JP2006097631A - Compressor - Google Patents

Compressor Download PDF

Info

Publication number
JP2006097631A
JP2006097631A JP2004286716A JP2004286716A JP2006097631A JP 2006097631 A JP2006097631 A JP 2006097631A JP 2004286716 A JP2004286716 A JP 2004286716A JP 2004286716 A JP2004286716 A JP 2004286716A JP 2006097631 A JP2006097631 A JP 2006097631A
Authority
JP
Japan
Prior art keywords
compression
pressure
space
cylinder
sealed container
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2004286716A
Other languages
Japanese (ja)
Inventor
Takehiro Nishikawa
剛弘 西川
Kosuke Ogasawara
弘丞 小笠原
Akihiro Suda
章博 須田
Masayuki Hara
正之 原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2004286716A priority Critical patent/JP2006097631A/en
Priority to TW094129043A priority patent/TWI363140B/en
Priority to EP05108215A priority patent/EP1647714A3/en
Priority to US11/219,915 priority patent/US7381040B2/en
Priority to CN2008102152200A priority patent/CN101372965B/en
Priority to KR1020050090894A priority patent/KR20060051788A/en
Publication of JP2006097631A publication Critical patent/JP2006097631A/en
Priority to US11/808,842 priority patent/US7488165B2/en
Priority to US11/808,841 priority patent/US20070243093A1/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Rotary Pumps (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To smoothly supply an oil to sliding parts such as a compression element in a compressor in which the compression element is disposed on the upper side of a drive element. <P>SOLUTION: The compression element 3 comprises a cylinder 78 in which a compression space 21 is formed, a suction port 27 and a discharge port 28 communicating with the compression space 21 in the cylinder 78, the compression member 89 having one surface crossing the axial direction of the rotating shaft continuously tilted between a top dead center and a bottom dead center, disposed in the cylinder 78 and rotated, and compressing a fluid (refrigerant) sucked from the suction port 27 and discharging it from the discharge port 28 into the closed container 1, and a vane 11 disposed between the suction port 27 and the discharge port 28, abutting on one surface 93 of the compression member 89, and dividing the compression space 21 in the cylinder 78 into a low pressure chamber LR and a high pressure chamber HR. The compression element 3 is disposed on the upper side of the drive element 2, and the oil is supplied from an oil reservoir 36 at the inside lower part of a closed container 1 to the compression element 3 by an oil pump 40. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、冷媒や空気などの流体を圧縮して吐出する圧縮機に関するものである。   The present invention relates to a compressor that compresses and discharges fluid such as refrigerant and air.

従来より例えば冷凍機においては圧縮機を用いて冷媒を圧縮し、回路内を循環させる方式が採られている。この場合の圧縮機の方式としては、回転式圧縮機と称されるロータリ圧縮機(例えば、特許文献1参照。)やスクロール圧縮機、スクリュー圧縮機などがある。   Conventionally, for example, a refrigerator employs a method of compressing a refrigerant using a compressor and circulating the refrigerant in a circuit. As a compressor system in this case, there are a rotary compressor called a rotary compressor (see, for example, Patent Document 1), a scroll compressor, a screw compressor, and the like.

上記ロータリ圧縮機は構造が比較的簡単で生産コストが安価である利点があるものの、振動とトルク変動が大きくなる問題がある。また、スクロール圧縮機やスクリュー圧縮機はトルク変動は小さいものの、加工性が悪く、コストが高騰する問題があった。   Although the rotary compressor has an advantage that the structure is relatively simple and the production cost is low, there is a problem that vibration and torque fluctuation are increased. Moreover, although the scroll compressor and the screw compressor have small torque fluctuations, there is a problem that the processability is poor and the cost is increased.

そこで、シリンダ内に回転する圧縮部材としての斜板を設け、この斜板の上下に構成される圧縮空間をベーンで区画して流体を圧縮する方式も開発されている(例えば、特許文献2参照。)。係る方式の圧縮機によれば、構造比較的簡単にして振動の少ない圧縮機を構成できる利点がある。
特開平5−99172号公報 特表2003−532008号公報
Therefore, a system has been developed in which a swash plate is provided as a compression member that rotates in a cylinder, and a fluid is compressed by dividing a compression space formed above and below the swash plate with vanes (see, for example, Patent Document 2). .) According to the compressor of this type, there is an advantage that a compressor having a relatively simple structure and less vibration can be configured.
JP-A-5-99172 Special table 2003-532008 gazette

しかしながら、上記特許文献2のような構造の場合、シリンダ内全域において斜板の上下で高圧室と低圧室とが隣接するかたちとなるため、高低圧差が大きくなり、冷媒リークによる効率悪化が問題となる。   However, in the case of the structure as described in Patent Document 2, since the high pressure chamber and the low pressure chamber are adjacent to each other in the upper and lower portions of the swash plate in the entire area of the cylinder, the difference between the high and low pressure becomes large, and the efficiency deterioration due to the refrigerant leak is a problem. Become.

また、特許文献2のような構造の圧縮機においても、従来の特許文献1の圧縮機と同様に密閉容器内下部にオイル溜めが構成され、当該オイル溜めからオイルポンプにより圧縮要素にオイルを供給するものとされていたため、例えば、駆動要素の上側に圧縮要素を配置するなど、圧縮要素をオイル溜めから離れた位置に設けた場合、オイルポンプによる給油が困難となり、給油が不足する問題が生じていた。   Also, in the compressor having the structure as in Patent Document 2, an oil reservoir is formed in the lower part of the hermetic container as in the conventional compressor of Patent Document 1, and oil is supplied from the oil reservoir to the compression element by an oil pump. Therefore, for example, when the compression element is provided at a position away from the oil reservoir, such as when the compression element is disposed above the drive element, it is difficult to supply oil by the oil pump, resulting in a problem of insufficient oil supply. It was.

本発明は、係る従来の技術的課題を解決するために成されたものであり、圧縮要素を駆動要素の上側に配置した圧縮機において、圧縮要素の摺動部等へのオイル供給を円滑に行うことを目的とする。   The present invention has been made to solve the conventional technical problem, and in a compressor in which a compression element is arranged on the upper side of a drive element, oil supply to a sliding portion or the like of the compression element is smoothly performed. The purpose is to do.

本発明の圧縮機は、密閉容器内に収納された駆動要素及びこの駆動要素の回転軸により駆動される圧縮要素とを備え、この圧縮要素は、内部に圧縮空間が構成されるシリンダと、このシリンダ内の圧縮空間に連通する吸込ポート及び吐出ポートと、回転軸の軸方向に交差する一面が上死点と下死点の間で連続して傾斜すると共に、シリンダ内に配置されて回転し、吸込ポートから吸い込まれた流体を圧縮して吐出ポートより吐出する圧縮部材と、吸込ポートと吐出ポート間に配置されて圧縮部材の一面に当接し、シリンダ内の圧縮空間を低圧室と高圧室とに区画するベーンとから構成され、圧縮要素を駆動要素の上側に配置し、密閉容器内下部のオイル溜めからオイルポンプにより圧縮要素にオイルを供給するものである。   The compressor of the present invention includes a drive element housed in a hermetically sealed container and a compression element driven by a rotation shaft of the drive element. The compression element includes a cylinder in which a compression space is formed, A suction port and a discharge port that communicate with the compression space in the cylinder, and a surface that intersects the axial direction of the rotation axis incline continuously between the top dead center and the bottom dead center, and are arranged in the cylinder and rotate. A compression member that compresses the fluid sucked from the suction port and discharges it from the discharge port, and is disposed between the suction port and the discharge port and abuts against one surface of the compression member, and the compression space in the cylinder is divided into a low pressure chamber and a high pressure chamber. The compression element is arranged on the upper side of the drive element, and oil is supplied to the compression element by an oil pump from the oil reservoir in the lower part of the sealed container.

請求項2の発明の圧縮機は、上記発明において回転軸の軸受を、圧縮要素の上側及び/又は下側と、駆動要素の下側に設けたものである。   According to a second aspect of the present invention, there is provided the compressor according to the second aspect, wherein the rotary shaft bearings are provided on the upper side and / or the lower side of the compression element and on the lower side of the drive element.

請求項3の発明の圧縮機は、上記各発明に加えて吐出ポートより密閉容器内に流体を吐出すると共に、圧縮部材の他面側の圧力を、吸込ポートに吸い込まれる流体の圧力より高く、密閉容器内の圧力より低い値としたものである。   In addition to the above inventions, the compressor of the invention of claim 3 discharges fluid from the discharge port into the sealed container, and the pressure on the other surface side of the compression member is higher than the pressure of the fluid sucked into the suction port, The value is lower than the pressure in the sealed container.

請求項4の発明の圧縮機は、請求項3の発明において圧縮部材の一面を、駆動要素とは反対側に配置すると共に、ベーンの背圧を、圧縮部材の他面側の圧力より高く、密閉容器内の圧力より低い値としたものである。   According to a fourth aspect of the present invention, there is provided a compressor according to the third aspect of the present invention, wherein one surface of the compression member is disposed on the side opposite to the drive element, and the back pressure of the vane is higher than the pressure on the other surface side of the compression member. The value is lower than the pressure in the sealed container.

本発明の圧縮機によれば、圧縮要素を駆動要素の上側に配置し、密閉容器内下部のオイル溜めからオイルポンプにより圧縮要素にオイルを供給するので、請求項3の如く圧縮部材の他面側の圧力を、吸込ポートに吸い込まれる流体の圧力より高く、密閉容器内の圧力より低い値とすることで、圧縮要素を駆動要素の上側に配置した場合においても給油を行うことができるようになる。   According to the compressor of the present invention, the compression element is disposed on the upper side of the drive element, and oil is supplied to the compression element by the oil pump from the oil reservoir in the lower part of the hermetic container. By setting the pressure on the side to a value higher than the pressure of the fluid sucked into the suction port and lower than the pressure in the sealed container, it is possible to perform refueling even when the compression element is arranged above the drive element. Become.

また、請求項2のように回転軸の軸受を、圧縮要素の上側及び/又は下側と、駆動要素の下側に設けることで、回転軸を安定的に支持して、圧縮機に生じる振動を効果的に低減することができるようになる。   Further, as described in claim 2, by providing the shaft bearing on the upper side and / or the lower side of the compression element and the lower side of the drive element, the rotation shaft can be stably supported and vibration generated in the compressor. Can be effectively reduced.

特に、請求項4の如く圧縮部材の一面を、駆動要素とは反対側に配置することで、軸受からのガスリークが生じ難くなり、軸受のシール性を高めることができるようになる。更に、ベーンの背圧を、圧縮部材の他面側の圧力より高く、密閉容器内の圧力より低い値とすることで、圧力差を利用した給油が可能となる。   In particular, by disposing one surface of the compression member on the side opposite to the drive element as in the fourth aspect, it is difficult for gas leakage from the bearing to occur, and the sealing performance of the bearing can be improved. Furthermore, by making the back pressure of the vane higher than the pressure on the other surface side of the compression member and lower than the pressure in the sealed container, it is possible to supply oil using the pressure difference.

これらにより、圧縮要素を駆動要素の上側に配置した圧縮機において、円滑な給油を行うことができるようになり、信頼性の改善を図ることができるようになる。   As a result, in the compressor in which the compression element is disposed on the upper side of the drive element, smooth oil supply can be performed, and reliability can be improved.

以下、図面に基づき本発明の実施形態を詳細に説明する。尚、以後説明する各実施例の圧縮機Cは、例えば冷凍機の冷媒回路を構成し、冷媒を吸い込んで圧縮し、回路内に吐出する役割を果たすものである。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. In addition, the compressor C of each Example demonstrated hereafter comprises the refrigerant circuit of a refrigerator, for example, plays the role which sucks in and compresses a refrigerant | coolant and discharges it in a circuit.

図1は本発明の第1実施例の圧縮機Cの縦側断面図、図2は図1の圧縮機Cのもう一つの縦側断面図、図3は図1の圧縮機Cの更にもう一つの縦断側面図、図4は図1の圧縮機Cの圧縮要素の斜視図をそれぞれ示している。   1 is a longitudinal sectional view of a compressor C according to a first embodiment of the present invention, FIG. 2 is another longitudinal sectional view of the compressor C of FIG. 1, and FIG. 3 is a further sectional view of the compressor C of FIG. FIG. 4 is a perspective view of one compression element of the compressor C in FIG. 1.

各図において、1は密閉容器であり、この密閉容器1内には上側に圧縮要素3が、下側に駆動要素2がそれぞれ収納されている。即ち、圧縮要素3を、駆動要素2の上側に配置している。   In each figure, reference numeral 1 denotes a sealed container, in which the compression element 3 is housed on the upper side and the drive element 2 is housed on the lower side. That is, the compression element 3 is disposed on the upper side of the drive element 2.

駆動要素2は、密閉容器1の内壁に固定され、固定子コイルが巻装された固定子4と、この固定子4の内側で中央に回転軸5を有する回転子6とで構成された電動モータである。   The drive element 2 is fixed to the inner wall of the hermetic container 1 and is constituted by a stator 4 around which a stator coil is wound, and a rotor 6 having a rotation shaft 5 at the center inside the stator 4. It is a motor.

圧縮要素3は、密閉容器1の内壁に固定され、回転軸5の上端側に位置する支持部材77と、この支持部材77の下側にボルトにより取り付けられたシリンダ78と、このシリンダ78内に配置された圧縮部材89と、ベーン11、吐出バルブ12、シリンダ78の下側にボルトにより取り付けられた主支持部材79等から構成されている。主支持部材79の下面中央部は同心状に下方に突出し、そこに回転軸5の主軸受13が形成されている。また、主支持部材79の上面はシリンダ78の下開口部を閉塞している。   The compression element 3 is fixed to the inner wall of the hermetic container 1, a support member 77 located on the upper end side of the rotary shaft 5, a cylinder 78 attached to the lower side of the support member 77 with bolts, and the cylinder 78 The compression member 89 is disposed, and the vane 11, the discharge valve 12, the main support member 79 attached to the lower side of the cylinder 78 with a bolt, and the like. A central portion of the lower surface of the main support member 79 projects concentrically downward, and the main bearing 13 of the rotating shaft 5 is formed there. Further, the upper surface of the main support member 79 closes the lower opening of the cylinder 78.

上記支持部材77は、外周面が密閉容器1の内壁に固定された主部材85と、該主部材85の中央に貫通形成された副軸受83と、主部材85の下面中央部にボルトにより固定された突出部材84とにより構成され、この突出部材84の下面84Aは平滑面とされている。   The support member 77 is fixed to the main member 85 whose outer peripheral surface is fixed to the inner wall of the hermetic container 1, the auxiliary bearing 83 formed through the center of the main member 85, and the lower surface central portion of the main member 85 with bolts. The lower surface 84A of the protruding member 84 is a smooth surface.

支持部材77の突出部材84内にはスロット16が形成され、このスロット16内には前記ベーン11が上下往復動自在に挿入される。このスロット16の上部には背圧室17が形成されると共に、スロット16内にはベーン11の上面を下方に押圧する付勢手段としてのコイルバネ18が配置されている。   A slot 16 is formed in the protruding member 84 of the support member 77, and the vane 11 is inserted into the slot 16 so as to be able to reciprocate up and down. A back pressure chamber 17 is formed at the upper portion of the slot 16, and a coil spring 18 is disposed in the slot 16 as an urging means for pressing the upper surface of the vane 11 downward.

そして、シリンダ78の上開口部は支持部材77により閉塞され、これにより、シリンダ78内部(シリンダ78内の圧縮部材89と支持部材77の突出部材84との間)には圧縮空間21が構成される。また、支持部材77の主部材85及び突出部材84には吸込通路24が形成されると共に、密閉容器1には吸込配管26が取り付けられてこの吸込通路24の一端に接続されている。シリンダ78には圧縮空間21に連通する吸込ポート27と吐出ポート28が形成されており、吸込通路24の他端は吸込ポート27に連通している。また、ベーン11はこの吸込ポート27と吐出ポート28の間に位置している(図4)。   Then, the upper opening of the cylinder 78 is closed by the support member 77, whereby the compression space 21 is formed inside the cylinder 78 (between the compression member 89 in the cylinder 78 and the protruding member 84 of the support member 77). The A suction passage 24 is formed in the main member 85 and the protruding member 84 of the support member 77, and a suction pipe 26 is attached to the sealed container 1 and connected to one end of the suction passage 24. A suction port 27 and a discharge port 28 communicating with the compression space 21 are formed in the cylinder 78, and the other end of the suction passage 24 communicates with the suction port 27. The vane 11 is located between the suction port 27 and the discharge port 28 (FIG. 4).

前記回転軸5は、主支持部材79に形成された主軸受13と支持部材77に形成された副軸受83と下端に形成された副軸受86に支持されて回転する。即ち、回転軸5は係る主支持部材79、シリンダ78、支持部材77の中央に挿通され、上下方向の中央部を主軸受13により回転自在に軸支される。また、回転軸5の上方は副軸受83にて回転自在に軸支されると共に、上端は支持部材77にて覆われている。更に、回転軸5の下方は副軸受86により軸支されている。この副軸受86は、駆動要素2の下側に設けられて、中心部に回転軸5を挿通するための孔を有する略ドーナッツ形状を呈しており、外周縁は軸心方向に起立して、密閉容器1の内壁に固定されている。この副軸受86には所々上下を連通する孔87が形成されている。また、副軸受86に形成された凸部88は、駆動要素2等から回転軸5に伝達された振動が副軸受86を介して密閉容器1に伝わるのを防ぐ、吸振作用を奏するものである。   The rotary shaft 5 is supported and rotated by a main bearing 13 formed on the main support member 79, a sub bearing 83 formed on the support member 77, and a sub bearing 86 formed on the lower end. That is, the rotary shaft 5 is inserted through the center of the main support member 79, the cylinder 78, and the support member 77, and the central portion in the vertical direction is rotatably supported by the main bearing 13. Further, the upper portion of the rotating shaft 5 is rotatably supported by the auxiliary bearing 83 and the upper end is covered by the support member 77. Further, the lower side of the rotary shaft 5 is pivotally supported by the auxiliary bearing 86. The sub-bearing 86 is provided on the lower side of the driving element 2 and has a substantially donut shape having a hole for inserting the rotation shaft 5 in the center, and the outer peripheral edge stands up in the axial direction. It is fixed to the inner wall of the sealed container 1. The sub-bearing 86 is formed with holes 87 that communicate with each other vertically. Further, the convex portion 88 formed on the sub-bearing 86 has a vibration absorbing action that prevents vibration transmitted from the driving element 2 and the like to the rotating shaft 5 from being transmitted to the sealed container 1 via the sub-bearing 86. .

このように、回転軸5の軸受を圧縮要素3の上側(副軸受83)及び下側(主軸受13)と、駆動要素2の下側(副軸受86)に設けることで、回転軸5を安定的に支持して、圧縮機Cに生じる振動を効果的に低減することができる。これにより、圧縮機Cの振動特性の向上を図ることができるようになる。   Thus, by providing the bearings of the rotary shaft 5 on the upper side (sub bearing 83) and lower side (main bearing 13) of the compression element 3, and on the lower side (sub bearing 86) of the drive element 2, the rotary shaft 5 is provided. The vibration generated in the compressor C can be effectively reduced by supporting stably. As a result, the vibration characteristics of the compressor C can be improved.

また、圧縮空間21を駆動要素2とは反対側の圧縮部材89の上面93に配置することで、主軸受13からのガスリークが生じ難くなり、主軸受13のシール性を高めることができる。更に、回転軸5の上端を支持部材77にて閉塞することで、副軸受83のシール性も向上し、且つ、回転軸5の周面が高圧となる不都合も回避することができるようになる。   Further, by disposing the compression space 21 on the upper surface 93 of the compression member 89 on the side opposite to the driving element 2, gas leakage from the main bearing 13 hardly occurs, and the sealing performance of the main bearing 13 can be improved. Further, by closing the upper end of the rotating shaft 5 with the support member 77, the sealing performance of the auxiliary bearing 83 can be improved, and the disadvantage that the peripheral surface of the rotating shaft 5 becomes high pressure can be avoided. .

従来、圧縮要素3を密閉容器1の上側に配置した場合、密閉容器1内下部のオイル溜め36のオイルを圧縮要素3の圧縮部材89等の摺動部に供給するのが困難であった。   Conventionally, when the compression element 3 is arranged on the upper side of the sealed container 1, it has been difficult to supply the oil in the oil reservoir 36 in the lower part of the sealed container 1 to the sliding portion such as the compression member 89 of the compression element 3.

即ち、回転軸5の周面に高圧ガスが入り込んで高圧となるため、回転軸5の上方に設けられ、オイル通路42から回転軸5の軸方向となる圧縮要素3の側面に渡って形成されたオイル孔44、45からの給油を円滑に行うことができなかった。   That is, since the high pressure gas enters the peripheral surface of the rotary shaft 5 and becomes high pressure, the high pressure gas is provided above the rotary shaft 5 and extends from the oil passage 42 to the side surface of the compression element 3 in the axial direction of the rotary shaft 5. Oil supply from the oil holes 44 and 45 could not be performed smoothly.

しかしながら、回転軸5の上端を支持部材77にて閉塞することで、副軸受83のシール性が向上し、回転軸5の周面が高圧となる不都合を改善図ることが出来るので、オイルポンプ40によりオイルを密閉容器1の上側に設けられた圧縮部材89等の摺動部に供給することが可能となり、オイル供給量の最適化を図ることができるようになる。   However, by closing the upper end of the rotating shaft 5 with the support member 77, the sealing performance of the auxiliary bearing 83 can be improved, and the disadvantage that the peripheral surface of the rotating shaft 5 becomes high pressure can be improved. As a result, oil can be supplied to the sliding portion such as the compression member 89 provided on the upper side of the hermetic container 1, and the oil supply amount can be optimized.

そして、圧縮部材89は係る回転軸5の上部に一体に形成され、シリンダ78内に配置されている。この圧縮部材89は、回転軸5により回転駆動され、吸込ポート27から吸い込まれた流体(冷媒)を圧縮して吐出ポート28より密閉容器1内に吐出するためのものであり、全体としては回転軸5と同心の略円柱状を呈している。   The compression member 89 is formed integrally with the upper portion of the rotating shaft 5 and is disposed in the cylinder 78. The compression member 89 is driven to rotate by the rotary shaft 5 and compresses the fluid (refrigerant) sucked from the suction port 27 and discharges it into the sealed container 1 from the discharge port 28. The compression member 89 rotates as a whole. It has a substantially cylindrical shape concentric with the shaft 5.

また、圧縮部材89の回転軸5の軸方向に交差する上面93(一面)が最も高くなる上死点から最も低くなる下死点を経て上死点に戻る上死点から下死点の間で連続して傾斜する形状を呈している。   Further, the upper surface 93 (one surface) that intersects the axial direction of the rotation shaft 5 of the compression member 89 passes from the highest dead center to the lowest dead center after returning from the lowest dead center to the bottom dead center. It has a continuously inclined shape.

この圧縮部材89の連続して傾斜する形状を呈する一面は、圧縮部材89の密閉容器1内の下側に収納された駆動要素2とは反対側の面となる上面93に配置されている。   One surface of the compression member 89 having a continuously inclined shape is disposed on an upper surface 93 which is a surface opposite to the driving element 2 housed in the lower side of the sealed container 1 of the compression member 89.

一方、ベーン11は吸込ポート27と吐出ポート28の間に配置されると共に、圧縮部材89の上面93に当接し、シリンダ78内の圧縮空間21を低圧室LRと高圧室HRとに区画する。また、コイルバネ18はこのベーン11を常時上面93側に付勢する。   On the other hand, the vane 11 is disposed between the suction port 27 and the discharge port 28 and abuts against the upper surface 93 of the compression member 89 to partition the compression space 21 in the cylinder 78 into a low pressure chamber LR and a high pressure chamber HR. Further, the coil spring 18 constantly biases the vane 11 toward the upper surface 93 side.

シリンダ78の下開口部は主支持部材79により閉塞され、圧縮部材89の下面(他面)と主支持部材79の間(圧縮空間21の背面側)には、空間54が形成されている。この空間54は、圧縮部材89と主支持部材79により密閉された空間とされている。そして、当該空間54には圧縮部材89とシリンダ78との間のクリアランスから僅かに圧縮空間21内の冷媒が流れ込むため、空間54の圧力は、吸込ポート27に吸い込まれる低圧冷媒より高く、密閉容器1内の高圧冷媒の圧力より低い値(中間圧)となる。   The lower opening of the cylinder 78 is closed by a main support member 79, and a space 54 is formed between the lower surface (other surface) of the compression member 89 and the main support member 79 (the back side of the compression space 21). The space 54 is a space sealed by the compression member 89 and the main support member 79. Since the refrigerant in the compression space 21 slightly flows into the space 54 due to the clearance between the compression member 89 and the cylinder 78, the pressure in the space 54 is higher than the low-pressure refrigerant sucked into the suction port 27, and the sealed container It becomes a value (intermediate pressure) lower than the pressure of the high-pressure refrigerant in 1.

このように、空間54の圧力を中間圧とすることで、圧縮部材89が空間54の圧力により上側に強く押されて、圧縮部材89の上面93が受け面となる突出部材84の下面84とが著しく摩耗する不都合を回避することができる。これにより、圧縮部材89の上面93の耐久性を改善することができる。   Thus, by setting the pressure in the space 54 to an intermediate pressure, the compression member 89 is strongly pushed upward by the pressure in the space 54, and the lower surface 84 of the protruding member 84 whose upper surface 93 of the compression member 89 serves as a receiving surface, Can avoid the inconvenience of wear. Thereby, durability of the upper surface 93 of the compression member 89 can be improved.

更に、圧縮部材89の他面側となる空間54の圧力を中間圧とすることで、密閉容器1内の圧力より空間54の圧力が低くなるので、当該圧力差を利用して、空間54の周辺部である圧縮部材89や主軸受13付近へのオイル供給も円滑に行うことができるようになる。   Furthermore, since the pressure in the space 54 on the other surface side of the compression member 89 is set to an intermediate pressure, the pressure in the space 54 becomes lower than the pressure in the sealed container 1. The oil can be smoothly supplied to the vicinity of the compression member 89 and the vicinity of the main bearing 13 as the peripheral portion.

他方、前述した背圧室17は従来のように高圧とせずに、密閉空間として当該背圧室17の圧力を吸込ポート27に吸い込まれる冷媒(冷媒)の圧力より高く、且つ、密閉容器1内の圧力より低い値としている。従来では、背圧室17の一部と密閉容器1内とを連通させて、背圧室17内を高圧として、コイルバネ18に加えてベーン11を下方に付勢するものとしていた。しかしながら、本実施例では圧縮要素3が密閉容器1の上方に位置するため、背圧室17を高圧とすることで、ベーン11付近への給油が不足する恐れがあった。   On the other hand, the above-described back pressure chamber 17 does not have a high pressure as in the prior art, and as a sealed space, the pressure of the back pressure chamber 17 is higher than the pressure of the refrigerant (refrigerant) sucked into the suction port 27 and is in the sealed container 1. The value is lower than the pressure. Conventionally, a part of the back pressure chamber 17 and the inside of the sealed container 1 are communicated to make the inside of the back pressure chamber 17 high, and the vane 11 is urged downward in addition to the coil spring 18. However, in this embodiment, since the compression element 3 is located above the hermetic container 1, there is a possibility that the oil supply to the vicinity of the vane 11 may be insufficient by setting the back pressure chamber 17 to a high pressure.

ここで、背圧室17を密閉容器1内と連通させずに、密閉した空間とすることで、当該背圧室17にはベーン11の隙間から圧縮空間21の低圧室側と高圧室側の冷媒が僅かに流入するのみとなる。このため、背圧室17は吸込ポート27に吸い込まれる冷媒の圧力より高く、且つ、密閉容器1内の圧力より低い中間圧となる。これにより、密閉容器1内より背圧室17内の圧力の方が低くなるので、係る圧力差を利用して、回転軸5内のオイル通路42を上昇し、オイル孔44、45からのオイルをベーン11の周辺部にも供給することができるようになる。   Here, by making the back pressure chamber 17 a sealed space without communicating with the inside of the sealed container 1, the back pressure chamber 17 is connected to the low pressure chamber side and the high pressure chamber side of the compression space 21 from the gap of the vane 11. Only a small amount of refrigerant flows in. For this reason, the back pressure chamber 17 has an intermediate pressure higher than the pressure of the refrigerant sucked into the suction port 27 and lower than the pressure in the sealed container 1. As a result, the pressure in the back pressure chamber 17 is lower than that in the sealed container 1, and the oil passage 42 in the rotating shaft 5 is lifted using the pressure difference, and the oil from the oil holes 44 and 45 is used. Can also be supplied to the periphery of the vane 11.

これらにより、圧縮要素3を密閉容器1内の上側に設けた場合においても、圧縮部材89やベーン11等の摺動部への給油を円滑に行うことができ、圧縮機Cの信頼性を改善することができるようになる。   As a result, even when the compression element 3 is provided on the upper side in the sealed container 1, lubrication to the sliding portions such as the compression member 89 and the vane 11 can be smoothly performed, and the reliability of the compressor C is improved. Will be able to.

また、圧縮部材89の周面はシリンダ78の内壁との間に微小なクリアランスを構成し、これにより、圧縮部材89は回転自在とされている。そして、この圧縮部材89の周面とシリンダ78の内壁との間もオイルによってシールされる。   Further, a minute clearance is formed between the peripheral surface of the compression member 89 and the inner wall of the cylinder 78, whereby the compression member 89 is rotatable. The space between the peripheral surface of the compression member 89 and the inner wall of the cylinder 78 is also sealed with oil.

前記吐出ポート28の外側にはシリンダ78の圧縮空間21の側面に位置して前記吐出バルブ12が取り付けられると共に、シリンダ78及び支持部材77には、該吐出バルブ12と密閉容器1内の上側とを連通する吐出管95が形成されている。即ち、シリンダ78内で圧縮された冷媒は吐出ポート28から吐出バルブ12、吐出管95を介して密閉容器1内上部に吐出されることとなる。   The discharge valve 12 is mounted outside the discharge port 28 on the side surface of the compression space 21 of the cylinder 78, and the cylinder 78 and the support member 77 are connected to the discharge valve 12 and the upper side in the sealed container 1. A discharge pipe 95 that communicates with each other is formed. That is, the refrigerant compressed in the cylinder 78 is discharged from the discharge port 28 to the upper part in the sealed container 1 through the discharge valve 12 and the discharge pipe 95.

また、シリンダ78及び支持部材77の前記吐出バルブ12の略対称となる位置には、当該シリンダ78及び支持部材77を軸心方向(上下方向)に貫通する連通孔120が形成されている。密閉容器1の側面の上記連通孔120の下部に対応する位置には吐出配管38が取り付けられている。上述の如く吐出管95から密閉容器1上部に吐出された冷媒は、連通孔120を通過し、吐出配管38から圧縮機Cの外部に吐出される。尚、回転軸5の下端にはオイルポンプ40が設けらており、一端が密閉容器1内下部のオイル溜め36内に浸漬されている。そして、当該オイルポンプ40により吸い上げられたオイルは、回転軸5内中心に形成されたオイル通路42及びオイル通路42から回転軸5の軸方向となる圧縮要素3の側面に渡って形成されたオイル孔44、45を介して圧縮要素3の摺動部等に供給される。また、密閉容器1内には例えばCO2(二酸化炭素)、R−134a、或いは、HC系の冷媒が所定量封入される。 A communication hole 120 that penetrates the cylinder 78 and the support member 77 in the axial direction (vertical direction) is formed at a position of the cylinder 78 and the support member 77 that is substantially symmetrical with respect to the discharge valve 12. A discharge pipe 38 is attached to a position corresponding to the lower part of the communication hole 120 on the side surface of the sealed container 1. As described above, the refrigerant discharged from the discharge pipe 95 to the upper portion of the sealed container 1 passes through the communication hole 120 and is discharged from the discharge pipe 38 to the outside of the compressor C. An oil pump 40 is provided at the lower end of the rotary shaft 5, and one end is immersed in the oil reservoir 36 at the lower part in the sealed container 1. The oil sucked up by the oil pump 40 is an oil passage 42 formed in the center of the rotating shaft 5 and oil formed over the side surface of the compression element 3 in the axial direction of the rotating shaft 5 from the oil passage 42. It is supplied to the sliding portion of the compression element 3 through the holes 44 and 45. Further, a predetermined amount of, for example, CO 2 (carbon dioxide), R-134a, or HC refrigerant is sealed in the sealed container 1.

以上の構成で、駆動要素2の固定子4の固定子コイルに通電されると、回転子6が下から見て時計回り方向に回転する。この回転子6の回転は回転軸5を介して圧縮部材89に伝達され、これにより、圧縮部材89はシリンダ78内において下から見て時計回り方向に回転する。今、圧縮部材89の上面93の上死点が吐出ポート28のベーン11側にあり、ベーン11の吸込ポート27側でシリンダ78、支持部材77、圧縮部材89及びベーン11で囲まれた空間(低圧室)内に吸込配管26及び吸込通路24を介して吸込ポート27から冷媒回路内の冷媒が吸い込まれているものとする。   With the above configuration, when the stator coil of the stator 4 of the drive element 2 is energized, the rotor 6 rotates in the clockwise direction when viewed from below. The rotation of the rotor 6 is transmitted to the compression member 89 via the rotation shaft 5, and thereby the compression member 89 rotates in the clockwise direction in the cylinder 78 as viewed from below. Now, the top dead center of the upper surface 93 of the compression member 89 is on the vane 11 side of the discharge port 28, and the space surrounded by the cylinder 78, the support member 77, the compression member 89, and the vane 11 on the suction port 27 side of the vane 11 ( It is assumed that the refrigerant in the refrigerant circuit is sucked from the suction port 27 through the suction pipe 26 and the suction passage 24 into the low pressure chamber.

そして、その状態から圧縮部材89が回転していくと、上死点がベーン11、吸込ポート27を過ぎた段階から上面93の傾斜により上記空間の体積は狭められていき、空間(高圧室)内の冷媒は圧縮されていく。そして、上死点が吐出ポート28を通過するまで圧縮された冷媒は吐出ポート28から吐出され続ける。一方、上死点が吸込ポート27を通過した後、ベーン11の吸込ポート27側でシリンダ78、支持部材79、圧縮部材89及びベーン11で囲まれた空間(低圧室)の体積は拡大していくので、吸込配管26及び吸込通路24を介して吸込ポート27から冷媒回路内の冷媒が圧縮空間21内に吸い込まれていく。   When the compression member 89 rotates from this state, the volume of the space is reduced by the inclination of the upper surface 93 from the stage where the top dead center passes the vane 11 and the suction port 27, and the space (high pressure chamber) is reduced. The refrigerant inside is compressed. The compressed refrigerant is continuously discharged from the discharge port 28 until the top dead center passes through the discharge port 28. On the other hand, after the top dead center passes through the suction port 27, the volume of the space (low pressure chamber) surrounded by the cylinder 78, the support member 79, the compression member 89 and the vane 11 on the suction port 27 side of the vane 11 increases. Therefore, the refrigerant in the refrigerant circuit is sucked into the compression space 21 from the suction port 27 through the suction pipe 26 and the suction passage 24.

吐出ポート28からは吐出バルブ12及び吐出管95を介して、冷媒が密閉容器1内上部に吐出される。そして、密閉容器1内に吐出された高圧冷媒は、密閉容器1の上部を通過し、支持部材77及びシリンダ78に形成された連通孔120を経て、吐出配管38より冷媒回路に吐出される。一方、分離したオイルは、連通孔120を流下し、更に、密閉容器1と固定子4の間から流下して、オイル溜め36に戻ることとなる。   From the discharge port 28, the refrigerant is discharged through the discharge valve 12 and the discharge pipe 95 into the upper part of the sealed container 1. The high-pressure refrigerant discharged into the sealed container 1 passes through the upper part of the sealed container 1 and is discharged to the refrigerant circuit from the discharge pipe 38 through the communication hole 120 formed in the support member 77 and the cylinder 78. On the other hand, the separated oil flows down through the communication hole 120 and further flows between the sealed container 1 and the stator 4 and returns to the oil reservoir 36.

尚、実施例では背圧室17を密閉空間とすることで、ベーン11の背圧として印加される背圧室17の圧力を吸込ポート27に吸い込まれる冷媒の圧力より高く、密閉容器1内の圧力より低い値としたが、このように背圧室17を密閉空間とする場合に限らず、例えば、背圧室17と密閉容器1内とを微細な通路(ノズル)により連通させるものとしても構わない。この場合、密閉容器1内の冷媒がノズルを通って背圧室17に流入するため、当該ノズルを通過する過程で、冷媒の圧力が低下する。これにより、背圧室17を吸込ポート27に吸い込まれる冷媒の圧力より高く、密閉容器1内の圧力より低い値となるので、圧力差を利用して、ベーン11の周辺部への給油を円滑に行うことができるようになる。また、ノズルの径を調整することで、背圧室17内に流入する冷媒の圧力も自在に設定することができる。   In the embodiment, by making the back pressure chamber 17 a sealed space, the pressure of the back pressure chamber 17 applied as the back pressure of the vane 11 is higher than the pressure of the refrigerant sucked into the suction port 27, so Although the value is lower than the pressure, the present invention is not limited to the case where the back pressure chamber 17 is a sealed space as described above. For example, the back pressure chamber 17 and the inside of the sealed container 1 may be communicated with each other by a fine passage (nozzle). I do not care. In this case, since the refrigerant in the sealed container 1 flows into the back pressure chamber 17 through the nozzle, the pressure of the refrigerant decreases in the process of passing through the nozzle. As a result, the pressure in the back pressure chamber 17 is higher than the pressure of the refrigerant sucked into the suction port 27 and lower than the pressure in the sealed container 1, so that the oil supply to the peripheral portion of the vane 11 is smoothly performed using the pressure difference. To be able to do that. Further, the pressure of the refrigerant flowing into the back pressure chamber 17 can be freely set by adjusting the nozzle diameter.

また、圧縮部材89の他面側の空間54も背圧室17と同様に、密閉空間として空間54の圧力も、吸込ポート27に吸い込まれる低圧冷媒より高く、密閉容器1内の高圧冷媒の圧力より低い中間圧としたが、当該空間54も密閉容器1内と微細な通路(ノズル)により連通させるものとしても構わない。この場合、密閉容器1内の冷媒がノズルを通って空間54に流入するため、当該ノズルを通過する過程で、冷媒の圧力が低下する。これにより、空間54を吸込ポート27に吸い込まれる冷媒の圧力より高く、密閉容器1内の圧力より低い値となるので、圧縮部材89の上面93が受け面となる突出部材84の下面84とが著しく摩耗する不都合を回避することができる。これにより、圧縮部材89の上面93の耐久性を改善することができる。更に、空間54を係る中間圧とすることで、圧力差を利用して、空間54の周辺部である圧縮部材89や主軸受13付近への給油も円滑に行うことができるようになる。また、ノズルの径を調整することで、空間54内に流入する冷媒の圧力も自在に設定することが可能となる。   Further, the space 54 on the other surface side of the compression member 89 is also a sealed space, like the back pressure chamber 17, and the pressure of the space 54 is higher than the low pressure refrigerant sucked into the suction port 27, and the pressure of the high pressure refrigerant in the sealed container 1. Although the intermediate pressure is lower, the space 54 may be communicated with the inside of the sealed container 1 by a fine passage (nozzle). In this case, since the refrigerant in the sealed container 1 flows into the space 54 through the nozzle, the pressure of the refrigerant decreases in the process of passing through the nozzle. As a result, the pressure in the space 54 is higher than the pressure of the refrigerant sucked into the suction port 27 and lower than the pressure in the sealed container 1, so that the lower surface 84 of the protruding member 84 whose upper surface 93 of the compression member 89 serves as a receiving surface is formed. The inconvenience of significant wear can be avoided. Thereby, durability of the upper surface 93 of the compression member 89 can be improved. Furthermore, by making the space 54 have such an intermediate pressure, it is possible to smoothly supply oil to the vicinity of the compression member 89 and the main bearing 13 that are the periphery of the space 54 by utilizing the pressure difference. Further, the pressure of the refrigerant flowing into the space 54 can be freely set by adjusting the nozzle diameter.

また、本実施例では、回転軸5の軸受を圧縮要素3の上側(副軸受83)及び下側(主軸受13)と駆動要素2の下側(副軸受86)の3箇所に設けるものとしたが、圧縮要素3の上側と駆動要素2の下側、若しくは、圧縮要素3の下側と駆動要素2の下側の2箇所に設けるものとしても構わない。この場合においても、回転軸5を十分に支持することが可能である。   In this embodiment, the bearings of the rotary shaft 5 are provided at three locations on the upper side (sub bearing 83) and lower side (main bearing 13) of the compression element 3 and the lower side (sub bearing 86) of the driving element 2. However, it may be provided at two locations on the upper side of the compression element 3 and the lower side of the drive element 2 or on the lower side of the compression element 3 and the lower side of the drive element 2. Even in this case, the rotating shaft 5 can be sufficiently supported.

次に、図5乃至図7は第2の実施例の圧縮機Cを示し、図5乃至図7は第2の実施例の圧縮機Cの縦断側面図であり、各図はそれぞれ異なる断面を示した図である。尚、図5乃至図7にて上記図1乃至図4に示されているものと同一の符号が付されているものは、同様若しくは類似の効果を奏するものであるので説明を省略する。   Next, FIGS. 5 to 7 show the compressor C of the second embodiment, and FIGS. 5 to 7 are longitudinal side views of the compressor C of the second embodiment, and each drawing has a different cross section. FIG. In FIG. 5 to FIG. 7, the same reference numerals as those shown in FIG. 1 to FIG. 4 have the same or similar effects, and the description thereof will be omitted.

この場合、密閉容器1内の下側に駆動要素2を、上側に圧縮要素3を収納し、圧縮要素3の圧縮空間21を圧縮部材109の駆動要素2側となる下面側とし、当該圧縮部材109の下面(一面)113を上死点から下死点の間で連続して傾斜する形状としている。   In this case, the drive element 2 is accommodated in the lower side of the sealed container 1, the compression element 3 is accommodated in the upper side, and the compression space 21 of the compression element 3 is the lower surface side that is the drive element 2 side of the compression member 109. The lower surface (one surface) 113 of 109 has a shape that inclines continuously from the top dead center to the bottom dead center.

また、主支持部材107及びシリンダ108内にはスロット16が形成され、このスロット16内にはベーン11が上下往復動自在に挿入される。このスロット16の下部には背圧室17が形成されると共に、スロット16内にはベーン11の下面を上方に押圧する付勢手段としてのコイルバネ18が配置されている。そして、ベーン11は、圧縮部材109の下面113に当接し、シリンダ108内の圧縮空間21を低圧室と高圧室とに区画する。また、コイルバネ18はこのベーン11を常時下面113側に付勢する。   A slot 16 is formed in the main support member 107 and the cylinder 108, and the vane 11 is inserted into the slot 16 so as to be able to reciprocate up and down. A back pressure chamber 17 is formed at the lower portion of the slot 16, and a coil spring 18 is disposed in the slot 16 as an urging means for pressing the lower surface of the vane 11 upward. The vane 11 abuts on the lower surface 113 of the compression member 109 and partitions the compression space 21 in the cylinder 108 into a low pressure chamber and a high pressure chamber. Further, the coil spring 18 constantly biases the vane 11 toward the lower surface 113 side.

そして、背圧室17は上記実施例の如く密閉空間として当該背圧室17の圧力を吸込ポート27に吸い込まれる冷媒(冷媒)の圧力より高く、且つ、密閉容器1内の圧力より低い値としている。このように、背圧室17を密閉容器1内と連通させずに、密閉した空間とすることで、当該背圧室17にはベーン11の隙間から圧縮空間21の低圧室側と高圧室側の冷媒が僅かに流入するのみとなる。このため、背圧室17は吸込ポート27に吸い込まれる冷媒の圧力より高く、且つ、密閉容器1内の圧力より低い中間圧となる。これにより、密閉容器1内より背圧室17内の圧力の方が低くなるので、係る圧力差を利用して、回転軸5内のオイル通路42を上昇し、オイル孔44、45からのオイルをベーン11の周辺部にも供給することができるようになる。   The back pressure chamber 17 is a sealed space as in the above embodiment, and the pressure of the back pressure chamber 17 is higher than the pressure of the refrigerant (refrigerant) sucked into the suction port 27 and lower than the pressure in the sealed container 1. Yes. In this way, by making the back pressure chamber 17 a sealed space without communicating with the inside of the sealed container 1, the back pressure chamber 17 is connected to the low pressure chamber side and the high pressure chamber side of the compression space 21 from the gap of the vane 11. Only a small amount of refrigerant flows in. For this reason, the back pressure chamber 17 has an intermediate pressure higher than the pressure of the refrigerant sucked into the suction port 27 and lower than the pressure in the sealed container 1. As a result, the pressure in the back pressure chamber 17 is lower than that in the sealed container 1, and the oil passage 42 in the rotating shaft 5 is lifted using the pressure difference, and the oil from the oil holes 44 and 45 is used. Can also be supplied to the periphery of the vane 11.

他方、圧縮部材109の他面側となる空間115は、圧縮部材109と主支持部材107により密閉された空間とされている。これにより、圧縮部材109とシリンダ108との間のクリアランスから僅かに圧縮空間21内の冷媒が流れ込むため、空間115の圧力は、吸込ポート27に吸い込まれる低圧冷媒より高く、密閉容器1内の高圧冷媒の圧力より低い中間圧となる。   On the other hand, the space 115 on the other surface side of the compression member 109 is a space sealed by the compression member 109 and the main support member 107. Thereby, since the refrigerant in the compression space 21 slightly flows from the clearance between the compression member 109 and the cylinder 108, the pressure in the space 115 is higher than the low-pressure refrigerant sucked into the suction port 27, and the high pressure in the sealed container 1. The intermediate pressure is lower than the refrigerant pressure.

このように、空間115の圧力を中間圧とすることで、圧縮部材109が空間115の圧力により上側に強く押されて、圧縮部材109の下面113が受け面となる突出部材112の上面112Aとが著しく摩耗する不都合を回避することができる。これにより、圧縮部材109の下面113の耐久性を改善することができる。   Thus, by setting the pressure of the space 115 to an intermediate pressure, the compression member 109 is strongly pushed upward by the pressure of the space 115, and the upper surface 112A of the protruding member 112 whose lower surface 113 of the compression member 109 serves as a receiving surface Can avoid the inconvenience of wear. Thereby, durability of the lower surface 113 of the compression member 109 can be improved.

また、圧縮部材109の他面側となる空間115の圧力を中間圧とすることで、密閉容器1内の圧力より空間115の圧力が低くなるので、当該圧力差を利用して、空間115の周辺部である圧縮部材109や主軸受13付近へのオイル供給も円滑に行うことができるようになる。   In addition, by setting the pressure in the space 115 on the other surface side of the compression member 109 to an intermediate pressure, the pressure in the space 115 becomes lower than the pressure in the sealed container 1. Oil can be smoothly supplied to the vicinity of the compression member 109 and the main bearing 13 which are peripheral portions.

尚、本実施例においても上記実施例と同様に背圧室17を密閉空間とすることで、ベーン11の背圧として印加される背圧室17の圧力を吸込ポート27に吸い込まれる冷媒の圧力より高く、密閉容器1内の圧力より低い値としたが、このように背圧室17を密閉空間とする場合に限らず、例えば、背圧室17と密閉容器1内とを微細な通路(ノズル)により連通させるものとしても構わない。この場合、密閉容器1内の冷媒がノズルを通って背圧室17に流入するため、当該ノズルを通過する過程で、冷媒の圧力が低下する。これにより、背圧室17を吸込ポート27に吸い込まれる冷媒の圧力より高く、密閉容器1内の圧力より低い値となるので、圧力差を利用して、ベーン11の周辺部への給油を円滑に行うことができるようになる。また、ノズルの径を調整することで、背圧室17内に流入する冷媒の圧力も自在に設定することができる。   In the present embodiment as well, the pressure of the refrigerant sucked into the suction port 27 is the pressure of the back pressure chamber 17 applied as the back pressure of the vane 11 by making the back pressure chamber 17 a sealed space as in the above embodiment. Although the value is higher and lower than the pressure in the sealed container 1, it is not limited to the case where the back pressure chamber 17 is used as a sealed space in this way. For example, a fine passage ( Nozzle) may be used for communication. In this case, since the refrigerant in the sealed container 1 flows into the back pressure chamber 17 through the nozzle, the pressure of the refrigerant decreases in the process of passing through the nozzle. As a result, the pressure in the back pressure chamber 17 is higher than the pressure of the refrigerant sucked into the suction port 27 and lower than the pressure in the sealed container 1, so that the oil supply to the peripheral portion of the vane 11 is smoothly performed using the pressure difference. To be able to do that. Further, the pressure of the refrigerant flowing into the back pressure chamber 17 can be freely set by adjusting the nozzle diameter.

また、圧縮部材89の他面側の空間115も背圧室17と同様に、密閉空間として空間115の圧力も、吸込ポート27に吸い込まれる低圧冷媒より高く、密閉容器1内の高圧冷媒の圧力より低い中間圧としたが、当該空間115も密閉容器1内と微細な通路(ノズル)により連通させるものとしても構わない。この場合、密閉容器1内の冷媒がノズルを通って空間115に流入するため、当該ノズルを通過する過程で、冷媒の圧力が低下する。これにより、空間115を吸込ポート27に吸い込まれる冷媒の圧力より高く、密閉容器1内の圧力より低い値となるので、圧縮部材89の上面93が受け面となる突出部材84の下面84とが著しく摩耗する不都合を回避することができる。これにより、圧縮部材89の上面93の耐久性を改善することができる。更に、空間115を係る中間圧とすることで、圧力差を利用して、空間115の周辺部である圧縮部材89や主軸受13付近への給油も円滑に行うことができるようになる。また、ノズルの径を調整することで、空間115内に流入する冷媒の圧力も自在に設定することが可能となる。   In addition, the space 115 on the other surface side of the compression member 89 is also a sealed space similar to the back pressure chamber 17, and the pressure of the space 115 is higher than the low-pressure refrigerant sucked into the suction port 27, and the pressure of the high-pressure refrigerant in the sealed container 1. Although the intermediate pressure is lower, the space 115 may be communicated with the inside of the sealed container 1 by a fine passage (nozzle). In this case, since the refrigerant in the sealed container 1 flows into the space 115 through the nozzle, the pressure of the refrigerant decreases in the process of passing through the nozzle. Thereby, since the space 115 has a value higher than the pressure of the refrigerant sucked into the suction port 27 and lower than the pressure in the sealed container 1, the lower surface 84 of the projecting member 84 whose upper surface 93 of the compression member 89 serves as a receiving surface is formed. The inconvenience of significant wear can be avoided. Thereby, durability of the upper surface 93 of the compression member 89 can be improved. Further, by setting the space 115 to the intermediate pressure, it is possible to smoothly supply oil to the vicinity of the compression member 89 and the main bearing 13 that are the peripheral portions of the space 115 by using the pressure difference. Further, the pressure of the refrigerant flowing into the space 115 can be freely set by adjusting the nozzle diameter.

尚、上記各実施例では冷凍機の冷媒回路に使用されて冷媒を圧縮する圧縮機を例にとって説明したが、それに限らず、空気を吸い込んで圧縮し、吐出する所謂エアーコンプレッサにも本発明は有効である。   In each of the above embodiments, the compressor used for the refrigerant circuit of the refrigerator to compress the refrigerant has been described as an example. It is valid.

本発明の第1の実施例の圧縮機の縦断側面図である。It is a vertical side view of the compressor of the 1st Example of the present invention. 図1の圧縮機のもう一つの縦断側面図である。It is another longitudinal side view of the compressor of FIG. 図1の圧縮機の更にもう一つの縦断側面図である。FIG. 3 is still another longitudinal side view of the compressor of FIG. 1. 図1の圧縮機の圧縮要素の斜視図である。It is a perspective view of the compression element of the compressor of FIG. 本発明の第2の実施例の圧縮機の圧縮要素の縦断側面図である。It is a vertical side view of the compression element of the compressor of the 2nd Example of this invention. 図5の圧縮機のもう一つの縦断側面図である。It is another vertical side view of the compressor of FIG. 図5の圧縮機の更にもう一つの縦断側面図である。FIG. 6 is still another longitudinal side view of the compressor of FIG. 5.

符号の説明Explanation of symbols

C 圧縮機
1 密閉容器
2 駆動要素
3 圧縮要素
4 固定子
5 回転軸
6 回転子
77 支持部材
78、108 シリンダ
89、109 圧縮部材
11 ベーン
13 主軸受
16 スロット
18 コイルバネ
21 圧縮空間
110 副支持部材
23 副軸受
24 吸込通路
26 吸込配管
27 吸込ポート
28 吐出ポート
93 上面
36 オイル溜め
38 吐出配管
40 オイルポンプ
42 オイル通路
44、45 オイル孔
79、107 主支持部材
113 下面
C Compressor 1 Airtight container 2 Drive element 3 Compression element 4 Stator 5 Rotating shaft 6 Rotor 77 Support member 78, 108 Cylinder 89, 109 Compression member 11 Vane 13 Main bearing 16 Slot 18 Coil spring 21 Compression space 110 Sub support member 23 Sub bearing 24 Suction passage 26 Suction piping 27 Suction port 28 Discharge port 93 Top surface 36 Oil reservoir 38 Discharge piping 40 Oil pump 42 Oil passage 44, 45 Oil hole 79, 107 Main support member 113 Bottom surface

Claims (4)

密閉容器内に収納された駆動要素及び該駆動要素の回転軸により駆動される圧縮要素とを備え、
該圧縮要素は、内部に圧縮空間が構成されるシリンダと、
該シリンダ内の圧縮空間に連通する吸込ポート及び吐出ポートと、
前記回転軸の軸方向に交差する一面が上死点と下死点の間で連続して傾斜すると共に、前記シリンダ内に配置されて回転し、前記吸込ポートから吸い込まれた流体を圧縮して前記吐出ポートより吐出する圧縮部材と、
前記吸込ポートと吐出ポート間に配置されて前記圧縮部材の一面に当接し、前記シリンダ内の圧縮空間を低圧室と高圧室とに区画するベーンとから構成され、
前記圧縮要素を前記駆動要素の上側に配置し、前記密閉容器内下部のオイル溜めからオイルポンプにより前記圧縮要素にオイルを供給することを特徴とする圧縮機。
A driving element housed in an airtight container and a compression element driven by a rotating shaft of the driving element;
The compression element includes a cylinder in which a compression space is formed,
A suction port and a discharge port communicating with the compression space in the cylinder;
One surface intersecting the axial direction of the rotation shaft is continuously inclined between the top dead center and the bottom dead center, and is disposed in the cylinder and rotates to compress the fluid sucked from the suction port. A compression member that discharges from the discharge port;
The vane is disposed between the suction port and the discharge port, abuts against one surface of the compression member, and divides the compression space in the cylinder into a low pressure chamber and a high pressure chamber,
The compressor is characterized in that the compression element is disposed above the drive element, and oil is supplied to the compression element by an oil pump from an oil reservoir in the lower part of the sealed container.
前記回転軸の軸受を、前記圧縮要素の上側及び/又は下側と、前記駆動要素の下側に設けたことを特徴とする請求項1の圧縮機。   The compressor according to claim 1, wherein bearings of the rotary shaft are provided on the upper side and / or the lower side of the compression element and the lower side of the drive element. 前記吐出ポートより前記密閉容器内に流体を吐出すると共に、前記圧縮部材の他面側の圧力を、前記吸込ポートに吸い込まれる流体の圧力より高く、前記密閉容器内の圧力より低い値としたことを特徴とする請求項1又は請求項2の圧縮機。   The fluid is discharged from the discharge port into the sealed container, and the pressure on the other surface side of the compression member is higher than the pressure of the fluid sucked into the suction port and lower than the pressure in the sealed container. The compressor according to claim 1 or 2, characterized in that. 前記圧縮部材の一面を、前記駆動要素とは反対側に配置すると共に、前記ベーンの背圧を、前記圧縮部材の他面側の圧力より高く、前記密閉容器内の圧力より低い値としたことを特徴とする請求項3の圧縮機。   One surface of the compression member is disposed on the side opposite to the drive element, and the back pressure of the vane is set to a value higher than the pressure on the other surface side of the compression member and lower than the pressure in the sealed container. The compressor according to claim 3.
JP2004286716A 2004-09-30 2004-09-30 Compressor Withdrawn JP2006097631A (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
JP2004286716A JP2006097631A (en) 2004-09-30 2004-09-30 Compressor
TW094129043A TWI363140B (en) 2004-09-30 2005-08-25 Compressor
EP05108215A EP1647714A3 (en) 2004-09-30 2005-09-07 Compressor
US11/219,915 US7381040B2 (en) 2004-09-30 2005-09-07 Compressor having pressure controlled for improving oil distribution
CN2008102152200A CN101372965B (en) 2004-09-30 2005-09-28 Compressor
KR1020050090894A KR20060051788A (en) 2004-09-30 2005-09-29 Compressor
US11/808,842 US7488165B2 (en) 2004-09-30 2007-06-13 Compressor having back pressure vane controlled for improving oil distribution
US11/808,841 US20070243093A1 (en) 2004-09-30 2007-06-13 Compressor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004286716A JP2006097631A (en) 2004-09-30 2004-09-30 Compressor

Publications (1)

Publication Number Publication Date
JP2006097631A true JP2006097631A (en) 2006-04-13

Family

ID=36237679

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004286716A Withdrawn JP2006097631A (en) 2004-09-30 2004-09-30 Compressor

Country Status (1)

Country Link
JP (1) JP2006097631A (en)

Similar Documents

Publication Publication Date Title
US20090196781A1 (en) Mode changing apparatus for a scroll compressor
US7381040B2 (en) Compressor having pressure controlled for improving oil distribution
US8888475B2 (en) Scroll compressor with oil supply across a sealing part
US20060093506A1 (en) Scroll compressor
JP4454318B2 (en) Compressor
EP1764508B1 (en) Compressor
JP2008121481A (en) Scroll fluid machine
US20060177339A1 (en) Horizontal type orbiting vane compressor
JP2006097631A (en) Compressor
JP2006097629A (en) Compressor
JP2009097356A (en) Hermetically sealed scroll compressor
JP4407253B2 (en) Scroll compressor
JP2006161818A (en) Scroll compressor
JP2006132347A (en) Compressor
KR102182171B1 (en) Scroll compressor
JP2006132348A (en) Compressor
WO2017141309A1 (en) Rotary compressor
KR102548470B1 (en) Compressor having oldham&#39;s ring
JP2006097634A (en) Compressor
JP4663293B2 (en) Compressor
JP2009162083A (en) Compressor unit
JP2008274886A (en) Delivery valve
JP2004293330A (en) Rotary compressor
JP2006097632A (en) Compressor
JP2006132346A (en) Compressor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070831

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20091209