JP4663293B2 - Compressor - Google Patents

Compressor Download PDF

Info

Publication number
JP4663293B2
JP4663293B2 JP2004317966A JP2004317966A JP4663293B2 JP 4663293 B2 JP4663293 B2 JP 4663293B2 JP 2004317966 A JP2004317966 A JP 2004317966A JP 2004317966 A JP2004317966 A JP 2004317966A JP 4663293 B2 JP4663293 B2 JP 4663293B2
Authority
JP
Japan
Prior art keywords
roller
compression
rotating shaft
vane
reduced diameter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004317966A
Other languages
Japanese (ja)
Other versions
JP2006125366A (en
Inventor
弘丞 小笠原
剛弘 西川
吉久 小暮
淳一 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2004317966A priority Critical patent/JP4663293B2/en
Publication of JP2006125366A publication Critical patent/JP2006125366A/en
Application granted granted Critical
Publication of JP4663293B2 publication Critical patent/JP4663293B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Rotary Pumps (AREA)

Description

本発明は、冷媒ガス等の流体を圧縮して吐出する密閉型の圧縮機であって、特に回転軸と共に同心軸回転してシリンダ内の冷媒ガス等を圧縮する圧縮部材に特徴を有する圧縮機に関するものである。   The present invention is a hermetic compressor that compresses and discharges a fluid such as a refrigerant gas, and particularly has a compression member that rotates concentrically with a rotating shaft to compress the refrigerant gas or the like in a cylinder. It is about.

圧縮機としては、従来種々の方式・形態のものが知られており、そのうち回転式圧縮機(ロータリ圧縮機)は密閉容器内に駆動要素と圧縮要素とが配置され、駆動要素における電動モータのステータに通電してロータを軸回転させ、このロータに軸着されている回転軸によって圧縮要素におけるシリンダ内でローラを偏心回転させ、このローラの外周面に常時当接しているベーンによりシリンダ内が低圧室と高圧室とに区分されており、低圧室に吸入した冷媒ガスガスを圧縮して密閉容器内に吐出すると共に、この密閉容器から高圧冷媒ガスを吐出させて冷媒回路に供給するように構成したものである(例えば、特許文献1)。   Various types of compressors have been known in the past. Among them, a rotary compressor (rotary compressor) has a drive element and a compression element arranged in a hermetic container, and an electric motor in the drive element. The stator is energized to rotate the shaft of the rotor, the rotation shaft mounted on the rotor rotates the roller eccentrically in the cylinder of the compression element, and the vane that is always in contact with the outer peripheral surface of the roller causes the inside of the cylinder to It is divided into a low-pressure chamber and a high-pressure chamber. The refrigerant gas gas sucked into the low-pressure chamber is compressed and discharged into the sealed container, and the high-pressure refrigerant gas is discharged from the sealed container and supplied to the refrigerant circuit. (For example, Patent Document 1).

上記従来の回転式圧縮機は、前記駆動要素のロータに軸着された回転軸の端部近傍に、当該回転軸に偏心する偏心円盤部を設け、この偏心円盤部の外周にローラを回転自在に配設している。そして、前記のように回転軸が軸回転すると、偏心円盤部の偏心回転に伴ってローラがシリンダの円形空間(圧縮空間)の内周面に沿って摺動回転し、シリンダ内の冷媒ガスを低圧室から高圧室に移動させながら圧縮するのである。   In the conventional rotary compressor described above, an eccentric disc portion eccentric to the rotary shaft is provided in the vicinity of the end of the rotary shaft pivotally attached to the rotor of the drive element, and a roller is freely rotatable on the outer periphery of the eccentric disc portion. It is arranged. When the rotating shaft rotates as described above, the roller slides and rotates along the inner circumferential surface of the circular space (compression space) of the cylinder with the eccentric rotation of the eccentric disk portion, and the refrigerant gas in the cylinder is discharged. It is compressed while moving from the low pressure chamber to the high pressure chamber.

このような構造の回転式圧縮機では、回転軸に偏心円盤部を形成しなければならず、且つこの偏心円盤部の外周にローラを回転自在に設ける必要があることから、加工性が低下し且つ部品が増えてコストアップの原因の一つになっている。又、偏心円盤部を介してローラが偏心回転するため、振動とトルク変動が大きくなる傾向がある。   In the rotary compressor having such a structure, an eccentric disk portion must be formed on the rotation shaft, and a roller must be rotatably provided on the outer periphery of the eccentric disk portion. In addition, the number of parts increases, which is one of the causes of cost increase. Further, since the roller rotates eccentrically via the eccentric disk portion, vibration and torque fluctuation tend to increase.

上記従来構造の回転圧縮機における加工性の低下、部品の増大及び振動とトルク変動の増大を防止するために、回転軸の偏心円盤部とローラとの組み合わせを用いず、回転軸に対して同心軸に圧縮部材を取り付け、この圧縮部材をシリンダの圧縮空間内を回転させることで吸入した冷媒ガスを圧縮できるようにした圧縮機が知られている(例えば、特許文献2)。   In order to prevent deterioration in workability, increase in parts, and increase in vibration and torque fluctuation in the conventional rotary compressor, the combination of the eccentric disk portion and the roller of the rotary shaft is not used, but concentric with the rotary shaft. There is known a compressor in which a compression member is attached to a shaft and the refrigerant gas sucked by compressing the compression member in a compression space of a cylinder can be compressed (for example, Patent Document 2).

回転軸と同心軸回転する圧縮部材を備えた上記圧縮機は、圧縮部材として傾斜板が用いられており、この傾斜板の両面側で冷媒ガスを圧縮するためシリンダの圧縮空間に吸入冷媒ガスを導く吸入路及び圧縮後の冷媒ガスを吐出するための吐出路を2つずつ設けなければならない。従って、圧縮部材の上下で高圧室と低圧室とが隣接する形となるため、高低圧差が大きくなり冷媒リークによる効率悪化が問題となる。これを防止するために、本出願人は圧縮部材を比較的肉厚な部材で形成し、片面側で冷媒ガスを圧縮するようにした圧縮機を開発して先に特許出願した(特願2004−003142号)。
特開平6−307363号公報 特願2004−003142号
The compressor provided with a compression member that rotates concentrically with the rotation shaft uses an inclined plate as the compression member. In order to compress the refrigerant gas on both sides of the inclined plate, the suction refrigerant gas is introduced into the compression space of the cylinder. It is necessary to provide two intake paths each for leading the intake path and for discharging the compressed refrigerant gas. Therefore, since the high pressure chamber and the low pressure chamber are adjacent to each other above and below the compression member, the difference between the high pressure and the low pressure becomes large, resulting in a problem of efficiency deterioration due to refrigerant leakage. In order to prevent this, the present applicant has developed a compressor in which the compression member is formed of a relatively thick member and the refrigerant gas is compressed on one side, and a patent application has been filed earlier (Japanese Patent Application 2004). -003142).
JP-A-6-307363 Japanese Patent Application No. 2004-003142

上記先願に係る圧縮機は、概略説明すると駆動機構の回転軸に対してほぼ円柱状の圧縮部材を同心軸に設け、この圧縮部材の上面に傾斜面を形成することにより冷媒ガスを圧縮できるようにしたもので、駆動要素のステータに通電してロータを回転させ、このロータに軸着されている回転軸によって圧縮要素におけるシリンダ内で圧縮部材を同心回転させ、この圧縮部材の傾斜面に常時当接しているベーンを介してシリンダ内が低圧室と高圧室とに区分されており、低圧室に吸入した冷媒ガスを圧縮して密閉容器内に吐出すると共に、この密閉容器から高圧冷媒ガスを吐出させて冷媒回路に供給するように構成したものである。   The compressor according to the above-mentioned prior application can compress the refrigerant gas by providing a substantially cylindrical compression member on the concentric shaft with respect to the rotation shaft of the drive mechanism and forming an inclined surface on the upper surface of the compression member. In this way, the stator of the drive element is energized to rotate the rotor, and the compression member is rotated concentrically within the cylinder of the compression element by the rotation shaft pivotally attached to the rotor, and the inclined surface of the compression member is The cylinder is divided into a low-pressure chamber and a high-pressure chamber through vanes that are always in contact. The refrigerant gas sucked into the low-pressure chamber is compressed and discharged into the sealed container. Is discharged and supplied to the refrigerant circuit.

この先願に係る圧縮機において、圧縮要素は密閉容器に固定されて駆動要素のロータに固定された回転軸を貫通して軸支する支持部材と、この支持部材に固定されて圧縮空間を形成するシリンダと、回転軸に同心軸固定されてシリンダの圧縮空間内を回転し一面が回転軸を中心として一周すると最も高くなる上死点から最も低くなる下死点を経て上死点に戻る略正弦波形状の傾斜面に形成された圧縮部材と、前記支持部材に設けられたベーンスロットにバネを介して装着され先端が圧縮部材の傾斜面に常時当接して圧縮空間内を低圧室と高圧室とに区分するベーンとを備えている。   In the compressor according to the prior application, the compression element is fixed to the hermetic container and supports the shaft that passes through the rotation shaft fixed to the rotor of the drive element, and is fixed to the support member to form a compression space. Cylinder and concentric shaft fixed to the rotating shaft, rotate in the compression space of the cylinder, and return to the top dead center through the bottom dead center that becomes the lowest from the top dead center when one surface makes a round around the rotating shaft. A compression member formed on a wave-shaped inclined surface, and a vane slot provided on the support member via a spring, and a tip is always in contact with the inclined surface of the compression member so that the inside of the compression space is a low pressure chamber and a high pressure chamber. And vanes.

前記支持部材のベーンスロットにバネを介して装着されているベーンは、略矩形板状であってその内側端部は回転軸に接触し、外側端部はシリンダの圧縮空間を形成している内周壁に接触し、下端部は圧縮部材の傾斜面に接触しながらベーンスロットに沿って上下動する。ベーンの内側端部と回転軸との接触部分にはオイルが供給されてシールされているが、そこに僅かな隙間が生じることがある。ベーンの内側端部と回転軸との間に僅かな隙間が生じると、シリンダの圧縮空間で圧縮されている冷媒ガスがリークし、圧縮性能を低下させる問題があった。又、ベーンの内側端部と回転軸との接触により摺動部の摩耗が増加する問題もある。   The vane attached to the vane slot of the support member via a spring has a substantially rectangular plate shape, the inner end thereof is in contact with the rotary shaft, and the outer end is an inner portion forming a compression space of the cylinder. The lower end moves up and down along the vane slot while contacting the peripheral wall and contacting the inclined surface of the compression member. Oil is supplied to the contact portion between the inner end portion of the vane and the rotary shaft to be sealed, but a slight gap may be formed there. When a slight gap is generated between the inner end of the vane and the rotating shaft, there is a problem that the refrigerant gas compressed in the compression space of the cylinder leaks and the compression performance is lowered. Further, there is a problem that wear of the sliding portion increases due to contact between the inner end portion of the vane and the rotating shaft.

本発明は、このような問題を解決するためになされたものであり、圧縮要素におけるベーンの内側端部と回転軸との間の僅かな隙間から、圧縮中の冷媒ガスがリークするのを抑えると共に、ベーンと回転軸との摺動部の摩耗をなくすようにした圧縮機を提供することを目的とする。   The present invention has been made to solve such a problem, and suppresses leakage of refrigerant gas during compression from a slight gap between the inner end portion of the vane in the compression element and the rotating shaft. Another object of the present invention is to provide a compressor in which the wear of the sliding portion between the vane and the rotating shaft is eliminated.

上記の目的を達成するために、本発明に係る請求項1の圧縮機は、密閉容器内に駆動要素と、この駆動要素により駆動される圧縮要素とが配置され、前記圧縮要素は前記密閉容器に固定され前記駆動要素のロータに固定した回転軸を貫通させて軸支する支持部材と、この支持部材に固定されて圧縮空間を形成するシリンダと、前記回転軸に同心軸固定されて前記シリンダの圧縮空間内を回転し、上面が前記回転軸を中心として一周すると最も高くなる上死点から最も低くなる下死点を経て上死点に戻る略正弦波形状の傾斜面に形成されていると共に、該上面の中心を通る径方向ラインが水平である圧縮部材と、前記支持部材に設けられたベーンスロットに設けられ、バネによって常時下方に付勢されて下端縁が前記圧縮部材の傾斜面に摺動するよう常時当接して前記圧縮空間内を低圧室と高圧室とに区分するベーンとを備え、前記低圧室に吸入した流体を前記圧縮部材により圧縮して前記高圧室から吐出する圧縮機であって、前記回転軸の下部に非回転の円筒状のローラを回転軸に沿って上下動可能に嵌合し、前記ベーンは、前記シリンダ内周面に対面する外側縁が前記シリンダの内周面に摺動するよう対面し、前記外側縁の下端が、前記圧縮部材の上面の外周縁に位置して該上面と摺動するよう対面し、前記ローラの外周面に対面するベーンの内側縁は、その下端が該ローラの外周面と一体になっていると共に、該下端から上方所定高さ位置までローラの外周面と一体化しており、前記外側縁の下端から前記内側縁の下端に至る下側縁は、一直線状であって前記ローラの外周面に対して直交状であることにより、前記圧縮部材の上面の外周縁から内周縁に至る上面の半径範囲に亘って当接している、ことを特徴とする。 In order to achieve the above object, according to the compressor of claim 1 of the present invention, a driving element and a compression element driven by the driving element are disposed in a hermetic container, and the compression element includes the sealing element. A support member fixed to the container and supported by a rotary shaft fixed to the rotor of the drive element, and a cylinder fixed to the support member to form a compression space; a concentric shaft fixed to the rotation shaft; rotating within the compression space of the cylinder, is formed on the inclined surface of a substantially sinusoidal back to top dead center the upper surface through the bottom dead center becomes the lowest from the top dead center becomes highest when around about said rotation axis And a compression member in which a radial line passing through the center of the upper surface is horizontal, and a vane slot provided in the support member, and is always biased downward by a spring , and a lower end edge is inclined of the compression member. sliding on the surface And so that always abuts a vane for dividing the compression space into a low pressure chamber and a high pressure chamber, a suction fluid into the low-pressure chamber by the compressor to be discharged from the high pressure chamber is compressed by the compression member A non-rotating cylindrical roller is fitted to the lower portion of the rotating shaft so as to be movable up and down along the rotating shaft, and the vane has an outer edge facing the inner peripheral surface of the cylinder. The lower edge of the outer edge is located at the outer peripheral edge of the upper surface of the compression member and faces the upper surface of the compression member, and the inner edge of the vane facing the outer peripheral surface of the roller is The lower end of the roller is integrated with the outer peripheral surface of the roller, and is integrated with the outer peripheral surface of the roller from the lower end up to a predetermined height position. The lower end extends from the lower end of the outer edge to the lower end of the inner edge. The side edges are straight and the outer peripheral surface of the roller By being orthogonally against, across the radial extent of the upper surface extending to the inner periphery from the outer peripheral edge of the upper surface of said compression member is in contact, characterized in that.

本発明に係る請求項2の圧縮機は、請求項1において、前記回転軸の下部に縮径部を設けると共に、その縮径部の下端に取付部を設け、前記圧縮部材の上面中央部に前記支持部材の軸孔と同じ内径を有する凹陥部を設けると共に、その凹陥部の底面に受け部を設け、この受け部に前記取付部を係止させることで回転軸を圧縮部材に軸着し、前記回転軸の縮径部と前記圧縮部材の凹陥部との間に生じた隙間、及び回転軸の縮径部と前記支持部材の軸孔との間に生じた隙間を通って前記ローラが回転軸の縮径部に沿って上下動することを特徴とする。 A compressor according to a second aspect of the present invention is the compressor according to the first aspect, wherein a reduced diameter portion is provided at a lower portion of the rotating shaft, an attachment portion is provided at a lower end of the reduced diameter portion, and a central portion of the upper surface of the compression member is provided. A recessed portion having the same inner diameter as the shaft hole of the support member is provided, and a receiving portion is provided on the bottom surface of the recessed portion, and the mounting portion is locked to the receiving portion, so that the rotating shaft is attached to the compression member. The roller passes through a gap formed between the reduced diameter portion of the rotating shaft and the recessed portion of the compression member, and a gap generated between the reduced diameter portion of the rotating shaft and the shaft hole of the support member. It moves up and down along the reduced diameter portion of the rotating shaft.

本発明に係る請求項3の圧縮機は、請求項1又は請求項2において、前記ローラは内径が前記回転軸の外径又は縮径部より大きく形成され、回転軸又は縮径部に対して非接触で上下動することを特徴とする。   A compressor according to a third aspect of the present invention is the compressor according to the first or second aspect, wherein the roller has an inner diameter larger than an outer diameter or a reduced diameter portion of the rotating shaft, and is smaller than the rotating shaft or the reduced diameter portion. It moves up and down without contact.

上記請求項1の発明によれば、回転軸の下部に非回転の円筒状のローラを回転軸に沿って上下動可能に嵌合し、このローラは前記ベーンの内側端部に一体に固定されているので、ベーンの内側端部と回転軸との間にローラが介在し、ベーンの内側端部と回転軸との間及びベーンの内側端部とローラとの間に隙間が生じることがない。これにより、シリンダの圧縮空間で圧縮されている冷媒ガスがリークするのを抑えることができ、圧縮機の圧縮性能を向上させることができる。又、ベーンと回転軸との摺動部の摩耗をなくすことができる。   According to the first aspect of the present invention, a non-rotating cylindrical roller is fitted to the lower portion of the rotating shaft so as to be movable up and down along the rotating shaft, and this roller is integrally fixed to the inner end of the vane. Therefore, a roller is interposed between the inner end of the vane and the rotating shaft, and no gap is generated between the inner end of the vane and the rotating shaft and between the inner end of the vane and the roller. . Thereby, it can suppress that the refrigerant gas compressed in the compression space of a cylinder leaks, and can improve the compression performance of a compressor. Further, wear of the sliding portion between the vane and the rotating shaft can be eliminated.

上記請求項2の発明によれば、回転軸の下部に縮径部を設け、その縮径部の下端に設けた取付部を、圧縮部材の上面中央部に設けた支持部材の軸孔と同じ内径を有する凹陥部の受け部に係止することで回転軸を圧縮部材に容易に軸着することができ、且つ回転軸の縮径部と圧縮部材の凹陥部との間に生じた隙間、及び回転軸の縮径部と支持部材の軸孔との間に生じた隙間を通ってローラが回転軸の縮径部に沿って上下動することができる。これにより、回転軸に対するローラの組み付けを容易にすると共に、ローラが上下動するための隙間を容易に形成することができる。 According to the second aspect of the present invention, the reduced diameter portion is provided at the lower portion of the rotating shaft, and the attachment portion provided at the lower end of the reduced diameter portion is the same as the shaft hole of the support member provided at the center of the upper surface of the compression member. A clearance formed between the reduced diameter portion of the rotating shaft and the recessed portion of the compression member, by which the rotating shaft can be easily attached to the compression member by being locked to the receiving portion of the recessed portion having an inner diameter , In addition, the roller can move up and down along the reduced diameter portion of the rotating shaft through a gap formed between the reduced diameter portion of the rotating shaft and the shaft hole of the support member. As a result, the assembly of the roller to the rotating shaft can be facilitated, and a gap for the roller to move up and down can be easily formed.

上記請求項3の発明によれば、ローラは内径が回転軸又は縮径部の外径より大きく形成され、回転軸又は縮径部に対して非接触で上下動するので摩耗を防止すると共に、ローラの上下動に対する抵抗を抑えることができる。これにより、ベーンの円滑且つ確実な動きを保証することができ、圧縮機の圧縮性能を更に向上させることが可能となる。   According to the third aspect of the invention, the roller has an inner diameter larger than the outer diameter of the rotary shaft or the reduced diameter portion, and moves up and down in a non-contact manner with respect to the rotary shaft or the reduced diameter portion, thereby preventing wear. Resistance to vertical movement of the roller can be suppressed. Thereby, the smooth and reliable movement of the vane can be ensured, and the compression performance of the compressor can be further improved.

次に、本発明に係る圧縮機の実施形態を添付図面に基づいて説明する。図1は本発明に係る圧縮機の実施形態を示すもので、ベーンが押し上げられた状態での概略縦断面図である。図2は本発明に係る圧縮機の実施形態を示すもので、ベーンが押し下げられた状態での概略縦断面図である。図3は本発明に係る圧縮機の実施形態における概略横断面図である。図1において、1は鉄製の密閉容器であり、円筒状の胴部1aと、この胴部1aの上端に溶接されたキャップ部1bと、胴部1aの下端に溶接されたボトム部1cとから構成されている。この密閉容器1内の上方部には駆動要素2が、下方部には駆動要素2により駆動される圧縮要素3がそれぞれ配置されている。   Next, an embodiment of a compressor according to the present invention will be described with reference to the accompanying drawings. FIG. 1 shows an embodiment of a compressor according to the present invention, and is a schematic longitudinal sectional view in a state where a vane is pushed up. FIG. 2 shows an embodiment of the compressor according to the present invention, and is a schematic longitudinal sectional view in a state where the vane is pushed down. FIG. 3 is a schematic cross-sectional view of the compressor according to the embodiment of the present invention. In FIG. 1, reference numeral 1 denotes an iron sealed container, which includes a cylindrical body portion 1a, a cap portion 1b welded to the upper end of the body portion 1a, and a bottom portion 1c welded to the lower end of the body portion 1a. It is configured. A driving element 2 is arranged in the upper part of the sealed container 1, and a compression element 3 driven by the driving element 2 is arranged in the lower part.

上記駆動要素2は、密閉容器1の胴部1aの内壁に固定されたステータ4と、このステータ4の内側に配設されたロータ6とから電動モータが構成されており、ロータ6の中心軸部には回転軸5の上端部が軸着されている。密閉容器1のキャップ部1bには複数の端子2aが取付部材2bを介して装着され、これらの端子2aとステータ4とが内部リード線(図略)で接続されると共に、端子2aには外部電源からの外部リード線(図略)が接続されてステータ4に通電するように構成されている。尚、駆動要素2のステータ4の外周部と密閉容器1の胴部1aとの間には、上下の空間部を連通する隙間10が複数箇所に形成されている。   The drive element 2 includes an electric motor that includes a stator 4 fixed to the inner wall of the body 1 a of the hermetic container 1 and a rotor 6 disposed inside the stator 4. The upper end of the rotating shaft 5 is attached to the part. A plurality of terminals 2a are mounted on the cap portion 1b of the hermetic container 1 via mounting members 2b. These terminals 2a and the stator 4 are connected by internal lead wires (not shown), and the terminals 2a are externally connected. An external lead wire (not shown) from the power source is connected to energize the stator 4. In addition, between the outer peripheral part of the stator 4 of the driving element 2 and the body part 1a of the sealed container 1, a plurality of gaps 10 that communicate the upper and lower space parts are formed.

上記圧縮要素3は、密閉容器1の胴部1aの内壁に固定された支持部材7と、この支持部材7の下にボルト(図略)により取り付けられたシリンダ8と、このシリンダ8内に配置された圧縮部材9(本実施形態では、スワッシュ部材と称する)と、支持部材7に対して上下動可能に装着された略矩形板状のベーン11と、シリンダ8の切欠部8b(図3)の側面に取り付けられた吐出バルブ12等から構成されている。   The compression element 3 includes a support member 7 fixed to the inner wall of the body portion 1 a of the sealed container 1, a cylinder 8 attached by bolts (not shown) under the support member 7, and the cylinder 8. Compressed member 9 (referred to as a swash member in the present embodiment), a substantially rectangular plate-like vane 11 mounted on the support member 7 so as to be movable up and down, and a notch 8b of the cylinder 8 (FIG. 3). It is comprised from the discharge valve 12 etc. which were attached to the side surface.

前記支持部材7は上部材Rと下部材Sとから構成され、上部材Rの上面中央部には主軸受け部となる突出部13が同心円柱状に形成され、下面中央部には同心円柱状に内方に窪ませて凹陥部15が形成されており、この凹陥部15に下部材Sの上端部が嵌着固定されている。又、上部材Rには突出部13の上面から凹陥部15の底面に貫通する上部軸孔7aが設けられ、下部材Sには上面から下面に貫通する下部軸孔7bが設けられ、この下部軸孔7bは上部軸孔7aと同軸心であって、内径が同一径に形成されて連通するようになっている。   The support member 7 is composed of an upper member R and a lower member S. A protrusion 13 serving as a main bearing portion is formed in a concentric columnar shape at the center of the upper surface of the upper member R, and a concentric columnar shape is formed in the center of the lower surface. A recessed portion 15 is formed by being recessed in the direction, and the upper end portion of the lower member S is fitted and fixed to the recessed portion 15. The upper member R is provided with an upper shaft hole 7a penetrating from the upper surface of the protruding portion 13 to the bottom surface of the recessed portion 15, and the lower member S is provided with a lower shaft hole 7b penetrating from the upper surface to the lower surface. The shaft hole 7b is coaxial with the upper shaft hole 7a and has the same inner diameter and communicates therewith.

図2に示すように、上記上部材Rと下部材Sにはベーンスロット16と、バネ装着孔17とが上下方向に連通して設けられており、前記ベーン11がコイルバネ18を介して上下動可能に装着されている。コイルバネ18はバネ装着孔17内に挿入されており、下端はベーン11の上端部に固定され、上端はバネ装着孔17の上方のバネ受け部14に固定されてベーン11を常時下方に付勢している。尚、ベーンスロット16の内側端部は上部軸孔7a及び下部軸孔7bに開口している。又、ベーン11の内側端部には円筒状のローラ19(図4参照)が一体に固定されている。   As shown in FIG. 2, the upper member R and the lower member S are provided with a vane slot 16 and a spring mounting hole 17 communicating in the vertical direction, and the vane 11 moves up and down via a coil spring 18. It is installed as possible. The coil spring 18 is inserted into the spring mounting hole 17, the lower end is fixed to the upper end portion of the vane 11, and the upper end is fixed to the spring receiving portion 14 above the spring mounting hole 17 to constantly bias the vane 11 downward. is doing. The inner end of the vane slot 16 opens into the upper shaft hole 7a and the lower shaft hole 7b. A cylindrical roller 19 (see FIG. 4) is integrally fixed to the inner end of the vane 11.

更に、支持部材7の上部材Rには、図1に示すように管接続口7cが設けられ、この管接続口7cに密閉容器1の胴部1aに取り付けられた吸込配管20の端部が接続固定されている。管接続口7cは上部材Rの内部に形成した通路7dに連通しており、この通路7dは下部材Sに貫設した吸入口7eに連通している。   Further, the upper member R of the support member 7 is provided with a pipe connection port 7c as shown in FIG. 1, and the end of the suction pipe 20 attached to the trunk portion 1a of the sealed container 1 is connected to the pipe connection port 7c. Connection is fixed. The pipe connection port 7c communicates with a passage 7d formed inside the upper member R, and this passage 7d communicates with a suction port 7e provided through the lower member S.

前記回転軸5は支持部材7の上部軸孔7a、下部軸孔7bに回転自在に挿通されており、下部に上部の外径より小径に形成された縮径部5aを有し、この縮径部5aに前記ローラ19が嵌合している。ローラ19の内径は縮径部5aの外径にほぼ等しく、ローラ19の外径は上部軸孔7a、下部軸孔7bの内径にほぼ等しく設定される。これにより、前記ベーン11が上下動すると、このベーン11と共にローラ19が回転軸5の縮径部5aに沿って上下動する。又、図4のように回転軸5の縮径部5aの下端には取付部5bが設けられ、この取付部5bを前記スワッシュ部材9に設けられた受け部9eに係止することで、回転軸5の下端部をスワッシュ部材9に軸着できるようにしてある。   The rotary shaft 5 is rotatably inserted into the upper shaft hole 7a and the lower shaft hole 7b of the support member 7, and has a reduced diameter portion 5a formed at a lower diameter than the outer diameter of the upper portion at the lower portion. The roller 19 is fitted in the portion 5a. The inner diameter of the roller 19 is approximately equal to the outer diameter of the reduced diameter portion 5a, and the outer diameter of the roller 19 is set to be approximately equal to the inner diameter of the upper shaft hole 7a and the lower shaft hole 7b. Accordingly, when the vane 11 moves up and down, the roller 19 moves up and down along the reduced diameter portion 5 a of the rotating shaft 5 together with the vane 11. Also, as shown in FIG. 4, a mounting portion 5b is provided at the lower end of the reduced diameter portion 5a of the rotating shaft 5, and the mounting portion 5b is engaged with a receiving portion 9e provided on the swash member 9 to rotate. The lower end portion of the shaft 5 can be attached to the swash member 9.

前記シリンダ8は、図1のように中央部に上下に貫通する空所が設けられ、この空所の上端部は前記支持部材7の下部材Sが嵌着して閉塞され、空所の下端部はシリンダ8の下面に固定したカバー板部材21により閉塞されることで圧縮空間22が構成されている。この圧縮空間22に前記下部材Sの吸入口7eが開口しており、前記吸込配管20から供給される冷媒ガスは、支持部材7の通路7dを通って吸入口7eから圧縮空間22内に吸い込まれる。   As shown in FIG. 1, the cylinder 8 is provided with a space penetrating vertically in the central portion, and the upper end portion of the space is closed by fitting the lower member S of the support member 7 and the lower end of the space. The portion is closed by a cover plate member 21 fixed to the lower surface of the cylinder 8 to form a compression space 22. A suction port 7e of the lower member S is opened in the compression space 22, and the refrigerant gas supplied from the suction pipe 20 is sucked into the compression space 22 from the suction port 7e through the passage 7d of the support member 7. It is.

図3に示すように、前記支持部材7の下部材Sの下端縁部には、下面側から外周面側に抜ける吐出口7fが設けられ、この吐出口7fの下面側は前記圧縮空間22に開口し、外周面側は上記シリンダ8の内部に設けられた通路8aに連通しており、この通路8aはシリンダ8の切欠部8bに開口している。そして、シリンダ8の切欠部8bの側面には前記吐出バルブ12が取り付けられ、この吐出バルブ12によって通路8aが開閉される。これにより、圧縮空間22内で圧縮された高圧冷媒ガスは、支持部材7における下部材Sの吐出口7fからシリンダ8の通路8aを通り、吐出バルブ12を開いて切欠部8b側に吐出される。   As shown in FIG. 3, the lower end edge of the lower member S of the support member 7 is provided with a discharge port 7 f that passes from the lower surface side to the outer peripheral surface side, and the lower surface side of the discharge port 7 f is in the compression space 22. Opened, the outer peripheral surface side communicates with a passage 8 a provided in the cylinder 8, and the passage 8 a opens in a notch 8 b of the cylinder 8. The discharge valve 12 is attached to the side surface of the notch 8 b of the cylinder 8, and the passage 8 a is opened and closed by the discharge valve 12. As a result, the high-pressure refrigerant gas compressed in the compression space 22 passes through the passage 8a of the cylinder 8 from the discharge port 7f of the lower member S in the support member 7, opens the discharge valve 12, and is discharged toward the notch 8b. .

又、図示は省略したが前記支持部材7の上部材Rには、シリンダ8の切欠部8bに対応させて切欠部が設けられ、この切欠部から密閉容器1内に通じる通孔が設けられている。これにより、上記シリンダ8の切欠部8bに吐出された高圧冷媒ガスは、上部材Rの切欠部及び通孔を介して密閉容器1内に吐出される。   Although not shown, the upper member R of the support member 7 is provided with a cutout portion corresponding to the cutout portion 8b of the cylinder 8, and a through hole is provided through the cutout portion into the sealed container 1. Yes. As a result, the high-pressure refrigerant gas discharged to the notch 8b of the cylinder 8 is discharged into the sealed container 1 through the notch and the through hole of the upper member R.

前記スワッシュ部材9は、前記シリンダ8の圧縮空間22内に回転自在に配置され、図5に示すように全体形状としては略円柱状を呈しており、一側の肉厚部9aとこれに対向する他側の肉薄部9bとを有し、円周方向に沿う上面9cは肉厚部9aにて高く、肉薄部9bにて低い連続傾斜面に形成されている。このスワッシュ部材9は、上面9cの上面中央部に前記支持部材7の上部軸孔7a、下部軸孔7bと同じ内径を有する凹陥部9dが設けられ、この凹陥部9dの底面に前記回転軸5の取付部5bを係止する受け部9eが設けられている。これにより、回転軸5の縮径部5aとスワッシュ部材9の凹陥部9dとの間に生じた隙間にローラ19が入り込むことができ、結果としてローラ19は回転軸5における縮径部5aの全長に亘って上下動できることになる。   The swash member 9 is rotatably arranged in the compression space 22 of the cylinder 8 and has a substantially cylindrical shape as a whole as shown in FIG. 5, and is opposed to the thick portion 9a on one side. The upper surface 9c along the circumferential direction is formed as a continuous inclined surface that is high at the thick portion 9a and low at the thin portion 9b. The swash member 9 is provided with a recessed portion 9d having the same inner diameter as the upper shaft hole 7a and the lower shaft hole 7b of the support member 7 at the center of the upper surface 9c, and the rotating shaft 5 is formed on the bottom surface of the recessed portion 9d. A receiving portion 9e for locking the mounting portion 5b is provided. As a result, the roller 19 can enter the gap formed between the reduced diameter portion 5 a of the rotating shaft 5 and the recessed portion 9 d of the swash member 9, and as a result, the roller 19 has the entire length of the reduced diameter portion 5 a of the rotating shaft 5. Can move up and down.

又、図1及び図2に示すようにスワッシュ部材9は、下面の中央部に設けた円筒状の突出部9fを前記カバー板部材21に設けた軸孔21aに回転自在に嵌挿してあり、これにより回転軸5の副軸受け部が構成される。更に、スワッシュ部材9の突出部9fの下端部にはオイルポンプ23が取り付けられている。   As shown in FIGS. 1 and 2, the swash member 9 has a cylindrical protrusion 9f provided at the center of the lower surface thereof rotatably fitted in a shaft hole 21a provided in the cover plate member 21, Thereby, the auxiliary bearing part of the rotating shaft 5 is comprised. Further, an oil pump 23 is attached to the lower end portion of the protruding portion 9f of the swash member 9.

図6(a)〜(c)はそれぞれスワッシュ部材9の回転角度を変えた側面図が示されている。スワッシュ部材9の上面9cは、回転軸5を中心として円周方向に一周すると最も高くなる上死点Pから最も低くなる下死点Qを経て上死点Pに戻る略正弦波形状を呈している。又、回転軸5を通る上面9cの縦断面は、360度何れの角度の切断面においても全て水平(図1及び図2参照)であり、この上面9cと前記支持部材7における下部材Sの下面との間が圧縮空間22となる。   6A to 6C are side views in which the rotation angle of the swash member 9 is changed. The upper surface 9c of the swash member 9 has a substantially sinusoidal shape that returns from the highest dead center P to the highest dead center Q through the lowest dead center Q when it goes around the rotation axis 5 in the circumferential direction. Yes. Further, the longitudinal section of the upper surface 9c passing through the rotary shaft 5 is all horizontal (see FIGS. 1 and 2) at any angle of 360 degrees, and the upper surface 9c and the lower member S of the support member 7 A space between the lower surface is the compression space 22.

そして、スワッシュ部材9の上死点Pは、支持部材7における下部材Sの下面に微少なクリアランスを介して移動自在に対向している。このクリアランスは密閉容器1内に封入されているオイルによってシールされる。前記ベーン11は、図6のように下端が断面R状に形成されてスワッシュ部材9の上面9cに常時当接し、シリンダ8内の圧縮空間22を低圧室と高圧室とに区分している。前記コイルバネ18は、ベーン11を下向きに付勢することで、ベーン11の下端稜線部分がスワッシュ部材9の上面9cから離れないように保持し、且つベーン11が支持部材7のベーンスロット16に沿って円滑に上下動するのを制御する作用をなす。   The top dead center P of the swash member 9 is movably opposed to the lower surface of the lower member S of the support member 7 via a slight clearance. This clearance is sealed by the oil sealed in the sealed container 1. As shown in FIG. 6, the vane 11 has a lower end formed in an R-shaped cross section and is always in contact with the upper surface 9c of the swash member 9, thereby dividing the compression space 22 in the cylinder 8 into a low pressure chamber and a high pressure chamber. The coil spring 18 biases the vane 11 downward to hold the lower end ridge line portion of the vane 11 so as not to be separated from the upper surface 9 c of the swash member 9, and the vane 11 extends along the vane slot 16 of the support member 7. To control the smooth up and down movement.

又、スワッシュ部材9の外周面は、密閉空間22を構成しているシリンダ8の内壁面との間に微少なクリアランスを形成し、これによりスワッシュ部材9は回転自在とされている。このスワッシュ部材9の外周面とシリンダ8の内壁面との間のクリアランスもオイルによってシールされる。冷媒ガスのリークを抑えるためである。尚、スワッシュ部材9の外周面には、シール部材を嵌着するための凹溝9gが円周方向に沿って設けられ、スワシュ部材9の下面側には、前記肉厚部9bに対応させて適宜の大きさの凹部9h(図1及び図2)が設けられている。この凹部9hは肉厚部9bの重量を減少させることで、スワッシュ部材9の回転トルクの変動を抑えるようにしてある。   Further, a minute clearance is formed between the outer peripheral surface of the swash member 9 and the inner wall surface of the cylinder 8 constituting the sealed space 22, so that the swash member 9 is rotatable. The clearance between the outer peripheral surface of the swash member 9 and the inner wall surface of the cylinder 8 is also sealed with oil. This is for suppressing the leakage of the refrigerant gas. A concave groove 9g for fitting the seal member is provided along the circumferential direction on the outer peripheral surface of the swash member 9, and the lower surface side of the swash member 9 corresponds to the thick portion 9b. An appropriately sized recess 9h (FIGS. 1 and 2) is provided. The concave portion 9h reduces the weight of the thick portion 9b, thereby suppressing fluctuations in the rotational torque of the swash member 9.

前記密閉容器1におけるキャップ部1bの上端には、図1及び図2に示すように吐出配管24が取り付けられている。前記のように支持部材7の通孔から密閉容器1内に吐出された高圧冷媒ガスは、前記駆動要素2におけるステータ4とロータ6との間の僅かな隙間を通って密閉容器1内の上部領域に流入し、吐出配管24から外部に吐出される。吐出配管24から吐出された高圧冷媒ガスは、図示を省略した冷媒回路に供給され、この冷媒回路を循環して低圧となった冷媒ガスは、前記吸込配管20から圧縮機に戻される。   As shown in FIGS. 1 and 2, a discharge pipe 24 is attached to the upper end of the cap portion 1 b in the sealed container 1. As described above, the high-pressure refrigerant gas discharged into the sealed container 1 from the through hole of the support member 7 passes through a slight gap between the stator 4 and the rotor 6 in the drive element 2 and is an upper part in the sealed container 1. It flows into the region and is discharged from the discharge pipe 24 to the outside. The high-pressure refrigerant gas discharged from the discharge pipe 24 is supplied to a refrigerant circuit (not shown), and the refrigerant gas circulated through the refrigerant circuit and having a low pressure is returned from the suction pipe 20 to the compressor.

尚、密閉容器1の内底部はオイル溜め25とされ、このオイル溜め25内のオイルが前記オイルポンプ23により汲み上げられる。汲み上げられたオイルは、スワッシュ部材9及び回転軸5の同心軸回転による遠心力によって、回転軸5に形成されている軸線方向の通孔に沿って上昇し、回転軸5の要所に設けられているオイル孔(図略)から前記圧縮要素3のクリアランス等に供給される。又、密閉容器1内には例えば二酸化炭素、R134a、或はHC系の冷媒ガスが所定量封入される。   The inner bottom of the sealed container 1 is an oil reservoir 25, and the oil in the oil reservoir 25 is pumped up by the oil pump 23. The pumped-up oil rises along the axial through hole formed in the rotating shaft 5 due to the centrifugal force generated by the concentric shaft rotation of the swash member 9 and the rotating shaft 5, and is provided at the main part of the rotating shaft 5. Is supplied to the clearance of the compression element 3 through the oil hole (not shown). Further, a predetermined amount of carbon dioxide, R134a, or HC-based refrigerant gas is sealed in the sealed container 1, for example.

以上のように構成された本発明に係る圧縮機の動作に付いて説明する。この圧縮機は、駆動要素2のステータ4のコイルに通電するとロータ6が回転する。このロータ6の回転は、回転軸5を介してスワッシュ部材9に伝達され、これによりスワッシュ部材9はシリンダ8の圧縮空間22内を回転する。ここで、スワッシュ部材9の上面9cの上死点Pがベーン11を境にして吐出側にあり、吸入側でシリンダ8、支持部材7、スワッシュ部材9及びベーン11で囲まれた空間(低圧室)内に吸込配管20、支持部材7の通路7d及び吸入口7eを介して冷媒ガスが吸い込まれているものとする。   The operation of the compressor according to the present invention configured as described above will be described. In this compressor, when the coil of the stator 4 of the drive element 2 is energized, the rotor 6 rotates. The rotation of the rotor 6 is transmitted to the swash member 9 through the rotating shaft 5, and the swash member 9 rotates in the compression space 22 of the cylinder 8. Here, the top dead center P of the upper surface 9c of the swash member 9 is on the discharge side with the vane 11 as a boundary, and the space surrounded by the cylinder 8, the support member 7, the swash member 9, and the vane 11 on the suction side (low pressure chamber) It is assumed that the refrigerant gas is sucked in through the suction pipe 20, the passage 7d of the support member 7 and the suction port 7e.

この状態からスワッシュ部材9が回転していくと、上死点Pがベーン11、吸入口7eを過ぎた段階からスワッシュ部材9の上面9cの傾斜により低圧室の体積は狭められていき、高圧室内の冷媒ガスは圧縮されていく。そして、上死点Pが支持部材7の吐出口7fを通過するまでの間、圧縮された高圧冷媒ガスは吐出口7fから吐出される。そして、上死点Pが支持部材7の吸入口7eを通過した後、吸入側で低圧室の体積は拡大していくので冷媒ガスが低圧室内に吸い込まれることになる。このような動作が繰り返し行われて、冷媒ガスが圧縮される。   When the swash member 9 rotates from this state, the volume of the low pressure chamber is reduced by the inclination of the upper surface 9c of the swash member 9 from the stage where the top dead center P passes the vane 11 and the suction port 7e, and the high pressure chamber is reduced. The refrigerant gas is compressed. The compressed high-pressure refrigerant gas is discharged from the discharge port 7f until the top dead center P passes through the discharge port 7f of the support member 7. After the top dead center P passes through the suction port 7e of the support member 7, the volume of the low-pressure chamber increases on the suction side, so that the refrigerant gas is sucked into the low-pressure chamber. Such an operation is repeatedly performed to compress the refrigerant gas.

冷媒ガスの圧縮動作において、前記ベーン11はスワッシュ部材9の前記上面9cに密接しつつ上下方向に往復動される。図1はベーン11がスワッシュ部材9の前記上死点Pにより最大限押し上げられた状態を示しており、この時ベーン11は前記支持部材7のベーンスロット16内に入り込んで、下端の稜線部分がほぼ下部材Sの下面内に位置にし、ベーン11と共に上昇した前記ローラ19の上端は、ほぼ回転軸5における縮径部5aの最上位に位置している。図2はベーン11がスワッシュ部材9の下死点Qに対して前記コイルバネ18により最大限押し下げられた状態を示しており、この時ベーン11は支持部材7のベーンスロット16から突出して下端の稜線部分が下死点Qに密接し、ベーン11と共に下降したローラ19の下端部は、ほぼスワッシュ部材9の前記凹陥部9dの底面に位置している。   In the refrigerant gas compression operation, the vane 11 is reciprocated in the vertical direction while being in close contact with the upper surface 9 c of the swash member 9. FIG. 1 shows a state in which the vane 11 is pushed up to the maximum by the top dead center P of the swash member 9. At this time, the vane 11 enters the vane slot 16 of the support member 7, and the ridge line portion at the lower end is The upper end of the roller 19, which is positioned substantially within the lower surface of the lower member S and lifted together with the vane 11, is positioned substantially at the uppermost position of the reduced diameter portion 5 a of the rotating shaft 5. FIG. 2 shows a state in which the vane 11 is pushed down to the maximum by the coil spring 18 with respect to the bottom dead center Q of the swash member 9. At this time, the vane 11 protrudes from the vane slot 16 of the support member 7 and protrudes from the lower edge ridge line. The lower end portion of the roller 19 that is in close contact with the bottom dead center Q and descends together with the vane 11 is located substantially at the bottom surface of the recessed portion 9 d of the swash member 9.

前記支持部材7の上部軸孔7a、下部軸孔7bには、前記オイル溜め25から汲み上げたオイルが回転軸5のオイル孔(図略)から供給されるため、回転軸5と上部軸孔7aとの間の微少なクリアランス、縮径部5aとローラ19の内壁面との間の微少なクリアランス及びローラ19の外壁面と下部軸孔7bとの間の微小なクリアランスはオイルによってシールされる。又、ローラ19はベーン11の内側端部に一体に固定されているため、ローラ19とベーン11との間に隙間が生じることはない。これにより、前記シリンダ8の圧縮空間22内で圧縮される冷媒ガスのリークを抑えることができ、圧縮機の圧縮性能を向上させることが可能となる。又、従来生じていたベーン11と回転軸5との摺動部の摩耗をなくすことができる。   Since the oil pumped up from the oil reservoir 25 is supplied to the upper shaft hole 7a and the lower shaft hole 7b of the support member 7 from the oil hole (not shown) of the rotating shaft 5, the rotating shaft 5 and the upper shaft hole 7a. The minute clearance between the outer diameter of the roller 19 and the minute clearance between the reduced diameter portion 5a and the inner wall surface of the roller 19 and the minute clearance between the outer wall surface of the roller 19 and the lower shaft hole 7b are sealed with oil. Further, since the roller 19 is integrally fixed to the inner end portion of the vane 11, there is no gap between the roller 19 and the vane 11. Thereby, the leakage of the refrigerant gas compressed in the compression space 22 of the cylinder 8 can be suppressed, and the compression performance of the compressor can be improved. In addition, it is possible to eliminate the wear of the sliding portion between the vane 11 and the rotary shaft 5 that has occurred in the past.

上記ローラ19と縮径部5aとの関係において、ローラ19の内径を縮径部5aの外径より大きく形成するか、又は縮径部5aの外径をローラ19の内径より小さく形成すれば、ローラ19は縮径部5aに対して非接触となる。これにより、ベーン11と共に上下動するローラ19は、縮径部5aに対して非回転且つ非接触となるため、摩耗を防止すると共にローラ19の上下動に対する抵抗を抑えることができる。結果として、ベーン11の円滑且つ確実な動きを保証することができ、圧縮機の圧縮性能を更に向上させることが可能となる。   In the relationship between the roller 19 and the reduced diameter portion 5a, if the inner diameter of the roller 19 is formed larger than the outer diameter of the reduced diameter portion 5a, or the outer diameter of the reduced diameter portion 5a is smaller than the inner diameter of the roller 19, The roller 19 is not in contact with the reduced diameter portion 5a. Accordingly, the roller 19 that moves up and down together with the vane 11 is non-rotating and non-contacting with respect to the reduced diameter portion 5a, so that it is possible to prevent wear and to suppress resistance to the vertical movement of the roller 19. As a result, the smooth and reliable movement of the vane 11 can be ensured, and the compression performance of the compressor can be further improved.

前記シリンダ8の圧縮空間22内で圧縮された高圧冷媒ガスは、前記のように支持部材7における下部材Sの吐出口7fからシリンダ8の通路8aを通り、吐出バルブ12を開いてシリンダ8の切欠部8b側に吐出され、次いで支持部材7の切欠部及び通孔を通って密閉容器1内に吐出される。密閉容器1内に吐出された高圧冷媒ガスは、駆動要素2のステータ4とロータ6との僅かな隙間を通過し、密閉容器1内の上部領域に移動してオイルと分離され、吐出配管24から吐出して冷媒回路に供給される。一方、高圧冷媒ガスから分離されたオイルは、密閉容器1とステータ4との間に形成されている前記隙間10から流下し、密閉容器1における内底部のオイル溜め25に戻る。   The high-pressure refrigerant gas compressed in the compression space 22 of the cylinder 8 passes through the passage 8a of the cylinder 8 from the discharge port 7f of the lower member S in the support member 7 as described above, opens the discharge valve 12 and opens the cylinder 8 It is discharged to the side of the notch 8b, and then discharged into the sealed container 1 through the notch and the through hole of the support member 7. The high-pressure refrigerant gas discharged into the hermetic container 1 passes through a slight gap between the stator 4 and the rotor 6 of the drive element 2, moves to the upper region in the hermetic container 1, and is separated from the oil. It is discharged from and supplied to the refrigerant circuit. On the other hand, the oil separated from the high-pressure refrigerant gas flows down from the gap 10 formed between the sealed container 1 and the stator 4 and returns to the oil reservoir 25 in the inner bottom portion of the sealed container 1.

上記実施形態では、回転軸5の下部に縮径部5aを形成し、この縮径部5aに沿ってローラ19が上下動する構成のものを説明したが、本発明はこれに限定されることなく、縮径部を形成しない回転軸で実施することも可能である。その場合には、ローラの外径が大きくなるため、その外径に合わせて支持部材に設ける軸孔の内径を一部拡径変更し、且つスワッシュ部材に設ける凹陥部の内径も拡径変更して回転軸の下端部に沿ってローラが上下動できるように構成すればよい。又、上記実施形態では、支持部材7を上部材Rと下部材Sとから構成したが、上部材Rと下部材Sとに分割せずに一体の支持部材を用いて実施することも可能である。   In the above embodiment, the reduced diameter portion 5a is formed in the lower portion of the rotating shaft 5 and the roller 19 moves up and down along the reduced diameter portion 5a. However, the present invention is limited to this. It is also possible to implement with a rotating shaft that does not form a reduced diameter portion. In that case, since the outer diameter of the roller becomes larger, the inner diameter of the shaft hole provided in the support member is partially enlarged according to the outer diameter, and the inner diameter of the recessed portion provided in the swash member is also changed. Thus, the roller may be configured to move up and down along the lower end of the rotating shaft. Moreover, in the said embodiment, although the supporting member 7 was comprised from the upper member R and the lower member S, it is also possible to implement using an integral supporting member, without dividing | segmenting into the upper member R and the lower member S. is there.

本発明に係る圧縮機は、小型で構造が簡単でありながら十分な圧縮機能を発揮することが可能である。前記のようにスワッシュ部材9は外周面に凹溝9gを設けてあり、この凹溝9gにシール部材を嵌着することで圧縮空間20の内壁面との間のシールを十分に確保することができる。これにより、更なる冷媒ガスリークの抑制が期待でき、圧縮効率の高い運転が可能となる。又、スワッシュ部材9の肉厚部9aはフライホイールの役割を果たすので、トルク変動も少なくなる。   The compressor according to the present invention can exhibit a sufficient compression function while being small in size and simple in structure. As described above, the swash member 9 is provided with the concave groove 9g on the outer peripheral surface, and it is possible to sufficiently secure a seal with the inner wall surface of the compression space 20 by fitting the seal member into the concave groove 9g. it can. Thereby, further suppression of refrigerant gas leakage can be expected, and operation with high compression efficiency is possible. Further, since the thick portion 9a of the swash member 9 serves as a flywheel, torque fluctuation is also reduced.

上記実施形態では、カバー板部材21は回転軸5の副軸受け部となる軸孔21aを有しているので、回転軸5の副軸受け用の支持部材を別途設ける必要がなくなり、部品点数の削減と更なる小型化が可能となる。   In the above embodiment, since the cover plate member 21 has the shaft hole 21a that becomes the sub-bearing portion of the rotating shaft 5, it is not necessary to separately provide a supporting member for the sub-bearing of the rotating shaft 5, and the number of parts can be reduced. Further downsizing becomes possible.

尚、上記実施形態では、冷凍機の冷媒回路に使用されて冷媒ガスを圧縮する圧縮機について説明したが、これに限定されずに例えば空気を吸い込んで圧縮するエアーコンプレッサ等にも本発明を有効に適用することができる。   In the above embodiment, the compressor used for the refrigerant circuit of the refrigerator to compress the refrigerant gas has been described. However, the present invention is not limited to this, and the present invention is also effective for an air compressor that sucks and compresses air, for example. Can be applied to.

本発明は、特に冷媒ガスを圧縮して冷凍機等の冷媒回路に供給するための圧縮機として最適に利用することができる。   Especially this invention can be optimally utilized as a compressor for compressing refrigerant gas and supplying it to refrigerant circuits, such as a refrigerator.

本発明に係る圧縮機の実施形態を示すもので、ベーンが押し上げられた状態での概略縦断面図である。1 is a schematic longitudinal sectional view showing a compressor according to an embodiment of the present invention in a state where a vane is pushed up. 本発明に係る圧縮機の実施形態を示すもので、ベーンが押し下げられた状態での概略縦断面図である。1 is a schematic longitudinal sectional view showing a compressor according to an embodiment of the present invention in a state where a vane is pushed down. 本発明に係る圧縮機の実施形態を示す概略横断面図である。1 is a schematic cross-sectional view showing an embodiment of a compressor according to the present invention. 本発明に係る圧縮機の実施形態における要部の分解破断斜視図である。It is an exploded fracture perspective view of an important section in an embodiment of a compressor concerning the present invention. 本発明に係る圧縮機の実施形態におけるスワッシュ部材の斜視図である。It is a perspective view of a swash member in an embodiment of a compressor concerning the present invention. 本発明に係る圧縮機の実施形態におけるスワッシュ部材の回転角度を変えた側面図であり、(a)は肉薄部側から見た側面図、(b)は肉薄部と肉厚部との中間位置から見た側面図、(c)は肉厚部側から見た側面図である。It is the side view which changed the rotation angle of the swash member in embodiment of the compressor which concerns on this invention, (a) is the side view seen from the thin part side, (b) is the intermediate position of a thin part and a thick part The side view seen from (c) is the side view seen from the thick part side.

符号の説明Explanation of symbols

1 密閉容器
2 駆動要素
3 圧縮要素
4 ステータ
5 回転軸
5a 縮径部
5b 取付部
6 ロータ
7 支持部材
7a 上部軸孔
7b 下部軸孔
8 シリンダ
9 スワッシュ部材(圧縮部材)
9d 凹陥部
9e 受け部
10 隙間
11 ベーン
12 吐出バルブ
13 突出部
14 バネ受け部
15 凹陥部
16 ベーンスロット
17 バネ装着孔
18 コイルバネ
19 ローラ
20 吸込配管
21 カバー板部材
22 圧縮空間
23 オイルポンプ
24 吐出配管
25 オイル溜め
DESCRIPTION OF SYMBOLS 1 Airtight container 2 Drive element 3 Compression element 4 Stator 5 Rotating shaft 5a Reduced diameter part 5b Mounting part 6 Rotor 7 Support member 7a Upper shaft hole 7b Lower shaft hole 8 Cylinder 9 Swash member (compression member)
9d recessed portion 9e receiving portion 10 gap 11 vane 12 discharge valve 13 projecting portion 14 spring receiving portion 15 recessed portion 16 vane slot 17 spring mounting hole 18 coil spring 19 roller 20 suction pipe 21 cover plate member 22 compression space 23 oil pump 24 discharge piping 25 Oil sump

Claims (3)

密閉容器内に駆動要素と、この駆動要素により駆動される圧縮要素とが配置され、
前記圧縮要素は前記密閉容器に固定され前記駆動要素のロータに固定した回転軸を貫通させて軸支する支持部材と、この支持部材に固定されて圧縮空間を形成するシリンダと、前記回転軸に同心軸固定されて前記シリンダの圧縮空間内を回転し、上面が前記回転軸を中心として一周すると最も高くなる上死点から最も低くなる下死点を経て上死点に戻る略正弦波形状の傾斜面に形成されていると共に、該上面の中心を通る径方向ラインが水平である圧縮部材と、前記支持部材に設けられたベーンスロットに設けられ、バネによって常時下方に付勢されて下端縁が前記圧縮部材の傾斜面に摺動するよう常時当接して前記圧縮空間内を低圧室と高圧室とに区分するベーンとを備え、
前記低圧室に吸入した流体を前記圧縮部材により圧縮して前記高圧室から吐出する圧縮機であって、
前記回転軸の下部に非回転の円筒状のローラを回転軸に沿って上下動可能に嵌合し、
前記ベーンは、
前記シリンダ内周面に対面する外側縁が前記シリンダの内周面に摺動するよう対面し、
前記外側縁の下端が、前記圧縮部材の上面の外周縁に位置して該上面と摺動するよう対面し、
前記ローラの外周面に対面するベーンの内側縁は、その下端が該ローラの外周面と一体になっていると共に、該下端から上方所定高さ位置までローラの外周面と一体化しており、
前記外側縁の下端から前記内側縁の下端に至る下側縁は、一直線状であって前記ローラの外周面に対して直交状であることにより、前記圧縮部材の上面の外周縁から内周縁に至る上面の半径範囲に亘って当接している、
ことを特徴とする圧縮機。
A drive element and a compression element driven by the drive element are arranged in the sealed container,
The compression element includes a support member for rotatably supporting by penetrating the rotary shaft fixed to the rotor of the drive element is fixed to the closed container, and a cylinder for forming a compression space and is fixed to the support member, the rotary shaft A substantially sinusoidal wave shape that rotates in the compression space of the cylinder and is concentrically fixed to the upper surface, and returns to the top dead center through the bottom dead center that becomes the lowest from the top dead center when the upper surface makes a round around the rotational axis. A compression member having a horizontal radial line passing through the center of the upper surface, and a vane slot provided in the support member. The lower end is always urged downward by a spring . A vane that constantly abuts so that an edge slides on the inclined surface of the compression member and divides the compression space into a low pressure chamber and a high pressure chamber;
A compressor that compresses the fluid sucked into the low-pressure chamber by the compression member and discharges the fluid from the high-pressure chamber;
A non-rotating cylindrical roller is fitted to the lower portion of the rotating shaft so as to be movable up and down along the rotating shaft,
The vane is
The outer edge facing the inner circumferential surface of the cylinder faces so as to slide on the inner circumferential surface of the cylinder,
The lower end of the outer edge faces the outer peripheral edge of the upper surface of the compression member so as to slide with the upper surface,
The inner edge of the vane facing the outer peripheral surface of the roller has a lower end integrated with the outer peripheral surface of the roller, and is integrated with the outer peripheral surface of the roller from the lower end to a predetermined height position,
The lower edge from the lower end of the outer edge to the lower end of the inner edge is straight and perpendicular to the outer peripheral surface of the roller, so that the outer peripheral edge of the upper surface of the compression member is changed to the inner peripheral edge. Abutting over the radius range of the top surface,
A compressor characterized by that.
前記回転軸の下部に縮径部を設けると共に、その縮径部の下端に取付部を設け、
前記圧縮部材の上面中央部に前記支持部材の軸孔と同じ内径を有する凹陥部を設けると共に、その凹陥部の底面に受け部を設け、
この受け部に前記取付部を係止させることで回転軸を圧縮部材に軸着し、
前記回転軸の縮径部と前記圧縮部材の凹陥部との間に生じた隙間、及び回転軸の縮径部と前記支持部材の軸孔との間に生じた隙間を通って前記ローラが回転軸の縮径部に沿って上下動する
ことを特徴とする請求項1に記載の圧縮機。
A reduced diameter portion is provided at the lower portion of the rotating shaft, and an attachment portion is provided at the lower end of the reduced diameter portion,
In addition to providing a concave portion having the same inner diameter as the shaft hole of the support member at the center of the upper surface of the compression member, a receiving portion is provided on the bottom surface of the concave portion,
The rotating shaft is pivotally attached to the compression member by locking the mounting portion to the receiving portion,
The roller rotates through a gap formed between the reduced diameter portion of the rotating shaft and the recessed portion of the compression member, and a gap generated between the reduced diameter portion of the rotating shaft and the shaft hole of the support member. The compressor according to claim 1, wherein the compressor moves up and down along a reduced diameter portion of the shaft.
前記ローラは内径が前記回転軸又は縮径部の外径より大きく形成され、回転軸又は縮径部に対して非接触で上下動する
ことを特徴とする請求項1又は請求項2に記載の圧縮機。
3. The roller according to claim 1, wherein an inner diameter of the roller is larger than an outer diameter of the rotating shaft or the reduced diameter portion, and moves up and down in a non-contact manner with respect to the rotating shaft or the reduced diameter portion. Compressor.
JP2004317966A 2004-11-01 2004-11-01 Compressor Expired - Fee Related JP4663293B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004317966A JP4663293B2 (en) 2004-11-01 2004-11-01 Compressor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004317966A JP4663293B2 (en) 2004-11-01 2004-11-01 Compressor

Publications (2)

Publication Number Publication Date
JP2006125366A JP2006125366A (en) 2006-05-18
JP4663293B2 true JP4663293B2 (en) 2011-04-06

Family

ID=36720334

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004317966A Expired - Fee Related JP4663293B2 (en) 2004-11-01 2004-11-01 Compressor

Country Status (1)

Country Link
JP (1) JP4663293B2 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6088094U (en) * 1983-11-25 1985-06-17 三菱重工業株式会社 fluid compression machinery
JP2004522060A (en) * 2001-06-04 2004-07-22 エルジー エレクトロニクス インコーポレイティド Compressor cylinder assembly
JP2005194956A (en) * 2004-01-08 2005-07-21 Sanyo Electric Co Ltd Compressor

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6088094U (en) * 1983-11-25 1985-06-17 三菱重工業株式会社 fluid compression machinery
JP2004522060A (en) * 2001-06-04 2004-07-22 エルジー エレクトロニクス インコーポレイティド Compressor cylinder assembly
JP2005194956A (en) * 2004-01-08 2005-07-21 Sanyo Electric Co Ltd Compressor

Also Published As

Publication number Publication date
JP2006125366A (en) 2006-05-18

Similar Documents

Publication Publication Date Title
JP5260608B2 (en) Scroll compressor
US7488165B2 (en) Compressor having back pressure vane controlled for improving oil distribution
JP4454318B2 (en) Compressor
JP3874016B2 (en) Rotary compressor
JP4832040B2 (en) Compressor
EP1983197A1 (en) Fluid machine
JP4663293B2 (en) Compressor
JP4779889B2 (en) Rotary compressor
JP4573614B2 (en) Compressor
JP4407253B2 (en) Scroll compressor
JP4573613B2 (en) Compressor
JP4367094B2 (en) Scroll compressor
JP2007002850A5 (en)
JP2006125365A (en) Compressor
US11454239B2 (en) Rotary compressor
US20230383747A1 (en) Scroll compressor
JP3876670B2 (en) Manufacturing method of hermetic compressor
JP2006132347A (en) Compressor
JP2006132348A (en) Compressor
JP2006132346A (en) Compressor
KR20240074140A (en) Rotary compressor with flat muffler
JP2006104947A (en) Compressor
JP2014199017A (en) Compressor
JP2013160147A (en) Scroll compressor
JP2009150304A (en) Hermetic compressor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071017

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100218

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100420

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100615

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101207

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110105

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140114

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees