JP2006125809A - 再燃焼装置 - Google Patents

再燃焼装置 Download PDF

Info

Publication number
JP2006125809A
JP2006125809A JP2004318255A JP2004318255A JP2006125809A JP 2006125809 A JP2006125809 A JP 2006125809A JP 2004318255 A JP2004318255 A JP 2004318255A JP 2004318255 A JP2004318255 A JP 2004318255A JP 2006125809 A JP2006125809 A JP 2006125809A
Authority
JP
Japan
Prior art keywords
temperature
exhaust gas
ash
recombustion
cooling member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004318255A
Other languages
English (en)
Inventor
Takahiro Marumoto
隆弘 丸本
Noriyuki Oyatsu
紀之 大谷津
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Power Ltd
Original Assignee
Babcock Hitachi KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Babcock Hitachi KK filed Critical Babcock Hitachi KK
Priority to JP2004318255A priority Critical patent/JP2006125809A/ja
Publication of JP2006125809A publication Critical patent/JP2006125809A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/30Technologies for a more efficient combustion or heat usage

Landscapes

  • Incineration Of Waste (AREA)
  • Gasification And Melting Of Waste (AREA)
  • Chimneys And Flues (AREA)

Abstract

【課題】 再燃焼装置の後流側に設けた廃熱ボイラにおける水壁や伝熱管への灰の付着を低減できる再燃焼装置を提供する。
【解決手段】 燃焼熱により灰を溶融してスラグ化する溶融炉3からの排ガスeに含まれる未燃分を燃焼させるための再燃焼装置1であり、排ガスeが通流する排ガス流路7内に設置され、排ガス流路7内の温度よりも低い温度となり、表面に排ガスeに同伴される灰を付着させる冷却部材となる管路15、管路15の表面に付着した灰を除去する除去手段となる蒸気噴射ノズル29、管路15の入口側での流体の温度を検出する第1の温度検出手段21、管路15の出口側での流体の温度を検出する第2の温度検出手段23を有し、蒸気噴射ノズル29は、第1の温度検出手段21で検出した温度と第2の温度検出手段23で検出した温度との温度差が予め設定した温度差以下になったときに蒸気を噴射して管路15の表面に付着した灰を除去する。
【選択図】 図1

Description

本発明は、溶融炉からの排ガスに含まれる未燃分を燃焼させるための再燃焼装置に係り、特に、再燃焼装置で生じた排ガスの熱を廃熱ボイラで回収する場合に好適な再燃焼装置に関する。
燃焼により生じた排ガスから熱を回収する廃熱ボイラでは、熱を回収するための伝熱管に、熱を回収する排ガスに同伴されてくる飛灰の付着が生じる。廃熱ボイラの伝熱管に灰が付着すると、伝熱性能が低下するのはもちろんのこと、濃縮された塩素により伝熱管が腐食するなどの問題が生じる場合がある。
これに対して、排ガスの発生源が通常のごみ焼却炉である場合、ごみ焼却炉で生じる飛灰は、主成分がSiやAlであることから、融点が比較的高く、比重も2から3程度というように重く、そして、平均粒子径も40μmから100μm程度というように大きい。このため、廃熱ボイラ内のガス温度が灰の融点を十分下回っており、伝熱管に灰が付着する可能性は低い。さらに、廃熱ボイラは、例えば、排ガスが上方に向かう流路を形成する第1の水壁部、排ガスが下方に向かう流路を形成する第2の水壁部が順次設けられた後、排ガスが上方に向かう流路に伝熱管群が設けられた構造になっている。このように、第2の水壁部から伝熱管群が設けられた流路にかけて、排ガスの通流方向を変化させることで、灰の粒子を排ガスから遠心分離する対策などが取られている。これらのことから、通常のごみ焼却炉に組み合わせて廃熱ボイラを用いる場合、廃熱ボイラの伝熱管への灰の付着はほとんど問題にならない。
ところで、最近、一般ごみや産業廃棄物などのごみを部分燃焼させることによって熱分解してガス化し、さらに、ガス化により発生した熱分解ガスを燃焼させることで、灰を溶融しスラグ化する過程で、ごみを減容化し、ダイオキシン類を分解し無害化するガス化溶融システムなどが提案され、実用化されている。このようなガス化溶融システムなどが用いられている。このような溶融炉を含むシステムや設備でも排ガスから排熱を回収するためにごみ焼却炉と同様の廃熱ボイラが用いられている(例えば、特許文献1参照)。
特開2001−153347号公報(第4頁、第1図)
ところが、このようなガス化溶融システムなどに用いられている灰を溶融してスラグ化する溶融炉から排出される灰は、NaやKの濃度が増大することから、融点が比較的低く、比重も0.2から0.6程度というように軽く、そして、平均粒子径も数μm程度といったように微細である。このため、溶融炉で生じた灰は、通常の焼却炉の場合に比べて、排ガスに同伴され易い。したがって、廃熱ボイラが排ガスの通流方向を変化させる構造になっていたとしても、遠心分離により排ガスと灰の粒子とを分離することは難しい。
このように、溶融炉からの排ガスに含まれる未燃分を燃焼させるための再燃焼装置の後流側に設置される廃熱ボイラでは、通常の焼却炉の後流側に設置された場合に比べて水壁や伝熱管に灰が付着する可能性が高くなる。
最近のごみ処理設備では、高効率発電のため蒸気条件の高温化や高圧化が進み、従来よりも伝熱面積が増大しているうえ、廃熱ボイラの水壁や伝熱管の表面温度は、ダイオキシン類の再合成温度領域に相当する温度になっている。このため、廃熱ボイラの水壁や伝熱管に灰が付着する可能性が高くなると、ダイオキシン類の再生成量が増加する可能性がある。また、廃熱ボイラの水壁や伝熱管に灰が付着する可能性が高くなると、水壁や伝熱管の塩素による腐食の発生が増大する可能性などもある。したがって、再燃焼装置の後流側に設けた廃熱ボイラにおける水壁や伝熱管への灰の付着を低減することが必要となっている。
このような廃熱ボイラの水壁や伝熱管への灰の付着に対し、スートブロワやウォールブロワと呼ばれる高圧蒸気噴霧装置により、水壁や伝熱管の表面に付着した灰を吹飛ばすことが考えられる。しかし、スートブロワやウォールブロワなどでは、灰を除去できる範囲が限られている。さらに、高温蒸気配管であるため管表面温度が高く、高圧蒸気噴霧により伝熱管が損耗する可能性があるという問題もあり、使用頻度が限られてくる。したがって、廃熱ボイラにスートブロワやウォールブロワなどを設けただけでは、溶融装置の後流側に設けた廃熱ボイラにおける水壁や伝熱管への灰の付着を低減することは難しい。
本発明の課題は、再燃焼装置の後流側に設けた廃熱ボイラにおける水壁や伝熱管への灰の付着を低減することにある。
本発明の再燃焼装置は、燃焼熱により灰を溶融してスラグ化する溶融炉からの排ガスに含まれる未燃分を燃焼させるための再燃焼装置であり、排ガスが通流する排ガス流路内に設置され、この排ガス流路内の温度よりも低い温度となり、表面に排ガスに同伴される灰を付着させる冷却部材と、この冷却部材の表面に付着した灰を除去する除去手段とを有する構成とすることにより上記課題を解決する。
このような構成とすれば、再燃焼装置の排ガス流路内の冷却部材の表面に灰が付着することにより、再燃焼装置の後流側に設けられた廃熱ボイラへ流入する溶融飛灰を低減し、廃熱ボイラにおける水壁や伝熱管への灰の付着を低減できる。このとき、再燃焼装置の排ガス流路内の冷却部材に付着した灰は除去手段によって除去されるため、再燃焼装置の冷却部材に灰が付着して堆積することによる冷却部材の灰の付着能力の低下が抑制される。したがって、再燃焼装置の後流側に設けた廃熱ボイラにおける水壁や伝熱管への灰の付着を低減できる。
また、冷却部材は、冷却部材の表面の温度が200℃以下に制御される構成とする。これにより、再燃焼装置の冷却部材に付着した灰の温度をダイオキシン類が再合成される温度領域よりも低くでき、再燃焼装置の冷却部材に付着した灰によるダイオキシン類の再合成を抑制できる。
さらに、排ガス流路は、流路が他の部分よりも狭く絞られた絞り部を有し、冷却部材は、排ガス流路の絞り部に設置されている構成とする。これにより、再燃焼装置に設ける冷却部材の数を低減したり、大きさを小型化したりできるため、除去手段の設置数も低減できる。
また、冷却部材は、排ガス流路の排ガスの通流方向に交わる方向に設置され、内部を流体が通流する管路であり、この管路の入口側での流体の温度を検出する第1の温度検出手段と、この管路の出口側での流体の温度を検出する第2の温度検出手段とを有し、除去手段は、第1の温度検出手段で検出した温度と第2の温度検出手段で検出した温度との温度差が予め設定した温度差以下になったときに冷却部材の表面に付着した灰を除去する構成とする。このような構成とすれば、管路への流体の入口側と出口側の温度差を監視することで、冷却部材となる管路への灰の付着量を推定することが可能となり、一定量以上管路へ灰が付着したときに除去手段による灰の除去を行うことで、灰の除去回数を最小限にできる。
また、除去手段は、予め設定された時間間隔で冷却部材の表面に付着した灰を除去する構成とする。これにより、冷却部材に付着した灰を定期的に除去することで、冷却部材の表面に灰が付着し易い状態に維持できる。
さらに、本発明のガス化溶融システムは、熱分解残渣を含む熱分解ガスを燃焼させて灰を溶融する溶融炉と、この溶融炉からの排ガスに含まれる未燃分を燃焼させるための再燃焼装置と、この再燃焼装置からの排ガスから廃熱を回収する廃熱ボイラとを備えたガス化溶融システムであり、再燃焼装置として上記いずれかの再燃焼装置を備えた構成とすることにより上記課題を解決する。
本発明によれば、再燃焼装置の後流側に設けた廃熱ボイラにおける水壁や伝熱管への灰の付着を低減できる。
以下、本発明を適用してなる再燃焼装置及びガス化溶融システムの一実施形態について図1及び図2を参照して説明する。図1は、本発明を適用してなる再燃焼装置及びガス化溶融システムの概略構成及び動作を、溶融炉及び再燃焼装置の一部だけを断面図として模式的に示したブロック図である。図2は、冷却水の入口側と出口側の温度差と、管路表面への灰の付着量の関係を示す図である。
本実施形態の再燃焼装置1は、図1に示すように、溶融炉3と廃熱ボイラ5の間に設置されている。再燃焼装置1には、排ガスが通流する排ガス流路7内に燃焼用の空気を供給する再燃焼用空気ノズル9が設けられている。再燃焼用空気ノズル9は、再燃焼用空気ノズル9に空気を供給する図示していない通風機などの空気供給手段に、空気供給流路11を介して連結されている。本実施形態の再燃焼装置1では、排ガス流路7は、他の部分よりも流路が狭く絞られた絞り部13を有している。そして、この再燃焼装置1の排ガス流路7の絞り部13には、上下方向に延在する再燃焼装置1の排ガス流路7に対して横方向、つまり、排ガス流路7内の排ガスの流れに交わる方向に延在する直管状の管路15が設けられている。
管路15の両端は、各々、排ガス流路7の外側に配置された入口側ヘッダ管17、出口側ヘッダ管19に連結されている。入口側ヘッダ管17、出口側ヘッダ管19には、各々、入口側ヘッダ管17内部の温度を検出する温度検出手段となる第1熱電対21、そして、出口側ヘッダ管19内部の温度を検出する温度検出手段となる第2熱電対23が設置されている。また、入口側ヘッダ管17には、排ガス流路7内の温度よりも低い温度の流体として工業用水などの適宜の水を入口側ヘッダ管17に供給する冷却水供給管路25が、出口側ヘッダ管19には、出口側ヘッダ管19内の流体つまり本実施形態では水を排出する冷却水排出管路27が各々連結されている。
したがって、再燃焼装置1の管路15は、入口側ヘッダ管17から出口側ヘッダ管19に向けて排ガス流路7内の温度よりも低い温度の流体である水が通流することで、表面が排ガス流路7内の温度よりも低い温度となり、本実施形態における冷却部材の役割を果たす。なお、本実施形態では、排ガス流路7の幅方向つまり横方向に例えば3本といったように複数本の管路15を並列に設置している。
さらに、再燃焼装置1の管路15近傍には、管路15に向けて加圧した過熱蒸気を噴射する蒸気噴射ノズル29が設けられている。蒸気噴射ノズル29は、できるだけ管路15全体に過熱蒸気が当たるように、管路15の長さや本数に応じて適宜の数設置されている。蒸気噴射ノズル29は、蒸気の噴射と停止を切り替えるための図示していない弁機構を内蔵している。また、蒸気噴射ノズル29には、蒸気噴射ノズル29に加圧した過熱蒸気を供給するための図示していない蒸気管路が連結されている。
本実施形態の再燃焼装置1は、第1熱電対21で検出した温度と第2熱電対23で検出した温度との温度差に応じて蒸気噴射ノズル29から蒸気を噴射することにより、管路15に付着した灰を除去するための演算部31や制御部33などを備えている。演算部31は、第1熱電対21で検出した温度と第2熱電対23で検出した温度との温度差を算出し、算出した温度差が予め設定した温度差以下になると信号を送信する。制御部33は、演算部31からの信号を受信すると、蒸気噴射ノズル29に、蒸気噴射ノズル29の図示していない弁機構を開くことを指令する信号を送信する。したがって、演算部31と第1熱電対21及び第2熱電対23、演算部31と制御部33、そして、制御部33と蒸気噴射ノズル29などは、各々、配線35を介して電気的に接続されている。
このような再燃焼装置1を備えた本実施形態のごみガス化溶融システムは、一般ごみや産業廃棄物などのごみを部分燃焼させることで熱分解ガスを生成するガス化炉37、ガス化炉37の後流側に設けられ、ガス化炉37からの熱分解残渣を含む熱分解ガスを燃焼させて灰を溶融してスラグ化する旋回式の溶融炉3を備えている。そして、溶融炉3の後流に、溶融炉3の出口側の端部と連通した状態で、溶融炉3で生じた排ガスを完全燃焼するために再燃焼装置1が設けられている。また、再燃焼装置1の後流側に、再燃焼装置1からの排ガスから熱を回収するための熱交換器を有する廃熱ボイラ5を備えている。廃熱ボイラ5は、排ガス流路38を介して再燃焼装置1に連結されている。
溶融炉3は、例えば、円筒状の炉を斜めに傾斜させて設置したものであり、上方に位置する端部が、未燃カーボンや灰を主成分とするチャーなどの熱分解残渣を含む熱分解ガスaの入口側、下方に位置する端部が炉内で生じた排ガスの出口側になっている。したがって、溶融炉3の入口側の端部には、ガス化炉37からの熱分解残渣を含む熱分解ガスaが通流する熱分解ガス流路39が連結されている熱分解ガスノズル41を有している。さらに、溶融炉3の上方に位置する端部には、熱分解ガスノズル41よりも出口側の端部側、つまり、溶融炉3の炉内のガスなどの流れに対して熱分解ガスノズル41よりも下流側に、燃焼用空気ノズル43を有している。さらに、溶融炉3の入口側の端面には、溶融炉3の炉内の温度を上昇する必要がある場合に燃焼を行う補助バーナ45が設けられている。
溶融炉3の熱分解ガスノズル41は、管状の熱分解ガスノズル41を円筒状の溶融炉3の内周面つまり炉内の周面の接線方向に沿って延在させた状態で設けられている。このため、熱分解ガスノズル41は、熱分解残渣を含む熱分解ガスaを炉内の周面の周方向に沿って吹き出すことになる。燃焼用空気ノズル43も、熱分解ガスノズル41と同様に、管状の燃焼用空気ノズル43を円筒状の溶融炉3の炉内の周面の接線方向に沿って延在させた状態で設けられている。このため、燃焼用空気ノズル43も、燃焼用空気bを炉内の周面の周方向に沿って噴出することになる。
このように熱分解ガスノズル41や燃焼用空気ノズル43が溶融炉3の炉内の周面の周方向に沿って熱分解ガスaや燃焼用空気bを吹き出すことによって、溶融炉3の炉内には、炉内の周面の周方向に沿って旋回しながら溶融炉3の入口側の端部から出口側の端部に向かう旋回流cが形成される。なお、燃焼用空気ノズル43は、燃焼用空気を燃焼用空気ノズル43に供給するための通風機などの空気供給手段に送気管路47を介して連結されている。
また、本実施形態のガス化溶融システムは、廃熱ボイラ5の後流に、廃熱ボイラ5と排ガス流路49を介して連通し、ダイオキシン類の再合成を抑制するための排ガス温度減温装置51を、排ガス温度減温装置51の後流に、排ガス温度減温装置51と排ガス流路53を介して連通し、燃焼排ガスに同伴するダストを捕集して排出するための集塵装置55を、そして、排ガス流路57を介して集塵装置55と連結され、集塵装置55から排ガスを排出するための煙突59などを備えている。
このような本実施形態のガス化溶融装置では、ごみは、ガス化炉37で熱分解される。ガス化炉37で生成した未燃カーボンを主体とするチャーなどの熱分解残渣を含む熱分解ガスは、熱分解ガスノズル41から溶融炉3の炉内へ流入する。熱分解残渣や熱分解ガスは、燃焼用空気ノズル43から供給される燃焼用空気と混合されることで燃焼し、溶融炉3の炉内を灰の融点以上に保持する。これにより、灰分が溶融してスラグdとなり、スラグdはスラグ排出口部61から回収される。
一方、溶融炉3から排出された、例えば1350℃以上といったような高温の排ガスeは、再燃焼装置1の排ガス流路7内に流入する。溶融炉3からの排ガスe中には、若干の未燃ガスが含まれているため、再燃焼装置1において、再燃焼用空気ノズル9から燃焼用空気fを供給することで完全燃焼させる。このとき、再燃焼装置1の排ガス流路7内は、ダイオキシン類の熱分解を促進するため、例えば850℃以上といった温度に保たれている。完全燃焼した再燃焼装置1からの排ガスは、廃熱ボイラ5へ流入し、熱が回収される。
このように、溶融炉3の炉内の温度は、常時、例えば1350℃から1400℃程度といった灰が溶融する温度になっている。溶融炉3は、窒素酸化物の生成を抑制するため、空気不足の状態、すなわち、還元雰囲気で運転される。したがって、溶融炉3からの排ガスe中には未燃ガスが含まれる。このため、再燃焼装置1において空気を供給し、空気過剰状態にすることで、未燃ガスの完全燃焼を図っている。
再燃焼装置1は、ダイオキシン類を熱分解するため、例えば850℃以上といった温度に保たれており、溶融炉3で気化した低融点化合物は、再燃焼装置1の壁面に付着することはない。しかし、このような例えば850℃以上といった温度の雰囲気下であっても、再燃焼装置1の排ガス流路7内に設置した冷却部材となる管路15の表面温度は、管路15内に工業用水などを流すことによって、例えば100℃程度といった低い温度となる。このため、管路15の周囲を排ガスが流れることで、排ガスに含まれる灰そして溶融炉3で気化した低融点化合物も管路15の表面に付着する。管路15の表面への灰の付着量が増加すると表層面の灰の温度が上昇し、新たに排ガスe中の溶融飛灰が付着することが困難となる。このため、管路15の表面に次々と灰が付着して堆積して行くに連れ、管路15の表面に灰が付着し難くなって行く。また、管路15の表面への灰の付着量が増えると、排ガスeが通流できる流路面積が減少することになる。
ここで、再燃焼装置1に設置した管路15の入口と出口の水の温度差、つまり、入口側ヘッダ管17内の水温と出口側ヘッダ管19内の水温の温度差は、図2に示すように、管路15の表面の灰の付着量が増加するに連れて低下する。したがって、入口側ヘッダ管17内の水温と出口側ヘッダ管19内の水温の温度差を監視することで、管路15の表面への灰の付着量を知ることができる。
そこで、本実施形態では、第1熱電対21及び第2熱電対23によって入口側ヘッダ管17及び出口側ヘッダ管19内の水温を常時測定している。そして、再燃焼装置1の管路15の入口側と出口側の水の温度差、つまり、入口側ヘッダ管17内の水温と出口側ヘッダ管19内の水温の温度差が予め設定しておいた温度差以下になったときに灰の除去手段である蒸気噴射ノズルを作動させ、過熱蒸気の噴射によって管路15の表面に付着した灰を除去する。
本実施形態では、このような運転を繰り返すことで、常時、再燃焼装置1の管路15の表面を灰が付着し易い状態に維持することができる。なお、管路15の表面から除去された灰は、酸化物または塩化物の状態で固化しており、例えば850℃以上といったような温度の雰囲気下に放出されても気化することなく、固体状のまま排ガスの流れに乗って流出する。また、管路15の表面から除去された灰は、酸化物または塩化物の状態になっているので、廃熱ボイラ5の水壁表面や伝熱管表面へ付着することはない。また、再燃焼装置1の管路15の表面温度は100℃程度と低いことから、管路15の表面に付着した灰を除去するのに過熱蒸気を噴射しても、過熱蒸気による管路15の表面の損耗は生じ難い。
このように、本実施形態の再燃焼装置1及びガス化溶融システムでは、再燃焼装置1の排ガス流路7内に、排ガス流路7内の雰囲気の温度よりも低い温度の冷却部材となる管路15を備えている。このため、再燃焼装置1の排ガス流路7に流入してくる排ガスeに同伴されてくる溶融飛灰は、管路15の表面に付着し、再燃焼装置1の後流側に設けられた廃熱ボイラ5へ流入する溶融飛灰を低減し、廃熱ボイラ5の水壁や伝熱管への灰の付着を低減できる。さらに、再燃焼装置1の冷却部材となる管路15の表面に付着した灰を除去する除去手段となる蒸気噴射ノズル29を有している。このため、再燃焼装置1の管路15に付着した灰は、蒸気噴射ノズル29から噴射される蒸気によって除去され、再燃焼装置1の管路15の表面に灰が付着して堆積することによる灰の付着能力の低下が抑制される。したがって、再燃焼装置の後流側に設けた廃熱ボイラにおける水壁や伝熱管への灰の付着を低減できる。
さらに、再燃焼装置の後流側に設けた廃熱ボイラにおける水壁や伝熱管への灰の付着を低減できることにより、廃熱ボイラの水壁や伝熱管の灰による伝熱阻害を抑制でき、また、水壁や伝熱管の塩素による腐食を抑制できる。加えて、再燃焼装置の後流側に設けた廃熱ボイラにおける水壁や伝熱管への灰の付着を低減できることにより、廃熱ボイラでのダイオキシン類の再生成を抑制できる。
さらに、本実施形態では、冷却部材が、工業用水などの水が流入する管路15であるため、冷却部材となる管路15の表面の温度は、100℃程度といったように、200℃以下に制御される。これにより、再燃焼装置1の冷却部材となる管路15の表面に付着した灰の温度をダイオキシン類が再合成される温度領域よりも低くできる。すなわち、再燃焼装置の冷却部材に付着した灰によるダイオキシン類の再合成を抑制できる。
加えて、本実施形態では、排ガス流路7は、流路が他の部分よりも狭く絞られた絞り部13を有している。そして、本実施形態の冷却部材となる管路15は、この排ガス流路7の絞り部13に設置されている。したがって、再燃焼装置に設ける冷却部材の数を低減したり、大きさを小型化したりできるため、除去手段の設置数も低減できる。ただし、再燃焼装置に設ける冷却部材の数の低減や、小型化などの必要がない場合には、冷却部材を排ガス流路の絞り部に設けていない構成にすることもできる。
さらに、本実施形態では、第1熱電対21及び第2熱電対23によって入口側ヘッダ管17及び出口側ヘッダ管19内の水温を検出している。そして、再燃焼装置1の管路15の入口側と出口側の水の温度差、つまり、入口側ヘッダ管17内の水温と出口側ヘッダ管19内の水温の温度差が予め設定しておいた温度差以下になったときに灰の除去手段である蒸気噴射ノズル29を作動させ、過熱蒸気の噴射によって管路15の表面に付着した灰を除去している。このように、管路15への水の入口側と出口側の温度差を監視することで、冷却部材となる管路15への灰の付着量を推定することが可能となる。そして、一定量以上管路15へ灰が付着したときに除去手段となる蒸気噴射ノズル29から蒸気を噴射して灰の除去を行うことで、灰の除去回数を最小限にしながら、冷却部材の表面に灰が付着し易い状態を維持できる。
また、本実施形態では、再燃焼装置1の管路15の入口側と出口側の水の温度差に応じて蒸気噴射ノズル29などの除去手段を作動させ、灰の除去を行っている。しかし、冷却部材が水のような流体を通流させる管路15のような構造ではなく、流体の温度差などで灰の付着量を推定できない構造の冷却部材の場合には、予め設定された時間間隔で冷却部材の表面に付着した灰を除去するようにする。これにより、冷却部材に付着した灰を定期的に除去することで、冷却部材の表面に灰が付着し易い状態に維持できる。
また、本実施形態では、灰の除去手段として、蒸気噴射ノズル29などを設けた場合を示した。しかし、除去手段としては、管路15のような冷却部材の表面に付着した灰を除去できれば、スートブロワなどをはじめ、機械的な掻きとりにより灰を除去するもの、音波や振動により灰を除去するものなど様々な除去手段を用いることができる。
また、本実施形態では、再燃焼装置1を、ガス化炉37と溶融炉3を備えたガス化溶融システムに設けた場合について説明した。しかし、本発明は、このような構成のガス化溶融システムに限らず、廃熱ボイラを備えた様々な構成のガス化溶融システムに適用できる。
例えば、図3に示すように、ガス化炉と溶融炉が一体化したガス化溶融装置63を備えたガス化溶融システムにおいて、ガス化溶融装置63の後流側に排ガス流路65を介して再燃焼装置1を組み合わせた構成などにすることもできる。また、図4に示すように、焼却炉67と溶融炉69を備え、焼却炉67と溶融炉69からの排ガスが廃熱ボイラ5へ流入する構成のごみ処理システムにおいて、溶融炉69と廃熱ボイラ5の間に、溶融炉69と排ガス管路71を介して排ガス中の灰の除去が可能な再燃焼装置1を連結した構成などにすることもできる。なお、図3及び図4では、本実施形態と同一の構成などには同じ符号を付している。
このように、本発明は、ガス化溶融システムに限らず、溶融炉と廃熱ボイラを備えた様々な構成のシステムや設備全般に適用できる。
本発明を適用してなる再燃焼装置及びガス化溶融システムの一実施形態の概略構成及び動作を、溶融炉及び再燃焼装置の一部だけを断面図として模式的に示したブロック図である。 冷却水の入口側と出口側の温度差と、管路表面への灰の付着量の関係を示す図である。 本発明を適用してなる再燃焼装置及びガス化溶融システムの別の実施形態の概略構成及び動作を、再燃焼装置の一部だけを断面図として模式的に示したブロック図である。 本発明を適用してなる再燃焼装置を備えたごみ処理システムの一実施形態の概略構成及び動作を、再燃焼装置の一部だけを断面図として模式的に示したブロック図である。
符号の説明
1 再燃焼装置
3 溶融炉
5 廃熱ボイラ
7 排ガス流路
9 再燃焼用空気ノズル
15 管路
17 入口側ヘッダ管
19 出口側ヘッダ管
21 第1熱電対
23 第2熱電対
29 蒸気噴射ノズル

Claims (6)

  1. 燃焼熱により灰を溶融してスラグ化する溶融炉からの排ガスに含まれる未燃分を燃焼させるための再燃焼装置であり、
    排ガスが通流する排ガス流路内に設置され、該排ガス流路内の温度よりも低い温度となり、表面に排ガスに同伴される灰を付着させる冷却部材と、該冷却部材の表面に付着した灰を除去する除去手段とを有することを特徴とする再燃焼装置。
  2. 前記冷却部材は、前記冷却部材の表面の温度が200℃以下に制御されてなることを特徴とする請求項1に記載の再燃焼装置。
  3. 前記排ガス流路は、流路が他の部分よりも狭く絞られた絞り部を有し、前記冷却部材は、前記排ガス流路の前記絞り部に設置されていることを特徴とする請求項1または2に記載の再燃焼装置。
  4. 前記冷却部材は、前記排ガス流路内の排ガスの通流方向に交わる方向に設置され、内部を流体が通流する管路であり、該管路の入口側での流体の温度を検出する第1の温度検出手段と、該管路の出口側での流体の温度を検出する第2の温度検出手段とを有し、前記除去手段は、前記第1の温度検出手段で検出した温度と前記第2の温度検出手段で検出した温度との温度差が予め設定した温度差以下になったときに前記冷却部材の表面に付着した灰を除去してなる請求項1乃至3のいずれか1項に記載の再燃焼装置。
  5. 前記除去手段は、予め設定された時間間隔で前記冷却部材の表面に付着した灰を除去してなる請求項1乃至3のいずれか1項に記載の再燃焼装置。
  6. 熱分解残渣を含む熱分解ガスを燃焼させて灰を溶融する溶融炉と、該溶融炉からの排ガスに含まれる未燃分を燃焼させるための再燃焼装置と、該再燃焼装置からの排ガスから廃熱を回収する廃熱ボイラとを備えたガス化溶融システムであり、
    前記再燃焼装置として請求項1乃至5のいずれか1項に記載の再燃焼装置を備えたことを特徴とするガス化溶融システム。
JP2004318255A 2004-11-01 2004-11-01 再燃焼装置 Pending JP2006125809A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004318255A JP2006125809A (ja) 2004-11-01 2004-11-01 再燃焼装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004318255A JP2006125809A (ja) 2004-11-01 2004-11-01 再燃焼装置

Publications (1)

Publication Number Publication Date
JP2006125809A true JP2006125809A (ja) 2006-05-18

Family

ID=36720722

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004318255A Pending JP2006125809A (ja) 2004-11-01 2004-11-01 再燃焼装置

Country Status (1)

Country Link
JP (1) JP2006125809A (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014052162A (ja) * 2012-09-10 2014-03-20 Sumitomo Heavy Ind Ltd 排ガス設備
CN108980845A (zh) * 2018-08-30 2018-12-11 麻有金 一种余热锅炉
CN110220203A (zh) * 2019-06-11 2019-09-10 宜昌桑德环保科技有限公司 一种危险废物焚烧炉返烟控制系统
JP2021038947A (ja) * 2019-08-30 2021-03-11 川崎重工業株式会社 腐食検出装置および腐食検出方法

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014052162A (ja) * 2012-09-10 2014-03-20 Sumitomo Heavy Ind Ltd 排ガス設備
CN108980845A (zh) * 2018-08-30 2018-12-11 麻有金 一种余热锅炉
CN110220203A (zh) * 2019-06-11 2019-09-10 宜昌桑德环保科技有限公司 一种危险废物焚烧炉返烟控制系统
JP2021038947A (ja) * 2019-08-30 2021-03-11 川崎重工業株式会社 腐食検出装置および腐食検出方法
JP7379023B2 (ja) 2019-08-30 2023-11-14 川崎重工業株式会社 腐食検出装置および腐食検出方法

Similar Documents

Publication Publication Date Title
JP3773302B2 (ja) 熱回収システム及び発電システム
KR100995900B1 (ko) 폐기물의 가스화 용융시스템
KR101107384B1 (ko) 플라즈마 열분해 공정 기술을 이용하여 폐기물로부터합성가스의 정제 공정 및 장치
JP2002081624A (ja) 廃棄物ガス化溶融炉と同溶融炉の操業方法
JP5606806B2 (ja) 溶融設備
JP4295291B2 (ja) 流動床ガス化炉及びその流動層監視・制御方法
JP3936824B2 (ja) 廃熱回収ボイラ及び廃棄物処理用設備
JP4377292B2 (ja) 廃棄物処理装置、及び排ガス処理方法
JP2007046809A (ja) 燃焼装置および燃焼方法
KR100807200B1 (ko) 소각로 일체형 폐열회수장치
CN106989405B (zh) 含钠盐有机废液焚烧炉及焚烧工艺方法
JP2006125809A (ja) 再燃焼装置
JP2007255844A (ja) ガス化溶融システムの溶融設備及び溶融方法
WO2003087669A1 (fr) Incinerateur, incinerateur de gazeification et procede de traitement des dechets
JP2007218458A (ja) 旋回溶融炉を備えたボイラ構造
JP6602174B2 (ja) ガス化装置、ガス化複合発電設備、ガス化設備及び除煤方法
JP5162285B2 (ja) ガス化溶融方法およびガス化溶融装置
JP2004270962A (ja) 廃棄物処理装置
JP3091197B1 (ja) チャー分離方式ごみガス化溶融装置におけるダイオキシン類の低減方法及び装置
CN104949131A (zh) 生物质垃圾燃烧系统及方法
JP2000146116A (ja) 燃焼装置及びその伝熱管の腐食防止方法
JPH10103640A (ja) 廃棄物熱分解処理設備
CN215675207U (zh) 一种危险废物焚烧系统的二燃室
JP4265975B2 (ja) 熱回収方法、可燃物の処理方法、熱回収システム及び可燃物の処理装置
JP4791157B2 (ja) 廃棄物ガス化溶融装置の溶融炉