JP2006132347A - Compressor - Google Patents

Compressor Download PDF

Info

Publication number
JP2006132347A
JP2006132347A JP2004319541A JP2004319541A JP2006132347A JP 2006132347 A JP2006132347 A JP 2006132347A JP 2004319541 A JP2004319541 A JP 2004319541A JP 2004319541 A JP2004319541 A JP 2004319541A JP 2006132347 A JP2006132347 A JP 2006132347A
Authority
JP
Japan
Prior art keywords
compression
suction
cylinder
suction port
compressor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2004319541A
Other languages
Japanese (ja)
Inventor
Kosuke Ogasawara
弘丞 小笠原
Takehiro Nishikawa
剛弘 西川
Takao Kanayama
孝男 金山
Yoshiaki Hiruma
義明 比留間
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2004319541A priority Critical patent/JP2006132347A/en
Publication of JP2006132347A publication Critical patent/JP2006132347A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Rotary Pumps (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a compressor capable of taking a large suction sectional area in designing and capable of preventing the suction sectional area from being reduced, a suction resistance from being increased, and a suction amount from being decreased during a suction process. <P>SOLUTION: This compressor C comprises a compression element 3 formed of a cylinder 8 in which a compression space 21 is formed, a drive element 2 driving the compression element 3, a rotating shaft 5 for transmitting the rotating force of the drive element 2 to the compression element 3, a suction port 27 and a discharge port 28 communicating with the compression space 21 in the cylinder 8, a compression member 9 having a tilted one surface with a thick wall part 31 and a thin wall part 32 continuously connected to each other, disposed in the cylinder 8 and rotated, and compressing a fluid sucked from the suction port 27 into the compression space 21 and discharging it from the discharge port 28, and a vane 11 disposed between the suction port 27 and the discharge port 28, brought into contact with the one surface of the compression member 9, and dividing the compression space 21 in the cylinder 8 into a low pressure chamber LR and a high pressure chamber HR. The suction port 27 is so disposed that the fluid sucked from the suction port 27 into the compression space 21 flows to the upper surface 33 of the compression member 9. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、吸込ポートから吸い込まれた冷媒や空気などの流体を圧縮して吐出ポートより吐出する圧縮機に関するものである。   The present invention relates to a compressor that compresses a fluid such as refrigerant or air sucked from a suction port and discharges the fluid from a discharge port.

従来、シリンダ内に回転する斜板を設け、この斜板の上下に構成される圧縮空間をベーンで区画して流体を圧縮する方式が提案されている(例えば特許文献1参照)。この方式の圧縮機は構造が比較的簡単で振動が少ない利点があるが、シリンダ内全域において、斜板の上下で高圧室と低圧室とが隣接する構造であるため、冷媒リークにより効率が悪化する問題があった。
本発明者等は先に、この問題を解決し構造をさらに簡単にしてトルク変動が少なく、効率もよい圧縮機を提案した(特許文献2参照)。
特表2003−532008号公報 特願2004−003142号
2. Description of the Related Art Conventionally, a method has been proposed in which a swash plate that rotates in a cylinder is provided, and a compression space formed above and below the swash plate is partitioned by vanes to compress fluid (for example, see Patent Document 1). This type of compressor has the advantage of relatively simple structure and low vibration, but the high-pressure chamber and low-pressure chamber are adjacent to each other above and below the swash plate in the entire area of the cylinder. There was a problem to do.
The present inventors have previously proposed a compressor that solves this problem, further simplifies the structure, reduces torque fluctuation, and has high efficiency (see Patent Document 2).
Special table 2003-532008 gazette Japanese Patent Application No. 2004-003142

図7は従来の圧縮機Cの縦断側面図、図8は同圧縮機Cの平縦面図をそれぞれ示している。図7、図8において、後述する本発明の実施の態様を示す図1〜6中と同一符号で示すものは同一若しくは同様の機能を奏するものである。
本発明者等が先に提案した圧縮機Cは、図7、図8に示したように、シリンダ8の圧縮空間21内に図示しない系外の冷媒回路内の流体を吸い込むための吸込管路26および吸込通路24をシリンダ8の側面に形成し、前記流体が吸込管路26および吸込通路24を介して回転軸5の軸方向とほぼ垂直に流れてシリンダ8の側面から圧縮空間21内に流れるように吸込ポート27が設けられていたので、設計時に吸込断面積を大きくとれず、吸込工程中に回転する圧縮部材9の側面35の影響も受けて吸込断面積が減少するため、吸込抵抗が大きくなり、吸込量が少なくなって圧縮機の性能が低下する問題があった。
FIG. 7 is a longitudinal side view of a conventional compressor C, and FIG. 8 is a plan vertical view of the compressor C. 7 and 8, the same reference numerals as those in FIGS. 1 to 6 showing the embodiments of the present invention to be described later have the same or similar functions.
As shown in FIGS. 7 and 8, the compressor C previously proposed by the present inventors is a suction pipe for sucking fluid in a refrigerant circuit (not shown) outside the system into the compression space 21 of the cylinder 8. 26 and a suction passage 24 are formed on the side surface of the cylinder 8, and the fluid flows substantially perpendicularly to the axial direction of the rotary shaft 5 through the suction pipe 26 and the suction passage 24 and enters the compression space 21 from the side surface of the cylinder 8. Since the suction port 27 is provided so as to flow, the suction sectional area cannot be increased at the time of design, and the suction sectional area decreases due to the influence of the side surface 35 of the compression member 9 that rotates during the suction process. However, there is a problem that the performance of the compressor is deteriorated due to a decrease in the suction amount.

本発明の目的は、従来の問題を解決し、設計時に吸込断面積を大きくとれる上、吸込工程中の吸込断面積の減少や吸込抵抗の増大および吸込量の減少を防止した高性能の圧縮機を提供することである。   The purpose of the present invention is to solve the conventional problems and to increase the suction sectional area at the time of design, and to prevent the reduction of the suction sectional area, the suction resistance and the suction amount during the suction process. Is to provide.

上記課題を解消するための本発明の請求項1記載の圧縮機は、
内部に圧縮空間が構成されるシリンダから構成された圧縮要素と、
前記圧縮要素を駆動する駆動要素と、前記駆動要素の回転力を前記圧縮要素に伝達するための回転軸と、
前記シリンダ内の圧縮空間に連通する吸込ポートおよび吐出ポートと、
連続する肉厚部と肉薄部を有して一面が傾斜するとともに、前記シリンダ内に配置されて回転し、前記吸込ポートから圧縮空間内に吸い込まれた流体を圧縮して前記吐出ポートより吐出する圧縮部材と、
前記吸込ポートと吐出ポート間に配置されて前記圧縮部材の一面に当接し、前記シリンダ内の圧縮空間を低圧室と高圧室とに区画するベーンとを備えた圧縮機であって、
前記吸込ポートから圧縮空間内に吸い込まれた流体が、前記圧縮部材の上面に向かって流れるように前記吸込ポートを配設することを特徴とするものである。
The compressor according to claim 1 of the present invention for solving the above problem is
A compression element composed of a cylinder having a compression space therein;
A driving element for driving the compression element; and a rotating shaft for transmitting a rotational force of the driving element to the compression element;
A suction port and a discharge port communicating with the compression space in the cylinder;
One surface is inclined with a continuous thick portion and thin portion, and is disposed in the cylinder and rotates, compresses the fluid sucked into the compression space from the suction port, and discharges it from the discharge port. A compression member;
A compressor provided with a vane disposed between the suction port and the discharge port, abutting against one surface of the compression member, and dividing the compression space in the cylinder into a low pressure chamber and a high pressure chamber;
The suction port is arranged so that the fluid sucked into the compression space from the suction port flows toward the upper surface of the compression member.

本発明の請求項2記載の圧縮機は、請求項1記載の圧縮機において、前記圧縮要素は、前記回転軸の主軸受を有して前記シリンダの開口を閉塞する支持部材を備えるとともに、前記シリンダは、前記支持部材とは反対側に位置する前記回転軸の副軸受を有し、前記支持部材に冷媒回路内の流体を吸い込むための吸込通路を形成し、前記吸込通路を介して前記吸込ポートから流体を圧縮空間内に吸い込むことを特徴とするものである。   The compressor according to claim 2 of the present invention is the compressor according to claim 1, wherein the compression element includes a support member that has a main bearing of the rotating shaft and closes an opening of the cylinder. The cylinder has a sub-bearing of the rotating shaft located on the opposite side of the support member, and forms a suction passage for sucking fluid in a refrigerant circuit in the support member, and the suction passage through the suction passage. The fluid is sucked into the compression space from the port.

本発明の請求項1記載の圧縮機は、内部に圧縮空間が構成されるシリンダから構成された圧縮要素と、前記圧縮要素を駆動する駆動要素と、前記駆動要素の回転力を前記圧縮要素に伝達するための回転軸と、前記シリンダ内の圧縮空間に連通する吸込ポートおよび吐出ポートと、連続する肉厚部と肉薄部を有して一面が傾斜するとともに、前記シリンダ内に配置されて回転し、前記吸込ポートから圧縮空間内に吸い込まれた流体を圧縮して前記吐出ポートより吐出する圧縮部材と、前記吸込ポートと吐出ポート間に配置されて前記圧縮部材の一面に当接し、前記シリンダ内の圧縮空間を低圧室と高圧室とに区画するベーンとを備えた圧縮機であって、
前記吸込ポートから圧縮空間内に吸い込まれた流体が、前記圧縮部材の上面に向かって流れるように前記吸込ポートを配設することを特徴とするものであり、 小型で簡単な構造でありながら、従来のようにシリンダ内全域において高圧と低圧とが隣接することがなくなり、高圧室に対応することになる肉厚部においてシリンダとの間のシール寸法を確保でき、冷媒リークの発生を防止でき、効率的運転が可能となり、圧縮部材の厚肉部がフライホイールの役割を果たすのでトルク変動も少なくなる上、
前記流体が前記圧縮部材の上面に向かって流れるように前記吸込ポートを配設したので、設計時に吸込断面積を大きくとることが可能になり、また吸込工程中に回転する圧縮部材の側面の影響を受けなくなり、吸込工程中の吸込断面積の減少や吸込抵抗の増大および吸込量の減少を防止でき、性能を向上できるという、顕著な効果を奏する。
According to a first aspect of the present invention, there is provided a compressor according to a first aspect of the present invention, a compression element comprising a cylinder having a compression space therein, a drive element that drives the compression element, and a rotational force of the drive element to the compression element. It has a rotating shaft for transmission, a suction port and a discharge port communicating with the compression space in the cylinder, a continuous thick portion and a thin portion, and one surface is inclined and arranged and rotated in the cylinder. A compression member that compresses the fluid sucked into the compression space from the suction port and discharges the fluid from the discharge port; and is disposed between the suction port and the discharge port and contacts one surface of the compression member; A compressor provided with a vane that divides an inner compression space into a low-pressure chamber and a high-pressure chamber,
The suction port is arranged so that the fluid sucked into the compression space from the suction port flows toward the upper surface of the compression member, and while being a small and simple structure, High pressure and low pressure are no longer adjacent to each other in the entire area of the cylinder as in the prior art, and the seal dimension between the cylinder and the thick part that will correspond to the high pressure chamber can be secured, and the occurrence of refrigerant leakage can be prevented. Efficient operation is possible, and the thick part of the compression member acts as a flywheel, reducing torque fluctuations.
Since the suction port is disposed so that the fluid flows toward the upper surface of the compression member, it is possible to increase the suction cross-sectional area at the time of design, and the influence of the side surface of the compression member that rotates during the suction process This reduces the suction cross-sectional area during the suction process, increases the suction resistance, and reduces the suction amount, and has a remarkable effect that the performance can be improved.

本発明の請求項2記載の圧縮機は、請求項1記載の圧縮機において、前記圧縮要素は、前記回転軸の主軸受を有して前記シリンダの開口を閉塞する支持部材を備えるとともに、前記シリンダは、前記支持部材とは反対側に位置する前記回転軸の副軸受を有し、前記支持部材に冷媒回路内の流体を吸い込むための吸込通路を形成し、前記吸込通路を介して前記吸込ポートから流体を圧縮空間内に吸い込むことを特徴とするものであり、回転軸の副軸受用の支持部材を別途設ける必要がなくなり、部品点数の削減とさらなる小型化が可能になる上、
前記流体が前記圧縮部材の上面に向かって流れるように前記吸込ポートを容易に配設できるので、性能を確実に向上できるという、さらなる顕著な効果を奏する。
The compressor according to claim 2 of the present invention is the compressor according to claim 1, wherein the compression element includes a support member that has a main bearing of the rotating shaft and closes an opening of the cylinder. The cylinder has a sub-bearing of the rotating shaft located on the opposite side of the support member, and forms a suction passage for sucking fluid in a refrigerant circuit in the support member, and the suction passage through the suction passage. It is characterized by sucking fluid into the compression space from the port, and it becomes unnecessary to separately provide a support member for the auxiliary bearing of the rotating shaft, and it is possible to reduce the number of parts and further reduce the size,
Since the suction port can be easily disposed so that the fluid flows toward the upper surface of the compression member, there is a further remarkable effect that the performance can be reliably improved.

次に本発明を図を用いて実施の形態に基づいて詳細に説明する。
なお、以後説明する実施例の圧縮機Cは、例えば冷凍機の冷媒回路を構成し、冷媒を吸い込んで圧縮し、回路内に吐出する役割を果たすものである。
(本発明の第1の実施の形態)
図1は本発明の圧縮機Cの1例を説明する縦断側面図、図2は本発明の圧縮機Cのもう一つの縦断側面図、図3は本発明の圧縮機Cの平縦面図、図4は本発明の圧縮機Cの圧縮要素3の一部の斜視図、図5は圧縮部材9を含む回転軸5の側面図をそれぞれ示している。
Next, the present invention will be described in detail based on embodiments with reference to the drawings.
In addition, the compressor C of the Example demonstrated hereafter comprises the refrigerant circuit of a refrigerator, for example, plays the role which sucks in and compresses a refrigerant | coolant and discharges it in a circuit.
(First embodiment of the present invention)
FIG. 1 is a longitudinal side view for explaining an example of the compressor C of the present invention, FIG. 2 is another longitudinal side view of the compressor C of the present invention, and FIG. 3 is a plan longitudinal view of the compressor C of the present invention. 4 is a perspective view of a part of the compression element 3 of the compressor C of the present invention, and FIG. 5 is a side view of the rotary shaft 5 including the compression member 9.

図1および図2において、1は密閉容器であり、密閉容器1内には上側に駆動要素2が、下側にこの駆動要素2で駆動される圧縮要素3がそれぞれ収納されている。   In FIGS. 1 and 2, reference numeral 1 denotes an airtight container. The airtight container 1 accommodates a driving element 2 on the upper side and a compression element 3 driven by the driving element 2 on the lower side.

駆動要素2は密閉容器1の内壁に固定され、ステータコイルが巻装されたステータ4と、ステータ4の内側で中央に回転軸5を有するロータ6とで構成された電動モータである。なお、この駆動要素2のステータ4の外周部と密閉容器1間には所々上下を連通する隙間10が形成されている。   The drive element 2 is an electric motor that is fixed to the inner wall of the hermetic container 1 and includes a stator 4 around which a stator coil is wound, and a rotor 6 having a rotation shaft 5 at the center inside the stator 4. A gap 10 is formed between the outer peripheral portion of the stator 4 of the driving element 2 and the sealed container 1 so as to communicate with the upper and lower portions.

圧縮要素3は、密閉容器1の内壁に固定された支持部材7と、支持部材7の下面にボルトにより取り付けられたシリンダ8と、シリンダ8内に配置された圧縮部材9(以後スワッシュ9と称すことがある)と、ベーン11、図示しない吐出バルブなどから構成されている。支持部材7の上面中央部は同心状に上方に突出し、そこに回転軸5の主軸受13が形成されており、下面中央部は同心円状に下方へ突出し、この突出部14の下面14Aは平滑面とされている。   The compression element 3 includes a support member 7 fixed to the inner wall of the hermetic container 1, a cylinder 8 attached to the lower surface of the support member 7 with bolts, and a compression member 9 (hereinafter referred to as a swash 9) disposed in the cylinder 8. In some cases, the vane 11 and a discharge valve (not shown). The central portion of the upper surface of the support member 7 projects upward concentrically, and the main bearing 13 of the rotating shaft 5 is formed there, the central portion of the lower surface projects downward concentrically, and the lower surface 14A of the projection 14 is smooth. It is considered as a surface.

図2に示すように、この支持部材7の突出部14内にはスロット16が形成され、このスロット16内に前記ベーン11が上下往復動自在に挿入される。このスロット16の上部にはベーン11に密閉容器1内の高圧を背圧として印加するための背圧室17が形成されるとともに、スロット16内にはベーン11の上面を下方に押圧する付勢手段としてのコイルバネ18が配置されている。   As shown in FIG. 2, a slot 16 is formed in the protrusion 14 of the support member 7, and the vane 11 is inserted into the slot 16 so as to be able to reciprocate up and down. A back pressure chamber 17 for applying the high pressure in the sealed container 1 as a back pressure to the vane 11 is formed in the upper portion of the slot 16, and an urging force for pressing the upper surface of the vane 11 downward in the slot 16 is formed. A coil spring 18 is disposed as a means.

シリンダ8の中央部は下方に凹陥しており、この凹陥部19内に圧縮空間21が構成される。シリンダ8の凹陥部19の下面中央部には副軸受22が開口形成されている。
図1に示すように、支持部材7には吸込通路24が形成されるとともに、密閉容器1には吸込配管26が取り付けられてこの吸込通路24に接続されている。支持部材7の突出部14には圧縮空間21に連通する吸込ポート27が形成されており、吸込ポート27は吸込通路24に連通しており、そして吸込ポート27から圧縮空間21内に吸い込まれた冷媒がスワッシュ9の上面33に向かって流れるように吸込ポート27が設けられている。
図3に示すように、シリンダ8には吐出ポート28が形成されており、吐出ポート28はシリンダ8の側面にて密閉容器1内に連通している。また前記ベーン11は吸込ポート27と吐出ポート28の間に位置している。
A central portion of the cylinder 8 is recessed downward, and a compression space 21 is formed in the recessed portion 19. An auxiliary bearing 22 is formed in the center of the lower surface of the recessed portion 19 of the cylinder 8.
As shown in FIG. 1, a suction passage 24 is formed in the support member 7, and a suction pipe 26 is attached to the sealed container 1 and connected to the suction passage 24. A suction port 27 that communicates with the compression space 21 is formed in the protrusion 14 of the support member 7, and the suction port 27 communicates with the suction passage 24 and is sucked into the compression space 21 from the suction port 27. A suction port 27 is provided so that the refrigerant flows toward the upper surface 33 of the swash 9.
As shown in FIG. 3, a discharge port 28 is formed in the cylinder 8, and the discharge port 28 communicates with the inside of the sealed container 1 on the side surface of the cylinder 8. The vane 11 is located between the suction port 27 and the discharge port 28.

回転軸5は支持部材7およびシリンダ8の中央部に挿通され上下方向の中央部を主軸受13により回転自在に軸支されるとともに、下端は副軸受22に回転自在に軸支されている。スワッシュ9は係る回転軸5の下部に一体に形成され、シリンダ8の凹陥部19内に配置されている。   The rotary shaft 5 is inserted through the central portion of the support member 7 and the cylinder 8, and the central portion in the vertical direction is rotatably supported by the main bearing 13, and the lower end is rotatably supported by the auxiliary bearing 22. The swash 9 is formed integrally with the lower portion of the rotating shaft 5 and is disposed in the recessed portion 19 of the cylinder 8.

図5に示されるようにスワッシュ9は全体として回転軸5と同心の略円柱状を呈しており、一側の肉厚部31と他側の肉薄部32とが連続した形状を呈して、その上面33(一面)は肉厚部31にて高く、肉薄部32にて低い傾斜面とされている。すなわち、上面33は回転軸5を中心として一周すると最も高くなる上死点33Aから最も低くなる下死点33Bを経て上死点33Aに戻る略正弦波形状を呈する。また、回転軸5を通る上面33の断面形状は、何処を切っても突出部14の下面14Aと平行となり、この上面33と下面14Aとの間が圧縮空間21となる。   As shown in FIG. 5, the swash 9 has a substantially cylindrical shape concentric with the rotary shaft 5 as a whole, and has a shape in which a thick part 31 on one side and a thin part 32 on the other side are continuous, The upper surface 33 (one surface) is high at the thick portion 31 and is low at the thin portion 32. That is, the upper surface 33 has a substantially sine wave shape that returns from the top dead center 33A that becomes the highest when it goes around the rotation axis 5 to the top dead center 33A through the bottom dead center 33B that becomes the lowest. Further, the cross-sectional shape of the upper surface 33 passing through the rotating shaft 5 is parallel to the lower surface 14A of the protrusion 14 no matter where it is cut, and the space between the upper surface 33 and the lower surface 14A is the compression space 21.

そして、このスワッシュ9の上死点33Aが支持部材7の突出部14の下面14Aに微小なクリアランスを介して移動自在に対向する。なおこのクリアランスは密閉容器1内に封入されたオイルによってシールされる。また前記ベーン11はこのスワッシュ9の上面33に当接し、シリンダ8内の圧縮空間21を低圧室LRと高圧室HRとに区画する。コイルバネ18はこのベーン11を常時上面33に付勢する。また、スワッシュ9の周側面はシリンダ8の凹陥部19内壁との間に微小なクリアランスを構成し、これによりスワッシュ9は回転自在とされている。そしてこのスワッシュ9の周側面とシリンダ8の凹陥部19内壁との間もオイルによってシールされる。   The top dead center 33A of the swash 9 is movably opposed to the lower surface 14A of the protrusion 14 of the support member 7 through a minute clearance. This clearance is sealed with oil sealed in the sealed container 1. The vane 11 abuts on the upper surface 33 of the swash 9 and divides the compression space 21 in the cylinder 8 into a low pressure chamber LR and a high pressure chamber HR. The coil spring 18 always biases the vane 11 toward the upper surface 33. Further, a minute clearance is formed between the peripheral side surface of the swash 9 and the inner wall of the recessed portion 19 of the cylinder 8, so that the swash 9 is rotatable. The space between the peripheral side surface of the swash 9 and the inner wall of the recessed portion 19 of the cylinder 8 is also sealed with oil.

吐出ポート28の外側にはシリンダ8の凹陥部19の側面に位置して図示しない吐出バルブが取り付けられるとともに、密閉容器1の上端には吐出配管34が取り付けられている。そして密閉容器1の内底部にオイル溜め36が構成され、このオイル溜め36内のオイルが、回転軸5の中心部に貫通して設けられたオイル通路5Aを通って圧縮要素3などに供給されることになる。また密閉容器1内には例えば二酸化炭素(CO2 )、R−134a、炭化水素系の冷媒などが所定量封入される。 A discharge valve (not shown) is attached to the outside of the discharge port 28 on the side surface of the recessed portion 19 of the cylinder 8, and a discharge pipe 34 is attached to the upper end of the sealed container 1. An oil sump 36 is formed at the inner bottom of the sealed container 1, and the oil in the oil sump 36 is supplied to the compression element 3 and the like through an oil passage 5 </ b> A provided penetrating through the center of the rotating shaft 5. Will be. Further, a predetermined amount of carbon dioxide (CO 2 ), R-134a, hydrocarbon-based refrigerant, or the like is enclosed in the sealed container 1.

以上の構成で、駆動要素2のステータ4のステータコイルに通電されると、ロータ6が下から見て時計回り方向に回転する。ロータ6の回転は回転軸5を介してスワッシュ9に伝達され、これによりスワッシュ9はシリンダ8内において下から見て時計回り方向に回転する。今、スワッシュ9の上面33の上死点33Aが吐出ポート28のベーン11側にあり、ベーン11の吸込ポート27側でシリンダ8、支持部材7、スワッシュ9およびベーン11で囲まれた空間(低圧室LR)内に吸込配管26および吸込通路24を介して吸込ポート27から冷媒回路内の冷媒が圧縮空間21内に吸い込まれているものとする。   With the above configuration, when the stator coil of the stator 4 of the drive element 2 is energized, the rotor 6 rotates in the clockwise direction when viewed from below. The rotation of the rotor 6 is transmitted to the swash 9 through the rotating shaft 5, and thereby the swash 9 rotates in the clockwise direction in the cylinder 8 when viewed from below. Now, the top dead center 33A of the upper surface 33 of the swash 9 is on the vane 11 side of the discharge port 28, and the space surrounded by the cylinder 8, the support member 7, the swash 9 and the vane 11 on the suction port 27 side of the vane 11 (low pressure It is assumed that the refrigerant in the refrigerant circuit is sucked into the compression space 21 from the suction port 27 through the suction pipe 26 and the suction passage 24 into the chamber LR).

そして、その状態からスワッシュ9が回転していくと、上死点33Aがベーン11、吸込ポート27を過ぎた段階から上面33の傾斜により上記空間の体積は狭められていき、空間(高圧室HR)内の冷媒は圧縮されていく。そして、上死点33Aが吐出ポート28を通過するまで圧縮された冷媒は吐出ポート28から吐出され続ける。一方、上死点33Aが吸込ポート27を通過した後、ベーン11の吸込ポート27側でシリンダ8、支持部材7、スワッシュ9およびベーン11で囲まれた空間(低圧室LR)の体積は拡大していくので、吸込配管26および吸込通路24を介して吸込ポート27から冷媒回路内の冷媒が圧縮空間21内に吸い込まれていく。   When the swash 9 is rotated from this state, the volume of the space is reduced by the inclination of the upper surface 33 from the stage when the top dead center 33A passes the vane 11 and the suction port 27, and the space (the high pressure chamber HR) is reduced. The refrigerant in) is compressed. The compressed refrigerant is continuously discharged from the discharge port 28 until the top dead center 33A passes through the discharge port 28. On the other hand, after the top dead center 33A passes through the suction port 27, the volume of the space surrounded by the cylinder 8, the support member 7, the swash 9 and the vane 11 on the suction port 27 side of the vane 11 (low pressure chamber LR) increases. Therefore, the refrigerant in the refrigerant circuit is sucked into the compression space 21 from the suction port 27 through the suction pipe 26 and the suction passage 24.

吐出ポート28からは図示しない吐出バルブを介して、冷媒が密閉容器1内に吐出される。そして密閉容器1内に吐出された高圧冷媒は、駆動要素2のステータ4とロータ6とのエアギャップを通過し、密閉容器1内の上部(駆動要素2の上方)にてオイルと分離し、吐出配管34より冷媒回路に吐出される。一方、分離したオイルは密閉容器1とステータ4の間に形成された隙間10から流下し、オイル溜め36に戻ることとなる。   The refrigerant is discharged from the discharge port 28 into the sealed container 1 through a discharge valve (not shown). The high-pressure refrigerant discharged into the sealed container 1 passes through the air gap between the stator 4 and the rotor 6 of the driving element 2 and is separated from the oil at the upper part in the sealed container 1 (above the driving element 2). The refrigerant is discharged from the discharge pipe 34 to the refrigerant circuit. On the other hand, the separated oil flows down from the gap 10 formed between the sealed container 1 and the stator 4 and returns to the oil reservoir 36.

このような構成により、圧縮機Cは小型で構造簡単でありながら、充分な圧縮機能を発揮することができる。特に、スワッシュ9の下面側は密閉容器1内の高圧であり、従来の如くシリンダ内全域で高圧と低圧が隣接することがなくなるとともに、スワッシュ9は連続する肉厚部31と肉薄部32を有して一面が傾斜する形状を呈しているので、高圧室HRに対応することになる肉厚部31においてシリンダ8の凹陥部19内壁との間のシール寸法を充分に確保することができる。   With such a configuration, the compressor C can exhibit a sufficient compression function while being small in size and simple in structure. In particular, the lower surface side of the swash 9 is the high pressure in the sealed container 1, and the high pressure and the low pressure are not adjacent to each other in the entire area of the cylinder as in the prior art, and the swash 9 has a continuous thick portion 31 and a thin portion 32. Since one surface is inclined, the seal dimension between the inner wall of the recessed portion 19 of the cylinder 8 can be sufficiently secured in the thick portion 31 corresponding to the high pressure chamber HR.

これらにより、スワッシュ9とシリンダ8間における冷媒リークの発生を効果的に抑制できるようになり、効果的な運転が可能となる。またスワッシュ9の肉厚部31はフライホイールの役割を果たすので、トルク変動も少なくなる。また圧縮機Cはいわゆる内部高圧型の圧縮機であるので構造のさらなる簡素化が図れる。   As a result, the occurrence of refrigerant leak between the swash 9 and the cylinder 8 can be effectively suppressed, and an effective operation is possible. Further, since the thick portion 31 of the swash 9 serves as a flywheel, torque fluctuation is also reduced. Further, since the compressor C is a so-called internal high-pressure compressor, the structure can be further simplified.

シリンダ8は、支持部材7とは反対側に位置する回転軸5の副軸受22を有しているので、回転軸5の副軸受用の支持部材を別途設ける必要がなくなり、部品点数の削減とさらなる小型化が可能となる。また支持部材7にベーン11のスロット16を構成し、さらにコイルバネ18を支持部材7内に設けているので、精度が必要となるシリンダ8にバーン取付構造を形成する必要がなく、加工性が改善される。   Since the cylinder 8 has the auxiliary bearing 22 of the rotating shaft 5 located on the side opposite to the supporting member 7, it is not necessary to separately provide a supporting member for the auxiliary shaft of the rotating shaft 5, and the number of parts can be reduced. Further downsizing is possible. Further, since the slot 16 of the vane 11 is formed in the support member 7 and the coil spring 18 is provided in the support member 7, it is not necessary to form a burn mounting structure in the cylinder 8 that requires accuracy, and workability is improved. Is done.

そして本発明においては、支持部材7に吸込通路24を形成するとともにこの吸込通路24に連通する吸込ポート27を設け、吸込ポート27から圧縮空間21内に吸い込まれた冷媒がスワッシュ9の上面33に向かって流れるように吸込ポート27を設けたので、設計時に吸込断面積を大きくとることが可能になり、また吸込工程中に回転するスワッシュ9の側面35の影響を受けなくなり、吸込工程中の吸込断面積の減少や吸込抵抗の増大、および吸込量の減少を防止でき、性能を向上できる。   In the present invention, the suction passage 24 is formed in the support member 7 and a suction port 27 communicating with the suction passage 24 is provided. The refrigerant sucked into the compression space 21 from the suction port 27 is applied to the upper surface 33 of the swash 9. Since the suction port 27 is provided so as to flow in the direction of suction, it is possible to increase the suction cross-sectional area at the time of design, and it is not affected by the side surface 35 of the swash 9 that rotates during the suction process. A reduction in cross-sectional area, an increase in suction resistance, and a decrease in suction amount can be prevented, and performance can be improved.

(本発明の第2の実施の形態)
図6は本発明の他の圧縮機の圧縮要素の一部の斜視図である。
本発明の他の圧縮機Cは、図6に示したようにスワッシュ9の肉厚部31に対応する下面部分に、凹陥部39が形成されている以外は図1〜5に示した本発明の圧縮機Cと同様になっている。
この凹陥部39の深さは上面33の傾斜に沿うかたちで構成され、上死点33Aに対応する位置が最も深く凹陥されている。
スワッシュ9には肉厚部31と肉薄部32が構成されているので、そのままでは肉厚部31側の重量が肉薄部32側の重量よりも大きくなり、重量偏心が発生する。そこで凹陥部39を形成することで、肉厚部31側の重量を削減できるので回転軸5を中心とした全周でスワッシュ9の重量を均一化し、バランスウエイトを用いることなく、偏心による振動の発生を抑えることが可能となる。
(Second embodiment of the present invention)
FIG. 6 is a perspective view of a part of a compression element of another compressor of the present invention.
Another compressor C of the present invention is the same as that of the present invention shown in FIGS. 1 to 5 except that a recessed portion 39 is formed on the lower surface portion corresponding to the thick portion 31 of the swash 9 as shown in FIG. This is the same as the compressor C.
The depth of the recessed portion 39 is formed along the inclination of the upper surface 33, and the position corresponding to the top dead center 33A is recessed most deeply.
Since the thick portion 31 and the thin portion 32 are formed in the swash 9, the weight on the thick portion 31 side is larger than the weight on the thin portion 32 side as it is, and weight eccentricity occurs. Therefore, by forming the recessed portion 39, the weight on the thick portion 31 side can be reduced, so that the weight of the swash 9 is made uniform over the entire circumference around the rotation shaft 5, and vibration due to eccentricity can be prevented without using a balance weight. Occurrence can be suppressed.

なお、上記実施形態の説明は、本発明を説明するためのものであって、特許請求の範囲に記載の発明を限定し、或は範囲を減縮するものではない。又、本発明の各部構成は上記実施形態に限らず、特許請求の範囲に記載の技術的範囲内で種々の変形が可能である。
例えば、上記実施形態の説明は、縦型圧縮機の場合について説明したが、本発明の圧縮機は横型圧縮機であってもよい。横型圧縮機の場合は、例えば、回転軸5の下端部にポンプ付オイル供給管を接続し、その一端をオイル溜め36中のオイル中に挿入してオイルの供給を行うとともに、駆動要素2と圧縮要素3の間に密閉容器1内を2つに区画する隔壁を設けて、隔壁により区画された駆動要素2側に高圧に圧縮した冷媒を吐出して高圧区域とし、一方、隔壁により区画された圧縮要素3側を低圧区域とし、前記隔壁の外周と密閉容器1との間に高圧区域と低圧区域を連通するオイル用隙間を形成し、密閉容器1内の駆動要素2の側にて分離したオイルをこの隙間から流出せしめてオイル溜め36に戻るようにして循環して使用する。
The description of the above embodiment is for explaining the present invention, and does not limit the invention described in the claims or reduce the scope. Moreover, each part structure of this invention is not restricted to the said embodiment, A various deformation | transformation is possible within the technical scope as described in a claim.
For example, although the description of the above embodiment has been described for the case of a vertical compressor, the compressor of the present invention may be a horizontal compressor. In the case of a horizontal compressor, for example, an oil supply pipe with a pump is connected to the lower end portion of the rotary shaft 5 and one end thereof is inserted into the oil in the oil reservoir 36 to supply the oil. A partition wall that divides the inside of the hermetic container 1 into two is provided between the compression elements 3, and a refrigerant compressed to a high pressure is discharged to the drive element 2 side partitioned by the partition wall to form a high pressure zone, while the partition wall is partitioned by the partition wall. The compression element 3 side is defined as a low pressure area, an oil gap is formed between the outer periphery of the partition wall and the sealed container 1 so as to communicate the high pressure area and the low pressure area, and separated on the drive element 2 side in the sealed container 1. The used oil is circulated and used by flowing out from the gap and returning to the oil reservoir 36.

本発明の圧縮機は、小型で簡単な構造でありながら、従来のようにシリンダ内全域において高圧と低圧とが隣接することがなくなり、高圧室に対応することになる肉厚部においてシリンダとの間のシール寸法を確保でき、冷媒リークの発生を防止でき、効率的運転が可能となり、圧縮部材の厚肉部がフライホイールの役割を果たすのでトルク変動も少なくなる上、前記流体が前記圧縮部材の上面に向かって流れるように前記吸込ポートを配設したので、設計時に吸込断面積を大きくとることが可能になり、また吸込工程中に回転する圧縮部材の側面の影響を受けなくなり、吸込工程中の吸込断面積の減少や吸込抵抗の増大、および吸込量の減少を防止でき、性能を向上できるという、顕著な効果を奏するので、産業上の利用価値が高い。   Although the compressor of the present invention has a small and simple structure, the high pressure and the low pressure are not adjacent to each other in the entire area of the cylinder as in the conventional case, and the compressor is connected to the cylinder at the thick portion that corresponds to the high pressure chamber. The seal dimension can be secured, the occurrence of refrigerant leakage can be prevented, efficient operation is possible, the thick part of the compression member serves as a flywheel, and torque fluctuations are reduced, and the fluid is compressed by the compression member. Since the suction port is arranged so as to flow toward the upper surface of the suction section, it is possible to increase the suction sectional area at the time of design, and it is not affected by the side surface of the rotating compression member during the suction process. It is possible to prevent the reduction of the suction sectional area, the increase of the suction resistance, and the reduction of the suction amount, and the performance can be improved, so that the industrial utility value is high.

本発明の圧縮機の1例を説明する縦断側面図である。It is a vertical side view explaining an example of the compressor of the present invention. 図1に示した本発明の圧縮機のもう一つの縦断側面図である。It is another vertical side view of the compressor of this invention shown in FIG. 図1に示した本発明の圧縮機の平縦面図である。It is a plane longitudinal view of the compressor of this invention shown in FIG. 図1に示した本発明の圧縮機の圧縮要素の一部の斜視図である。It is a one part perspective view of the compression element of the compressor of this invention shown in FIG. 図1に示した本発明の圧縮機の圧縮部材を含む回転軸の側面図である。It is a side view of the rotating shaft containing the compression member of the compressor of this invention shown in FIG. 本発明の他の圧縮機の圧縮要素の一部の斜視図である。It is a one part perspective view of the compression element of the other compressor of this invention. 従来の圧縮機の縦断側面図である。It is a vertical side view of the conventional compressor. 図7に示した従来の圧縮機の平縦面図である。FIG. 8 is a plan view of the conventional compressor shown in FIG. 7.

符号の説明Explanation of symbols

C 圧縮機
LR 低圧室
HR 高圧室
1 密閉容器
2 駆動要素
3 圧縮要素
4 ステータ
5 回転軸
5A オイル通路
6 ロータ
7 支持部材
8 シリンダ
9 圧縮部材(スワッシュ)
11 ベーン
21 圧縮空間
24 吸込通路
25 吸込配管
27 吸込ポート
28 吐出ポート
31 肉厚部
32 肉薄部
33 圧縮部材の上面
C Compressor LR Low pressure chamber HR High pressure chamber 1 Sealed container 2 Drive element 3 Compression element 4 Stator 5 Rotating shaft 5A Oil passage 6 Rotor 7 Support member 8 Cylinder 9 Compression member (swash)
11 Vane 21 Compression space 24 Suction passage 25 Suction piping 27 Suction port 28 Discharge port 31 Thick part 32 Thin part 33 Upper surface of compression member

Claims (2)

内部に圧縮空間が構成されるシリンダから構成された圧縮要素と、
前記圧縮要素を駆動する駆動要素と、前記駆動要素の回転力を前記圧縮要素に伝達するための回転軸と、
前記シリンダ内の圧縮空間に連通する吸込ポートおよび吐出ポートと、
連続する肉厚部と肉薄部を有して一面が傾斜するとともに、前記シリンダ内に配置されて回転し、前記吸込ポートから圧縮空間内に吸い込まれた流体を圧縮して前記吐出ポートより吐出する圧縮部材と、
前記吸込ポートと吐出ポート間に配置されて前記圧縮部材の一面に当接し、前記シリンダ内の圧縮空間を低圧室と高圧室とに区画するベーンとを備えた圧縮機であって、
前記吸込ポートから圧縮空間内に吸い込まれた流体が、前記圧縮部材の上面に向かって流れるように前記吸込ポートを配設することを特徴とする圧縮機。
A compression element composed of a cylinder having a compression space therein;
A driving element for driving the compression element; and a rotating shaft for transmitting a rotational force of the driving element to the compression element;
A suction port and a discharge port communicating with the compression space in the cylinder;
One surface is inclined with a continuous thick part and a thin part, and is disposed in the cylinder and rotates, compresses the fluid sucked into the compression space from the suction port, and discharges it from the discharge port. A compression member;
A compressor provided with a vane disposed between the suction port and the discharge port, abutting against one surface of the compression member, and dividing the compression space in the cylinder into a low pressure chamber and a high pressure chamber;
The compressor is characterized in that the suction port is arranged so that the fluid sucked into the compression space from the suction port flows toward the upper surface of the compression member.
前記圧縮要素は、前記回転軸の主軸受を有して前記シリンダの開口を閉塞する支持部材を備えるとともに、前記シリンダは、前記支持部材とは反対側に位置する前記回転軸の副軸受を有し、前記支持部材に冷媒回路内の流体を吸い込むための吸込通路を形成し、前記吸込通路を介して前記吸込ポートから流体を圧縮空間内に吸い込むことを特徴とする請求項1記載の圧縮機。   The compression element includes a support member that has a main bearing of the rotation shaft and closes the opening of the cylinder, and the cylinder has a sub-bearing of the rotation shaft that is located on the opposite side of the support member. 2. The compressor according to claim 1, wherein a suction passage for sucking fluid in the refrigerant circuit is formed in the support member, and fluid is sucked into the compression space from the suction port via the suction passage. .
JP2004319541A 2004-11-02 2004-11-02 Compressor Withdrawn JP2006132347A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004319541A JP2006132347A (en) 2004-11-02 2004-11-02 Compressor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004319541A JP2006132347A (en) 2004-11-02 2004-11-02 Compressor

Publications (1)

Publication Number Publication Date
JP2006132347A true JP2006132347A (en) 2006-05-25

Family

ID=36726134

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004319541A Withdrawn JP2006132347A (en) 2004-11-02 2004-11-02 Compressor

Country Status (1)

Country Link
JP (1) JP2006132347A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020175415A1 (en) * 2019-02-28 2020-09-03 株式会社豊田自動織機 Compressor
CN115126696A (en) * 2022-06-02 2022-09-30 广州市德善数控科技有限公司 Compressor rotor, compressor pump body, compressor and temperature regulation system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020175415A1 (en) * 2019-02-28 2020-09-03 株式会社豊田自動織機 Compressor
CN115126696A (en) * 2022-06-02 2022-09-30 广州市德善数控科技有限公司 Compressor rotor, compressor pump body, compressor and temperature regulation system

Similar Documents

Publication Publication Date Title
MXPA01001069A (en) Horizontal scroll compressor.
US7381040B2 (en) Compressor having pressure controlled for improving oil distribution
JP2011032933A (en) Rotary compressor
JP4454318B2 (en) Compressor
JP2006132347A (en) Compressor
KR102548470B1 (en) Compressor having oldham&#39;s ring
JP2006132348A (en) Compressor
JP2004150406A (en) Compressor
JP2006132346A (en) Compressor
KR20190129371A (en) Compressor having oldham&#39;s ring
KR102182171B1 (en) Scroll compressor
JP2006132349A (en) Compressor
KR100341273B1 (en) structure for supporting pressure sharing plate in scroll-type compressor
JP2006097632A (en) Compressor
JP2006097634A (en) Compressor
JP2006097629A (en) Compressor
JP2009162083A (en) Compressor unit
JP4663293B2 (en) Compressor
JP4573614B2 (en) Compressor
JP2006097631A (en) Compressor
JP2006132345A (en) Compressor
JP2006125365A (en) Compressor
JP2002098073A (en) Scroll compressor
JP2006104949A (en) Compressor
JP5282698B2 (en) Rotary compressor

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20071017

Free format text: JAPANESE INTERMEDIATE CODE: A621

A761 Written withdrawal of application

Effective date: 20091209

Free format text: JAPANESE INTERMEDIATE CODE: A761