JP2004522060A - Compressor cylinder assembly - Google Patents

Compressor cylinder assembly Download PDF

Info

Publication number
JP2004522060A
JP2004522060A JP2003502372A JP2003502372A JP2004522060A JP 2004522060 A JP2004522060 A JP 2004522060A JP 2003502372 A JP2003502372 A JP 2003502372A JP 2003502372 A JP2003502372 A JP 2003502372A JP 2004522060 A JP2004522060 A JP 2004522060A
Authority
JP
Japan
Prior art keywords
cylinder
insertion portion
internal space
bearings
cylinder assembly
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003502372A
Other languages
Japanese (ja)
Inventor
キム,ヨン−ジョン
ハ,ジョン−フン
アン,ビュン−ハ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
LG Electronics Inc
Original Assignee
LG Electronics Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by LG Electronics Inc filed Critical LG Electronics Inc
Publication of JP2004522060A publication Critical patent/JP2004522060A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/30Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members
    • F04C18/34Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members
    • F04C18/356Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the outer member
    • F04C18/3568Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the outer member with axially movable vanes

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)
  • Rotary Pumps (AREA)

Abstract

圧縮機のシリンダ組立体が、回転軸(21)の区画板(30)が挿入されて内部に第1、2空間に区画される円筒状の内部空間(W)が形成され、該空間の両方側面に夫々環状に切削形成された突条挿入部(116)が備えられたシリンダ(100)と、中央部に回転軸(21)が嵌合されると共にシリンダの内部空間を覆蓋するようにシリンダの上方側の突条挿入部(116)に挿入、結合される第1ベアリング(160)と、中央部に回転軸(21)が嵌合されると共に、シリンダの内部空間を覆蓋するようにシリンダの下方側の突条挿入部(116)に挿入、結合される第2ベアリング(170)とを具備する。The cylinder assembly of the compressor is formed by inserting the partition plate (30) of the rotating shaft (21) therein to form therein a cylindrical internal space (W) partitioned into first and second spaces. A cylinder (100) provided with a ridge insertion portion (116) formed by cutting into an annular shape on each side surface, and a rotary shaft (21) fitted at the center and a cylinder covered so as to cover the internal space of the cylinder. A first bearing (160) inserted and coupled to the ridge insertion portion (116) on the upper side of the cylinder, a rotary shaft (21) is fitted to the central portion, and the cylinder is covered so as to cover the internal space of the cylinder. And a second bearing (170) that is inserted into and coupled to the ridge insertion portion (116) below.

Description

【0001】
<技術分野>
本発明は、圧縮機のシリンダ組立体に関し、詳しくは、ガスを圧縮するシリンダ及びそれに結合される各ベアリング間の同心度を高めることで、圧縮ガスの漏洩を防止すると共に死体積を低減した圧縮機のシリンダ組立体に関する。
【0002】
<背景技術>
一般に、圧縮機は、ガスを圧縮する機器であって、圧縮機の構成は、通常、所定の内部空間を有する密閉容器及び該密閉容器の内部に装着されて駆動力を発生する電動機構部と、該電動機構部の駆動力の伝達を受けてガスを圧縮する圧縮機構部とを含んで成る。
圧縮機は、ガスを圧縮する圧縮機構部の形態によって、回転式圧縮機、往復動式圧縮機及びスクロール圧縮機など多様な形態に分類される。
【0003】
図1、2、3は、従来の圧縮機の圧縮機構部を示した図である。図1、2、3に図示するように、従来の圧縮機の圧縮機構部は、先ず、円筒状の内部空間Vを形成すると共に、該内部空間Vに夫々連通する吸入流路11及び吐出流路12が備えられたシリンダ組立体Kに回転軸20が挿入される。
【0004】
該回転軸20は、所定長さを有する軸部21の一方側に正弦波形状の波形曲面が形成された区画板30を含む。
従って、回転軸20の軸部21が駆動力を発生させる電動機構部Mに結合されて、区画板30がシリンダ組立体Kの内部空間Wに位置するようになることで、該内部空間Wを第1、2空間13、14に区画させる。
【0005】
シリンダ組立体Kの上下両面に所定厚さ及び所定面積を有するべーン40、41が夫々挿入される。
べーン40、41の両側がシリンダ組立体Kの内側壁及び回転軸20の外周面に夫々接触すると共に、その下面が区画板30の接触面に夫々恒常接触するように弾性支持されて区画板30が回転する。こうして、第1、2空間13、14を夫々吸入領域13a、14a及び圧縮領域13b、14bに転換する。
【0006】
シリンダ組立体Kの両方側面に形成された吐出流路12を夫々開閉することで、第1、2空間13、14の圧縮領域13b、14bで圧縮されたガスを吐出させる開閉手段50が係合されている。
【0007】
シリンダ組立体Kは、図3に示すように、区画板30が挿入されるように円筒状の内部空間Vが備えられたシリンダ10と、該シリンダ10の上部(図面上)に覆蓋結合されて回転軸20を支持する第1ベアリング60と、シリンダ10の下部(図面上)に結合されて回転軸20を支持する第2ベアリング70とを含んで成る。
【0008】
第1、2ベアリング60、70は、円板状に形成された各ベアリング台61、71と、それら円板状のベアリング台61、71の上下面に所定高さを有して突出された環状の支持部62、72と、それら支持部62、72の中央に穿孔形成されて回転軸20に挿入される軸挿入孔63、73と、各ベアリング台61、71の下面及び上面に一体に突成されて、シリンダ10の内部空間Wの内径と相応する外径及び所定高さを有する各結合突起部64、74とを含んで成る。
【0009】
各ベアリング台61、71には、各べーン40、41が挿入されるべーンスロット65、75が夫々切削形成されている。ベーンスロット65、75の各側部は、結合突起部64、74の外周面に対応している。
【0010】
第1、2ベアリングのベアリング台61、71には、吐出流路12が貫通形成され、ベアリング台61、71の側方に吐出孔を開閉する開閉手段50が係合される。
【0011】
第1、2ベアリング60、70のべーンスロット65、75には、べーン40、41が夫々挿入され、それらべーン40、41は、弾性支持手段43により夫々弾性支持される。
【0012】
以下、このように構成された従来の圧縮機の作用を説明する。
先ず、電動機構部Mの駆動力の伝達を受けて回転軸20が回転すると、該回転軸20の回転により該回転軸20に結合された区画板30がシリンダ組立体Kの内部空間Vで回転する。
【0013】
区画板30がシリンダ組立体Kの内部空間Vで回転すると、第1空間13及び第2空間14が、吸入領域13a、14a及び圧縮領域13b、14bに夫々転換されながら、シリンダ10のシリンダ台61、71に夫々貫通形成された吸入流路11が、第1空間13及び第2空間14に連通することで、冷媒ガスが夫々吸入されて圧縮されながら各吐出流路12を通して吐出される。
【0014】
然るに、このような従来の圧縮機においては、シリンダ10の上下両面に当接される第1、2ベアリング60、70の結合突起部64、74がシリンダ10の内部に挿入された構造になっている。従って、第1、2ベアリング60、70とシリンダ10との同心度を一致させ、シリンダ内部空間Vの高温高圧状態のガスの漏洩を防止するために、第1、2ベアリング60、70の結合突起部64、74の厚さが厚く形成する必要がある。然しながら、この場合、死体積となる吐出流路12の経路長が増加し、再膨脹損失が大きくなることで、圧縮効率が低下するという問題がある。
【0015】
<発明の開示>
本発明は、ガスを圧縮するシリンダ及び該シリンダに係合される各ベアリング間の同心度を高めて圧縮ガスの漏洩を防止すると共に、死体積を減少した圧縮機のシリンダ組立体を提供することを目的とする。
【0016】
このような目的を達成するため、本発明に係る圧縮機のシリンダ組立体は、回転軸の区画板が挿入されて内部に第1、2空間に区画される円筒状の内部空間が形成され、該空間の上下両方側面に夫々環状に切削形成された突条挿入部を有するシリンダと、中央部に前記回転軸が嵌合されると共に、前記シリンダの内部空間を覆蓋するように前記シリンダの上方側の前記突条挿入部に挿入、結合される第1ベアリングと、中央部に前記回転軸が嵌合されると共に、前記シリンダの内部空間を覆蓋するように前記シリンダの下方側の前記突条挿入部に挿入、結合される第2ベアリングとを具備する。
【0017】
本発明に係る圧縮機のシリンダ組立体は、回転軸の区画板が挿入されて内部が第1、2空間に区画される円筒状の内部空間が備えられ、その上下両方側面に夫々環状に切削形成された突条挿入部を有するシリンダと、該シリンダの中央に前記回転軸が嵌合されると共に、前記シリンダの内部空間を覆蓋するように前記シリンダの上方側に形成された突条挿入部に挿入、結合される第1ベアリングと、シリンダの中央部に前記回転軸が嵌合されると共に、前記シリンダの内部空間を覆蓋するように前記シリンダの下方側に形成された突条挿入部に挿入、結合される第2ベアリングと、それら第1、2ベアリング間に夫々挿入して結合されて前記回転軸に嵌合されて回転する区画板の回転に従って、前記シリンダの第1、2空間を夫々吸入領域及び圧縮領域に転換する各べーンと、前記第1、2ベアリングと前記べーンとの間に弾力的に結合される弾性支持手段と、前記第1、2ベアリングに切削形成された吐出孔を開閉する開閉手段とを具備する。
【0018】
<好ましい実施の形態>
以下、添付図面を参照して、本発明の実施の形態を説明する。
図4、5、6は、本発明の実施形態による圧縮機のシリンダ組立体を有した圧縮機の圧縮機構部を示している。
【0019】
図4、5、6に示すように、円筒状の内部空間Wが形成され、該内部空間Wに夫々連通して吸入流路111及び吐出流路112が形成され中央縦方向に回転軸20が挿入されることで、シリンダ組立体Rが構成されている。
【0020】
回転軸20は、所定長さを有する軸部21の一方側に正弦波形状の波形曲面の区画板30を含む。
こうして、回転軸20の軸部21が駆動力を発生する電動機構部Mと結合され、内部空間Wを夫々第1及び第2空間113、114に区画するように、区画板30がシリンダ組立体Rの内部空間Wに配置される。
【0021】
シリンダ組立体Rの両方側面に所定厚さ及び所定面積を有するべーン40、41が結合される。
べーン40、41の両方側壁面は、シリンダ組立体Rの内部空間Wの内側壁面と回転軸20の外周面とに夫々接触すると共に、その上下面が区画板30の上下接触面に夫々行き違って接触するように弾性支持される。区画板30が回転することにより、第1、2空間113、114が夫々吸入領域113a、114aと圧縮領域113b、114bとに転換される。
【0022】
シリンダ組立体Rの両方側面には、吐出流路112を夫々開閉しながら第1、2空間113、114の圧縮領域113b、114bで圧縮されたガスを吐出させる開閉手段50が結合される。
【0023】
シリンダ組立体Rは、図6に示すように、シリンダ体115の内部に区画板30が挿入されるように円筒状の内部空間Wが切削形成され、そのシリンダ体115の上下両側壁面が所定高さを有するよう切削されることで、突条挿入部116が夫々形成されたシリンダ110と、シリンダ突条挿入部116の上下面に係合されるように各々外径及び所定厚さを有して形成された第1及び第2ベアリング160、170とを含んで成る。
【0024】
それら第1及び第2ベアリング160、170は、中央に穿孔形成された各軸挿入孔163、173により回転軸20に嵌合される環状の各支持部162、172と、それら支持部162、172の下方及び上方の水平方向に夫々連続して拡張形成された円板状の各ベアリング台161、171と、それらベアリング台161、171に夫々切削形成されて後述する各べーン40、41が挿入される各べーンスロット164、174と、から構成されている。
【0025】
即ち、シリンダ110の突条挿入部116の内径を内部空間Wの内径より大きく形成することで、シリンダ110の上下両面の突条挿入部116に第1及び第2ベアリング台161、171が夫々挿入、固定されるようになっている。
【0026】
以下、シリンダ組立体Rの組立を説明する。
第1ベアリング160は、シリンダ110の内部空間Wに、区画板30が嵌合された回転軸20に挿入されるとき、先ず、その軸挿入孔163が挿入された後、シリンダ110の内部空間Wの上方側を覆蓋するように突条挿入部116に挿入されて固定される。
【0027】
次いで、第2ベアリング170が軸挿入孔173により回転軸20に挿入されると共に、シリンダ110の内部空間Wの下方側を覆蓋するように突条挿入部116に挿入されて固定される。
【0028】
このとき、第1、2ベアリング160、170のベアリング台161、171に吐出流路112が夫々切削形成され、その側方に該吐出流路112を開閉する開閉手段50としてのバルブが係合されている。
【0029】
シリンダ110の一方側壁には、ガスが吸入される吸入流路111が切削形成されている。
第1、2ベアリング160、170のべーンスロット164、174には、各べーン40、41が夫々挿入され、それらべーン40、41は、弾性支持手段43としてのコイル又はスプリングにより弾性支持される。
【0030】
以下、本発明に係る圧縮機のシリンダ組立体の作用、効果を説明する。
先ず、電動機構部Mの駆動力の伝達を受けて回転軸20が回転すると、該回転軸20の回転により回転軸20の区画板30がシリンダ組立体Rの内部空間Wで回転する。
【0031】
次いで、区画板30の回転により第1空間113と第2空間114との各吸入流路111で冷媒ガスが夫々吸入されて圧縮されながら各開閉手段50としてのバルブが動作することにより吐出流路112を通して吐出される。
【0032】
本発明は、シリンダ110の内部空間Wを両方側で覆蓋すると共に、回転軸20に嵌合された第1ベアリング160及び第2ベアリング170がシリンダ110の両側壁面に形成された突条挿入部116に挿入、結合されているため、シリンダ110の内部空間Wで圧縮される高温高圧状態のガスが、シリンダ110と第1、2ベアリング160、170間から漏洩されることを防止すると共に、シリンダ110と第1、2ベアリング160、170との結合時の同心度を正確に維持し得る。
【0033】
更に、第1、2ベアリング160、170がシリンダ110の突条挿入部116に夫々挿入された状態で結合されるため、第1、2ベアリング160、170の厚さを相対的に減らし、それら第1、2ベアリング160、170に貫通形成された吐出流路112の容積を相対的に減少し得る。
【0034】
以上説明したように、本発明に係る圧縮機のシリンダ組立体においては、シリンダの内部空間で圧縮される高温高圧状態のガスの漏洩を防止すると共に、前記シリンダと第1、2ベアリングとの同心度を高度にさせることで、圧縮性能を高上させて構成部品の動作を円滑にし、且つ、死体積を減少させて再膨脹損失を減らすことで、圧縮効率を一層向上し得るという効果がある。
【図面の簡単な説明】
【図1】
従来の圧縮機の圧縮機構部を示した縦断面図である。
【図2】
従来の圧縮機の圧縮機構部を示した平面図である。
【図3】
従来の圧縮機の圧縮機構部を示した分解斜視図である。
【図4】
本発明に係る圧縮機のシリンダ組立体の圧縮機構部を示した部分縦断面図である。
【図5】
本発明に係る圧縮機のシリンダ組立体の圧縮機構部を示した平面図である。
【図6】
本発明に係る圧縮機のシリンダ組立体の圧縮機の構部を分解して示した斜視図である。
[0001]
<Technical field>
The present invention relates to a cylinder assembly of a compressor, and more particularly, to a compressor in which leakage of compressed gas is prevented and dead volume is reduced by increasing concentricity between a cylinder for compressing gas and bearings connected to the cylinder. Machine cylinder assembly.
[0002]
<Background technology>
In general, a compressor is a device that compresses gas, and the configuration of the compressor generally includes an airtight container having a predetermined internal space and an electric mechanism unit that is mounted inside the airtight container and generates a driving force. And a compression mechanism for compressing gas by receiving the transmission of the driving force of the electric mechanism.
Compressors are classified into various types, such as rotary compressors, reciprocating compressors, and scroll compressors, depending on the type of a compression mechanism that compresses gas.
[0003]
1, 2 and 3 are views showing a compression mechanism of a conventional compressor. As shown in FIGS. 1, 2, and 3, a compression mechanism of a conventional compressor first forms a cylindrical internal space V, and further includes a suction flow path 11 and a discharge flow path communicating with the internal space V, respectively. The rotating shaft 20 is inserted into the cylinder assembly K provided with the passage 12.
[0004]
The rotation shaft 20 includes a partition plate 30 having a sinusoidal waveform curved surface formed on one side of a shaft portion 21 having a predetermined length.
Therefore, the shaft portion 21 of the rotating shaft 20 is coupled to the electric mechanism M that generates the driving force, and the partition plate 30 is positioned in the internal space W of the cylinder assembly K. It is partitioned into first and second spaces 13 and 14.
[0005]
The vanes 40 and 41 having a predetermined thickness and a predetermined area are inserted into both upper and lower surfaces of the cylinder assembly K, respectively.
The vanes 40 and 41 are elastically supported so that both sides thereof come into contact with the inner side wall of the cylinder assembly K and the outer peripheral surface of the rotary shaft 20, respectively, and the lower surfaces thereof are elastically supported so as to be in constant contact with the contact surfaces of the partition plate 30, respectively. The plate 30 rotates. Thus, the first and second spaces 13 and 14 are converted into the suction areas 13a and 14a and the compression areas 13b and 14b, respectively.
[0006]
By opening and closing the discharge passages 12 formed on both side surfaces of the cylinder assembly K, the opening and closing means 50 for discharging the gas compressed in the compression regions 13b and 14b of the first and second spaces 13 and 14 is engaged. Have been.
[0007]
As shown in FIG. 3, the cylinder assembly K is coupled to a cylinder 10 having a cylindrical internal space V so that the partition plate 30 is inserted therein, and a lid is attached to an upper portion (on the drawing) of the cylinder 10. It includes a first bearing 60 supporting the rotating shaft 20 and a second bearing 70 coupled to a lower portion (on the drawing) of the cylinder 10 and supporting the rotating shaft 20.
[0008]
The first and second bearings 60, 70 are each formed with a disk-shaped bearing base 61, 71, and a ring-shaped protruding part having a predetermined height on the upper and lower surfaces of the disk-shaped bearing bases 61, 71. Support portions 62, 72, shaft insertion holes 63, 73 formed in the centers of the support portions 62, 72 and inserted into the rotary shaft 20, and projecting integrally with the lower and upper surfaces of the bearing tables 61, 71. Each of the connecting protrusions 64 and 74 has an outer diameter corresponding to the inner diameter of the internal space W of the cylinder 10 and a predetermined height.
[0009]
Vane slots 65 and 75 into which the vanes 40 and 41 are inserted are formed in the bearing tables 61 and 71, respectively. Each side of the vane slots 65, 75 corresponds to the outer peripheral surface of the coupling projection 64, 74.
[0010]
The discharge passage 12 is formed through the bearing bases 61 and 71 of the first and second bearings, and the opening / closing means 50 for opening and closing the discharge hole is engaged with the side of the bearing bases 61 and 71.
[0011]
The vanes 40 and 41 are inserted into the vane slots 65 and 75 of the first and second bearings 60 and 70, respectively, and the vanes 40 and 41 are elastically supported by elastic support means 43, respectively.
[0012]
Hereinafter, the operation of the conventional compressor configured as described above will be described.
First, when the rotation shaft 20 rotates by receiving the transmission of the driving force of the electric mechanism M, the partition plate 30 coupled to the rotation shaft 20 rotates in the internal space V of the cylinder assembly K by the rotation of the rotation shaft 20. I do.
[0013]
When the partition plate 30 rotates in the internal space V of the cylinder assembly K, the first space 13 and the second space 14 are converted into the suction regions 13a, 14a and the compression regions 13b, 14b, respectively, while the cylinder table 61 of the cylinder 10 is being moved. , 71 are communicated with the first space 13 and the second space 14, respectively, so that the refrigerant gas is sucked and discharged through the respective discharge channels 12 while being compressed.
[0014]
However, such a conventional compressor has a structure in which the coupling projections 64, 74 of the first and second bearings 60, 70 abutting on the upper and lower surfaces of the cylinder 10 are inserted into the cylinder 10. I have. Accordingly, in order to make the concentricity of the first and second bearings 60 and 70 and the cylinder 10 coincide with each other and to prevent the leakage of gas in a high-temperature and high-pressure state in the cylinder internal space V, the coupling projections of the first and second bearings 60 and 70 are formed. The portions 64 and 74 need to be formed thicker. However, in this case, there is a problem in that the path length of the discharge flow path 12 that becomes a dead volume increases, and the re-expansion loss increases, thereby lowering the compression efficiency.
[0015]
<Disclosure of the Invention>
An object of the present invention is to provide a cylinder assembly for a compressor that increases concentricity between a cylinder for compressing gas and bearings engaged with the cylinder to prevent leakage of compressed gas and reduces dead volume. With the goal.
[0016]
In order to achieve such an object, a cylinder assembly of a compressor according to the present invention has a cylindrical inner space defined by inserting a partition plate of a rotating shaft into first and second spaces therein. A cylinder having a ridge insertion portion formed by cutting into an annular shape on both upper and lower side surfaces of the space, and the rotation shaft being fitted to a central portion, and an upper portion of the cylinder being covered so as to cover an inner space of the cylinder. A first bearing that is inserted and coupled to the ridge insertion portion on the side, and the rotation shaft is fitted to a central portion and the ridge on the lower side of the cylinder so as to cover an internal space of the cylinder. A second bearing inserted into and coupled to the insertion portion.
[0017]
The cylinder assembly of the compressor according to the present invention is provided with a cylindrical internal space into which the partition plate of the rotating shaft is inserted and the inside of which is partitioned into first and second spaces, and both upper and lower side surfaces of which are annularly cut. A cylinder having a formed ridge insertion portion, and a ridge insertion portion formed on an upper side of the cylinder so as to cover the internal space of the cylinder while the rotating shaft is fitted to the center of the cylinder. And a first bearing to be inserted and coupled to the center portion of the cylinder, the rotary shaft being fitted into the first bearing, and a ridge insertion portion formed on the lower side of the cylinder so as to cover an internal space of the cylinder. The first and second spaces of the cylinder are inserted and coupled with each other, and the first and second spaces of the cylinder are inserted according to the rotation of the partition plate which is inserted and coupled between the first and second bearings and is fitted and rotated on the rotating shaft. Inhalation area and Each vane converting to a compression zone; elastic support means resiliently coupled between the first and second bearings and the vane; and discharge holes cut and formed in the first and second bearings. Opening / closing means for opening / closing.
[0018]
<Preferred embodiment>
Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings.
FIGS. 4, 5, and 6 show a compression mechanism of a compressor having a compressor cylinder assembly according to an embodiment of the present invention.
[0019]
As shown in FIGS. 4, 5, and 6, a cylindrical internal space W is formed, and a suction channel 111 and a discharge channel 112 are formed in communication with the internal space W, respectively. The cylinder assembly R is configured by being inserted.
[0020]
The rotating shaft 20 includes a partition plate 30 having a sinusoidal waveform on one side of a shaft portion 21 having a predetermined length.
Thus, the partition plate 30 is connected to the cylinder assembly so that the shaft portion 21 of the rotating shaft 20 is coupled to the electric mechanism portion M that generates the driving force, and partitions the internal space W into the first and second spaces 113 and 114, respectively. It is arranged in the internal space W of R.
[0021]
The vanes 40 and 41 having a predetermined thickness and a predetermined area are connected to both side surfaces of the cylinder assembly R.
Both side wall surfaces of the vanes 40 and 41 are in contact with the inner wall surface of the internal space W of the cylinder assembly R and the outer peripheral surface of the rotating shaft 20, respectively, and the upper and lower surfaces thereof respectively correspond to the upper and lower contact surfaces of the partition plate 30. It is elastically supported so that it comes in contact with the wrong way. As the partition plate 30 rotates, the first and second spaces 113 and 114 are converted into suction areas 113a and 114a and compression areas 113b and 114b, respectively.
[0022]
Opening / closing means 50 for discharging the gas compressed in the compression regions 113b and 114b of the first and second spaces 113 and 114 while opening and closing the discharge passage 112 respectively is connected to both side surfaces of the cylinder assembly R.
[0023]
As shown in FIG. 6, in the cylinder assembly R, a cylindrical internal space W is cut and formed so that the partition plate 30 is inserted into the cylinder body 115, and upper and lower side walls of the cylinder body 115 have predetermined heights. By being cut so as to have a protrusion, the protrusion insertion portion 116 has an outer diameter and a predetermined thickness so as to be engaged with the upper and lower surfaces of the cylinder 110 and the cylinder protrusion insertion portion 116, respectively. And the first and second bearings 160 and 170 formed.
[0024]
The first and second bearings 160 and 170 are formed by annular support portions 162 and 172 fitted to the rotating shaft 20 by shaft insertion holes 163 and 173 formed in the center, and the support portions 162 and 172. Each of the disk-shaped bearing bases 161 and 171 which are continuously formed in the horizontal direction above and below the lower side and the respective vanes 40 and 41 which are cut and formed on the bearing bases 161 and 171 respectively and which will be described later. And each of the vane slots 164 and 174 to be inserted.
[0025]
That is, by forming the inner diameter of the protrusion insertion portion 116 of the cylinder 110 larger than the inner diameter of the internal space W, the first and second bearing bases 161 and 171 are inserted into the protrusion insertion portions 116 on both the upper and lower surfaces of the cylinder 110, respectively. , Is fixed.
[0026]
Hereinafter, the assembly of the cylinder assembly R will be described.
When the first bearing 160 is inserted into the internal space W of the cylinder 110 on the rotary shaft 20 into which the partition plate 30 is fitted, first, the shaft insertion hole 163 is inserted, and then the internal space W of the cylinder 110 is inserted. Is inserted into and fixed to the ridge insertion portion 116 so as to cover the upper side.
[0027]
Next, the second bearing 170 is inserted into the rotating shaft 20 through the shaft insertion hole 173, and is also inserted and fixed into the ridge insertion portion 116 so as to cover the lower side of the internal space W of the cylinder 110.
[0028]
At this time, the discharge channel 112 is cut and formed in the bearing bases 161 and 171 of the first and second bearings 160 and 170, and a valve as the opening / closing means 50 for opening and closing the discharge channel 112 is engaged with the side. ing.
[0029]
On one side wall of the cylinder 110, a suction passage 111 for sucking gas is cut and formed.
The vanes 40, 41 are inserted into the vane slots 164, 174 of the first and second bearings 160, 170, respectively, and the vanes 40, 41 are elastically supported by coils or springs as elastic support means 43. Is done.
[0030]
Hereinafter, the operation and effect of the cylinder assembly of the compressor according to the present invention will be described.
First, when the rotation shaft 20 rotates by receiving the transmission of the driving force of the electric mechanism M, the partition plate 30 of the rotation shaft 20 rotates in the internal space W of the cylinder assembly R due to the rotation of the rotation shaft 20.
[0031]
Next, by the rotation of the partition plate 30, the refrigerant gas is sucked and compressed in the respective suction passages 111 of the first space 113 and the second space 114, and the valves as the opening / closing means 50 operate while being compressed. Discharged through 112.
[0032]
According to the present invention, the inner space W of the cylinder 110 is covered on both sides, and the first bearing 160 and the second bearing 170 fitted to the rotary shaft 20 are formed on both side wall surfaces of the cylinder 110 by the ridge insertion portions 116. To prevent the gas in the high-temperature and high-pressure state compressed in the internal space W of the cylinder 110 from leaking from between the cylinder 110 and the first and second bearings 160 and 170, and And the first and second bearings 160 and 170 can accurately maintain concentricity at the time of coupling.
[0033]
Furthermore, since the first and second bearings 160 and 170 are connected to each other while being inserted into the ridge insertion portion 116 of the cylinder 110, the thickness of the first and second bearings 160 and 170 is relatively reduced, and The volume of the discharge channel 112 formed through the first and second bearings 160 and 170 may be relatively reduced.
[0034]
As described above, in the cylinder assembly of the compressor according to the present invention, the leakage of the gas in the high-temperature and high-pressure state compressed in the internal space of the cylinder is prevented, and the cylinder and the first and second bearings are concentric. By increasing the degree of compression, the compression performance is enhanced, the operation of the component parts is smoothed, and the dead volume is reduced to reduce the re-expansion loss, so that the compression efficiency can be further improved. .
[Brief description of the drawings]
FIG.
It is a longitudinal section showing the compression mechanism part of the conventional compressor.
FIG. 2
It is the top view which showed the compression mechanism part of the conventional compressor.
FIG. 3
It is the disassembled perspective view which showed the compression mechanism part of the conventional compressor.
FIG. 4
FIG. 2 is a partial vertical sectional view showing a compression mechanism of a cylinder assembly of the compressor according to the present invention.
FIG. 5
FIG. 3 is a plan view showing a compression mechanism of a cylinder assembly of the compressor according to the present invention.
FIG. 6
It is the perspective view which decomposed | disassembled and showed the structural part of the compressor of the cylinder assembly of the compressor which concerns on this invention.

Claims (8)

回転軸の区画板が挿入されて内部に第1及び第2空間に区画される円筒状の内部空間が形成され、該空間の両方側面に夫々環状に切削形成された突条挿入部を有するシリンダと、
中央部に前記回転軸が嵌合されると共に、前記シリンダの内部空間を覆蓋するように前記シリンダの上方側の前記突条挿入部に挿入、結合される第1ベアリングと、
中央部に前記回転軸が嵌合されると共に、前記シリンダの内部空間を覆蓋するように前記シリンダの下方側の前記突条挿入部に挿入、結合される第2ベアリングとを具備する圧縮機のシリンダ組立体。
A cylinder having a cylindrical internal space formed therein into which a partition plate of a rotating shaft is inserted to be partitioned into a first space and a second space, and a ridge insertion portion formed in both sides of the space by annular cutting. When,
A first bearing that is inserted into and coupled to the ridge insertion portion on the upper side of the cylinder so that the rotation shaft is fitted to a central portion and covers the internal space of the cylinder;
And a second bearing inserted and coupled to the protrusion insertion portion on the lower side of the cylinder so as to cover the internal space of the cylinder while the rotation shaft is fitted to a central portion. Cylinder assembly.
前記第1、2ベアリングの外径と前記シリンダの突条挿入部の内径とが相互相応するように形成されたことを特徴とする請求項1に記載の圧縮機のシリンダ組立体。2. The cylinder assembly of claim 1, wherein an outer diameter of the first and second bearings and an inner diameter of the ridge insertion portion of the cylinder correspond to each other. 3. 前記シリンダの突条挿入部の内径は、前記シリンダの内部空間の径より大きく形成されたことを特徴とする請求項1に記載の圧縮機のシリンダ組立体。The cylinder assembly according to claim 1, wherein an inner diameter of the protrusion insertion portion of the cylinder is formed larger than a diameter of an internal space of the cylinder. 回転軸の区画板が挿入されて内部が第1、2空間に区画される円筒状の内部空間が備えられ、上下両方側面に夫々環状に切削形成された突条挿入部を有するシリンダと、
該シリンダの中央部に前記回転軸が嵌合されると共に、前記シリンダの内部空間を覆蓋するように前記シリンダの上方側に形成された突条挿入部に挿入、結合される第1ベアリングと、
シリンダの中央部に前記回転軸が嵌合されると共に、前記シリンダの内部空間を覆蓋するように前記シリンダの下方側に形成された突条挿入部に挿入、結合される第2ベアリングと、
それら第1、2ベアリング間に夫々挿入して結合され、前記回転軸に嵌合されて回転する区画板の回転に従って、前記シリンダの第1、2空間を夫々吸入領域及び圧縮領域に転換する各べーンと、
前記第1、2ベアリングと前記べーンとの間に弾力的に結合される弾性支持手段と、
前記第1、2ベアリングに切削形成された吐出孔を開閉する開閉手段とを具備する圧縮機のシリンダ組立体。
A cylinder having a cylindrical inner space into which a partition plate of the rotating shaft is inserted and the inside of which is partitioned into first and second spaces, and having a ridge insertion portion formed by cutting in an annular shape on both upper and lower sides,
A first bearing inserted and coupled to a ridge insertion portion formed on an upper side of the cylinder so that the rotation shaft is fitted to a central portion of the cylinder and covers an internal space of the cylinder;
A second bearing inserted and coupled to a ridge insertion portion formed on a lower side of the cylinder so that the rotation shaft is fitted to a central portion of the cylinder and covers an internal space of the cylinder;
Each of the first and second bearings is inserted and coupled between the first and second bearings, and converts the first and second spaces of the cylinder into a suction area and a compression area, respectively, according to the rotation of the partition plate that rotates while being fitted to the rotating shaft. With the vane,
Elastic support means resiliently coupled between the first and second bearings and the vane;
A compressor cylinder assembly comprising: opening and closing means for opening and closing a discharge hole cut and formed in the first and second bearings.
前記第1、2ベアリングの外径と前記シリンダの突条挿入部の内径とは、相互相応するように形成されたことを特徴とする請求項4に記載の圧縮機のシリンダ組立体。5. The cylinder assembly of claim 4, wherein an outer diameter of the first and second bearings and an inner diameter of the protrusion insertion portion of the cylinder correspond to each other. 6. 前記シリンダの突条挿入部の内径は、前記シリンダの内部空間の外径より大きく形成されたことを特徴とする請求項4に記載の圧縮機のシリンダ組立体。The cylinder assembly of a compressor according to claim 4, wherein an inner diameter of the protrusion insertion portion of the cylinder is formed to be larger than an outer diameter of an internal space of the cylinder. 前記弾性支持手段は、圧縮コイルスプリングであることを特徴とする請求項4に記載の圧縮機のシリンダ組立体。The cylinder assembly according to claim 4, wherein the elastic supporting means is a compression coil spring. 前記弾性支持手段は、板スプリングであることを特徴とする請求項4に記載の圧縮機のシリンダ組立体。The cylinder assembly according to claim 4, wherein the elastic supporting means is a leaf spring.
JP2003502372A 2001-06-04 2002-06-03 Compressor cylinder assembly Pending JP2004522060A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2001-0031106A KR100417584B1 (en) 2001-06-04 2001-06-04 Cylinder assembly of compressor
PCT/KR2002/001052 WO2002099282A1 (en) 2001-06-04 2002-06-03 Cylinder assembly of compressor

Publications (1)

Publication Number Publication Date
JP2004522060A true JP2004522060A (en) 2004-07-22

Family

ID=19710355

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003502372A Pending JP2004522060A (en) 2001-06-04 2002-06-03 Compressor cylinder assembly

Country Status (7)

Country Link
US (1) US20030138340A1 (en)
EP (1) EP1392979A1 (en)
JP (1) JP2004522060A (en)
KR (1) KR100417584B1 (en)
BR (1) BR0205518A (en)
CA (1) CA2420146A1 (en)
WO (1) WO2002099282A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006125366A (en) * 2004-11-01 2006-05-18 Sanyo Electric Co Ltd Compressor

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100375845C (en) * 2003-06-17 2008-03-19 乐金电子(天津)电器有限公司 Method for machining baffle slot of compressor
CN100434712C (en) * 2004-06-09 2008-11-19 乐金电子(天津)电器有限公司 Antileaking structure for refrigerant gas for closed-compressor
CN100455801C (en) * 2004-06-09 2009-01-28 乐金电子(天津)电器有限公司 Air leakage preventing device for closed compressor
JP2006097629A (en) * 2004-09-30 2006-04-13 Sanyo Electric Co Ltd Compressor
TWI363140B (en) * 2004-09-30 2012-05-01 Sanyo Electric Co Compressor

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2853853A (en) * 1954-11-09 1958-09-30 Richard H Ford Coaxial combustion products turbine
FR1458112A (en) * 1965-02-04 1966-03-04 Rotary positive displacement pump
US4047859A (en) * 1976-08-16 1977-09-13 Chandler Evans Inc Axial vane pump with non-rotating vanes
JPS54108914A (en) * 1978-02-15 1979-08-27 Mitsubishi Electric Corp Volumetric compressor
DE3418708A1 (en) * 1983-05-21 1984-11-22 Sine Pumps N.V., Curacao, Niederländische Antillen Pump
JPS6460791A (en) * 1987-08-31 1989-03-07 Nippon Denso Co Compressor
JPH0192597A (en) * 1987-10-02 1989-04-11 Nippon Denso Co Ltd Compressor
CN1430705A (en) * 2000-04-25 2003-07-16 Lg电子株式会社 Compressor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006125366A (en) * 2004-11-01 2006-05-18 Sanyo Electric Co Ltd Compressor
JP4663293B2 (en) * 2004-11-01 2011-04-06 三洋電機株式会社 Compressor

Also Published As

Publication number Publication date
US20030138340A1 (en) 2003-07-24
CA2420146A1 (en) 2002-12-12
WO2002099282A1 (en) 2002-12-12
KR20020094240A (en) 2002-12-18
KR100417584B1 (en) 2004-02-05
EP1392979A1 (en) 2004-03-03
BR0205518A (en) 2003-07-08

Similar Documents

Publication Publication Date Title
JP4242661B2 (en) Rotary compressor
US8337185B2 (en) Rotary compressor having an oil separation plate therein
US6881041B2 (en) Compressor within motor rotor
JP2007255332A (en) Compressor
WO2003044367A1 (en) Compressor having oil returning apparatus
JP2004522060A (en) Compressor cylinder assembly
US6893241B2 (en) Compressor
US20060177336A1 (en) Dual-piston valve for orbiting vane compressors
KR100414294B1 (en) Vane for compressor
KR100436271B1 (en) Rotary compprersor
JP2018009488A (en) Rotary Compressor
KR20150081142A (en) A rotary compressor
KR100524791B1 (en) Hermetic compressor
KR20110055249A (en) Small sized rotary compressor
WO2005008070A1 (en) Compressor with reduced pressure pulsation and noise
KR100438624B1 (en) Apparatus for discharge the gas in compressor
US6912871B2 (en) Structure for reducing refrigerant flow loss in compressor
AU2002303021A1 (en) Cylinder assembly of compressor
KR100575837B1 (en) Supported device for vane in hermetic compressor
KR100527585B1 (en) Cylinder fixing structure of reciprocating compressor and assembling method of the same
KR100438623B1 (en) Vane of compressor
KR20010107106A (en) Structure for supporting vane in compressor
JP2006132346A (en) Compressor
KR20040039757A (en) Structure for support a vane in compressor
KR20030057033A (en) Structure for reducing loss of friction in compressor

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060912

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20061211

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20061219

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070508