドタイムTdの長さを制御するものである。
図5は縦軸を電圧、横軸を時間とした場合の前記上アームと下アームとのスイッチング波形を3周期分示したものである。この図5に示すように、インバータ回路3aのスイッチング波形の第1周期では上アームがONの時(図中、時間ta1で示す)には下アームがOFF、上アームがOFFの時には下アームがONとなり、常に上アームと下アームの何れかがON状態の通常のスイッチング制御となっている。そして、上アームのON時間と下アームのON時間とを加算したものが第1周期の時間T1と等しくなっている。
一方、第2周期と第3周期とでは、PWMタイマ15によりインバータ回路3aのON時間を制御してデッドタイムTdの長さを制御したものである。具体的には、第2周期では、上アームがOFFで下アームのONとなる時間tb1経過後、下アームがOFFとなり上アームと下アームとの両者がOFFとなるデッドタイムTdが経過した後に上アームが時間ta2だけONとなる。そして、再び上アームがOFFとなりデッドタイムTdが経過した後に下アームが時間tb2の間ON状態となった後、第3周期に移行する。すなわち、第2周期の時間T2に対して上アームと下アームとの両者のON時間を加算したものはデッドタイムTdの分だけ短くなることとなる。
さらに、第3周期では第2周期よりも上アームと下アームとのONしている時間ta3,tb3,tb4は、それぞれ第2周期の時間ta2,tb1,tb2よりも短く設定され、デッドタイムTdが長く設定されている。ここで、前記デッドタイムTdでは前記インバータ回路3aには電流が流れないため、このデッドタイムTdを短く設定することで前記モータ1の発電量が上昇し、一方、デッドタイムTdを長く設定することで前記モータ1の発電量が低下することとなる。
図6は縦軸を発電量、横軸をエンジン回転数とした場合のインバータ回路3aのON時間を調整するON時間調整スイッチング領域を示している。このように、50%デューティからゲートOFFである0%デューティまでの範囲内でエンジン回転数に基づきインバータ回路3aのデッドタイムTdの長さを制御することでバッテリ2が過充電されることなく前記モータ1の発電量つまりバッテリ2の充電電圧を制御することができるのである。
したがって、上記第三の態様はバッテリ2に対して一定の電力を供給するために、インバータ回路3aのON時間を調整してモータ1の発電量を制御することができるため、前述した電圧オープン制御の各態様と同様に、パワードライブユニット3の過熱を防止するとともにバッテリ2の過充電を防止し、バッテリ2を充電することができる。
すなわち、ハイブリッド車両が長期間放置され自然放電によりバッテリ電圧が低下して電流フィードバック制御を行えない場合であっても、前記エンジンECU17に入力されたエンジン回転数センサS1や角速度センサS2等の各種センサの検出信号に基づいて、PWMタイマ15を所定のPWMデューティで駆動させる電圧オープン制御の第一の態様、第二の態様、第三の態様の何れかを行い、早急にバッテリ2の残量を回復させることができるのである。
ところで、バッテリ電圧(VPIN)センサ4aや磁極センサ7が故障したような場合でも前述した電圧オープン制御を行うことができる。この詳細を以下の表に示す。
Figure 2006158048
ここで、バッテリ電圧センサ4aと磁極センサ7とが正常状態(表中、○で示す)である場合には、電圧オープン制御の第一の態様(表中、(1)で示す)、第二の態様(表中、(2)で示す)、第三の態様(表中、(3)で示す)の全ての態様で電圧オープン制御が可能となる。更に、バッテリ電圧センサが正常状態で磁極センサ7が故障状態(表中×で示す)である場合、エンジン回転数センサS1の検出結果に基づいてモータ1による発電量が推定でき、さらに、バッテリ2の電流センサによってバッテリ残量が推定できるため、電圧オープン制御の第二の態様、第三の態様での制御が可能となる。
一方、バッテリ電圧センサ4aが故障状態で磁極センサ7が正常状態である場合、磁極センサ7によってモータ1の回転数が推定できるため、モータ1による発電量が推定でき、図示しないバッテリ残量(ISOC)センサ等の検出結果に基づいてバッテリ2が過充電とならないように監視することで、前記電圧オープン制御の第二の態様、第三の態様によって制御することが可能となる。
さらに、バッテリ電圧センサ4aと磁極センサ7の両者が故障状態である場合、エンジン回転数センサS1又はバッテリ残量センサの何れかが正常であれば、これらの検出結果に基づいて、モータ1の発電量又はバッテリ2の残量を推定することができるため、電圧オープン制御の第二の態様と第三の態様との何れかを用いて制御することが可能となる。尚、上記バッテリ残量を電流センサ4bの検出結果に基づき算出しても良い。
したがって、上述の実施の形態によれば、長期間の放置等によりバッテリ電圧が低下してもモータ1の回生動作によりバッテリ2を充電することができるため、バッテリ上がりを防止して商品性を向上することができる。
また、パワードライブユニット3のスイッチング動作を停止させることなく予め決められたデューティ比でパワードライブユニット3を回生動作させることができるため、車両の補機類に使用する最低限の電力を確保することができるため、バッテリ上がりを防止して商品性を向上することができる。
さらに、パワードライブユニット3の発熱量を抑制することができるため、パワードライブユニット3を過熱させることなしにバッテリ2への充電を行うことができる。
そして、エンジン回転数センサS1又は電流センサ4bの検出結果に基づいてモータ1の発電量を推定してモータ制御を行うことができるため、バッテリ上がりを防止して商品性を向上することができる。
尚、この発明は上述した実施の形態に限られるものではなく、相電流をフィードバック制御するベクトル制御と電圧オープン制御領域の間にトルク制限つきのベクトル制御領域を設けてもよい。また、上記実施の形態では、モータの回転子とエンジンのクランクシャフトが直結している場合について説明したが、これらが直結されていないハイブリッド車両に用いても良い。
本発明の実施の形態におけるモータ制御装置のシステム構成図である。 本発明の実施の形態における制御領域を示すグラフである。 本発明の実施の形態における電圧オープン制御の第一の態様を示すグラフである。 本発明の実施の形態における電圧オープン制御の第二の態様を示すグラフである。 本発明の実施の形態における電圧オープン制御の第三の態様を示すグラフである。 本発明の実施の形態における電圧オープン制御の第三の態様のスイッチング領域を示すグラフである。 従来の図2に相当するグラフである。
符号の説明
1 モータ
2 バッテリ
3a インバータ回路(インバータ)
7 磁極センサ(磁極位置センサ)
V1 電圧
4b 電流センサ
S1 エンジン回転数センサ
4a バッテリ電圧センサ(電圧センサ)

Claims (4)

  1. インバータを介してバッテリからの電力を授受するモータの制御を、回転子の磁極位置を検出する磁極位置センサの検出結果に基づいて行うモータ制御装置において、モータの磁束成分と、この成分と直交するトルク成分との座標系を用いたベクトル制御を行う際に、前記モータに電力を供給するバッテリの電圧が所定値以下の場合には、予め設定された充電量に基づいて前記磁束成分と前記トルク成分とを決定することを特徴とするモータ制御装置。
  2. インバータを介してバッテリからの電力を授受するモータの制御を、回転子の磁極位置を検出する磁極位置センサの検出結果に基づいて行うモータの制御装置において、前記磁極位置センサの検出結果に基づいて、前記モータの磁束成分と、この成分と直交するトルク成分との座標系を用いたベクトル制御を行う際に、前記バッテリの電圧が所定値以下の場合には、前記インバータのデューティ比を予め決められたデューティ比に設定することを特徴とするモータ制御装置。
  3. 前記インバータのデューティ比を制御する際に、スイッチングのON時間を制御することでモータを制御することを特徴とする請求項2に記載のモータ制御装置。
  4. 前記モータはエンジンを備えたハイブリッド車両の駆動及び回生動作を行うモータであって、前記バッテリの電流を検出する電流センサとエンジン回転数を検出するエンジン回転数センサとを設け、バッテリの電圧を検出する電圧センサ又は前記モータの磁極位置センサが故障した場合には、前記エンジン回転数センサ又は前記電流センサの検出結果に基づいてモータを制御することを特徴とする請求項1〜請求項3の何れかに記載のモータ制御装置。
JP2004342910A 2004-11-26 2004-11-26 モータ制御装置 Withdrawn JP2006158048A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004342910A JP2006158048A (ja) 2004-11-26 2004-11-26 モータ制御装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004342910A JP2006158048A (ja) 2004-11-26 2004-11-26 モータ制御装置

Publications (1)

Publication Number Publication Date
JP2006158048A true JP2006158048A (ja) 2006-06-15

Family

ID=36635661

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004342910A Withdrawn JP2006158048A (ja) 2004-11-26 2004-11-26 モータ制御装置

Country Status (1)

Country Link
JP (1) JP2006158048A (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011110640A (ja) * 2009-11-25 2011-06-09 Panasonic Electric Works Power Tools Co Ltd 回転工具
JP2014073070A (ja) * 2012-09-28 2014-04-21 Samsung Electro-Mechanics Co Ltd モータ駆動装置及びモータ駆動方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011110640A (ja) * 2009-11-25 2011-06-09 Panasonic Electric Works Power Tools Co Ltd 回転工具
JP2014073070A (ja) * 2012-09-28 2014-04-21 Samsung Electro-Mechanics Co Ltd モータ駆動装置及びモータ駆動方法

Similar Documents

Publication Publication Date Title
KR101147286B1 (ko) 전동기 제어장치, 구동장치 및 하이브리드 구동장치
US9054613B2 (en) Motor drive apparatus and vehicle with the same mounted thereon
US8054031B2 (en) Converter device, rotating electrical machine control device, and drive device
US8310197B2 (en) Control device for electric motor drive device
JP5857394B2 (ja) インバータ装置及びインバータ制御方法
JP4797476B2 (ja) 二次電池の制御装置
JP5018516B2 (ja) 回転電機制御装置
JP5050324B2 (ja) 二次電池の制御装置
JP5172286B2 (ja) モータ制御装置およびハイブリッド自動車用制御装置
EP2566046B1 (en) Motor control apparatus
WO2007139126A1 (ja) 電動機駆動制御システムおよびその制御方法
JP2009118544A (ja) 電動機制御装置,電気自動車およびハイブリッド電気自動車
US20140152214A1 (en) Vehicle and method for controlling vehicle
US20140225537A1 (en) Control apparatus for ac motor
JP2007028702A (ja) 二次電池の制御装置
JP2007143235A (ja) 交流モータの駆動制御装置
JP2006204054A (ja) モータ制御装置及びこれを有するモータ駆動システム
JP5354036B2 (ja) 車両および車両の制御方法
JP2005117861A (ja) 放電制御装置、放電制御方法及びそのプログラム
JP2011067010A (ja) 車両のモータ駆動装置
JP3985550B2 (ja) 電動車両駆動制御装置、電動車両駆動制御方法及びそのプログラム
JP5969382B2 (ja) 交流電動機の制御システム
KR101171914B1 (ko) 친환경 자동차의 모터온도 추정방법 및 장치
JP2010193665A (ja) 交流機制御装置
JP2006158048A (ja) モータ制御装置

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20080205