JP2006125761A - 室内機およびこれを備えた空気調和装置 - Google Patents
室内機およびこれを備えた空気調和装置 Download PDFInfo
- Publication number
- JP2006125761A JP2006125761A JP2004316342A JP2004316342A JP2006125761A JP 2006125761 A JP2006125761 A JP 2006125761A JP 2004316342 A JP2004316342 A JP 2004316342A JP 2004316342 A JP2004316342 A JP 2004316342A JP 2006125761 A JP2006125761 A JP 2006125761A
- Authority
- JP
- Japan
- Prior art keywords
- pressure gas
- pipe
- indoor
- low
- heat exchanger
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Images
Landscapes
- Compression-Type Refrigeration Machines With Reversible Cycles (AREA)
Abstract
【課題】 室内機に設けられた切換弁に起因する冷媒の溜まり込みを防止する。
【解決手段】 室外ユニット1と低圧ガス管7、高圧ガス管5および液管9によって接続され、高圧ガス分岐管7cまたは液冷媒用分岐44から冷媒が供給されて室内空気と熱交換を行う室内熱交換器40を備えた室内機において、高圧ガス分岐管5cから室内熱交換器40へと向かう高圧ガス流路と、室内熱交換器40から低圧ガス分岐管7cへと向かう低圧ガス流路とを切り換える室内側四方弁48を備え、室内側四方弁48は、低圧ガス流路が選択されている場合に、高圧ガス分岐管5cから低圧ガス分岐管7cへと向かう低圧バイパス管50を選択することを特徴とする。
【選択図】 図1
【解決手段】 室外ユニット1と低圧ガス管7、高圧ガス管5および液管9によって接続され、高圧ガス分岐管7cまたは液冷媒用分岐44から冷媒が供給されて室内空気と熱交換を行う室内熱交換器40を備えた室内機において、高圧ガス分岐管5cから室内熱交換器40へと向かう高圧ガス流路と、室内熱交換器40から低圧ガス分岐管7cへと向かう低圧ガス流路とを切り換える室内側四方弁48を備え、室内側四方弁48は、低圧ガス流路が選択されている場合に、高圧ガス分岐管5cから低圧ガス分岐管7cへと向かう低圧バイパス管50を選択することを特徴とする。
【選択図】 図1
Description
本発明は、高圧ガス管、低圧ガス管および液管によって室外機と接続された室内機およびこれを備えた空気調和装置に関するものである。
高圧ガス管、低圧ガス管および液管によって一つの室外機と接続された複数の室内機を備え、それぞれの室内機で冷房・暖房運転を独立に行う空気調和装置として、いわゆる冷暖房フリーマルチエアコンが知られている(特許文献1参照)。
図12には、このような冷暖房フリーマルチエアコンが示されている。
室外ユニット100には、冷媒を圧縮する圧縮機101と、二つの室外熱交換器103A,Bとが設けられている。室外熱交換器103A,Bには、それぞれ、室外側切換弁102A,Bが設けられており、高圧ガス管110及び低圧ガス管111との接続を選択的に切り換えるようになっている。
高圧ガス管110は、圧縮機101からの吐出ガスが導かれる流路となっており、低圧ガス管111は、室内機A,B,Cからの低圧ガスが導かれる流路となっている。
室外側切換弁102A,Bとは反対側となる室外熱交換器103A,Bの端部には、液管112が接続されている。
図12には、このような冷暖房フリーマルチエアコンが示されている。
室外ユニット100には、冷媒を圧縮する圧縮機101と、二つの室外熱交換器103A,Bとが設けられている。室外熱交換器103A,Bには、それぞれ、室外側切換弁102A,Bが設けられており、高圧ガス管110及び低圧ガス管111との接続を選択的に切り換えるようになっている。
高圧ガス管110は、圧縮機101からの吐出ガスが導かれる流路となっており、低圧ガス管111は、室内機A,B,Cからの低圧ガスが導かれる流路となっている。
室外側切換弁102A,Bとは反対側となる室外熱交換器103A,Bの端部には、液管112が接続されている。
室内ユニットA,B,Cは、それぞれ、室内熱交換器107A,B,Cを備えており、各室内熱交換器107A,B,Cは、室外ユニット100と高圧ガス管110、低圧ガス管111および液管112によって接続されている。各室内熱交換器107A,B,Cには、室内側切換弁108A,B,Cが設けられており、高圧ガス管110及び低圧ガス管111との接続を選択的に切り換えるようになっている。また、各室内熱交換器107A,B,Cには、液管112からの液冷媒を膨張させるための膨張弁106A,B,Cが設けられている。
上記構成の冷暖房フリーマルチエアコンは、次のように運転される。
一例として、室内ユニットA,Bが冷房、室内ユニットCが暖房とされた運転について説明する。
圧縮機101によって圧縮された冷媒は、高圧ガス管110へと導かれ、この高圧ガス管110が室外側切換弁102Bによって選択されて、室外熱交換器103Bへと導かれる。
他方の室外熱交換器103Aは、液冷媒の溜まり込みを防止するために、室外切換弁102Aから高圧ガスを導き、逆止弁105Aおよびキャピラリチューブ135を通過させて減圧し、液管112へと導く。
凝縮器として動作する室外熱交換器103Aを通過して凝縮液化した液冷媒は、液管112によって室内ユニットA,Bへと導かれ、膨張弁106A,Bで膨張した後、室内熱交換器107A,Bで蒸発して室内空気を冷却する。これにより、室内ユニットA,Bは冷房動作を行う。室内熱交換器107A,Bを通過した冷媒は、室内側切換弁108A,Bによって選択された低圧ガス管111へと導かれ、アキュムレータ114を通過して再び圧縮機101へと戻される。
室内ユニットCの室内側切換弁108Cは、高圧ガス管110を選択しており、高圧ガスが室内熱交換器107Cに導かれ、室内空気を暖める。室内空気を暖めて凝縮液化した冷媒は、液管112へと導かれる。
一例として、室内ユニットA,Bが冷房、室内ユニットCが暖房とされた運転について説明する。
圧縮機101によって圧縮された冷媒は、高圧ガス管110へと導かれ、この高圧ガス管110が室外側切換弁102Bによって選択されて、室外熱交換器103Bへと導かれる。
他方の室外熱交換器103Aは、液冷媒の溜まり込みを防止するために、室外切換弁102Aから高圧ガスを導き、逆止弁105Aおよびキャピラリチューブ135を通過させて減圧し、液管112へと導く。
凝縮器として動作する室外熱交換器103Aを通過して凝縮液化した液冷媒は、液管112によって室内ユニットA,Bへと導かれ、膨張弁106A,Bで膨張した後、室内熱交換器107A,Bで蒸発して室内空気を冷却する。これにより、室内ユニットA,Bは冷房動作を行う。室内熱交換器107A,Bを通過した冷媒は、室内側切換弁108A,Bによって選択された低圧ガス管111へと導かれ、アキュムレータ114を通過して再び圧縮機101へと戻される。
室内ユニットCの室内側切換弁108Cは、高圧ガス管110を選択しており、高圧ガスが室内熱交換器107Cに導かれ、室内空気を暖める。室内空気を暖めて凝縮液化した冷媒は、液管112へと導かれる。
上記のような従来の冷暖房フリーマルチエアコンは、以下の問題を有していた。
室内ユニットA,Bは冷房運転をしており、高圧ガスが流されない状態となっているので、高圧ガス管110の主管から室内熱交換器107A,Bへとつながる分岐管内には高圧ガスが滞留することになる。この分岐管内で滞留した高圧ガスが放熱・凝縮してしまって液冷媒が溜まり込み、全体の冷媒不足を引き起こすおそれがある。
室内ユニットA,Bは冷房運転をしており、高圧ガスが流されない状態となっているので、高圧ガス管110の主管から室内熱交換器107A,Bへとつながる分岐管内には高圧ガスが滞留することになる。この分岐管内で滞留した高圧ガスが放熱・凝縮してしまって液冷媒が溜まり込み、全体の冷媒不足を引き起こすおそれがある。
また、室内ユニットA,Bを暖房運転に切り換えようとする場合、または、室内ユニットCを冷房運転に切り換えようとする場合、大きな圧力差がある高圧ガス管と低圧ガス管の切り換えを行うので、室内切換弁108A,B,Cには大きな衝撃音が生じていた。特に室内切換弁108A,B,Cは室内ユニット内に設けられているので、居住者の不快感を引き起こし、大きな問題となっていた。
本発明は、このような事情に鑑みてなされたものであって、室内機に設けられた切換弁に起因する冷媒の溜まり込み又は切り換え時の騒音を防止する室内機およびこれを備えた空気調和装置を提供することを目的とする。
上記課題を解決するために、本発明の室内機およびこれを備えた空気調和装置は以下の手段を採用する。
すなわち、本発明にかかる空気調和装置の室内機は、低圧ガス管、高圧ガス管および液管によって室外機と接続され、前記高圧ガス管または前記液管から冷媒が供給されて室内空気と熱交換を行う室内熱交換器を備えた空気調和装置の室内機において、前記高圧ガス管から前記室内熱交換器へと向かう高圧ガス流路と、前記室内熱交換器から前記低圧ガス管へと向かう低圧ガス流路とを切り換える四方弁を備え、該四方弁は、前記低圧ガス流路が選択されている場合に、前記高圧ガス管から前記低圧ガス管へと向かうバイパス流路を選択することを特徴とする。
すなわち、本発明にかかる空気調和装置の室内機は、低圧ガス管、高圧ガス管および液管によって室外機と接続され、前記高圧ガス管または前記液管から冷媒が供給されて室内空気と熱交換を行う室内熱交換器を備えた空気調和装置の室内機において、前記高圧ガス管から前記室内熱交換器へと向かう高圧ガス流路と、前記室内熱交換器から前記低圧ガス管へと向かう低圧ガス流路とを切り換える四方弁を備え、該四方弁は、前記低圧ガス流路が選択されている場合に、前記高圧ガス管から前記低圧ガス管へと向かうバイパス流路を選択することを特徴とする。
低圧ガス流路が選択されている場合には、高圧ガス管から室内熱交換器へと向かう高圧ガス流は切断されているので、高圧ガスは室内熱交換器へは流されない。この場合に、高圧ガス管から低圧ガス管へと向かうバイパス流路を選択する四方弁を採用することとして、高圧ガス管内の高圧ガスを低圧ガス管へと流すようにした。これにより、高圧ガスが滞留してしまう状態を解消できる。したがって、滞留した高圧ガス管内のガス冷媒が放熱・凝縮することによって液化し、液冷媒として配管内に溜まり込むことがない。
さらに、前記四方弁近傍の前記高圧ガス管には、前記高圧ガス流路から前記低圧ガス流路へと切換える際に減圧を行う減圧手段が設けられていることを特徴とする。
高圧ガス管に減圧手段を設けて、高圧ガス流路から低圧ガス流路に切り換える際に、高圧ガス管から四方弁へと流れ込むガス冷媒の圧力を減じることとしたので、流路切り換え時の圧力差に起因する騒音を防止することができる。
さらに、前記バイパス流路には、流量調整手段が設けられていることを特徴とする。
低圧ガス流路が選択されている場合、バイパス流路を通過する高圧ガスは室内熱交換器には導かれないので、冷凍サイクルに寄与しない。したがって、バイパス流路を流れるガス冷媒が多いと、そこで熱損失が生じることになる。そこで、この高圧ガスの流量を流量調整手段によって調節し、熱損失を抑えることとした。
また、本発明の空気調和装置は、冷媒を圧縮する圧縮機および外気と熱交換を行う室外熱交換器を備えた室外機と、低圧ガス管、高圧ガス管および液管によって前記室外機と接続され、前記高圧ガス管または液管から冷媒が供給されて室内空気と熱交換を行う室内熱交換器を備えた複数の室内機と、を備えた空気調和装置において、上記室内機を少なくとも一つ備えていることを特徴とする。
上記室内熱交換器を備える空気調和装置としたので、液冷媒の溜まり込みの少ない、また、四方弁の切り換え時における騒音が少ない空気調査装置を提供することができる。
なお、本発明の室内機を全ての室内機に適用しても良いし、一部分の室内機にのみ本発明の室内機を適用し、他の室内機には従来の室内機を用いることとしても良い。
なお、本発明の室内機を全ての室内機に適用しても良いし、一部分の室内機にのみ本発明の室内機を適用し、他の室内機には従来の室内機を用いることとしても良い。
低圧ガス流路が選択されている場合に、高圧ガス管から低圧ガス管へと向かうバイパス流路を選択する四方弁としたので、高圧ガスを滞留させずに流すことができ、液冷媒の溜まり込みを防止して冷媒不足を回避することができる。
また、減圧手段によって四方弁の切り換え時に高圧が加わらないようにしたので、切り換え時の騒音を防止することができる。
また、減圧手段によって四方弁の切り換え時に高圧が加わらないようにしたので、切り換え時の騒音を防止することができる。
以下に、本発明にかかる実施形態について、図面を参照して説明する。
図1には、冷暖房フリーマルチエアコン(空気調和装置)の概略構成が示されている。
冷暖房フリーマルチエアコンは、一つの室外ユニット(室外機)1と、複数の室内ユニット(室内機)3と、これらを接続する高圧ガス管5、低圧ガス管7および液管9とを備えている。
室外ユニット1は、例えば2台とされた圧縮機10と、例えば2台とされた室外熱交換器12とを備えている。
室外熱交換器12は、室外空気と熱交換するものであり、通過する冷媒の状態に応じて、凝縮器または蒸発器として動作する。各室外熱交換器12a,bとレシーバ23との間の液管9との間であって、各室外熱交換器12a,bの近傍には、それぞれ、室外側膨張弁13a,bが設けられている。この室外側膨張弁13a,bをバイパスする室外側膨張弁バイパス管16a,bが設けられており、各バイパス管16a,bには、室外熱交換器12a,bからレシーバ23への冷媒流れを許容し、その逆の流れを阻止する逆止弁19a,bが設けられている。一方の第1室外熱交換器12aに接続された室外側膨張弁バイパス管16aには、逆止弁19aの上流側に開閉弁21が設けられている。
室外側膨張弁13a,bのレシーバ23側に接続された配管は、液管9の合流点9aにて合流するようになっている。
図1には、冷暖房フリーマルチエアコン(空気調和装置)の概略構成が示されている。
冷暖房フリーマルチエアコンは、一つの室外ユニット(室外機)1と、複数の室内ユニット(室内機)3と、これらを接続する高圧ガス管5、低圧ガス管7および液管9とを備えている。
室外ユニット1は、例えば2台とされた圧縮機10と、例えば2台とされた室外熱交換器12とを備えている。
室外熱交換器12は、室外空気と熱交換するものであり、通過する冷媒の状態に応じて、凝縮器または蒸発器として動作する。各室外熱交換器12a,bとレシーバ23との間の液管9との間であって、各室外熱交換器12a,bの近傍には、それぞれ、室外側膨張弁13a,bが設けられている。この室外側膨張弁13a,bをバイパスする室外側膨張弁バイパス管16a,bが設けられており、各バイパス管16a,bには、室外熱交換器12a,bからレシーバ23への冷媒流れを許容し、その逆の流れを阻止する逆止弁19a,bが設けられている。一方の第1室外熱交換器12aに接続された室外側膨張弁バイパス管16aには、逆止弁19aの上流側に開閉弁21が設けられている。
室外側膨張弁13a,bのレシーバ23側に接続された配管は、液管9の合流点9aにて合流するようになっている。
各圧縮機10a,bは、好適にはスクロールコンプレッサが用いられる。これらの圧縮機10a,bは、要求される能力に応じて、2台同時に運転する場合もあり、また、1台のみ運転させ、他の1台をバックアップとする場合もある。
圧縮機10で圧縮された冷媒は、高圧ガス冷媒となり、高圧ガス管5へと吐出される。
なお、冷媒としては、例えばR401Aが用いられる。このR401Aは、従来の冷媒であるR22・R407Cに比べて約1.4倍(5℃)の密度を有し、約1.6倍(5℃)の高圧となる。このような高密度高圧冷媒は、高い冷凍能力を発揮し、圧力損失も少ないという利点を有する。
圧縮機10で圧縮された冷媒は、高圧ガス冷媒となり、高圧ガス管5へと吐出される。
なお、冷媒としては、例えばR401Aが用いられる。このR401Aは、従来の冷媒であるR22・R407Cに比べて約1.4倍(5℃)の密度を有し、約1.6倍(5℃)の高圧となる。このような高密度高圧冷媒は、高い冷凍能力を発揮し、圧力損失も少ないという利点を有する。
室外ユニット1内に位置する高圧ガス管5は、分岐点5a,bにおいて分岐し、それぞれの分岐管6a,bが高圧ガス管用ポート14−1において室外側四方弁14a,14bに接続されている。室外側四方弁14a,bは、それぞれ、室外熱交換器12a,bに接続される室外熱交換器側ポート14−2と、低圧ガス管7の分岐点7dにおいて分岐する低圧ガス分岐管15a,bに接続される低圧ガス管側ポート14−3と、ストレーナ17a,b及びキャピラリチューブ18a,bを介して低圧ガス分岐管15a,bに接続されるバイパス管側ポート14−4とを備えている。
室外ユニット1内に位置する低圧ガス管7は、アキュムレータ20を介して、各圧縮機10a,bに接続されている。アキュムレータ20において回収された液冷媒は、液冷媒返送ライン22a,bによって各圧縮機10a,bに戻されるようになっている。
室外熱交換器12a,bは、室外側四方弁14a,bに接続される側の反対側に、液管9が接続されている。この室外ユニット1内の液管9には、液冷媒を貯留するレシーバ23と、冷房運転時に液管9を流れる冷媒に過冷却を与える過冷却器25とを備えている。過冷却器25は、液管9を流れる液冷媒の一部を取り出し、膨張弁25aによって膨張気化させて冷却した冷媒によって、液管9を流れる液冷媒に過冷却を与えるようになっている。過冷却に用いられて気化したガス冷媒は、アキュムレータ20に返送される。
室内ユニット3は、複数設けられており、各室内ユニットの構成は同等とされる。
室内ユニット3は、室内空気と熱交換を行う室内熱交換器40を備えている。室内熱交換器40と液管9とを接続する液冷媒用分岐管44には、膨張弁42が設けられている。
各室内ユニット3には、高圧ガス管5及び低圧ガス管7の切り換えを行う分流コントローラ46が設けられている。
室内ユニット3は、室内空気と熱交換を行う室内熱交換器40を備えている。室内熱交換器40と液管9とを接続する液冷媒用分岐管44には、膨張弁42が設けられている。
各室内ユニット3には、高圧ガス管5及び低圧ガス管7の切り換えを行う分流コントローラ46が設けられている。
分流コントローラ46は、次のような構成となっている。
分流コントローラ46は、室内側四方弁48を備えている。室内側四方弁48は、高圧ガス管5の主管から分岐された高圧ガス分岐管5cに接続される高圧ガス管用ポート48−1と、室内熱交換器40側に接続される室内熱交換器側ポート48−2と、低圧ガス管7の主管から分岐された室内側低圧ガス分岐管7cに接続される低圧ガス管用ポート48−3と、室内側低圧ガス分岐管7cの中途位置49に合流する低圧バイパス管50に接続される低圧バイパス管用ポート48−4とを有している。
分流コントローラ46は、室内側四方弁48を備えている。室内側四方弁48は、高圧ガス管5の主管から分岐された高圧ガス分岐管5cに接続される高圧ガス管用ポート48−1と、室内熱交換器40側に接続される室内熱交換器側ポート48−2と、低圧ガス管7の主管から分岐された室内側低圧ガス分岐管7cに接続される低圧ガス管用ポート48−3と、室内側低圧ガス分岐管7cの中途位置49に合流する低圧バイパス管50に接続される低圧バイパス管用ポート48−4とを有している。
室内側四方弁48は、暖房運転時には、高圧ガス管用ポート48−1と室内熱交換器側ポート48−2とを連通し、かつ、低圧ガス管用ポート48−3と低圧バイパス管用ポート48−4とを連通する。また、室内側四方弁48は、冷房運転時には、高圧ガス管用ポート48−1と低圧バイパス管用ポート48−4とを連通し、かつ、室内熱交換器側ポート48−2と低圧ガス管用ポート49−3とを連通する。
室内側四方弁48の上流側の高圧ガス分岐管5cには、高圧ガス分岐管用開閉弁52が設けられている。この高圧ガス分岐管用開閉弁52を迂回するように高圧ガス分岐管用バイパス流路54が形成されており、この高圧ガス分岐管用バイパス流路54には第1キャピラリチューブ(減圧手段)55が設けられている。
室内側四方弁48の下流側の低圧バイパス管50には、第2キャピラリチューブ(流量調整手段)57が設けられている。
高圧ガス分岐管用バイパス流路54の上流側の高圧ガス分岐管5cと低圧バイパス管50の下流側(中途位置49の下流側)の室内側低圧ガス分岐管7cとの間には、高低圧バイパス管58が設けられている。高低圧バイパス管58には、高圧ガス分岐管5c側から室内側低圧ガス分岐管7c側に向かって、高低圧バイパス管用開閉弁60と第3キャピラリチューブ62とが順に設けられている。
室内側四方弁48の下流側の低圧バイパス管50には、第2キャピラリチューブ(流量調整手段)57が設けられている。
高圧ガス分岐管用バイパス流路54の上流側の高圧ガス分岐管5cと低圧バイパス管50の下流側(中途位置49の下流側)の室内側低圧ガス分岐管7cとの間には、高低圧バイパス管58が設けられている。高低圧バイパス管58には、高圧ガス分岐管5c側から室内側低圧ガス分岐管7c側に向かって、高低圧バイパス管用開閉弁60と第3キャピラリチューブ62とが順に設けられている。
次に、上記構成の冷暖房フリーマルチエアコンについて、各運転モードに応じてその動作を説明する。
以下に説明するように、本実施形態にかかる冷暖房フリーマルチエアコンは、要求される凝縮能力・蒸発能力に応じて、室外熱交換器12の動作を適宜変更するものである。
以下に説明するように、本実施形態にかかる冷暖房フリーマルチエアコンは、要求される凝縮能力・蒸発能力に応じて、室外熱交換器12の動作を適宜変更するものである。
[全冷房全台運転:運転パターンC4]
先ず、夏季のように、全ての室内ユニット3において冷房運転が選択されている場合の動作について、図1を用いて説明する。この場合、二つの室外熱交換器12a,bは凝縮器として動作する。
圧縮機10aによって圧縮された高圧ガス冷媒は、高圧ガス管5の各分岐点5a,bで分岐して、各室外側四方弁14a,bへと流れる。一方、高圧ガス冷媒の一部分(ごく少量)は、室内ユニット3へと接続される高圧ガス管5を通って室内ユニット3へと流れる。なお、本実施形態において、圧縮機は1台のみ用いており、他の1台はバックアップ用とされている。
室外側四方弁14a,bでは、高圧ガス管用ポート14−1と室外熱交換器側ポート14−2が連通され、また、低圧ガス管側ポート14−3とバイパス管側ポート14−4とが連通されている。したがって、高圧ガス管用ポート14−1へと流れ込んだ高圧ガス冷媒は、室外熱交換器側ポート14−2を通過して、室外熱交換器12a,bへと導かれる。一方、室外側四方弁14a,bの低圧ガス管側ポート14−3とバイパス管側ポート14−4とが連通され、室外側低圧ガス分岐間15a,bを通る流路は閉ループとされているので、室外側低圧ガス分岐管15a,bには高圧ガス冷媒は流れず、また、低圧ガス管7の分岐点7dから低圧ガス冷媒が流れ込むこともない。ただし、室外側低圧ガス分岐管15a,b内は低圧ガス冷媒が満たされた状態となっている。
先ず、夏季のように、全ての室内ユニット3において冷房運転が選択されている場合の動作について、図1を用いて説明する。この場合、二つの室外熱交換器12a,bは凝縮器として動作する。
圧縮機10aによって圧縮された高圧ガス冷媒は、高圧ガス管5の各分岐点5a,bで分岐して、各室外側四方弁14a,bへと流れる。一方、高圧ガス冷媒の一部分(ごく少量)は、室内ユニット3へと接続される高圧ガス管5を通って室内ユニット3へと流れる。なお、本実施形態において、圧縮機は1台のみ用いており、他の1台はバックアップ用とされている。
室外側四方弁14a,bでは、高圧ガス管用ポート14−1と室外熱交換器側ポート14−2が連通され、また、低圧ガス管側ポート14−3とバイパス管側ポート14−4とが連通されている。したがって、高圧ガス管用ポート14−1へと流れ込んだ高圧ガス冷媒は、室外熱交換器側ポート14−2を通過して、室外熱交換器12a,bへと導かれる。一方、室外側四方弁14a,bの低圧ガス管側ポート14−3とバイパス管側ポート14−4とが連通され、室外側低圧ガス分岐間15a,bを通る流路は閉ループとされているので、室外側低圧ガス分岐管15a,bには高圧ガス冷媒は流れず、また、低圧ガス管7の分岐点7dから低圧ガス冷媒が流れ込むこともない。ただし、室外側低圧ガス分岐管15a,b内は低圧ガス冷媒が満たされた状態となっている。
室外熱交換器12a,bへと流れ込んだ高圧ガス冷媒は、外気と熱交換して放熱し、凝縮液化される。凝縮液化した高圧液冷媒は、レシーバ23を通過し、過冷却器25で過冷却された後、液管9を通って室内ユニット3へと導かれる。なお、室外ユニット1と室内ユニット3とを接続する液管9は、その長さが100mを超えるので、このように過冷却をつけて液管9内での液冷媒の蒸発を避けることが望ましい。
室内ユニット3側へと流れ込んだ高圧液冷媒は、各室内ユニット3に接続された高圧ガス分岐管5cに分岐した後、各室内ユニット3の膨張弁42で絞られて膨張させられる。その後、液冷媒は室内熱交換器40で蒸発して、室内空気から熱を奪い冷却する。蒸発気化した低圧ガス冷媒は、分流コントローラ46の室内側四方弁48へと流れ込む。室内側四方弁48は、高圧ガス管用ポート48−1と低圧バイパス管用ポート48−4とを連通し、かつ、室内熱交換器側ポート48−2と低圧ガス管用ポート49−3とを連通している。したがって、室内熱交換器40からの低圧ガス冷媒は、室内側四方弁48を通り、室内側低圧ガス分岐管7cへと流れ込んだ後、主管である低圧ガス管7を通って室外ユニット1へと導かれる。
分流コントローラ46内では、高圧ガス冷媒について、次のような冷媒流れが形成されている。高圧ガス管5から各室内ユニット3に分岐した高圧ガス分岐管5cを通って流れ込んだ高圧ガス冷媒は、高圧ガス分岐管用開閉弁52が閉とされているので、高圧ガス分岐管用バイパス流路54を通り、第1キャピラリチューブ55で減圧される。減圧されたガス冷媒は、室内側四方弁48を通り、低圧バイパス管50へと流れ込み、第2キャピラリチューブ57で絞られて流量調整された後、中途位置49において室内側低圧ガス分岐管7cに合流する。このように、高圧ガス分岐管5cの高圧ガス冷媒を室内側四方弁48を介して流すようにしたので、高圧ガス分岐管5cにおいて高圧ガスが滞留することがなく、ひいては、主管である高圧ガス管5において高圧ガスが滞留することがない。したがって、高圧ガス管5(もしくは高圧ガス分岐管5c)内で高圧ガス冷媒が放熱・凝縮してしまい、液冷媒が高圧ガス管5内に溜まり込むことが防止される。特に、室外ユニット1と室内ユニット3とを接続する高圧ガス管5の配管長は100mを超え、たとえ配管を断熱したとしてもその放熱量は無視できないものとなるため、このような高圧ガス冷媒を分流コントローラ46によって流動させる冷媒回路が有効となる。
一方、分流コントローラ46の高低圧バイパス管用開閉弁60は閉とされているので、高低圧バイパス管58には高圧ガス冷媒が流れない。
一方、分流コントローラ46の高低圧バイパス管用開閉弁60は閉とされているので、高低圧バイパス管58には高圧ガス冷媒が流れない。
低圧ガス管7を通って室外ユニット1に流れ込んだ低圧ガス冷媒は、アキュムレータ20で液冷媒が除去された後、圧縮機10aへと戻される。
このように、全冷房全台運転では、要求される凝縮能力が大きいため、二つの室外熱交換器12a,bが凝縮器として運転される。
このように、全冷房全台運転では、要求される凝縮能力が大きいため、二つの室外熱交換器12a,bが凝縮器として運転される。
[全冷房運転(停止ユニット有):運転パターンC4’]
図2に示すように、全冷房運転であっても、全ての室内ユニット3の送風ファン(図示せず)が動作している場合に限らず、何台かは(同図においては室内ユニット3d)送風ファンが回転せず、停止ユニットとされている場合もある。この場合、要求される凝縮能力は依然として大きい(例えば能力の100%)ので、室外熱交換器12a,bは2台とも凝縮器として動作する。
なお、この運転パターンの場合にも、高圧ガス分岐管5cと低圧ガス分岐管7cとを連通する高低圧バイパス管58に設けられた高低圧バイパス管用開閉弁60は閉じられている。
図2に示すように、全冷房運転であっても、全ての室内ユニット3の送風ファン(図示せず)が動作している場合に限らず、何台かは(同図においては室内ユニット3d)送風ファンが回転せず、停止ユニットとされている場合もある。この場合、要求される凝縮能力は依然として大きい(例えば能力の100%)ので、室外熱交換器12a,bは2台とも凝縮器として動作する。
なお、この運転パターンの場合にも、高圧ガス分岐管5cと低圧ガス分岐管7cとを連通する高低圧バイパス管58に設けられた高低圧バイパス管用開閉弁60は閉じられている。
[冷房主体(冷房期):運転パターンC4”]
図3に示すように、夏季のような冷房期であっても、1又は複数台の室内ユニット3(同図においては室内ユニット3aのみ)が暖房運転を選択されている場合がある。この場合、要求される凝縮能力は依然として大きい(例えば能力の100%)ので、室外熱交換器12a,bは2台とも凝縮器として動作する。
室内ユニット3aは、室内側四方弁48を切り換えることによって、冷房運転から暖房運転へと切り換えられる。つまり、室内側四方弁48は、冷房運転時には、高圧ガス管用ポート48−1と低圧バイパス管用ポート48−4とを連通し、かつ、室内熱交換器側ポート48−2と低圧ガス管用ポート49−3とを連通していたものを、暖房運転時には、高圧ガス管用ポート48−1と室内熱交換器側ポート48−2とを連通し、かつ、低圧ガス管用ポート48−3と低圧バイパス管用ポート48−4とを連通するように切り換えられる。
図3に示すように、夏季のような冷房期であっても、1又は複数台の室内ユニット3(同図においては室内ユニット3aのみ)が暖房運転を選択されている場合がある。この場合、要求される凝縮能力は依然として大きい(例えば能力の100%)ので、室外熱交換器12a,bは2台とも凝縮器として動作する。
室内ユニット3aは、室内側四方弁48を切り換えることによって、冷房運転から暖房運転へと切り換えられる。つまり、室内側四方弁48は、冷房運転時には、高圧ガス管用ポート48−1と低圧バイパス管用ポート48−4とを連通し、かつ、室内熱交換器側ポート48−2と低圧ガス管用ポート49−3とを連通していたものを、暖房運転時には、高圧ガス管用ポート48−1と室内熱交換器側ポート48−2とを連通し、かつ、低圧ガス管用ポート48−3と低圧バイパス管用ポート48−4とを連通するように切り換えられる。
その後、高圧ガス分岐管用開閉弁52が開けられる。この開閉弁52が開けられる直前には、高圧ガスは、高圧ガス分岐管用バイパス流路54に設けた第1キャピラリチューブ55によって高圧ガスの圧力が減じられて低圧ガスに近い圧力まで減じられているので、高圧ガス管用ポート48−1には、低圧ガスに近い圧力が加わっている。この状態で室内側四方弁48を切り換えて、高圧ガス管用ポート48−1と室内熱交換器側ポート48−2とを接続するので、切り換え時における圧力差を可及的に小さくすることができ、室内側四方弁48の切り換え時における騒音を防止することができる。
このように室内側四方弁48が切り換えられると、高圧ガス冷媒は、室内熱交換器40へと導かれ、この室内熱交換器40で凝縮・液化することによって室内空気に熱を与えて暖房を行う。室内熱交換器40で液化した高圧液冷媒は、液冷媒用分岐管44を通って、主管である液管9へと合流する。
このように室内側四方弁48が切り換えられると、高圧ガス冷媒は、室内熱交換器40へと導かれ、この室内熱交換器40で凝縮・液化することによって室内空気に熱を与えて暖房を行う。室内熱交換器40で液化した高圧液冷媒は、液冷媒用分岐管44を通って、主管である液管9へと合流する。
なお、この運転パターンの場合にも、高圧ガス分岐管5cと低圧ガス分岐管7cとを連通する高低圧バイパス管58に設けられた高低圧バイパス管用開閉弁60は閉じられている。
[冷房主体(中間期:室外ファンコントロール範囲内):運転パターンC2]
図4には、春季や秋季のような中間期であって、冷房運転を行う室内ユニット3の台数が、暖房運転を行う室内ユニット3の台数よりも多い冷房主体の運転を行う場合が示されている。また、室外温度が冬季のように低すぎず(例えば5℃程度)、室外熱交換器12a,bに設けた室外ファン(図示せず)の運転・停止(又は室外ファンの回転数制御)によって凝縮能力をコントロールできる範囲における場合である。
図4には、春季や秋季のような中間期であって、冷房運転を行う室内ユニット3の台数が、暖房運転を行う室内ユニット3の台数よりも多い冷房主体の運転を行う場合が示されている。また、室外温度が冬季のように低すぎず(例えば5℃程度)、室外熱交換器12a,bに設けた室外ファン(図示せず)の運転・停止(又は室外ファンの回転数制御)によって凝縮能力をコントロールできる範囲における場合である。
この運転パターンでは、夏季のように要求冷房能力が大きくなく、したがって要求される凝縮能力が比較的小さい(例えば能力の50%)ので、第2室外熱交換器12bは停止されている。この第2室外熱交換器12bの停止は次のように行われる。
第2室外熱交換器12bに接続された室外側四方弁14bを切り換えて、高圧ガス管用ポート14−1と室外熱交換器側ポート14−2との連通を切り、高圧ガス管用ポート14−1とバイパス管側ポート14−4とを連通させ、室外熱交換器側ポート14−2と低圧ガス管側ポート14−3とを連通させる。これにより、圧縮機10aから吐出された高圧ガスを第2室外熱交換器12bに流さないようにする。また、第2室外熱交換器12bに接続された室外側膨張弁13bを全閉にする。
第2室外熱交換器12bに接続された室外側四方弁14bを切り換えて、高圧ガス管用ポート14−1と室外熱交換器側ポート14−2との連通を切り、高圧ガス管用ポート14−1とバイパス管側ポート14−4とを連通させ、室外熱交換器側ポート14−2と低圧ガス管側ポート14−3とを連通させる。これにより、圧縮機10aから吐出された高圧ガスを第2室外熱交換器12bに流さないようにする。また、第2室外熱交換器12bに接続された室外側膨張弁13bを全閉にする。
他方の第1室外熱交換器12aの下流側の室外側膨張弁13aは全開とされており、また、室外側膨張弁バイパス管16aに設けた開閉弁21も開とされている。
暖房運転を行う室内ユニット3aの分流コントローラ46は、次のように動作される。
分流コントローラ46の室内側四方弁48は、高圧ガス管用ポート48−1と室内熱交換器側ポート48−2とを連通し、かつ、低圧ガス管用ポート48−3と低圧バイパス管用ポート48−4とを連通している。したがって、高圧ガス冷媒は、室内側四方弁48を通って、室内熱交換器40へと導かれ、この室内熱交換器40で凝縮・液化することによって室内空気に熱を与えて暖房を行う。室内熱交換器40で液化した高圧液冷媒は、液冷媒用分岐管44を通って、主管である液管9へと合流する。
分流コントローラ46の室内側四方弁48は、高圧ガス管用ポート48−1と室内熱交換器側ポート48−2とを連通し、かつ、低圧ガス管用ポート48−3と低圧バイパス管用ポート48−4とを連通している。したがって、高圧ガス冷媒は、室内側四方弁48を通って、室内熱交換器40へと導かれ、この室内熱交換器40で凝縮・液化することによって室内空気に熱を与えて暖房を行う。室内熱交換器40で液化した高圧液冷媒は、液冷媒用分岐管44を通って、主管である液管9へと合流する。
なお、この運転パターンの場合にも、高圧ガス分岐管5cと低圧ガス分岐管7cとを連通する高低圧バイパス管58に設けられた高低圧バイパス管用開閉弁60は閉じられている。
[冷房主体(中間期:室外ファンコントロール範囲内):運転パターンC1]
図5には、図4を用いて説明した運転パターンC2に類似した運転パターンが示されている。本運転パターンC1と運転パターンC2とは、要求される凝縮能力が本運転パターンC1の方が小さい(例えば能力の0〜50%程度)点で異なる。したがって、運転パターンC2では、第1室外熱交換器12aの下流側に配置された室外側膨張弁13aおよび室外側膨張弁バイパス管16aの開閉弁21のいずれもが全開となっていたが、本運転パターンC1では室外側膨張弁13aをステップ的に中間段階の開度に絞り、室外側膨張弁バイパス管16aの開閉弁21を全閉としている。このようにして、室外ユニット1において発揮される凝縮能力を調整している。
図5には、図4を用いて説明した運転パターンC2に類似した運転パターンが示されている。本運転パターンC1と運転パターンC2とは、要求される凝縮能力が本運転パターンC1の方が小さい(例えば能力の0〜50%程度)点で異なる。したがって、運転パターンC2では、第1室外熱交換器12aの下流側に配置された室外側膨張弁13aおよび室外側膨張弁バイパス管16aの開閉弁21のいずれもが全開となっていたが、本運転パターンC1では室外側膨張弁13aをステップ的に中間段階の開度に絞り、室外側膨張弁バイパス管16aの開閉弁21を全閉としている。このようにして、室外ユニット1において発揮される凝縮能力を調整している。
なお、この運転パターンの場合にも、高圧ガス分岐管5cと低圧ガス分岐管7cとを連通する高低圧バイパス管58に設けられた高低圧バイパス管用開閉弁60は閉じられている。
[冷暖バランス(冷房≒暖房,低外気温室内小容量):運転パターンC2’]
図6には、室内ユニット3の冷房運転をしている台数と暖房運転をしている台数が等しく、各室内熱交換器40が小容量でバランスしている冷暖バランス運転のときであって、かつ冬季のように外気温が低い場合が示されている。
図6には、室内ユニット3の冷房運転をしている台数と暖房運転をしている台数が等しく、各室内熱交換器40が小容量でバランスしている冷暖バランス運転のときであって、かつ冬季のように外気温が低い場合が示されている。
同図において、室内ユニット3a,bは暖房運転が選択され、室内ユニット3c,dは冷房運転が選択されている。暖房運転時および冷房運転時における分流コントローラ46の動作は上述の通りである。
すなわち、暖房運転が行われている分流コントローラ46の室内側四方弁48は、高圧ガス管用ポート48−1と室内熱交換器側ポート48−2とを連通し、かつ、低圧ガス管用ポート48−3と低圧バイパス管用ポート48−4とを連通している。
冷房運転が行われている分流コントローラ46の室内側四方弁48は、高圧ガス管用ポート48−1と低圧バイパス管用ポート48−4とを連通し、かつ、室内熱交換器側ポート48−2と低圧ガス管用ポート49−3とを連通している。
すなわち、暖房運転が行われている分流コントローラ46の室内側四方弁48は、高圧ガス管用ポート48−1と室内熱交換器側ポート48−2とを連通し、かつ、低圧ガス管用ポート48−3と低圧バイパス管用ポート48−4とを連通している。
冷房運転が行われている分流コントローラ46の室内側四方弁48は、高圧ガス管用ポート48−1と低圧バイパス管用ポート48−4とを連通し、かつ、室内熱交換器側ポート48−2と低圧ガス管用ポート49−3とを連通している。
本運転パターンC2’では、第1室外熱交換器12aを凝縮器として、第2室外熱交換器12bを蒸発器として運転している。
すなわち、室外側膨張弁13aおよび室外側膨張弁バイパス管16aに設けた開閉弁21を開として第1室外熱交換器12aを凝縮器として動作させている。
第2室外熱交換器12bに接続されている室外側四方弁14bによって室外熱交換器側ポート14−2と低圧ガス管側ポート14−3とが連通されているので、液管9の合流点9aから高圧液冷媒が室外側膨張弁13bへと流れ込む。室外側膨張弁13bは絞り弁として動作するように開度調整がなされており、ここで高圧液冷媒が膨張させられて第2室外熱交換器12bへと流され、外気との熱交換により蒸発させられるようになっている。これにより、第2室外熱交換器12bを蒸発器として動作させている。
すなわち、室外側膨張弁13aおよび室外側膨張弁バイパス管16aに設けた開閉弁21を開として第1室外熱交換器12aを凝縮器として動作させている。
第2室外熱交換器12bに接続されている室外側四方弁14bによって室外熱交換器側ポート14−2と低圧ガス管側ポート14−3とが連通されているので、液管9の合流点9aから高圧液冷媒が室外側膨張弁13bへと流れ込む。室外側膨張弁13bは絞り弁として動作するように開度調整がなされており、ここで高圧液冷媒が膨張させられて第2室外熱交換器12bへと流され、外気との熱交換により蒸発させられるようになっている。これにより、第2室外熱交換器12bを蒸発器として動作させている。
本運転パターンC2’では、低外気温に見合った低圧で圧縮機10を運転させると、必要な高圧を維持するために圧縮機の周波数が増大し、システム内を循環する冷媒量が多くなってしまう。しかし、各室内熱交換器40が小容量でバランスしているので、冷媒循環量が多くなると冷暖混在運転のバランスを失うおそれがある。
また、低外気温とされているので、室外熱交換器12a,bをともに停止させておくと(これらの室外熱交換器12a,bは暖房運転に備えて蒸発器の状態で待機している)、室外熱交換器12a,b内に冷媒が凝縮して大量に溜まり込んでしまうおそれがある。
そこで、第1室外熱交換器12aを凝縮器として、かつ第2室外熱交換器12bを蒸発器として動作させることにより、室外熱交換器12a,bで冷媒を常に流動させることを可能にして、冷媒の溜まり込みを防いでいる。また、冷媒循環量を増加させることができるので、必要な圧縮機の周波数を維持することができる。
また、低外気温とされているので、室外熱交換器12a,bをともに停止させておくと(これらの室外熱交換器12a,bは暖房運転に備えて蒸発器の状態で待機している)、室外熱交換器12a,b内に冷媒が凝縮して大量に溜まり込んでしまうおそれがある。
そこで、第1室外熱交換器12aを凝縮器として、かつ第2室外熱交換器12bを蒸発器として動作させることにより、室外熱交換器12a,bで冷媒を常に流動させることを可能にして、冷媒の溜まり込みを防いでいる。また、冷媒循環量を増加させることができるので、必要な圧縮機の周波数を維持することができる。
なお、この運転パターンの場合にも、高圧ガス分岐管5cと低圧ガス分岐管7cとを連通する高低圧バイパス管58に設けられた高低圧バイパス管用開閉弁60は閉じられている。
[冷暖バランス(冷房≒暖房、低圧許容範囲):運転パターンC0]
図7には、室内ユニット3の冷房運転をしている台数と暖房運転をしている台数が等しい冷暖バランス運転の場合が示されている。本運転パターンC0は、図6を用いて示した運転パターンC2’と異なり、室内ユニット3の暖房運転をしている各室内熱交換器40の容量が比較的大きく、しかも、外気温に対応する飽和蒸気圧を考慮しても室外熱交換器12a,bにおける液冷媒の溜まり込みが許容される範囲(低圧許容範囲)となっている。
したがって、本運転パターンC0では、室外熱交換器12a,bのいずれも停止すなわち冷媒を流さないようになっており、凝縮器としても蒸発器としても動作させていない。ただし、これらの室外熱交換器12a,bは暖房運転に備えて蒸発器の状態で待機している。すなわち、室外側四方弁14a,bの高圧ガス管用ポート14−1とバイパス管側ポート14−4とを連通させ、室外熱交換器側ポート14−2と低圧ガス管側ポート14−3とを連通させて、高圧ガス管用ポート14−1と室外熱交換器側ポート14−2との連通を切る。
冷房運転に供される高圧液冷媒は、暖房運転をしている室内ユニット3a,bの室内熱交換器40において凝縮した高圧液冷媒が用いられる。
図7には、室内ユニット3の冷房運転をしている台数と暖房運転をしている台数が等しい冷暖バランス運転の場合が示されている。本運転パターンC0は、図6を用いて示した運転パターンC2’と異なり、室内ユニット3の暖房運転をしている各室内熱交換器40の容量が比較的大きく、しかも、外気温に対応する飽和蒸気圧を考慮しても室外熱交換器12a,bにおける液冷媒の溜まり込みが許容される範囲(低圧許容範囲)となっている。
したがって、本運転パターンC0では、室外熱交換器12a,bのいずれも停止すなわち冷媒を流さないようになっており、凝縮器としても蒸発器としても動作させていない。ただし、これらの室外熱交換器12a,bは暖房運転に備えて蒸発器の状態で待機している。すなわち、室外側四方弁14a,bの高圧ガス管用ポート14−1とバイパス管側ポート14−4とを連通させ、室外熱交換器側ポート14−2と低圧ガス管側ポート14−3とを連通させて、高圧ガス管用ポート14−1と室外熱交換器側ポート14−2との連通を切る。
冷房運転に供される高圧液冷媒は、暖房運転をしている室内ユニット3a,bの室内熱交換器40において凝縮した高圧液冷媒が用いられる。
本運転パターンにおいても、暖房運転が行われている分流コントローラ46の室内側四方弁48は、高圧ガス管用ポート48−1と室内熱交換器側ポート48−2とを連通し、かつ、低圧ガス管用ポート48−3と低圧バイパス管用ポート48−4とを連通している。
また、冷房運転が行われている分流コントローラ46の室内側四方弁48は、高圧ガス管用ポート48−1と低圧バイパス管用ポート48−4とを連通し、かつ、室内熱交換器側ポート48−2と低圧ガス管用ポート49−3とを連通している。
また、冷房運転が行われている分流コントローラ46の室内側四方弁48は、高圧ガス管用ポート48−1と低圧バイパス管用ポート48−4とを連通し、かつ、室内熱交換器側ポート48−2と低圧ガス管用ポート49−3とを連通している。
なお、この運転パターンの場合にも、高圧ガス分岐管5cと低圧ガス分岐管7cとを連通する高低圧バイパス管58に設けられた高低圧バイパス管用開閉弁60は閉じられている。
[全暖房全台運転:運転パターンE4]
次に、冬季のように、全ての室内ユニット3において暖房運転が選択されている場合の動作について、図8を用いて説明する。この場合、二つの室外熱交換器12a,bは蒸発器として動作する。
次に、冬季のように、全ての室内ユニット3において暖房運転が選択されている場合の動作について、図8を用いて説明する。この場合、二つの室外熱交換器12a,bは蒸発器として動作する。
圧縮機10aによって圧縮された高圧ガス冷媒は、高圧ガス管5を通って室内ユニット3へと導かれる。高圧ガス冷媒のごく一部は、高圧ガス管5の分岐点5a,bにおいて分岐して各室外側四方弁14a,bへと流れ込む。室外側四方弁14a,bは、高圧ガス管用ポート14−1とバイパス管側ポート14−4とが連通され、また、室外熱交換器側ポート14−2と低圧ガス管側ポート14−3とが連通されている。したがって、室外側四方弁14a,bへと流れ込んだ高圧ガス冷媒は、バイパス管側ポート14−4を通って、キャピラリチューブ18a,bで減圧された後、室外側低圧ガス分岐管15a,bに合流する。室外側低圧ガス分岐管15a,b内の低圧ガス冷媒は、アキュムレータ20を通過して、再び圧縮機10aへと戻される。また、室外熱交換器12a,bから導かれる低圧ガス冷媒も、室外側四方弁14a,bを介して室外側低圧ガス分岐管15a,bに流れるようになっている。
高圧ガス管5によって室内ユニット3へと導かれた高圧ガス冷媒は、各高圧ガス分岐管5cを通過して、各分流コントローラ46へと流れ込む。分流コントローラ46の室内側四方弁48は、高圧ガス管用ポート48−1と室内熱交換器側ポート48−2とを連通し、かつ、低圧ガス管用ポート48−3と低圧バイパス管用ポート48−4とを連通している。したがって、高圧ガス冷媒は、室内側四方弁48を通って、室内熱交換器40へと導かれ、この室内熱交換器40で凝縮・液化することによって室内空気に熱を与えて暖房を行う。室内熱交換器40で液化した高圧液冷媒は、液冷媒用分岐管44を通って、主管である液管9へと合流する。この高圧液冷媒は、液管9によって室外ユニット1へと導かれ、室外熱交換器12a,bの上流側に位置する室外側膨張弁13a,bによって減圧させられて低圧液冷媒とされた後に、室外熱交換器12a,bへと送られる。低圧液冷媒は、室外熱交換器12a,bにおいて外気から熱を奪うことにより蒸発して低圧ガス冷媒とされる。低圧ガス冷媒は、上述のように、室外側四方弁14a,bへと導かれた後、低圧ガス分岐管15a,bを通って圧縮機10aへと戻される。
なお、この運転パターンの場合にも、高圧ガス分岐管5cと低圧ガス分岐管7cとを連通する高低圧バイパス管58に設けられた高低圧バイパス管用開閉弁60は閉じられている。
[暖房主体(暖房期):運転パターンE4’]
図9に示すように、冬季のような暖房期であり殆どの室内ユニット3が暖房運転とされていても、一部の室内ユニット(図においては室内ユニット3d)のみが冷房運転を選択している場合がある。
この場合には、室内ユニット3dの分流コントローラを冷房運転時の設定に変更されている。すなわち、室内側四方弁48は、高圧ガス管用ポート48−1と低圧バイパス管用ポート48−4とを連通し、かつ、室内熱交換器側ポート48−2と低圧ガス管用ポート49−3とを連通している。
このように暖房運転から冷房運転に切り換える場合、高圧ガス分岐管用開閉弁52を開から閉にして、高圧ガスを高圧ガス分岐管用バイパス流路54に流して第1キャピラリチューブ55で減圧した後に、室内側四方弁48を切り換える。このようにすることで、切り換え時における圧力差を可及的に小さくすることができ、室内側四方弁48の切り換え時における騒音を防止することができる。
図9に示すように、冬季のような暖房期であり殆どの室内ユニット3が暖房運転とされていても、一部の室内ユニット(図においては室内ユニット3d)のみが冷房運転を選択している場合がある。
この場合には、室内ユニット3dの分流コントローラを冷房運転時の設定に変更されている。すなわち、室内側四方弁48は、高圧ガス管用ポート48−1と低圧バイパス管用ポート48−4とを連通し、かつ、室内熱交換器側ポート48−2と低圧ガス管用ポート49−3とを連通している。
このように暖房運転から冷房運転に切り換える場合、高圧ガス分岐管用開閉弁52を開から閉にして、高圧ガスを高圧ガス分岐管用バイパス流路54に流して第1キャピラリチューブ55で減圧した後に、室内側四方弁48を切り換える。このようにすることで、切り換え時における圧力差を可及的に小さくすることができ、室内側四方弁48の切り換え時における騒音を防止することができる。
室外熱交換器12a,bについては、暖房期でありシステム全体として要求される蒸発能力が依然として大きい(例えば能力の100%)ので、上述の運転パターンE4(図8参照)と同様に、蒸発器として動作している。
なお、この運転パターンの場合にも、高圧ガス分岐管5cと低圧ガス分岐管7cとを連通する高低圧バイパス管58に設けられた高低圧バイパス管用開閉弁60は閉じられている。
[暖房主体(中間期):運転パターンE2]
図10に示すように、暖房運転が選択されている室内ユニット3の台数が冷房運転が選択されている室内ユニット3の台数よりも多く、しかも春季や秋季のような中間期の場合の運転パターンが示されている。
本運転パターンでは、冬季ほど蒸発能力が要求されない(例えば能力の50%程度)ので、第一室外熱交換器12aの膨張弁13aを全閉として第1室外熱交換器12aを停止し、第2室外熱交換器12bのみを蒸発器として動作させている。
図10に示すように、暖房運転が選択されている室内ユニット3の台数が冷房運転が選択されている室内ユニット3の台数よりも多く、しかも春季や秋季のような中間期の場合の運転パターンが示されている。
本運転パターンでは、冬季ほど蒸発能力が要求されない(例えば能力の50%程度)ので、第一室外熱交換器12aの膨張弁13aを全閉として第1室外熱交換器12aを停止し、第2室外熱交換器12bのみを蒸発器として動作させている。
なお、この運転パターンの場合にも、高圧ガス分岐管5cと低圧ガス分岐管7cとを連通する高低圧バイパス管58に設けられた高低圧バイパス管用開閉弁60は閉じられている。
[油戻し運転]
図11には、高圧ガス管5及び低圧ガス管7に貯まった圧縮機10の潤滑油を圧縮機10へと返送する油戻し運転の冷媒回路が示されている。
本油戻し運転は、暖房運転時に、室内側四方弁48を切り換えて高圧ガス管5と室内熱交換器40との高圧ガス冷媒流れを切断した後に、分流コントローラ46に設けた、高圧ガス分岐管5cと低圧ガス分岐管7cとを連通する高低圧バイパス管58の高低圧バイパス管用開閉弁60を開とすることによって行われる。このとき、分流コントローラ46内を流れる高圧ガスは、高低圧バイパス管58を通って、高圧ガス分岐管5cから低圧ガス分岐管7cへと流される。なお、高圧ガス分岐管用開閉弁52は開とされているが、この開閉弁52を通り、室内側四方弁46及び第2キャピラリチューブ57を通る圧力損失よりも、高低圧バイパス管58を通る圧力損失が小さくなるように第3キャピラリチューブ62の圧力損失を設定しているので、殆どの高圧ガス冷媒は高低圧バイパス管58内を流れる。
このように、高低圧バイパス管58を高圧ガスが流れるようにして、高低圧バイパス管58よりも室内熱交換器40側の冷媒流路をショートカットする冷媒回路を形成することとしたので、高低圧差を維持したままで高圧ガスを高圧ガス管5から低圧ガス管7に流すことができる。これにより、室内の負荷に関わらず,ガス冷媒の流速を高く保つことができ、冷媒配管内壁に付着した潤滑油を効果的に回収することができる。
図11には、高圧ガス管5及び低圧ガス管7に貯まった圧縮機10の潤滑油を圧縮機10へと返送する油戻し運転の冷媒回路が示されている。
本油戻し運転は、暖房運転時に、室内側四方弁48を切り換えて高圧ガス管5と室内熱交換器40との高圧ガス冷媒流れを切断した後に、分流コントローラ46に設けた、高圧ガス分岐管5cと低圧ガス分岐管7cとを連通する高低圧バイパス管58の高低圧バイパス管用開閉弁60を開とすることによって行われる。このとき、分流コントローラ46内を流れる高圧ガスは、高低圧バイパス管58を通って、高圧ガス分岐管5cから低圧ガス分岐管7cへと流される。なお、高圧ガス分岐管用開閉弁52は開とされているが、この開閉弁52を通り、室内側四方弁46及び第2キャピラリチューブ57を通る圧力損失よりも、高低圧バイパス管58を通る圧力損失が小さくなるように第3キャピラリチューブ62の圧力損失を設定しているので、殆どの高圧ガス冷媒は高低圧バイパス管58内を流れる。
このように、高低圧バイパス管58を高圧ガスが流れるようにして、高低圧バイパス管58よりも室内熱交換器40側の冷媒流路をショートカットする冷媒回路を形成することとしたので、高低圧差を維持したままで高圧ガスを高圧ガス管5から低圧ガス管7に流すことができる。これにより、室内の負荷に関わらず,ガス冷媒の流速を高く保つことができ、冷媒配管内壁に付着した潤滑油を効果的に回収することができる。
以上の通り、本実施形態にかかる分流ユニット46によれば、次のような作用効果を奏する。
分流ユニット44の室内四方弁48により、冷房運転時において、高圧ガス管用ポート48−1と低圧バイパス管用ポート48−4とを連通することとしたので、高圧ガス分岐管5cに流れ込んだ高圧ガスが滞留することがなく、室内四方弁48を通って低圧ガス分岐管7cへと流されることになる。したがって、高圧ガス分岐管5cだけでなく主管である高圧ガス管5においても高圧ガスが滞留することがないので、高圧ガスが放熱・凝縮して液冷媒として溜まり込むことがない。これにより、冷媒不足が生じることがない。
分流ユニット44の室内四方弁48により、冷房運転時において、高圧ガス管用ポート48−1と低圧バイパス管用ポート48−4とを連通することとしたので、高圧ガス分岐管5cに流れ込んだ高圧ガスが滞留することがなく、室内四方弁48を通って低圧ガス分岐管7cへと流されることになる。したがって、高圧ガス分岐管5cだけでなく主管である高圧ガス管5においても高圧ガスが滞留することがないので、高圧ガスが放熱・凝縮して液冷媒として溜まり込むことがない。これにより、冷媒不足が生じることがない。
また、低圧バイパス管50に第2キャピラリチューブ57を設けることとし、暖房運転時に低圧バイパス管50内を流れる冷媒流量を調整することとした。これにより、冷房運転に寄与しない低圧バイパス管50内の高圧ガス流れを抑えて熱損失を最小限にしつつ、液冷媒の溜まり込みが生じない程度の流量を実現している。
また、本実施形態の分流コントローラ46によれば、高圧ガス分岐管用バイパス流路54に減圧手段として第1キャピラリチューブ55を設け、室内側四方弁48の高圧ガス管用ポート48−1を低圧圧力に設定することができるので、ガス冷媒の圧力差に起因する冷暖房運転の切り換え時の騒音を防止することができる。
なお、本実施形態によれば、室外熱交換器12を2台としたが、その台数はこれに限定されず、要求される能力に応じて適宜変更される。
また、室内ユニット3の数も適用対象に応じて適宜変更される。
また、圧縮機10を2台としたが、圧縮機台数はこれに限定されず、要求される能力に応じて適宜変更される。
また、室内ユニット3の数も適用対象に応じて適宜変更される。
また、圧縮機10を2台としたが、圧縮機台数はこれに限定されず、要求される能力に応じて適宜変更される。
1 室外ユニット(室外機)
3 室内ユニット(室内機)
5 高圧ガス管
7 低圧ガス管
9 液管
48 室内側四方弁
50 低圧バイパス管
55 第1キャピラリチューブ(減圧手段)
57 第2キャピラリチューブ(流量調整手段)
3 室内ユニット(室内機)
5 高圧ガス管
7 低圧ガス管
9 液管
48 室内側四方弁
50 低圧バイパス管
55 第1キャピラリチューブ(減圧手段)
57 第2キャピラリチューブ(流量調整手段)
Claims (4)
- 低圧ガス管、高圧ガス管および液管によって室外機と接続され、前記高圧ガス管または前記液管から冷媒が供給されて室内空気と熱交換を行う室内熱交換器を備えた空気調和装置の室内機において、
前記高圧ガス管から前記室内熱交換器へと向かう高圧ガス流路と、前記室内熱交換器から前記低圧ガス管へと向かう低圧ガス流路とを切り換える四方弁を備え、
該四方弁は、前記低圧ガス流路が選択されている場合に、前記高圧ガス管から前記低圧ガス管へと向かうバイパス流路を選択することを特徴とする空気調和装置の室内機。 - 前記四方弁近傍の前記高圧ガス管には、前記高圧ガス流路から前記低圧ガス流路へと切換える際に減圧を行う減圧手段が設けられていることを特徴とする請求項1記載の空気調和装置の室内機。
- 前記バイパス流路には、流量調整手段が設けられていることを特徴とする請求項1又は2に記載の空気調和装置の室内機。
- 冷媒を圧縮する圧縮機および外気と熱交換を行う室外熱交換器を備えた室外機と、
低圧ガス管、高圧ガス管および液管によって前記室外機と接続され、前記高圧ガス管または液管から冷媒が供給されて室内空気と熱交換を行う室内熱交換器を備えた複数の室内機と、を備えた空気調和装置において、
請求項1から3のいずれかに記載された室内機を少なくとも一つ備えていることを特徴とする空気調和装置。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004316342A JP2006125761A (ja) | 2004-10-29 | 2004-10-29 | 室内機およびこれを備えた空気調和装置 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004316342A JP2006125761A (ja) | 2004-10-29 | 2004-10-29 | 室内機およびこれを備えた空気調和装置 |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2006125761A true JP2006125761A (ja) | 2006-05-18 |
Family
ID=36720675
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2004316342A Withdrawn JP2006125761A (ja) | 2004-10-29 | 2004-10-29 | 室内機およびこれを備えた空気調和装置 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2006125761A (ja) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009210139A (ja) * | 2008-02-29 | 2009-09-17 | Mitsubishi Heavy Ind Ltd | マルチ型空気調和機 |
KR101282565B1 (ko) * | 2006-07-29 | 2013-07-04 | 엘지전자 주식회사 | 냉난방 동시형 멀티 공기 조화기 |
EP2426438A3 (en) * | 2010-08-27 | 2014-07-30 | Mitsubishi Heavy Industries | Multi-unit air conditioning system |
EP3156743A1 (en) | 2015-10-13 | 2017-04-19 | Mitsubishi Heavy Industries, Ltd. | Air conditioning apparatus |
-
2004
- 2004-10-29 JP JP2004316342A patent/JP2006125761A/ja not_active Withdrawn
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101282565B1 (ko) * | 2006-07-29 | 2013-07-04 | 엘지전자 주식회사 | 냉난방 동시형 멀티 공기 조화기 |
JP2009210139A (ja) * | 2008-02-29 | 2009-09-17 | Mitsubishi Heavy Ind Ltd | マルチ型空気調和機 |
EP2426438A3 (en) * | 2010-08-27 | 2014-07-30 | Mitsubishi Heavy Industries | Multi-unit air conditioning system |
EP3156743A1 (en) | 2015-10-13 | 2017-04-19 | Mitsubishi Heavy Industries, Ltd. | Air conditioning apparatus |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2010082325A1 (ja) | 空気調和装置 | |
JP6033297B2 (ja) | 空気調和装置 | |
JP4407582B2 (ja) | 蓄熱式空気調和装置、該蓄熱式空気調和装置の運転方法 | |
JP6285172B2 (ja) | 空気調和機の室外機 | |
JP5166915B2 (ja) | マルチ型空気調和機 | |
JP2011242048A (ja) | 冷凍サイクル装置 | |
JP5104002B2 (ja) | 冷凍サイクル装置およびそれを備えた空気調和機 | |
JP4407012B2 (ja) | 冷凍装置 | |
WO2016098195A1 (ja) | 空気調和装置 | |
JP6448780B2 (ja) | 空気調和装置 | |
JP5186398B2 (ja) | 空気調和機 | |
JP2008267653A (ja) | 冷凍装置 | |
JP6539560B2 (ja) | 空気調和装置 | |
JP2006125762A (ja) | 室内機およびこれを備えた空気調和装置ならびにその運転方法 | |
JP4902585B2 (ja) | 空気調和機 | |
JP3998035B2 (ja) | 冷凍装置 | |
KR102198332B1 (ko) | 공기 조화기 및 기액분리 유닛 | |
WO2009096179A1 (ja) | 暖房用補助ユニットおよび空気調和装置 | |
JP2006125761A (ja) | 室内機およびこれを備えた空気調和装置 | |
JP4023386B2 (ja) | 冷凍装置 | |
JP2006177619A (ja) | 空気調和装置およびその運転方法 | |
JP6042037B2 (ja) | 冷凍サイクル装置 | |
JP2006145174A (ja) | 空気調和装置およびその運転方法 | |
JP2006057869A (ja) | 冷凍装置 | |
JP4090238B2 (ja) | 空気調和装置、及び空気調和装置の室外熱交換器切替制御方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A300 | Withdrawal of application because of no request for examination |
Free format text: JAPANESE INTERMEDIATE CODE: A300 Effective date: 20080108 |