JP2006125365A - Compressor - Google Patents

Compressor Download PDF

Info

Publication number
JP2006125365A
JP2006125365A JP2004317964A JP2004317964A JP2006125365A JP 2006125365 A JP2006125365 A JP 2006125365A JP 2004317964 A JP2004317964 A JP 2004317964A JP 2004317964 A JP2004317964 A JP 2004317964A JP 2006125365 A JP2006125365 A JP 2006125365A
Authority
JP
Japan
Prior art keywords
compression
refrigerant gas
sealed container
oil
cylinder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004317964A
Other languages
Japanese (ja)
Inventor
Takehiro Nishikawa
剛弘 西川
Kosuke Ogasawara
弘丞 小笠原
Hiroyuki Sawabe
浩幸 沢辺
Junichi Suzuki
淳一 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2004317964A priority Critical patent/JP2006125365A/en
Publication of JP2006125365A publication Critical patent/JP2006125365A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Rotary Pumps (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a compressor capable of separating oil in return refrigerant gas without using an accumulator and preventing refrigerant gas from leaking from a minute clearance between a shaft hole of a supporting member and a rotary shaft in a compression element. <P>SOLUTION: A driving element 2 and the compression element 3 are arranged in a lower part and an upper part inside a sealed vessel 1, respectively. The rotary shaft 5 is fixed by passing through a rotor 6 of the driving element 2, an auxiliary rotary shaft 5a is coaxially fixed to its upper end, and an oil pump 20 is attached to a lower end part. The supporting member 7 of the compression element 3 is fixed to the sealed vessel 1, the inside of the sealed vessel 1 is divided into an upper part region on a high pressure side and a lower part region on a low pressure side, and a vane 11 is mounted through a coil spring 18. A compression space is provided in a central part of a cylinder 8, and a swash member 9 fixed to the auxiliary rotary shaft 5a at the same shaft axis is rotatably arranged. An upper end part of the auxiliary rotary shaft 5a does not pass through the supporting member 7. Refrigerant gas is supplied into the lower part region to separate oil, and high pressure refrigerant gas compressed in the compression space is discharged into the upper part region. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、冷媒ガス等の流体を圧縮して吐出する密閉型の圧縮機であって、特に回転軸と共に同心軸回転してシリンダ内の冷媒ガス等を圧縮する圧縮部材に特徴を有する圧縮機に関するものである。   The present invention is a hermetic compressor that compresses and discharges a fluid such as a refrigerant gas, and particularly has a compression member that rotates concentrically with a rotating shaft to compress the refrigerant gas or the like in a cylinder. It is about.

圧縮機としては、従来種々の方式・形態のものが知られており、そのうち回転式圧縮機(ロータリ圧縮機)は密閉容器内に駆動要素と圧縮要素とが配置され、駆動要素における電動モータのステータに通電してロータを軸回転させ、このロータに軸着されている回転軸によって圧縮要素におけるシリンダ内でローラを偏心回転させ、このローラの外周面に常時当接しているベーンによりシリンダ内が低圧室と高圧室とに区分されており、低圧室に吸入した冷媒ガスガスを圧縮して密閉容器内に吐出すると共に、この密閉容器から高圧冷媒ガスを吐出させて冷媒回路に供給するように構成したものである(例えば、特許文献1)。   Various types of compressors have been known in the past. Among them, a rotary compressor (rotary compressor) has a drive element and a compression element arranged in a hermetic container, and an electric motor in the drive element. The stator is energized to rotate the shaft of the rotor, the rotation shaft mounted on the rotor rotates the roller eccentrically in the cylinder of the compression element, and the vane that is always in contact with the outer peripheral surface of the roller causes the inside of the cylinder to It is divided into a low-pressure chamber and a high-pressure chamber. The refrigerant gas gas sucked into the low-pressure chamber is compressed and discharged into the sealed container, and the high-pressure refrigerant gas is discharged from the sealed container and supplied to the refrigerant circuit. (For example, Patent Document 1).

上記従来の回転式圧縮機は、前記駆動要素のロータに軸着された回転軸の端部近傍に、当該回転軸に偏心する偏心円盤部を設け、この偏心円盤部の外周にローラを回転自在に配設している。そして、前記のように回転軸が軸回転すると、偏心円盤部の偏心回転に伴ってローラがシリンダの円形空間(圧縮空間)の内周面に沿って摺動回転し、シリンダ内の冷媒ガスを低圧室から高圧室に移動させながら圧縮するのである。   In the conventional rotary compressor described above, an eccentric disc portion eccentric to the rotary shaft is provided in the vicinity of the end of the rotary shaft pivotally attached to the rotor of the drive element, and a roller is freely rotatable on the outer periphery of the eccentric disc portion. It is arranged. When the rotating shaft rotates as described above, the roller slides and rotates along the inner circumferential surface of the circular space (compression space) of the cylinder with the eccentric rotation of the eccentric disk portion, and the refrigerant gas in the cylinder is discharged. It is compressed while moving from the low pressure chamber to the high pressure chamber.

このような構造の回転式圧縮機では、回転軸に偏心円盤部を形成しなければならず、且つこの偏心円盤部の外周にローラを回転自在に設ける必要があることから、加工性が低下し且つ部品が増えてコストアップの原因の一つになっている。又、偏心円盤部を介してローラが偏心回転するため、振動とトルク変動が大きくなる傾向がある。   In the rotary compressor having such a structure, an eccentric disk portion must be formed on the rotation shaft, and a roller must be rotatably provided on the outer periphery of the eccentric disk portion. In addition, the number of parts increases, which is one of the causes of cost increase. Further, since the roller rotates eccentrically via the eccentric disk portion, vibration and torque fluctuation tend to increase.

上記従来構造の回転圧縮機における加工性の低下、部品の増大及び振動とトルク変動の増大を防止するために、回転軸の偏心円盤部とローラとの組み合わせを用いず、回転軸に対して同心軸に圧縮部材を取り付け、この圧縮部材をシリンダの圧縮空間内を回転させることで吸入した冷媒ガスを圧縮できるようにした圧縮機が知られている(例えば、特許文献2)。   In order to prevent deterioration in workability, increase in parts, and increase in vibration and torque fluctuation in the conventional rotary compressor, the combination of the eccentric disk portion and the roller of the rotary shaft is not used, but concentric with the rotary shaft. There is known a compressor in which a compression member is attached to a shaft and the refrigerant gas sucked by compressing the compression member in a compression space of a cylinder can be compressed (for example, Patent Document 2).

回転軸と同心軸回転する圧縮部材を備えた上記圧縮機は、圧縮部材として傾斜板が用いられており、この傾斜板の両面側で冷媒ガスを圧縮するためシリンダの圧縮空間に吸入冷媒ガスを導く吸入路及び圧縮後の冷媒ガスを吐出するための吐出路を2つずつ設けなければならない。従って、圧縮部材の上下で高圧室と低圧室とが隣接する形となるため、高低圧差が大きくなり冷媒リークによる効率悪化が問題となる。これを防止するために、本出願人は圧縮部材を比較的肉厚な部材で形成し、片面側で冷媒ガスを圧縮するようにした圧縮機を開発して先に特許出願した(特願2004−003142号)。
特開平6−307363号公報 特願2004−003142号
The compressor provided with the compression member that rotates concentrically with the rotation shaft uses an inclined plate as the compression member. In order to compress the refrigerant gas on both sides of the inclined plate, the suction refrigerant gas is injected into the compression space of the cylinder. It is necessary to provide two intake paths each for leading the intake path and for discharging the compressed refrigerant gas. Therefore, since the high pressure chamber and the low pressure chamber are adjacent to each other above and below the compression member, the difference between the high pressure and the low pressure becomes large, resulting in a problem of efficiency deterioration due to refrigerant leakage. In order to prevent this, the present applicant has developed a compressor in which the compression member is formed of a relatively thick member and the refrigerant gas is compressed on one side, and a patent application has been filed earlier (Japanese Patent Application No. 2004). -003142).
JP-A-6-307363 Japanese Patent Application No. 2004-003142

上記先願に係る圧縮機は、概略説明すると駆動機構の回転軸に対してほぼ円柱状の圧縮部材を同心軸に設け、この圧縮部材の上面に傾斜面を形成することにより冷媒ガスを圧縮できるようにしたもので、駆動要素のステータに通電してロータを回転させ、このロータに軸着されている回転軸によって圧縮要素におけるシリンダ内で圧縮部材を同心回転させ、この圧縮部材の傾斜面に常時当接しているベーンを介してシリンダ内が低圧室と高圧室とに区分されており、低圧室に吸入した冷媒ガスを圧縮して密閉容器内に吐出すると共に、この密閉容器から高圧冷媒ガスを吐出させて冷媒回路に供給するように構成したものである。   The compressor according to the above-mentioned prior application can compress the refrigerant gas by providing a substantially cylindrical compression member on the concentric shaft with respect to the rotation shaft of the drive mechanism and forming an inclined surface on the upper surface of the compression member. In this way, the stator of the drive element is energized to rotate the rotor, and the compression member is rotated concentrically within the cylinder of the compression element by the rotation shaft pivotally attached to the rotor, and the inclined surface of the compression member is The cylinder is divided into a low-pressure chamber and a high-pressure chamber through vanes that are always in contact. The refrigerant gas sucked into the low-pressure chamber is compressed and discharged into the sealed container. Is discharged and supplied to the refrigerant circuit.

この先願に係る圧縮機において、圧縮要素は密閉容器に固定されて駆動要素のロータに固定された回転軸を貫通して軸支する支持部材と、この支持部材に固定されて圧縮空間を形成するシリンダと、回転軸に同心軸固定されてシリンダの圧縮空間内を回転し一面が回転軸を中心として一周すると最も高くなる上死点から最も低くなる下死点を経て上死点に戻る略正弦波形状の傾斜面に形成された圧縮部材と、前記支持部材に設けられたベーンスロットにバネを介して装着され先端が圧縮部材の傾斜面に常時当接して圧縮空間内を低圧室と高圧室とに区分するベーンとを備えている。   In the compressor according to the prior application, the compression element is fixed to the hermetic container and supports the shaft that passes through the rotation shaft fixed to the rotor of the drive element, and is fixed to the support member to form a compression space. Cylinder and concentric shaft fixed to the rotating shaft, rotate in the compression space of the cylinder, and return to the top dead center through the bottom dead center that becomes the lowest from the top dead center when one surface makes a round around the rotating shaft. A compression member formed on a wave-shaped inclined surface, and a vane slot provided on the support member via a spring, and a tip is always in contact with the inclined surface of the compression member so that the inside of the compression space is a low pressure chamber and a high pressure chamber. And vanes.

この場合、冷媒回路からの戻り冷媒ガスは、密閉容器に取り付けた吸込配管から圧縮要素に設けられた通路を通って吸入口からシリンダの圧縮空間に吸入されるため、戻り冷媒ガス中に含まれているオイルが分離されず、オイルの混合した状態で圧縮されることになる。オイルの混合した状態で冷媒ガスが圧縮されると、圧縮効率の低下を来たして圧縮機の性能を低下させることになる。このような事態を防ぐために、例えば冷媒ガスからの戻り冷媒をアキュムレータに通してオイルを分離し、このアキュムレータから前記吸込配管に冷媒ガスを供給するようにしている。しかしながら、密閉容器の側部に取付金具を介してアキュムレータを取り付け、且つアキュムレータと吸込配管とを接続管を介して接続しなければならなくなり、コストの高騰を招く問題があった。   In this case, the return refrigerant gas from the refrigerant circuit is sucked into the compression space of the cylinder from the suction port through the passage provided in the compression element from the suction pipe attached to the sealed container, and thus is included in the return refrigerant gas. The oil is not separated and compressed in a mixed state of oil. When the refrigerant gas is compressed in a state where the oil is mixed, the compression efficiency is lowered and the performance of the compressor is lowered. In order to prevent such a situation, for example, the return refrigerant from the refrigerant gas is passed through an accumulator to separate the oil, and the refrigerant gas is supplied from the accumulator to the suction pipe. However, the accumulator must be attached to the side portion of the sealed container via the mounting bracket, and the accumulator and the suction pipe must be connected via the connection pipe, resulting in a problem of an increase in cost.

又、圧縮要素の摺動部分には、密閉容器の内底部に設けたオイル溜めからオイルポンプによりオイルを汲み上げ、回転軸の軸孔を介してオイルが供給されるが、支持部材の軸孔に対して回転軸が貫通しているため、支持部材の軸孔と回転軸との間の僅かな隙間からオイルが流出する事態が生じる。このような事態が発生すると、シリンダの圧縮空間で圧縮される冷媒ガスが支持部材の軸孔と回転軸との間の僅かな隙間からリークし、圧縮効率を低下させる問題があった。   In addition, the sliding portion of the compression element is pumped up by an oil pump from an oil reservoir provided at the inner bottom of the sealed container and supplied through the shaft hole of the rotating shaft. On the other hand, since the rotating shaft penetrates, there occurs a situation in which oil flows out from a slight gap between the shaft hole of the supporting member and the rotating shaft. When such a situation occurs, there is a problem that the refrigerant gas compressed in the compression space of the cylinder leaks from a slight gap between the shaft hole of the support member and the rotating shaft, thereby reducing the compression efficiency.

本発明は、上記のような問題を解決するためになされたものであり、アキュムレータを用いることなく、戻り冷媒ガス中のオイルを分離することができると共に、圧縮要素における支持部材の軸孔と回転軸との間の僅かな隙間から冷媒ガスがリークしないようにした圧縮機を提供することを目的とする。   The present invention has been made to solve the above-described problems, and can separate the oil in the return refrigerant gas without using an accumulator, and can rotate and rotate the shaft hole of the support member in the compression element. An object of the present invention is to provide a compressor in which refrigerant gas does not leak from a slight gap between the shaft.

上記の目的を達成するために、本発明に係る請求項1の圧縮機は、密閉容器内に駆動要素と、この駆動要素により駆動される圧縮要素とが配置され、前記圧縮要素は前記密閉容器に固定され前記駆動要素のロータに固定した回転軸を軸支する支持部材と、この支持部材に固定されて圧縮空間を形成するシリンダと、前記回転軸に同心軸固定されて前記シリンダの圧縮空間内を回転し一面が前記回転軸を中心として一周すると最も高くなる上死点から最も低くなる下死点を経て上死点に戻る略正弦波形状の傾斜面に形成された圧縮部材と、前記支持部材に設けられたベーンスロットにバネを介して装着され先端が前記圧縮部材の傾斜面に常時当接して前記圧縮空間内を低圧室と高圧室とに区分するベーンとを備え、前記低圧室に吸入した流体を前記圧縮部材により圧縮して前記高圧室から吐出する圧縮機であって、前記支持部材は前記密閉容器内を高圧側と低圧側とに仕切り、低圧側には前記流体が吸込配管を介して供給され、この流体を前記低圧室に導く通路及び吸入口が圧縮要素に設けられ、前記高圧室から吐出される流体を前記高圧側に導く吐出口及び通路が前記圧縮要素に設けられ、且つ高圧側の流体が吐出配管を介して外部に吐出される構成であることを特徴とする。   In order to achieve the above object, according to the compressor of claim 1 of the present invention, a driving element and a compression element driven by the driving element are arranged in a sealed container, and the compression element is the sealed container. A support member that pivotally supports a rotating shaft fixed to the rotor of the drive element, a cylinder that is fixed to the support member to form a compression space, a concentric shaft fixed to the rotation shaft, and a compression space of the cylinder A compression member formed on a substantially sinusoidal inclined surface that rotates inside and returns to the top dead center through the bottom dead center that is the lowest from the highest top dead center when one surface makes a round around the rotation axis; A vane slot that is attached to a vane slot provided in the support member via a spring, and has a tip that always abuts against an inclined surface of the compression member and divides the compression space into a low pressure chamber and a high pressure chamber; Inhaled fluid A compressor that compresses by a compression member and discharges from the high-pressure chamber, wherein the support member partitions the sealed container into a high-pressure side and a low-pressure side, and the fluid is supplied to the low-pressure side via a suction pipe A passage and a suction port for guiding the fluid to the low pressure chamber are provided in the compression element; a discharge port and a passage for guiding the fluid discharged from the high pressure chamber to the high pressure side are provided in the compression element; and The fluid is discharged to the outside through a discharge pipe.

本発明に係る請求項2の圧縮機は、請求項1の圧縮機において、前記密閉容器内の上方部に前記圧縮要素を、下方部に前記駆動要素を配置し、前記駆動要素のロータに固定した回転軸は、下方に延設した延設部が前記密閉容器に取り付けた副軸受け部材に回転自在に軸支されると共に、延設部の下端にオイルポンプが取り付けられ、このオイルポンプにより前記密閉容器の内底部に設けたオイル溜めからオイルを汲み上げ、前記回転軸の軸孔を通して前記圧縮要素の摺動部に供給するように構成され、前記回転軸の上端は前記圧縮要素に対して非貫通状態で軸支されていることを特徴とする。   A compressor according to a second aspect of the present invention is the compressor according to the first aspect, wherein the compression element is disposed in an upper portion of the sealed container and the drive element is disposed in a lower portion, and is fixed to a rotor of the drive element. The rotating shaft has an extending portion extending downwardly rotatably supported by a sub-bearing member attached to the sealed container, and an oil pump is attached to the lower end of the extending portion. Oil is pumped up from an oil reservoir provided at the inner bottom of the hermetic container, and is supplied to the sliding portion of the compression element through the shaft hole of the rotary shaft, and the upper end of the rotary shaft is not in contact with the compression element. The shaft is supported in a penetrating state.

上記請求項1の発明によれば、密閉容器の内部は、支持部材により高圧側と低圧側とに仕切られており、冷媒回路からの戻り冷媒(流体)は吸込配管から低圧側に供給される。このため、密閉容器の低圧側において戻り冷媒中に含まれているオイルの大部分が分離され、オイルが殆ど混入していない冷媒ガスが圧縮要素に設けられている通路を通って吸入口から圧縮空間の低圧室に吸入される。これにより、冷媒ガスの圧縮効率が著しく向上し、圧縮機の性能を高めることができる。又、密閉容器の低圧側内部がオイル分離機能を有するため、アキュムレータが不要になると共に密閉容器へのアキュムレータの取り付け、及びアキュムレータと吸込配管との管接続が不要になる。これにより、コストの削減を図ることが可能となる。   According to the first aspect of the present invention, the inside of the sealed container is partitioned into the high pressure side and the low pressure side by the support member, and the return refrigerant (fluid) from the refrigerant circuit is supplied from the suction pipe to the low pressure side. . For this reason, most of the oil contained in the return refrigerant is separated on the low-pressure side of the sealed container, and the refrigerant gas containing almost no oil is compressed from the suction port through the passage provided in the compression element. Inhaled into the low pressure chamber of the space. Thereby, the compression efficiency of the refrigerant gas is remarkably improved, and the performance of the compressor can be enhanced. Further, since the inside of the low-pressure side of the sealed container has an oil separation function, an accumulator is not required, and attachment of the accumulator to the sealed container and connection between the accumulator and the suction pipe are not required. As a result, cost can be reduced.

上記請求項2の発明によれば、オイルポンプによって密閉容器の内底部に設けたオイル溜めからオイルを汲み上げ、回転軸の軸孔を介してオイルを上昇させると共に、圧縮要素の摺動部分にオイルを供給するが、回転軸の上端は圧縮要素に対して非貫通状態で軸支されているため、圧縮要素の摺動部分に供給されたオイルが回転軸と支持部材との間の僅かな隙間から外部に流出しない。これにより、圧縮要素の密閉空間で圧縮される冷媒ガスのリークを抑えることができ、圧縮効率を高めて圧縮機の性能を向上させることが可能となる。   According to the second aspect of the present invention, the oil is pumped up from the oil reservoir provided in the inner bottom portion of the sealed container by the oil pump, and the oil is raised through the shaft hole of the rotating shaft, and the oil is put on the sliding portion of the compression element. However, since the upper end of the rotary shaft is pivotally supported in a non-penetrating state with respect to the compression element, the oil supplied to the sliding portion of the compression element is slightly spaced between the rotary shaft and the support member. Does not flow out from the outside. Thereby, the leak of the refrigerant gas compressed in the sealed space of the compression element can be suppressed, and the compression efficiency can be increased and the performance of the compressor can be improved.

[実施例1]
次に、本発明に係る圧縮機の第1実施形態を添付図面に基づいて説明する。図1は本発明に係る圧縮機の第1実施形態におけるベーン部分を通る概略縦断面図である。図2は本発明に係る圧縮機の第1実施形態における吸込部分を通る概略縦断面図である。図3は本発明に係る圧縮機の第1実施形態における吐出部分を通る概略縦断面図である。図4は本発明に係る圧縮機の第1実施形態における概略横断面図である。各図において、1は鉄製の密閉容器であり、円筒状の胴部1aと、この胴部1aの上端に溶接されたキャップ部1bと、胴部1aの下端に溶接されたボトム部1cとから構成されている。この密閉容器1内の下方部には駆動要素2が、上方部には駆動要素2により駆動される圧縮要素3がそれぞれ配置されている。
[Example 1]
Next, a first embodiment of a compressor according to the present invention will be described with reference to the accompanying drawings. FIG. 1 is a schematic longitudinal sectional view through a vane portion in a first embodiment of a compressor according to the present invention. FIG. 2 is a schematic longitudinal sectional view passing through a suction portion in the first embodiment of the compressor according to the present invention. FIG. 3 is a schematic longitudinal sectional view passing through a discharge portion in the first embodiment of the compressor according to the present invention. FIG. 4 is a schematic cross-sectional view of the first embodiment of the compressor according to the present invention. In each figure, 1 is an iron sealed container, and includes a cylindrical body 1a, a cap 1b welded to the upper end of the body 1a, and a bottom 1c welded to the lower end of the body 1a. It is configured. A driving element 2 is disposed in the lower part of the sealed container 1, and a compression element 3 driven by the driving element 2 is disposed in the upper part.

上記駆動要素2は、密閉容器1の胴部1aの内壁に固定されたステータ4と、このステータ4の内側に配設されたロータ6とから電動モータが構成されており、ロータ6の中心軸部には回転軸5が貫通して軸着されている。密閉容器1のキャップ部1bには複数の端子2aが取付部材2bを介して装着され、これらの端子2aとステータ4とが内部リード線(図略)で接続されると共に、端子2aには外部電源からの外部リード線(図略)が接続されてステータ4に通電するように構成されている。尚、圧縮要素3の外周部には内部リード線を通す通路(図略)が設けられており、図2及び図3では端子2a及び取付部材2bが省略されている。又、駆動要素2のステータ4の外周部と密閉容器1の胴部1aとの間には隙間10が複数箇所に形成されている。   The drive element 2 includes an electric motor that includes a stator 4 fixed to the inner wall of the body 1 a of the hermetic container 1 and a rotor 6 disposed inside the stator 4. The rotary shaft 5 is pivotally attached to the part. A plurality of terminals 2a are mounted on the cap portion 1b of the hermetic container 1 via mounting members 2b. These terminals 2a and the stator 4 are connected by internal lead wires (not shown), and the terminals 2a are externally connected. An external lead wire (not shown) from the power source is connected to energize the stator 4. Note that a passage (not shown) through which the internal lead wire passes is provided in the outer peripheral portion of the compression element 3, and the terminal 2a and the mounting member 2b are omitted in FIGS. Further, a plurality of gaps 10 are formed between the outer peripheral portion of the stator 4 of the driving element 2 and the body portion 1 a of the sealed container 1.

上記圧縮要素3は、密閉容器1の胴部1aの内壁に固定された支持部材7と、この支持部材7の下に取り付けられたシリンダ8と、シリンダ8の下に取り付けられた主軸受け部材13と、シリンダ8内に配置された圧縮部材9(本実施形態では、スワッシュ部材と称する)と、支持部材7に対して上下動可能に装着された略矩形板状のベーン11と、シリンダ8の切欠部8b(図4)の側面に取り付けられた吐出バルブ12等から構成されている。   The compression element 3 includes a support member 7 fixed to the inner wall of the body 1 a of the sealed container 1, a cylinder 8 attached under the support member 7, and a main bearing member 13 attached under the cylinder 8. A compression member 9 (referred to as a swash member in the present embodiment) disposed in the cylinder 8, a substantially rectangular plate-like vane 11 mounted on the support member 7 so as to be movable up and down, It is comprised from the discharge valve 12 etc. which were attached to the side surface of the notch part 8b (FIG. 4).

前記支持部材7は第1部材Rと第2部材Sとから構成され、図2のように第1部材Rの上面中央部には突出部が同心円柱状に形成され、下面中央部には同心円柱状に内方に窪ませて凹陥部15が形成されており、この凹陥部15に第2部材Sの上端部が嵌着固定されている。又、第1部材Rには凹陥部15の底面から突出部の上面よりやや下方の位置に至る非貫通の第1軸孔7aが設けられ、第2部材Sには下面から上面に貫通する第2軸孔7bが設けられ、この第2軸孔7bは第1軸孔7aと同軸心であって、内径が同一径に形成されて連通するようになっている。   The support member 7 is composed of a first member R and a second member S. As shown in FIG. 2, a protrusion is formed in a concentric columnar shape at the center of the upper surface of the first member R, and a concentric columnar shape at the center of the lower surface. A recess 15 is formed inwardly, and the upper end of the second member S is fitted and fixed to the recess 15. Further, the first member R is provided with a non-penetrating first shaft hole 7a extending from the bottom surface of the recessed portion 15 to a position slightly below the upper surface of the projecting portion, and the second member S is provided with a first hole penetrating from the lower surface to the upper surface. A biaxial hole 7b is provided. The second axial hole 7b is coaxial with the first axial hole 7a and has an inner diameter that is the same as that of the first axial hole 7a.

図1に示すように、上記第1部材Rと第2部材Sにはベーンスロット16と、バネ装着孔17とが上下方向に連通して設けられており、前記ベーン11がコイルバネ18を介して上下動可能に装着されている。コイルバネ18はバネ装着孔17内に挿入されており、下端はベーン11の上端部に固定され、上端はバネ装着孔17の上方のバネ受け部14に固定されてベーン11を常時下方に付勢している。尚、ベーンスロット16の内側端部は第1軸孔7a及び第2軸孔7bに開口している。   As shown in FIG. 1, a vane slot 16 and a spring mounting hole 17 are provided in the first member R and the second member S so as to communicate in the vertical direction, and the vane 11 is interposed via a coil spring 18. It is mounted so that it can move up and down. The coil spring 18 is inserted into the spring mounting hole 17, the lower end is fixed to the upper end portion of the vane 11, and the upper end is fixed to the spring receiving portion 14 above the spring mounting hole 17 to constantly bias the vane 11 downward. is doing. The inner end portion of the vane slot 16 opens into the first shaft hole 7a and the second shaft hole 7b.

前記回転軸5は前記主軸受け部材13に回転自在に軸支され、上端には補助回転軸5aが同軸心に固定されており、この補助回転軸5aが上記支持部材7における第1部材Rの軸孔7a及び第2部材Sの軸孔7bに回転自在に軸支されている。補助回転軸5aの下端部には前記スワッシュ部材9が同軸心に固定されている。又、回転軸5の下端部は前記ロータ6より下方に延設され、この延設部の下端が前記密閉容器1に取り付けた副軸受け部材19に回転自在に軸支されると共に、延設部の下端にオイルポンプ20が取り付けられ、このオイルポンプ20により前記密閉容器の内底部に設けたオイル溜め21からオイルを汲み上げ、前記回転軸5の軸孔及び補助回転軸5aの軸孔を通して前記圧縮要素3の摺動部分に供給するように構成されている。   The rotary shaft 5 is rotatably supported by the main bearing member 13, and an auxiliary rotary shaft 5 a is coaxially fixed to the upper end, and this auxiliary rotary shaft 5 a is the first member R of the support member 7. The shaft hole 7a and the shaft hole 7b of the second member S are rotatably supported. The swash member 9 is coaxially fixed to the lower end portion of the auxiliary rotating shaft 5a. Further, the lower end portion of the rotating shaft 5 extends below the rotor 6, and the lower end of the extending portion is rotatably supported by a sub-bearing member 19 attached to the sealed container 1, and the extending portion An oil pump 20 is attached to the lower end of the cylinder. The oil pump 20 pumps up oil from an oil reservoir 21 provided at the inner bottom of the sealed container, and compresses the oil through the shaft hole of the rotating shaft 5 and the shaft hole of the auxiliary rotating shaft 5a. It is configured to be supplied to the sliding part of the element 3.

前記シリンダ8は、図2のように中央部に上下に貫通する空所が設けられ、この空所の上端部は前記支持部材7の第2部材Sが嵌着して閉塞され、空所の下端部は前記主軸受け部材13により閉塞されることで圧縮空間22が構成されている。この圧縮空間22内に上記スワッシュ部材9が回転自在に配置されている。   As shown in FIG. 2, the cylinder 8 is provided with a space penetrating vertically in the central portion, and the upper end portion of the space is closed by the second member S of the support member 7 fitted therein. The compression space 22 is configured by the lower end portion being closed by the main bearing member 13. The swash member 9 is rotatably disposed in the compression space 22.

又、シリンダ8には通路8cが設けられ、この通路8cの一端は密閉容器1内に開口し、他端は前記支持部材7の第2部材Sに設けられた吸入口7cに連通し、この吸入口7cは前記圧縮空間22に開口している。前記密閉容器1の胴部1aには吸込配管23が固定されており、この吸込配管23から供給される冷媒ガスは、シリンダ8の通路8cを通って第2部材Sの吸入口7cから圧縮空間22に吸い込まれる。   The cylinder 8 is provided with a passage 8c. One end of the passage 8c opens into the sealed container 1, and the other end communicates with a suction port 7c provided in the second member S of the support member 7. The suction port 7 c opens into the compression space 22. A suction pipe 23 is fixed to the body portion 1 a of the sealed container 1, and the refrigerant gas supplied from the suction pipe 23 passes through the passage 8 c of the cylinder 8 and is compressed from the suction port 7 c of the second member S. 22 is sucked into.

図3及び図4に示すように、前記支持部材7の第2部材Sの下端縁部には、下面側から外周面側に抜ける吐出口7dが設けられ、この吐出口7dの下面側は前記圧縮空間22に開口し、外周面側は上記シリンダ8の内部に設けられた通路8aに連通しており、この通路8aはシリンダ8の切欠部8bに開口している。シリンダ8の切欠部8bの側面には前記吐出バルブ12が取り付けられ、この吐出バルブ12によって通路8aが開閉される。これにより、圧縮空間22内で圧縮された高圧冷媒ガスは、支持部材7における第2部材Sの吐出口7dからシリンダ8の通路8aを通り、吐出バルブ12を開いて切欠部8b側に吐出される。   As shown in FIGS. 3 and 4, the lower end edge of the second member S of the support member 7 is provided with a discharge port 7d that passes from the lower surface side to the outer peripheral surface side. Opening to the compression space 22, the outer peripheral surface side communicates with a passage 8 a provided inside the cylinder 8, and this passage 8 a opens to a notch 8 b of the cylinder 8. The discharge valve 12 is attached to the side surface of the notch 8 b of the cylinder 8, and the passage 8 a is opened and closed by the discharge valve 12. As a result, the high-pressure refrigerant gas compressed in the compression space 22 passes through the passage 8a of the cylinder 8 from the discharge port 7d of the second member S in the support member 7, opens the discharge valve 12, and is discharged toward the notch 8b. The

前記支持部材7の第1部材Rには、図3のようにシリンダ8の切欠部8bに対応させて切欠部7eが設けられ、この切欠部7eから密閉容器1内の上部領域に通じる通孔7fが設けられている。これにより、シリンダ8の切欠部8bに吐出された高圧冷媒ガスは、第1部材Rの切欠部7e及び通孔7fを介して密閉容器1内の上部領域に吐出される。又、シリンダ8の切欠部8bの下端部に仕切板24を取り付け、シリンダ8の切欠部8bと、第1部材Rの切欠部7eと、仕切板24と、密閉容器1の胴部1aとで囲まれた空間部によりマフラ25を構成してある。従って、上記圧縮空間22内で圧縮された高圧冷媒ガスは、吐出バルブ12を開いてマフラ25内に吐出され、ここで消音された後に上記通孔7fから密閉容器1内の上部領域に吐出されることになる。   The first member R of the support member 7 is provided with a notch 7e corresponding to the notch 8b of the cylinder 8 as shown in FIG. 3, and a through hole that leads from the notch 7e to the upper region in the sealed container 1 is provided. 7f is provided. As a result, the high-pressure refrigerant gas discharged to the notch 8b of the cylinder 8 is discharged to the upper region in the sealed container 1 through the notch 7e and the through hole 7f of the first member R. Further, a partition plate 24 is attached to the lower end portion of the notch portion 8b of the cylinder 8, and the notch portion 8b of the cylinder 8, the notch portion 7e of the first member R, the partition plate 24, and the body portion 1a of the sealed container 1 are used. A muffler 25 is formed by the enclosed space. Therefore, the high-pressure refrigerant gas compressed in the compression space 22 is discharged into the muffler 25 by opening the discharge valve 12, and after being silenced, is discharged from the through hole 7f to the upper region in the sealed container 1. Will be.

前記密閉容器1におけるキャップ部1bの上端には、図1乃至図3に示すように吐出配管26が取り付けられている。上記のように密閉容器1内の上部領域に吐出された高圧冷媒ガスは、吐出配管26から外部に吐出される。この吐出配管26から吐出された高圧冷媒ガスは、図示を省略した冷媒回路に供給され、この冷媒回路を循環して低圧となった冷媒ガスは、前記吸込配管23から圧縮機に戻される。   As shown in FIGS. 1 to 3, a discharge pipe 26 is attached to the upper end of the cap portion 1 b in the sealed container 1. As described above, the high-pressure refrigerant gas discharged to the upper region in the sealed container 1 is discharged from the discharge pipe 26 to the outside. The high-pressure refrigerant gas discharged from the discharge pipe 26 is supplied to a refrigerant circuit (not shown), and the refrigerant gas circulated through the refrigerant circuit and having a low pressure is returned from the suction pipe 23 to the compressor.

前記スワッシュ部材9について詳しく説明すると、図5及び図6に示すように全体形状としては略円柱状を呈しており、一側の肉厚部9aとこれに対向する他側の肉薄部9bとを有し、円周方向に沿う上面9cは肉厚部9aにて高く、肉薄部9bにて低い連続傾斜面に形成されている。このスワッシュ部材9は、中央に設けた軸孔に前記補助回転軸5aを軸着することで固定される。固定手段としては、例えばスワッシュ部材9に設けた半径方向の取付孔9dを介してピン等の止め具で行うことができる。   The swash member 9 will be described in detail. As shown in FIGS. 5 and 6, the swash member 9 has a substantially cylindrical shape as a whole, and includes a thick part 9a on one side and a thin part 9b on the other side facing the thick part 9a. The upper surface 9c along the circumferential direction is formed as a continuous inclined surface that is high at the thick portion 9a and low at the thin portion 9b. The swash member 9 is fixed by axially attaching the auxiliary rotating shaft 5a to a shaft hole provided in the center. As the fixing means, for example, a fixing tool such as a pin can be used via a radial mounting hole 9d provided in the swash member 9.

スワッシュ部材9の上面9cは、補助回転軸5aを中心として円周方向に一周すると最も高くなる上死点Pから最も低くなる下死点Qを経て上死点Pに戻る略正弦波形状を呈している。補助回転軸5aを通る上面9cの縦断面は、360度何れの角度の切断面においても全て水平(図6参照)であり、この上面9cと前記支持部材7における第2部材Sの下面との間が圧縮空間22となる。そして、スワッシュ部材9の上死点Pは、支持部材7における第2部材Sの下面に対して微少なクリアランスを介して移動自在に対向している。このクリアランスは密閉容器1内に封入されている前記オイルによってシールされる。   The upper surface 9c of the swash member 9 has a substantially sine wave shape that returns from the highest dead center P to the highest dead center Q through the lowest dead center Q when it makes a round in the circumferential direction around the auxiliary rotating shaft 5a. ing. The vertical cross section of the upper surface 9c passing through the auxiliary rotating shaft 5a is all horizontal (see FIG. 6) at the cut surface of any angle of 360 degrees, and the upper surface 9c and the lower surface of the second member S in the support member 7 The space is the compression space 22. The top dead center P of the swash member 9 is movably opposed to the lower surface of the second member S of the support member 7 via a slight clearance. This clearance is sealed by the oil enclosed in the sealed container 1.

前記ベーン11は、吸入口7cと吐出口7dとの間に位置し、図示は省略したが下端が断面R形状に形成されてスワッシュ部材9の上面9cに常時当接し、シリンダ8内の圧縮空間22を低圧室と高圧室とに区分している。前記コイルバネ18は、ベーン11を下向きに付勢することで、ベーン11の下端稜線部分がスワッシュ部材9の上面9cから離れないように保持し、且つベーン11が支持部材7のベーンスロット16に沿って円滑に上下動するのを制御する作用をなす。   The vane 11 is located between the suction port 7c and the discharge port 7d. Although not shown, the lower end is formed in a cross-sectional R shape, and is always in contact with the upper surface 9c of the swash member 9, so that the compression space in the cylinder 8 is provided. 22 is divided into a low pressure chamber and a high pressure chamber. The coil spring 18 biases the vane 11 downward to hold the lower end ridge line portion of the vane 11 so as not to be separated from the upper surface 9 c of the swash member 9, and the vane 11 extends along the vane slot 16 of the support member 7. To control the smooth up and down movement.

又、スワッシュ部材9の外周面は、密閉空間22を構成しているシリンダ8の内壁面との間に微少なクリアランスを形成し、これによりスワッシュ部材9は回転自在とされている。このスワッシュ部材9の外周面とシリンダ8の内壁面との間のクリアランスもオイルによってシールされる。冷媒ガスのリークを抑えるためである。尚、スワッシュ部材9の外周面には、シール部材を嵌着するための凹溝9eが円周方向に沿って設けられ、スワシュ部材9の下面側には、前記肉厚部9bに対応させて適宜の大きさの凹部9f(図6参照)が設けられている。この凹部9fは肉厚部9bの重量を減少させることで、スワッシュ部材9の回転トルクの変動を抑えるようにしてある。   Further, a minute clearance is formed between the outer peripheral surface of the swash member 9 and the inner wall surface of the cylinder 8 constituting the sealed space 22, so that the swash member 9 is rotatable. The clearance between the outer peripheral surface of the swash member 9 and the inner wall surface of the cylinder 8 is also sealed with oil. This is for suppressing the leakage of the refrigerant gas. A concave groove 9e for fitting the seal member is provided on the outer peripheral surface of the swash member 9 along the circumferential direction, and the lower surface side of the swash member 9 corresponds to the thick portion 9b. An appropriately sized recess 9f (see FIG. 6) is provided. The concave portion 9f reduces the weight of the thick portion 9b to suppress fluctuations in the rotational torque of the swash member 9.

尚、上記実施形態では、回転軸5と補助回転軸5aとを別体に構成した例を説明したが、予め一体に形成した1本の回転軸で実施することも可能である。又、前記密閉容器1内には例えば二酸化炭素、R134a、或はHC系の冷媒ガスが所定量封入される。   In the above-described embodiment, the example in which the rotating shaft 5 and the auxiliary rotating shaft 5a are configured separately has been described. However, the rotating shaft 5 and the auxiliary rotating shaft 5a may be implemented with a single rotating shaft formed in advance. In addition, a predetermined amount of carbon dioxide, R134a, or HC-based refrigerant gas, for example, is sealed in the sealed container 1.

以上のように構成された第1実施形態に係る圧縮機の動作に付いて説明する。この圧縮機は、前記駆動要素2のステータ4のコイルに通電するとロータ6が回転し、このロータ6の回転が回転軸5及び補助回転軸5aを介してスワッシュ部材9に伝達され、シリンダ8の圧縮空間22内を回転することで冷媒ガスの圧縮が開始する。   The operation of the compressor according to the first embodiment configured as described above will be described. In this compressor, when the coil of the stator 4 of the drive element 2 is energized, the rotor 6 rotates, and the rotation of the rotor 6 is transmitted to the swash member 9 via the rotating shaft 5 and the auxiliary rotating shaft 5a. The refrigerant gas starts to be compressed by rotating in the compression space 22.

この場合、前記圧縮要素3により密閉容器1内が圧縮要素3より上の上部領域と、圧縮要素3より下の下部領域とに仕切られている。そして、前記のように圧縮後の高圧冷媒ガスが上部領域に吐出されるため、上部領域と下部領域とに差圧が生じて上部領域が高圧側、下部領域が低圧側となる。   In this case, the inside of the sealed container 1 is partitioned by the compression element 3 into an upper region above the compression element 3 and a lower region below the compression element 3. Since the compressed high-pressure refrigerant gas is discharged to the upper region as described above, a differential pressure is generated between the upper region and the lower region, and the upper region becomes the high-pressure side and the lower region becomes the low-pressure side.

前記吸込配管23から圧縮機に戻される冷媒ガスは、密閉容器1内の低圧側である下部領域に供給されるため、この下部領域において冷媒ガスが急激に減圧されて、冷媒ガス中に含まれているオイルが分離される。これにより、密閉容器1内の下部領域がアキュムレータの機能を発揮するため、通常使用されているアキュムレータが不要となる。又、密閉容器1へのアキュムレータの取り付け、及びアキュムレータと吸込配管23との管接続が不要になる。従って、コストの削減を図ることが可能となる。   Since the refrigerant gas returned from the suction pipe 23 to the compressor is supplied to the lower region on the low pressure side in the hermetic container 1, the refrigerant gas is rapidly decompressed in this lower region and is contained in the refrigerant gas. Oil is separated. Thereby, since the lower area | region in the airtight container 1 exhibits the function of an accumulator, the accumulator normally used becomes unnecessary. Further, it is not necessary to attach the accumulator to the sealed container 1 and to connect the accumulator to the suction pipe 23. Therefore, cost can be reduced.

密閉容器1内の下部領域で分離されたオイルは、前記駆動要素2におけるステータ4とロータ6との間の僅かな隙間10を通って副軸受け部材19上に落下し、この副軸受け部材19に形成されている複数の通孔19aからオイル溜め21に戻される。   The oil separated in the lower region in the hermetic container 1 falls on the sub-bearing member 19 through a slight gap 10 between the stator 4 and the rotor 6 in the driving element 2, and the sub-bearing member 19 It is returned to the oil sump 21 through the plurality of formed through holes 19a.

密閉容器1内の下部領域でオイルが分離された冷媒ガスは、前記シリンダ8の通路8cを通って支持部材7における第2部材Sの吸入口7cから圧縮空間22内に吸入され、スワッシュ部材9により圧縮される。   The refrigerant gas from which the oil has been separated in the lower region in the sealed container 1 passes through the passage 8c of the cylinder 8 and is sucked into the compression space 22 from the suction port 7c of the second member S in the support member 7, and the swash member 9 Compressed by

ここで、スワッシュ部材9の上面9cの上死点Pがベーン11を境にして吐出側にあり、吸入側でシリンダ8、支持部材7、スワッシュ部材9及びベーン11で囲まれた空間(低圧室)内に冷媒ガスが吸い込まれているものとする。この状態からスワッシュ部材9が回転していくと、上死点Pがベーン11、吸入口7cを過ぎた段階からスワッシュ部材9の上面9cの傾斜により低圧室の体積は狭められていき、高圧室内の冷媒ガスは圧縮されていく。上死点Pが支持部材7の吐出口7dを通過するまでの間、圧縮された高圧冷媒ガスは吐出口7dから吐出される。そして、上死点Pが支持部材7の吸入口7cを通過した後、吸入側で低圧室の体積は拡大していくので冷媒ガスが低圧室内に吸い込まれることになる。このような動作が繰り返し行われて、冷媒ガスが圧縮される。   Here, the top dead center P of the upper surface 9c of the swash member 9 is on the discharge side with the vane 11 as a boundary, and the space surrounded by the cylinder 8, the support member 7, the swash member 9, and the vane 11 on the suction side (low pressure chamber) ) It is assumed that the refrigerant gas is sucked in. When the swash member 9 is rotated from this state, the volume of the low pressure chamber is reduced by the inclination of the upper surface 9c of the swash member 9 from the stage where the top dead center P passes the vane 11 and the suction port 7c, and the high pressure chamber is reduced. The refrigerant gas is compressed. The compressed high-pressure refrigerant gas is discharged from the discharge port 7d until the top dead center P passes through the discharge port 7d of the support member 7. After the top dead center P passes through the suction port 7c of the support member 7, the volume of the low-pressure chamber increases on the suction side, so that the refrigerant gas is sucked into the low-pressure chamber. Such an operation is repeatedly performed to compress the refrigerant gas.

冷媒ガスの圧縮動作において、前記オイル溜め21からオイルポンプ20によって汲み上げられるオイルは、回転軸5の軸孔を上昇すると共に補助回転軸5aの軸孔を上昇し、回転軸5の上部要所及び補助回転軸5aの要所に設けられているオイル孔から圧縮要素3の摺動部分に供給される。これにより、補助回転軸5aと支持部材7の第1軸孔7a、第2軸孔7bとの間の微少なクリアランスはオイルによってシールされる。又、回転軸5と主軸受け部材13との間の微小なクリアランスもオイルによってシールされる。   In the compression operation of the refrigerant gas, the oil pumped up from the oil reservoir 21 by the oil pump 20 ascends the shaft hole of the rotating shaft 5 and ascends the shaft hole of the auxiliary rotating shaft 5a. The oil is supplied to the sliding portion of the compression element 3 through an oil hole provided at a point of the auxiliary rotating shaft 5a. Thereby, the minute clearance between the auxiliary | assistant rotating shaft 5a and the 1st shaft hole 7a of the support member 7, and the 2nd shaft hole 7b is sealed with oil. Further, a minute clearance between the rotating shaft 5 and the main bearing member 13 is also sealed with oil.

前記のように補助回転軸5aの上端は支持部材7の第1部材Rに対して非貫通であるため、補助回転軸5aと支持部材7の第1軸孔7a、第2軸孔7bとの間の微少なクリアランスに供給されるオイルが上昇して、補助回転軸5aの上端から流出することがない。これにより、補助回転軸5aと支持部材7の第1軸孔7a、第2軸孔7bとの間の微少なクリアランスは常にオイルでシールされて隙間が生じないことから、シリンダ8の圧縮空間22で圧縮されている冷媒ガスのリークを抑えることができる。結果として、圧縮機の圧縮性能を向上させることが可能となる。   As described above, since the upper end of the auxiliary rotation shaft 5a is not penetrating the first member R of the support member 7, the auxiliary rotation shaft 5a and the first shaft hole 7a and the second shaft hole 7b of the support member 7 are arranged. The oil supplied to the minute clearance in the meantime does not rise and flow out from the upper end of the auxiliary rotating shaft 5a. Thereby, the minute clearance between the auxiliary rotating shaft 5a and the first shaft hole 7a and the second shaft hole 7b of the support member 7 is always sealed with oil and no gap is formed. Leakage of the refrigerant gas compressed at can be suppressed. As a result, it is possible to improve the compression performance of the compressor.

シリンダ8の圧縮空間22内で圧縮された高圧冷媒ガスは、前記のように支持部材7における第2部材Sの吐出口7dからシリンダ8の通路8aを通り、吐出バルブ12を開いてマフラ25に吐出される。このマフラ25内で消音された高圧冷媒ガスは、支持部材7における第1部材Rの通孔7fから密閉容器1の上部領域に吐出され、前記吐出配管26から外部に吐出されて図示しない冷媒回路に供給される。   The high-pressure refrigerant gas compressed in the compression space 22 of the cylinder 8 passes through the passage 8a of the cylinder 8 from the discharge port 7d of the second member S in the support member 7 as described above, opens the discharge valve 12, and becomes the muffler 25. Discharged. The high-pressure refrigerant gas silenced in the muffler 25 is discharged from the through hole 7f of the first member R in the support member 7 to the upper region of the hermetic container 1, and is discharged to the outside from the discharge pipe 26 to be a refrigerant circuit (not shown). To be supplied.

上記実施形態では、密閉容器1は圧縮要素3の支持部材7により内部が仕切られて上部領域のみが高圧であり、下部領域は低圧であっていわば内部低圧型となっている。このため、内部高圧型とは異なって、密閉容器1全体を高圧仕様にする必要はなく、高圧側である上部領域のみ(具体的にはキャップ部1bのみ)高圧仕様にすればよく、低圧側である下部領域(具体的には胴部1aとボトム部1c)は低圧仕様で良いことになる。これにより、密閉容器1のコストを低減することが可能となる。   In the above embodiment, the hermetic container 1 is partitioned by the support member 7 of the compression element 3 so that only the upper region has a high pressure and the lower region has a low pressure, that is, an internal low pressure type. For this reason, unlike the internal high-pressure type, it is not necessary to make the entire sealed container 1 high-pressure specification, and only the upper region on the high-pressure side (specifically, only the cap portion 1b) needs to be high-pressure specification. The lower region (specifically, the body portion 1a and the bottom portion 1c) may have a low pressure specification. Thereby, the cost of the airtight container 1 can be reduced.

[実施例2]
次に、本発明に係る圧縮機の第2実施形態を図7に基づいて説明する。この第2実施形態において、前記第1実施形態と同じ符号を付けた部材は、同一部材又は形状は多少異なるが実質的に同一部材を示すものである。第2実施形態の圧縮機は、第1実施形態の圧縮機と構成が殆ど同じであるが、支持部材とシリンダとが上下逆転してベーンが上向きとなっている構成に特徴を有するものである。
[Example 2]
Next, 2nd Embodiment of the compressor based on this invention is described based on FIG. In the second embodiment, the members denoted by the same reference numerals as those in the first embodiment indicate substantially the same members although the same members or shapes are somewhat different. The compressor of the second embodiment has almost the same configuration as the compressor of the first embodiment, but is characterized by a configuration in which the support member and the cylinder are reversed upside down and the vane faces upward. .

図7において、1は鉄製の密閉容器であり、円筒状の胴部1aと、この胴部1aの上端に溶接されたキャップ部1bと、胴部1aの下端に溶接されたボトム部1cとから構成されている。この密閉容器1内の下方部には駆動要素2が、上方部には駆動要素2により駆動される圧縮要素3がそれぞれ配置されている。   In FIG. 7, reference numeral 1 denotes an iron sealed container, which includes a cylindrical body 1a, a cap 1b welded to the upper end of the body 1a, and a bottom 1c welded to the lower end of the body 1a. It is configured. A driving element 2 is disposed in the lower part of the sealed container 1, and a compression element 3 driven by the driving element 2 is disposed in the upper part.

上記駆動要素2は、密閉容器1の胴部1aの内壁に固定されたステータ4と、このステータ4の内側に配設されたロータ6とから電動モータが構成されており、ロータ6の中心軸部には回転軸5が貫通して軸着されている。密閉容器1のキャップ部1bには複数の端子2aが取付部材2bを介して装着され、これらの端子2aとステータ4とが内部リード線(図略)で接続されると共に、端子2aには外部電源からの外部リード線(図略)が接続されてステータ4に通電するように構成されている。尚、圧縮要素3の外周部には内部リード線を通す通路(図略)が設けられている。又、駆動要素2のステータ4の外周部と密閉容器1の胴部1aとの間には隙間が複数箇所に形成されている。   The drive element 2 includes an electric motor that includes a stator 4 fixed to the inner wall of the body 1 a of the hermetic container 1 and a rotor 6 disposed inside the stator 4. The rotary shaft 5 is pivotally attached to the part. A plurality of terminals 2a are mounted on the cap portion 1b of the hermetic container 1 via mounting members 2b. These terminals 2a and the stator 4 are connected by internal lead wires (not shown), and the terminals 2a are externally connected. An external lead wire (not shown) from the power source is connected to energize the stator 4. Note that a passage (not shown) through which the internal lead wire passes is provided in the outer peripheral portion of the compression element 3. Further, a plurality of gaps are formed between the outer peripheral portion of the stator 4 of the driving element 2 and the body portion 1 a of the sealed container 1.

上記圧縮要素3は、密閉容器1の胴部1aの内壁に固定された支持部材7と、この支持部材7の上に取り付けられたシリンダ8と、このシリンダ8内に配置されたスワッシュ部材9と、支持部材7に対して上下動可能に装着された略矩形板状のベーン11と、図示は省略したがシリンダ8の切欠部の側面に取り付けられた吐出バルブ等から構成されている。   The compression element 3 includes a support member 7 fixed to the inner wall of the body 1a of the sealed container 1, a cylinder 8 attached on the support member 7, and a swash member 9 disposed in the cylinder 8. The vane 11 has a substantially rectangular plate shape mounted on the support member 7 so as to be movable up and down, and a discharge valve or the like attached to the side surface of the notch portion of the cylinder 8 (not shown).

前記支持部材7は第1部材Rと第2部材Sとから構成され、第1部材Rの下面中央部には主軸受け部材13が同心円柱状に突出形成され、上面中央部には同心円柱状に内方に窪ませて凹陥部15が形成されており、この凹陥部15に第2部材Sの下端部が嵌着固定されている。又、第1部材Rには凹陥部15の底面から主軸受け部材13に貫通する第1軸孔7aが設けられ、第2部材Sには上面から下面に貫通する第2軸孔7bが設けられ、この第2軸孔7bは第1軸孔7aと同軸心であって、内径が同一径に形成されて連通するようになっている。   The support member 7 is composed of a first member R and a second member S. A main bearing member 13 is formed in a concentric columnar shape at the center of the lower surface of the first member R, and a concentric columnar shape is formed at the center of the upper surface. A recessed portion 15 is formed by being recessed in the direction, and the lower end portion of the second member S is fitted and fixed to the recessed portion 15. The first member R is provided with a first shaft hole 7a penetrating from the bottom surface of the recessed portion 15 to the main bearing member 13, and the second member S is provided with a second shaft hole 7b penetrating from the upper surface to the lower surface. The second shaft hole 7b is coaxial with the first shaft hole 7a and has the same inner diameter and communicates therewith.

又、第1部材Rと第2部材Sにはベーンスロット16と、バネ装着孔17とが上下方向に連通して設けられており、前記ベーン11がコイルバネ18を介して上下動可能に装着されている。コイルバネ18はバネ装着孔17内に挿入されており、上端はベーン11の下端部に固定され、下端はバネ装着孔17の下方のバネ受け部14に固定されてベーン11を常時上方に付勢している。尚、ベーンスロット16の内側端部は第1軸孔7a及び第2軸孔7bに開口している。   A vane slot 16 and a spring mounting hole 17 are provided in the first member R and the second member S so as to communicate in the vertical direction, and the vane 11 is mounted via a coil spring 18 so as to be movable up and down. ing. The coil spring 18 is inserted into the spring mounting hole 17, the upper end is fixed to the lower end portion of the vane 11, and the lower end is fixed to the spring receiving portion 14 below the spring mounting hole 17 to constantly bias the vane 11 upward. is doing. The inner end portion of the vane slot 16 opens into the first shaft hole 7a and the second shaft hole 7b.

前記回転軸5は支持部材7の主軸受け部材13、第1軸孔7a、第2軸孔7bを貫通して回転自在に軸支され、上端部は前記スワッシュ部材9に同軸心に固定されている。又、回転軸5の下端部は前記ロータ6より下方に延設され、この延設部の下端が前記密閉容器1に取り付けた副軸受け部材19に回転自在に軸支されると共に、延設部の下端にオイルポンプ20が取り付けられている。このオイルポンプ20により前記密閉容器1の内底部に設けたオイル溜め21からオイルを汲み上げ、前記圧縮要素3の摺動部分に供給するように構成されている。   The rotating shaft 5 is rotatably supported through the main bearing member 13, the first shaft hole 7 a and the second shaft hole 7 b of the support member 7, and the upper end portion is coaxially fixed to the swash member 9. Yes. Further, the lower end portion of the rotating shaft 5 extends below the rotor 6, and the lower end of the extending portion is rotatably supported by a sub-bearing member 19 attached to the sealed container 1, and the extending portion An oil pump 20 is attached to the lower end of the. The oil pump 20 is configured to pump oil from an oil reservoir 21 provided at the inner bottom of the hermetic container 1 and supply the oil to the sliding portion of the compression element 3.

前記シリンダ8は、中央部に上下に貫通する空所が設けられ、この空所の下端部は前記支持部材7の第2部材Sが嵌着して閉塞され、空所の上端部はカバー板部材27により閉塞されることで圧縮空間が構成されている。この圧縮空間内に上記スワッシュ部材9が回転自在に配置されている。   The cylinder 8 is provided with a space penetrating vertically in the central portion, and the lower end portion of the space is closed by fitting the second member S of the support member 7, and the upper end portion of the space is covered with a cover plate. The compression space is configured by being blocked by the member 27. The swash member 9 is rotatably arranged in the compression space.

又、シリンダ8には通路8cが設けられ、この通路8cの一端は支持部材7の第1部材Rに設けられた通路7gに連通し、他端は支持部材7の第2部材Sに設けられた吸入口7cに連通している。そして、通路7gは密閉容器1内に開口し、吸入口7cは上記圧縮空間22に開口している。更に、密閉容器1の胴部1aには吸込配管23が固定されており、この吸込配管23から供給される冷媒ガスは、密閉容器1の下部領域内に流入し、支持部材7における第1部材Rの通路7gからシリンダ8の通路8cを通って第2部材Sの吸入口7cから圧縮空間22に吸い込まれる。   The cylinder 8 is provided with a passage 8c. One end of the passage 8c communicates with a passage 7g provided in the first member R of the support member 7, and the other end is provided in the second member S of the support member 7. It communicates with the suction port 7c. The passage 7g opens into the sealed container 1, and the suction port 7c opens into the compression space 22. Further, a suction pipe 23 is fixed to the body 1 a of the sealed container 1, and the refrigerant gas supplied from the suction pipe 23 flows into the lower region of the sealed container 1, and the first member in the support member 7. The air is sucked into the compression space 22 from the suction port 7c of the second member S through the passage 8g of the cylinder 8 from the passage 7g of R.

図示は省略したが、支持部材7の第2部材Sの上端縁部には、上面側から外周面側に抜ける吐出口が設けられ、この吐出口の上面側は前記圧縮空間に開口し、外周面側は上記シリンダ8の内部に設けられた通路に連通しており、この通路はシリンダ8の切欠部に開口している。シリンダ8の切欠部の側面には前記吐出バルブが取り付けられ、この吐出バルブによってシリンダ8の通路8aが開閉される。これにより、圧縮空間内で圧縮された高圧冷媒ガスは、支持部材7における第2部材Sの吐出口からシリンダ8の通路を通り、吐出バルブを開いて切欠部側に吐出される。   Although not shown in the drawings, the upper end edge of the second member S of the support member 7 is provided with a discharge port that passes from the upper surface side to the outer peripheral surface side, and the upper surface side of the discharge port opens into the compression space, The surface side communicates with a passage provided inside the cylinder 8, and this passage opens in a notch portion of the cylinder 8. The discharge valve is attached to the side surface of the cutout portion of the cylinder 8, and the passage 8a of the cylinder 8 is opened and closed by the discharge valve. Thereby, the high-pressure refrigerant gas compressed in the compression space passes through the passage of the cylinder 8 from the discharge port of the second member S in the support member 7, opens the discharge valve, and is discharged to the notch portion side.

又、図示は省略したが前記第1実施形態と同様に、圧縮要素3の側部にマフラを構成してあり、上記シリンダ8の切欠部側に吐出された高圧冷媒ガスは、マフラで消音された後に通孔から密閉容器1内の上部領域に吐出される。   Although not shown, a muffler is formed on the side of the compression element 3 as in the first embodiment, and the high-pressure refrigerant gas discharged to the notch side of the cylinder 8 is silenced by the muffler. After that, it is discharged from the through hole to the upper region in the sealed container 1.

前記密閉容器1におけるキャップ部1bの上端には、吐出配管26が取り付けられており、上記のように密閉容器1内の上部領域に吐出された高圧冷媒ガスは、吐出配管26から外部に吐出されて図示を省略した冷媒回路に供給される。この冷媒回路を循環して低圧となった冷媒ガスは、前記吸込配管23から圧縮機に戻される。   A discharge pipe 26 is attached to the upper end of the cap portion 1b in the closed container 1, and the high-pressure refrigerant gas discharged to the upper region in the closed container 1 as described above is discharged to the outside from the discharge pipe 26. To the refrigerant circuit (not shown). The refrigerant gas that has been circulated through the refrigerant circuit and has a low pressure is returned from the suction pipe 23 to the compressor.

前記スワッシュ部材9は、第1実施形態の場合と主構成要素は同じであるからそれらの詳しい説明は省略するが、この場合は上面の中央部に円筒状の突出部9gが設けられ、この突出部9gは前記カバー板部材27の下面中央部に設けられた受け部27aに回転自在に嵌合している。このため、回転軸5の上端部はスワッシュ部材9に対して非貫通状態になっている。スワッシュ部材9の突出部9gも、カバー板部材27に対して非貫通状態であり、突出部9gの軸孔は回転軸5の軸孔に連通している。   Since the main components of the swash member 9 are the same as those in the first embodiment, detailed description thereof will be omitted. In this case, a cylindrical protrusion 9g is provided at the center of the upper surface. The portion 9g is rotatably fitted to a receiving portion 27a provided at the center of the lower surface of the cover plate member 27. For this reason, the upper end part of the rotating shaft 5 is in a non-penetrating state with respect to the swash member 9. The protrusion 9 g of the swash member 9 is also non-penetrating with respect to the cover plate member 27, and the shaft hole of the protrusion 9 g communicates with the shaft hole of the rotating shaft 5.

以上のように構成された第2実施形態に係る圧縮機の動作に付いて説明する。この圧縮機も、前記圧縮要素3により密閉容器1内が圧縮要素3より上の上部領域と、圧縮要素3より下の下部領域とに仕切られている。そして、前記のように圧縮後の高圧冷媒ガスは上部領域に吐出されるため、上部領域と下部領域とに差圧が生じて上部領域が高圧側、下部領域が低圧側となる。   The operation of the compressor according to the second embodiment configured as described above will be described. Also in this compressor, the inside of the sealed container 1 is partitioned by the compression element 3 into an upper region above the compression element 3 and a lower region below the compression element 3. Since the compressed high-pressure refrigerant gas is discharged to the upper region as described above, a differential pressure is generated between the upper region and the lower region, and the upper region becomes the high-pressure side and the lower region becomes the low-pressure side.

前記吸込配管23から圧縮機に戻される冷媒ガスは、密閉容器1内の低圧側である下部領域に供給されるため、冷媒ガス中に含まれているオイルが分離される。これにより、密閉容器1内の下部領域がアキュムレータの機能を発揮するため、通常使用されているアキュムレータが不要となる。又、密閉容器1へのアキュムレータの取り付け、及びアキュムレータと吸込配管23との管接続が不要になる。従って、コストの削減を図ることが可能となる。   Since the refrigerant gas returned from the suction pipe 23 to the compressor is supplied to the lower region on the low pressure side in the sealed container 1, the oil contained in the refrigerant gas is separated. Thereby, since the lower area | region in the airtight container 1 exhibits the function of an accumulator, the accumulator normally used becomes unnecessary. Further, it is not necessary to attach the accumulator to the sealed container 1 and to connect the accumulator to the suction pipe 23. Therefore, cost can be reduced.

密閉容器1内の下部領域で分離されたオイルは、前記駆動要素2におけるステータ4とロータ6との間の僅かな隙間を通って副軸受け部材19上に落下し、この副軸受け部材19に形成されている複数の通孔からオイル溜め21に戻される。   The oil separated in the lower region in the hermetic container 1 falls on the auxiliary bearing member 19 through a slight gap between the stator 4 and the rotor 6 in the driving element 2 and is formed in the auxiliary bearing member 19. The plurality of through holes are returned to the oil sump 21.

密閉容器1内の下部領域でオイルが分離された冷媒ガスは、前記支持部材の通路7g及びシリンダ8の通路8cを通って支持部材7の吸入口7cから圧縮空間内に吸入され、スワッシュ部材9により圧縮される。シリンダ8の圧縮空間内で圧縮された高圧冷媒ガスは、前記のように支持部材7の吐出口からシリンダ8の通路を通り、吐出バルブを開いてマフラに吐出される。このマフラ内で消音された高圧冷媒ガスは、通孔から密閉容器1の上部領域に吐出され、前記吐出配管26から外部に吐出されて冷媒回路に供給される。   The refrigerant gas from which the oil has been separated in the lower region in the sealed container 1 is sucked into the compression space from the suction port 7c of the support member 7 through the passage 7g of the support member and the passage 8c of the cylinder 8, and the swash member 9 Compressed by The high-pressure refrigerant gas compressed in the compression space of the cylinder 8 passes through the passage of the cylinder 8 from the discharge port of the support member 7 as described above, and is discharged to the muffler by opening the discharge valve. The high-pressure refrigerant gas silenced in the muffler is discharged from the through hole to the upper region of the hermetic container 1, discharged from the discharge pipe 26 to the outside, and supplied to the refrigerant circuit.

このような冷媒ガスの圧縮動作において、前記オイル溜め21からオイルポンプ20によって汲み上げられるオイルは、回転軸5の軸孔を上昇すると共に、回転軸5の上部要所に設けられているオイル孔から圧縮要素3の摺動部分に供給される。これにより、回転軸5と支持部材7の第1軸孔7a、第2軸孔7bとの間の微少なクリアランスはオイルによってシールされる。又、回転軸5と主軸受け部材13との間、スワッシュ部材9の突出部9gとカバー板部材27の受け部27aとの間の微小なクリアランスもオイルによってシールされる。   In such a refrigerant gas compressing operation, the oil pumped up from the oil reservoir 21 by the oil pump 20 ascends the shaft hole of the rotating shaft 5 and from the oil hole provided at the upper part of the rotating shaft 5. It is supplied to the sliding part of the compression element 3. Thereby, the minute clearance between the rotating shaft 5 and the first shaft hole 7a and the second shaft hole 7b of the support member 7 is sealed with oil. In addition, minute clearances between the rotating shaft 5 and the main bearing member 13 and between the protruding portion 9g of the swash member 9 and the receiving portion 27a of the cover plate member 27 are also sealed with oil.

前記のように回転軸5aの上端はスワッシュ部材9に対して非貫通であるため、上記回転軸5aと支持部材7の第1軸孔7a、第2軸孔7bとの間の微少なクリアランスに供給されるオイルが上昇して、回転軸5の上端から流出することがない。これにより、回転軸5と支持部材7の第1軸孔7a、第2軸孔7bとの間の微少なクリアランスは常にオイルでシールされて隙間が生じないことから、シリンダ8の圧縮空間で圧縮される冷媒ガスのリークを抑えることができる。結果として、圧縮機の圧縮性能を向上させることが可能となる。又、スワッシュ部材9の突出部9gもカバー板部材27に対して非貫通であるため、突出部9gと受け部27aとの間の微少なクリアランスに供給されるオイルが、突出部9gの上端から流出することがない。   As described above, since the upper end of the rotating shaft 5a is not penetrating the swash member 9, the clearance between the rotating shaft 5a and the first shaft hole 7a and the second shaft hole 7b of the support member 7 is small. The supplied oil does not rise and flow out from the upper end of the rotating shaft 5. As a result, the minute clearance between the rotary shaft 5 and the first shaft hole 7a and the second shaft hole 7b of the support member 7 is always sealed with oil and no gap is formed. Leakage of the refrigerant gas that is generated can be suppressed. As a result, it is possible to improve the compression performance of the compressor. Further, since the protruding portion 9g of the swash member 9 is also non-penetrating with respect to the cover plate member 27, the oil supplied to the minute clearance between the protruding portion 9g and the receiving portion 27a is from the upper end of the protruding portion 9g. There is no leakage.

尚、上記第1実施形態及び第2実施形態は、いずれも縦形の圧縮機について説明したが、本発明は縦形の圧縮機に限定されることなく、横形の圧縮機にも十分適用することが可能である。又、上記実施形態では、冷凍機の冷媒回路に使用されて冷媒ガスを圧縮する圧縮機について説明したが、これに限定されずに例えば空気を吸い込んで圧縮するエアーコンプレッサ等にも本発明を有効に適用することができる。   In addition, although the said 1st Embodiment and 2nd Embodiment both demonstrated the vertical compressor, this invention is not limited to a vertical compressor, It can fully apply also to a horizontal compressor. Is possible. In the above embodiment, the compressor used for the refrigerant circuit of the refrigerator to compress the refrigerant gas has been described. However, the present invention is not limited to this, and the present invention is also effective for, for example, an air compressor that sucks and compresses air. Can be applied to.

本発明は、特に冷媒ガスを圧縮して冷凍機等の冷媒回路に供給するための圧縮機として最適に利用することができる。   Especially this invention can be optimally utilized as a compressor for compressing refrigerant gas and supplying it to refrigerant circuits, such as a refrigerator.

本発明に係る圧縮機の第1実施形態におけるベーン部分を通る概略縦断面図である。It is a schematic longitudinal cross-sectional view which passes along the vane part in 1st Embodiment of the compressor which concerns on this invention. 本発明に係る圧縮機の第1実施形態における吸込部分を通る概略縦断面図である。It is a schematic longitudinal cross-sectional view which passes along the suction part in 1st Embodiment of the compressor which concerns on this invention. 本発明に係る圧縮機の第1実施形態における吐出部分を通る概略縦断面図である。It is a schematic longitudinal cross-sectional view which passes along the discharge part in 1st Embodiment of the compressor which concerns on this invention. 本発明に係る圧縮機の第1実施形態における概略横断面図である。1 is a schematic cross-sectional view of a compressor according to a first embodiment of the present invention. 本発明に係る圧縮機の第1実施形態におけるスワッシュ部材の斜視図である。It is a perspective view of the swash member in 1st Embodiment of the compressor which concerns on this invention. 本発明に係る圧縮機の第1実施形態における回転軸に取り付けたスワッシュ部材の側面図である。It is a side view of the swash member attached to the rotating shaft in 1st Embodiment of the compressor which concerns on this invention. 本発明に係る圧縮機の第2実施形態における概略縦断面図である。It is a schematic longitudinal cross-sectional view in 2nd Embodiment of the compressor which concerns on this invention.

符号の説明Explanation of symbols

1 密閉容器
2 駆動要素
3 圧縮要素
4 ステータ
5 回転軸
5a 補助回転軸
6 ロータ
7 支持部材
7c 吸入口
7d 吐出口
8 シリンダ
8a、8c 通路
9 スワッシュ部材(圧縮部材)
10 隙間
11 ベーン
12 吐出バルブ
13 主軸受け部材
14 バネ受け部
15 凹陥部
16 ベーンスロット
17 バネ装着孔
18 コイルバネ
19 副軸受け部材
20 オイルポンプ
21 オイル溜め
22 圧縮空間
23 吸込配管
24 仕切板
25 マフラ
26 吐出配管
27 カバー板部材
DESCRIPTION OF SYMBOLS 1 Airtight container 2 Drive element 3 Compression element 4 Stator 5 Rotating shaft 5a Auxiliary rotating shaft 6 Rotor 7 Support member 7c Suction port 7d Discharge port 8 Cylinder 8a, 8c Passage 9 Swash member (compression member)
DESCRIPTION OF SYMBOLS 10 Clearance 11 Vane 12 Discharge valve 13 Main bearing member 14 Spring receiving part 15 Recessed part 16 Vane slot 17 Spring mounting hole 18 Coil spring 19 Sub bearing member 20 Oil pump 21 Oil reservoir 22 Compression space 23 Suction piping 24 Partition plate 25 Muffler 26 Discharge Piping 27 Cover plate member

Claims (2)

密閉容器内に駆動要素と、この駆動要素により駆動される圧縮要素とが配置され、前記圧縮要素は前記密閉容器に固定され前記駆動要素のロータに固定した回転軸を軸支する支持部材と、この支持部材に固定されて圧縮空間を形成するシリンダと、前記回転軸に同心軸固定されて前記シリンダの圧縮空間内を回転し一面が前記回転軸を中心として一周すると最も高くなる上死点から最も低くなる下死点を経て上死点に戻る略正弦波形状の傾斜面に形成された圧縮部材と、前記支持部材に設けられたベーンスロットにバネを介して装着され先端が前記圧縮部材の傾斜面に常時当接して前記圧縮空間内を低圧室と高圧室とに区分するベーンとを備え、前記低圧室に吸入した流体を前記圧縮部材により圧縮して前記高圧室から吐出する圧縮機であって、前記支持部材は前記密閉容器内を高圧側と低圧側とに仕切り、低圧側には前記流体が吸込配管を介して供給され、この流体を前記低圧室に導く通路及び吸入口が圧縮要素に設けられ、前記高圧室から吐出される流体を前記高圧側に導く吐出口及び通路が前記圧縮要素に設けられ、且つ高圧側の流体が吐出配管を介して外部に吐出される構成であることを特徴とする圧縮機。   A driving element and a compression element driven by the driving element are disposed in the sealed container, and the compression element is fixed to the sealed container and supports a rotation shaft fixed to the rotor of the driving element; A cylinder that is fixed to the support member to form a compression space, and a top dead center that is concentrically fixed to the rotation shaft and rotates in the compression space of the cylinder, and becomes highest when one surface makes a round around the rotation shaft. A compression member formed on an inclined surface having a substantially sinusoidal shape that returns to the top dead center after passing through the lowest bottom dead center, and a vane slot provided in the support member is attached via a spring, and a tip of the compression member A compressor that includes a vane that constantly contacts an inclined surface and divides the compression space into a low-pressure chamber and a high-pressure chamber, and compresses the fluid sucked into the low-pressure chamber by the compression member and discharges the fluid from the high-pressure chamber. Ah The support member partitions the sealed container into a high-pressure side and a low-pressure side, and the fluid is supplied to the low-pressure side via a suction pipe, and a passage and suction port for guiding the fluid to the low-pressure chamber serve as a compression element. A discharge port and a passage provided in the compression element for guiding the fluid discharged from the high-pressure chamber to the high-pressure side, and the high-pressure side fluid being discharged to the outside through a discharge pipe. Features compressor. 前記密閉容器内の上方部に前記圧縮要素を、下方部に前記駆動要素を配置し、前記駆動要素のロータに固定した回転軸は、下方に延設した延設部が前記密閉容器に取り付けた副軸受け部材に回転自在に軸支されると共に、延設部の下端にオイルポンプが取り付けられ、このオイルポンプにより前記密閉容器の内底部に設けたオイル溜めからオイルを汲み上げ、前記回転軸の軸孔を通して前記圧縮要素の摺動部に供給するように構成され、前記回転軸の上端は前記圧縮要素に対して非貫通状態で軸支されていることを特徴とする請求項1に記載の圧縮機。   The compression element is disposed in the upper part of the sealed container, the drive element is disposed in the lower part, and the rotating shaft fixed to the rotor of the drive element is attached to the sealed container by the extending part extending downward. The sub-bearing member is rotatably supported, and an oil pump is attached to the lower end of the extending portion. The oil pump pumps oil from an oil reservoir provided at the inner bottom of the hermetic container. 2. The compression according to claim 1, wherein the compression element is configured to be supplied to a sliding portion of the compression element through a hole, and an upper end of the rotating shaft is pivotally supported in a non-penetrating state with respect to the compression element. Machine.
JP2004317964A 2004-11-01 2004-11-01 Compressor Pending JP2006125365A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004317964A JP2006125365A (en) 2004-11-01 2004-11-01 Compressor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004317964A JP2006125365A (en) 2004-11-01 2004-11-01 Compressor

Publications (1)

Publication Number Publication Date
JP2006125365A true JP2006125365A (en) 2006-05-18

Family

ID=36720333

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004317964A Pending JP2006125365A (en) 2004-11-01 2004-11-01 Compressor

Country Status (1)

Country Link
JP (1) JP2006125365A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114651129A (en) * 2019-11-21 2022-06-21 三菱电机株式会社 Rotary compressor, refrigeration cycle device, and method for manufacturing rotary compressor

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6088094U (en) * 1983-11-25 1985-06-17 三菱重工業株式会社 fluid compression machinery
JPH11182476A (en) * 1997-12-22 1999-07-06 Toshiba Corp Fluid machine

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6088094U (en) * 1983-11-25 1985-06-17 三菱重工業株式会社 fluid compression machinery
JPH11182476A (en) * 1997-12-22 1999-07-06 Toshiba Corp Fluid machine

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114651129A (en) * 2019-11-21 2022-06-21 三菱电机株式会社 Rotary compressor, refrigeration cycle device, and method for manufacturing rotary compressor

Similar Documents

Publication Publication Date Title
US7488165B2 (en) Compressor having back pressure vane controlled for improving oil distribution
JP4454318B2 (en) Compressor
EP1764508B1 (en) Compressor
JP2006125365A (en) Compressor
JP4573614B2 (en) Compressor
JP2019190468A (en) Scroll compressor
JP4663293B2 (en) Compressor
JP4573613B2 (en) Compressor
KR100341273B1 (en) structure for supporting pressure sharing plate in scroll-type compressor
WO2022219761A1 (en) Hermetic compressor
US8636480B2 (en) Compressor
JP2006132347A (en) Compressor
JP2009243346A (en) Scroll compressor
JP2006132348A (en) Compressor
JP2006104947A (en) Compressor
JP2006097632A (en) Compressor
JP2006132346A (en) Compressor
JPH109175A (en) Lubrication pump device for compressor
JP2006097629A (en) Compressor
JP2006097634A (en) Compressor
JP2006070711A (en) Scroll compressor
JP2007170254A (en) Low pressure dome type compressor
JP2006097631A (en) Compressor
JP2006104948A (en) Compressor
JP2009150304A (en) Hermetic compressor

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20071017

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Effective date: 20100218

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Effective date: 20100420

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100615

A02 Decision of refusal

Effective date: 20101207

Free format text: JAPANESE INTERMEDIATE CODE: A02