WO2022219761A1 - Hermetic compressor - Google Patents

Hermetic compressor Download PDF

Info

Publication number
WO2022219761A1
WO2022219761A1 PCT/JP2021/015523 JP2021015523W WO2022219761A1 WO 2022219761 A1 WO2022219761 A1 WO 2022219761A1 JP 2021015523 W JP2021015523 W JP 2021015523W WO 2022219761 A1 WO2022219761 A1 WO 2022219761A1
Authority
WO
WIPO (PCT)
Prior art keywords
main shaft
opening
disk portion
compression mechanism
lower bearing
Prior art date
Application number
PCT/JP2021/015523
Other languages
French (fr)
Japanese (ja)
Inventor
貴也 木本
貴彦 村上
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2021/015523 priority Critical patent/WO2022219761A1/en
Publication of WO2022219761A1 publication Critical patent/WO2022219761A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/02Lubrication; Lubricant separation

Definitions

  • the present disclosure relates to a hermetic compressor with a main shaft.
  • an oil supply passage is provided in the center of the main shaft, and as the main shaft rotates, a centrifugal pump draws up refrigerating machine oil from the oil reservoir space at the bottom of the closed container.
  • the refrigerating machine oil sucked up by the centrifugal pump flows through the oil supply passage of the main shaft and is supplied to each part of the compression mechanism through a branch passage provided on the wall surface of the oil supply passage to lubricate.
  • an oil supply pipe having an inner diameter narrower than that of the oil supply passage is generally arranged below the main shaft, and refrigerating machine oil is sucked into the oil supply passage through the oil supply pipe.
  • Patent Document 1 an oil supply pipe and a throttle plate are provided below the lower end of the spindle, and a lower bearing that covers the outer peripheral surface of the lower end of the spindle has an oil supply pipe and the throttle plate below the portion that covers the spindle. is fixed, rotating parts such as the main shaft are not exposed to the oil reservoir space.
  • the present disclosure has been made to solve the above problems, and aims to provide a hermetic compressor with improved lubrication performance during low-speed operation.
  • a hermetic compressor includes a hermetic container having an oil reservoir space formed at the bottom for storing refrigerator oil, a compression mechanism disposed in the hermetic container for compressing a refrigerant, and a an electric motor portion arranged to drive the compression mechanism portion; and an electric motor portion extending vertically, fixed to the electric motor portion to be rotationally driven, and hollow inside from a lower end to a position above the compression mechanism portion. and a disk portion fixed to the lower end and inner peripheral side of the main shaft and having an opening formed therein.
  • the compression mechanism portion rotatably supports the main shaft, and the outer peripheral surface of the lower end portion of the main shaft. and the disk portion is provided so that the lower surface of the disk portion is positioned at the same height as the lower end of the lower bearing or above the lower end of the lower bearing.
  • the disc portion is fixed to the lower end and inner peripheral side of the main shaft and has an opening formed therein, and the lower surface of the disc portion is at the same height as the lower end of the lower bearing or at the lower end of the lower bearing.
  • a disc portion is provided so as to be positioned above the . Therefore, since the lower surface of the disk portion fixed to the main shaft and rotating together with the main shaft does not protrude from the lower end of the lower bearing, the lowering of the oil level due to agitation of the refrigerating machine oil is suppressed.
  • the disk portion fixed to the lower end and the inner peripheral side of the spindle forms an inlet narrower than the hollow portion of the spindle, and the disk portion that constitutes the inlet rotates together with the spindle, so even during low-speed operation.
  • the pressure gradient in the radial direction in the oil supply passage increases, and the height of the oil surface on the wall surface side becomes higher than before. As a result, it is possible to improve the lubrication efficiency during low-speed operation of the hermetic compressor.
  • FIG. 1 is a longitudinal sectional view of a hermetic compressor according to Embodiment 1.
  • FIG. 2 is a partially enlarged view around a compression mechanism in the hermetic compressor of FIG. 1;
  • FIG. FIG. 3 is a cross-sectional view of the main shaft of FIG. 2 taken along the line AA;
  • FIG. 7 is a partially enlarged view of the periphery of a compression mechanism portion of a hermetic compressor according to Embodiment 2;
  • FIG. 11 is a partially enlarged view of the periphery of a compression mechanism of a hermetic compressor according to Embodiment 3;
  • FIG. 11 is a partially enlarged view of the periphery of a compression mechanism of a hermetic compressor according to Embodiment 4;
  • FIG. 11 is a partially enlarged view of the periphery of a compression mechanism of a hermetic compressor according to Embodiment 5;
  • FIG. 8 is a BB cross-sectional view of the main shaft
  • the hermetic compressor is described as a rotary compressor, but each embodiment is not limited to a rotary compressor, and can be applied to a compressor having an oil supply form using a centrifugal pump. . Further, in each embodiment, a case where one cylinder is provided in the rotary compressor will be described as an example, but a plurality of cylinders can be provided. Also, in each figure, the same reference numerals denote the same or corresponding parts, which are common throughout the specification.
  • Embodiment 1. 1 is a longitudinal sectional view of a hermetic compressor according to Embodiment 1.
  • FIG. FIG. 2 is a partial enlarged view of the periphery of the compression mechanism in the hermetic compressor of FIG.
  • the hermetic compressor is composed of, for example, a rotary compressor.
  • the hermetic compressor may be simply referred to as compressor 100 .
  • the compressor 100 is one of the components of a refrigeration cycle used in air conditioners, for example.
  • the compressor 100 has a function of taking in a gaseous fluid, compressing it, and discharging it in a state of high temperature and high pressure. A case where this fluid is a coolant will be described below as an example.
  • the compressor 100 has a closed container 1.
  • the compressor 100 also includes a compression mechanism section 10 that compresses refrigerant, a main shaft 11 , and an electric motor section 20 that drives the compression mechanism section 10 via the main shaft 11 , inside the sealed container 1 .
  • the closed container 1 has, for example, a cylindrical shape with both ends closed.
  • the direction in which the main shaft 11 extends which is the longitudinal direction of the sealed container 1 (vertical direction in the drawing; arrow Z direction) is the axial direction, and the direction perpendicular to the axial direction is the radial direction. is called the circumferential direction.
  • a suction pipe 40 for sucking refrigerant is connected to the side surface of the sealed container 1 .
  • the other end of the suction pipe 40 is connected to the suction muffler 41 .
  • the intake muffler 41 separates the liquid refrigerant and the refrigerant gas that have flowed in from the outside (for example, the evaporator of the refrigerant circuit). Only the refrigerant gas is sucked into the sealed container 1 from the suction muffler 41 through the suction pipe 40 .
  • a discharge pipe 2 for discharging the compressed refrigerant gas from the internal space of the closed container 1 to the outside (for example, the condenser of the refrigerant circuit) is provided on the upper surface of the closed container 1 .
  • the bottom of the closed container 1 forms an oil reservoir space 50 in which refrigerating machine oil for lubricating the compression mechanism 10 is stored.
  • the electric motor unit 20 has a variable number of revolutions, for example, by inverter control or the like, and includes a stator 22 and a rotor 21 .
  • the stator 22 is formed in a substantially cylindrical shape, and its outer peripheral portion is fixed to the sealed container 1 by shrink fitting or the like. Although not shown, the stator 22 is wound with a coil to which power is supplied from an external power supply.
  • the rotor 21 has a substantially cylindrical shape and is arranged inside the stator 22 so as to form a predetermined gap from the inner peripheral surface of the stator 22 .
  • a main shaft 11 is fixed to the rotor 21 , and the electric motor section 20 and the compression mechanism section 10 are connected via the main shaft 11 . That is, by rotating the electric motor portion 20 , rotational power is transmitted to the compression mechanism portion 10 via the main shaft 11 .
  • the compression mechanism portion 10 includes an upper bearing 14, a lower bearing 15, a cylinder 13, an eccentric shaft portion 12 that rotates together with the main shaft 11, a piston 16, and vanes (not shown).
  • the upper bearing 14 is provided with a discharge muffler 19 .
  • the compression mechanism section 10 is arranged below the electric motor section 20 .
  • an upper bearing 14, a cylinder 13, and a lower bearing 15 are sequentially stacked from top to bottom.
  • a shaft hole 14a is formed in the center of the upper bearing 14, and the main shaft 11 is arranged in this shaft hole 14a.
  • a cylindrical boss portion 14b extending upward is formed on the edge of the upper bearing 14 on the side of the shaft hole 14a.
  • the upper bearing 14 is formed with a refrigerant discharge port (not shown).
  • a shaft hole 15a is formed in the center of the lower bearing 15, and the main shaft 11 is arranged in this shaft hole 15a.
  • a cylindrical boss portion 15b extending downward is formed at the edge of the lower bearing 15 on the side of the shaft hole 15a.
  • the upper and lower bearings 14 and 15 support the main shaft 11 at upper and lower portions of the compression mechanism portion 10 .
  • the lower bearing 15 is configured to cover the outer peripheral surface of the lower end of the main shaft 11 . Specifically, the lower bearing 15 is positioned such that the lower end 15e of the lower bearing 15 is at the same height as or lower than the lower end 11e of the main shaft 11 in the axial direction (arrow Z direction). It is configured such that the boss portion 15b extends.
  • the cylinder 13 is made of a flat plate member, and has a substantially cylindrical through hole that is substantially concentric with the main shaft 11 and penetrates in the vertical direction, and the cylinder 13 has a cylindrical shape.
  • a part of the main shaft 11 supported by an upper bearing 14 and a lower bearing 15 is arranged in the through hole of the cylinder 13 .
  • An upper bearing 14 closes the upper end of the through hole of the cylinder 13
  • a lower bearing 15 closes the lower end of the through hole of the cylinder 13
  • a compression chamber 30 is formed between the upper bearing 14 and the lower bearing 15 .
  • An eccentric shaft portion 12 provided on the main shaft 11 and a piston 16 are arranged in the compression chamber 30 .
  • the cylinder 13 is formed with radial vane grooves, and vanes are slidably held in the vane grooves.
  • the rear side of the vane which is the outer peripheral side of the cylinder 13, is open to the space of the airtight atmosphere of the airtight container 1. As shown in FIG. The vane is pressed against the piston 16 by the high-pressure refrigerant discharged into the closed container 1, and slides horizontally in the vane groove in conjunction with the movement of the piston 16, and the low-pressure space of the compression chamber 30 and the high-pressure space of the compression chamber 30 are compressed. play a role in partitioning the space.
  • the inner peripheral surface of the cylinder 13 is formed with a horizontal suction port 13a that communicates with the low-pressure space of the compression chamber 30 .
  • a suction port 13a of the cylinder 13 is connected to a suction muffler 41 by a suction pipe 40, and refrigerant from the suction muffler 41 is introduced into the compression chamber 30 through the suction port 13a.
  • the eccentric shaft portion 12 is attached to the main shaft 11 and rotates eccentrically from the center O of the main shaft 11 as the main shaft 11 rotates.
  • the eccentric shaft portion 12 transmits the rotational force transmitted from the electric motor portion 20 to the main shaft 11 to the piston 16 to rotate the piston 16 eccentrically from the center O of the main shaft 11 .
  • the eccentric shaft portion 12 is configured by, for example, a separate member from the main shaft 11 and attached to the main shaft 11 . Note that the eccentric shaft portion 12 and the main shaft 11 may be integrally formed of the same member.
  • the piston 16 has an annular shape and is slidably fitted to the eccentric shaft portion 12 . As the main shaft 11 rotates, the piston 16 rotates eccentrically together with the eccentric shaft portion 12 to compress the refrigerant.
  • the main shaft 11 extends in the axial direction (direction of arrow Z) of the sealed container 1, one end is fixed to the rotor 21 of the electric motor section 20, and the other end is above the compression mechanism section 10. It is supported by bearing 14 and lower bearing 15 .
  • the main shaft 11 is rotationally driven by the electric motor section 20 and transmits rotational power to the compression mechanism section 10 .
  • the main shaft 11 extends vertically along the axial direction of the closed container 1, and the rotational power of the electric motor section 20 is transferred to the compression mechanism section 10 arranged below the electric motor section 20. introduce.
  • a cylindrical cavity 17 extending in the axial direction is formed at the center O of the main shaft 11 .
  • the hollow portion 17 extends from the lower end 11e of the main shaft 11 to a position above the compression mechanism portion 10 in the axial direction, and serves as a passage for refrigerating machine oil for lubricating the compression mechanism portion 10 .
  • the wall surface 17a of the hollow portion 17 in the main shaft 11 functions not only as an oil supply passage but also as part of a centrifugal pump that generates centrifugal force and sucks up the refrigerating machine oil by the centrifugal force.
  • the main shaft 11 is formed with a plurality of branch paths 18a, 18b and 18c penetrating from the cavity 17 to the outer peripheral surface of the main shaft 11 in the radial direction.
  • the plurality of branch paths 18a, 18b, and 18c are provided at different height positions in the axial direction (the direction of the arrow Z) so that the refrigerating machine oil is supplied to the parts of the compression mechanism 10 that come into contact with particularly the rotating parts. It is configured.
  • the branch path 18a is provided at the height of the upper bearing 14, specifically, at a position higher than the lower end of the upper bearing 14 in the axial direction (the direction of the arrow Z), and the branch path 18c is provided at the lower end of the upper bearing 14. It is provided at a height of the bearing 15 , specifically, at a position equal to or lower than the upper end of the lower bearing 15 .
  • the branch passage 18b is provided between the upper end and the lower end of the piston 16 in the axial direction (direction of arrow Z).
  • the compressor 100 of the present disclosure includes a disc portion 60 provided on the main shaft 11, and an opening portion 61 is formed in the disc portion 60.
  • the opening 61 is provided in the center of the disk portion 60 , and the opening diameter D2 of the opening 61 is smaller than the opening diameter D1 of the hollow portion 17 of the main shaft 11 .
  • the disk portion 60 is fixed to the lower end 11e of the main shaft 11 and to the inner peripheral side. In the example shown in FIG. 2, the disc portion 60 is fixed to the main shaft 11 so that the lower surface 60e of the disc portion 60 and the lower end surface of the main shaft 11 are flush with each other. Further, in the example shown in FIG.
  • the outer peripheral surface of the disk portion 60 is in contact with the wall surface 17a of the hollow portion 17, and the main shaft 11 is circularly mounted so that the center O of the main shaft 11 and the center of the opening 61 are aligned.
  • a plate portion 60 is attached.
  • the disc portion 60 may be press-fitted into the hollow portion 17 of the main shaft 11, or alternatively, the wall surface 17a of the hollow portion 17 of the main shaft 11 and the outer peripheral surface of the disc portion 60 are threaded, and the main shaft 11 is threaded.
  • a fixed configuration may also be used.
  • the disk portion 60 is fixed to the lower end 11e of the main shaft 11 and on the inner peripheral side, so that it constitutes the entrance of the hollow portion 17 of the main shaft 11 and rotates as the main shaft 11 rotates. That is, the disc portion 60 constitutes a centrifugal pump that sucks up the refrigerating machine oil together with the wall surface 17a of the hollow portion 17 of the main shaft 11. As shown in FIG. Since the disk portion 60 is provided at the lower end 11e of the main shaft 11 and on the inner peripheral side, the hollow portion 17 has a narrow entrance.
  • the lower surface 60e of the disc portion 60 is positioned at the same height as the lower end 15e of the lower bearing 15 or above the lower end 15e of the lower bearing 15.
  • the lower bearing 15 is configured to cover the outer peripheral surface of the lower end portion of the main shaft 11, and the lower end 15e of the lower bearing 15 is at the same height as or lower than the lower end 11e of the main shaft 11. is also located below.
  • the rotating parts such as the main shaft 11 and the disk part 60 do not protrude from the lower end 15 e of the lower bearing 15 .
  • both the lower end 11e of the main shaft 11 and the lower surface 60e of the disk portion 60 are positioned at the same height as the lower end 15e of the lower bearing 15.
  • the lower end 11 e of the main shaft 11 and the lower surface 60 e of the disk portion 60 may be positioned above the lower end 15 e of the lower bearing 15 .
  • the lower surface 60e of the disc portion 60 which is the inlet of the hollow portion 17
  • the lower surface 60e of the disc portion 60 is at the same height as the lower end 15e of the lower bearing 15
  • the lower end of the centrifugal pump is far from the bottom of the closed container 1 (see FIG.
  • the lower surface 60e of the disc portion 60 and the lower end 15e of the lower bearing 15 are positioned at the same height in the axial direction (the direction of the arrow Z). Further, the lower surface 60e of the disc portion 60 may be positioned below the lower end 11e of the main shaft 11 as long as the disc portion 60 is fixed to the inner peripheral side of the lower end 11e of the main shaft 11 . That is, if the disk portion 60 has an opening 61 narrower than the hollow portion 17 and does not protrude from the lower end 15e of the lower bearing 15, a part of the disk portion 60 may protrude from the lower end 11e of the main shaft 11. good.
  • the compressed refrigerant is discharged into the discharge muffler 19 from a discharge port (not shown) formed in the upper bearing 14, and then discharged into the sealed container 1 from a discharge port (not shown) of the discharge muffler 19. be.
  • the high-pressure refrigerant discharged into the internal space of the sealed container 1 is discharged from the discharge pipe 2 to the outside of the sealed container 1 .
  • the centrifugal force generated in the hollow portion 17 by the rotation of the main shaft 11 draws up the refrigerating machine oil in the oil reservoir space 50 through the opening 61 of the disk portion 60 . be done.
  • the outer peripheral surface of the lower end of the rotating main shaft 11 is covered with the lower bearing 15 and is not exposed to the oil reservoir space 50. Therefore, compared to the structure in which the main shaft 11 is exposed, even if the main shaft 11 rotates, Agitation of the refrigerating machine oil stored in the bottom of the sealed container 1 is suppressed. Further, the disk portion 60 that rotates together with the main shaft 11 is accommodated in the lower bearing 15 and is configured so as not to protrude from the lower end 15e of the lower bearing 15. Agitation of the refrigerating machine oil is suppressed as compared with a configuration in which a portion is provided. Therefore, a decrease in the oil level near the rotating portion caused by the stirring of the refrigerating machine oil stored in the bottom portion of the closed container 1 by the rotating portion is suppressed.
  • a disk portion 60 is fixed to the inner peripheral side of the lower end 11e of the main shaft 11, and the disk portion 60 constitutes the hollow portion 17, that is, the inlet of the oil supply passage.
  • the wall surface 17a of the hollow portion 17 becomes a so-called cylindrical container, and the flow of the refrigerating machine oil sucked up from the oil reservoir space 50 easily develops into a forced vortex within the hollow portion 17.
  • FIG. 3 is a cross-sectional view of the spindle 11 of FIG. 2 taken along the line AA.
  • an arrow R indicates the direction of rotation of the main shaft 11.
  • four points represent positions in the cavity 17 at different distances from the center O of the main shaft 11, and each point is a starting point.
  • the length of the arrow represents the magnitude of the circumferential velocity of the refrigerating machine oil at that point.
  • a point P1, a point P2, a point P3, and a point P4 are set in this order from the center O toward the outside in the radial direction.
  • the velocity of the refrigerating machine oil in the circumferential direction increases at radially outer positions.
  • the pressure generated in the refrigerating machine oil also increases with increasing position radially outward. That is, the pressure of the refrigerating machine oil increases in the order of point P1, point P2, point P3, and point P4.
  • the height of the oil level inside the cavity 17 is proportional to the pressure.
  • provision of the disk portion 60 increases the pressure gradient in the radial direction, and the oil level on the wall surface 17a side of the hollow portion 17 is higher than in the conventional art.
  • the refrigerating machine oil that is sucked up from the opening 61 of the disk portion 60 and flows along the wall surface 17a of the hollow portion 17 due to the forced vortex motion flows through branch paths 18a, 18b and 18c provided on the wall surface 17a.
  • the refrigerating machine oil is supplied to the lower bearing 15 through the branch passage 18c, to the piston 16 through the branch passage 18b, and to the upper bearing 14 through the branch passage 18a.
  • the speed of the refrigerating machine oil on the wall surface 17a side of the cavity 17 is lower than that during high-speed operation, so the oil level on the wall surface 17a side cannot be sufficiently high. , it becomes difficult to supply oil to the upper portion of the compression mechanism 10 (for example, the upper bearing 14).
  • the disk portion 60 by providing the disk portion 60, a certain distance is secured between the end 60a of the opening 61 of the disk portion 60 and the wall surface 17a in the horizontal direction.
  • the refrigerating machine oil that has flowed in from the inlet of the hollow portion 17 can generate a forced vortex between the end 60a of the opening 61 and the wall surface 17a, and the pressure gradient in the radial direction becomes larger than before. Therefore, even when the compressor 100 is operating at a low speed, the oil can be supplied to the upper portion of the compression mechanism portion 10 .
  • the opening diameter D2 of the opening 61 of the disc portion 60 is about 0.3D1 to 0.7D1 with respect to the opening diameter D1 of the hollow portion 17 of the main shaft 11, taking into account the balance between the lubricating property and the amount of lubricating oil. is preferred.
  • the hermetic compressor (compressor 100) of Embodiment 1 includes the hermetically sealed container 1 in which the oil reservoir space 50 for storing the refrigerating machine oil is formed at the bottom.
  • the hermetic compressor includes a compression mechanism portion 10 arranged in the closed container 1 for compressing the refrigerant, an electric motor portion 20 arranged in the closed container 1 for driving the compression mechanism portion 10, and a vertical direction (arrow and a main shaft 11 that extends in the Z direction) and that is fixed to the electric motor section 20 and driven to rotate.
  • a hollow portion 17 is formed inside the main shaft 11 from the lower end 11 e to a position above the compression mechanism portion 10 .
  • the hermetic compressor also includes a disk portion 60 having an opening 61 formed therein.
  • the hermetic compressor sucks up the refrigerating machine oil from the oil reservoir space 50 through the opening 61 of the disc portion 60 by the centrifugal force generated in the hollow portion 17 by the rotation of the main shaft 11 .
  • the compression mechanism section 10 has a lower bearing 15 covering the outer peripheral surface of the lower end 11e of the main shaft 11, and the lower bearing 15 supports the main shaft 11 so as to be rotatable.
  • the disc portion 60 is provided so that the lower surface 60 e of the disc portion 60 is at the same height as the lower end 15 e of the lower bearing 15 or above the lower end 15 e of the lower bearing 15 .
  • the lower surface 60e of the disk portion 60 which is fixed to the main shaft 11 and rotates together with the main shaft 11, does not protrude from the lower end 15e of the lower bearing 15, thereby suppressing a decrease in the oil level due to agitation of the refrigerating machine oil.
  • the disc portion 60 fixed to the lower end 11 e of the main shaft 11 and the inner peripheral side constitutes an inlet narrower than the hollow portion 17 of the main shaft 11 .
  • the pressure on the radially outer wall surface 17a side in the hollow portion 17 increases. Since the oil level in the cavity 17 is proportional to the pressure, the oil level on the wall surface 17a of the refrigerating machine oil in the cavity 17 is higher than in the conventional case.
  • the disc portion 60 is provided so that the lower surface 60e of the disc portion 60 is at the same height as the lower end 11e of the main shaft 11 or above the lower end 11e of the main shaft 11.
  • the disk portion 60 is entirely accommodated in the main shaft 11 and does not protrude from the lower end 11e of the main shaft 11, so that the exposed surface area of the disk portion 60 can be reduced, and the lower bearing 15 and the disk portion can be arranged in the radial direction. 60, the decrease in the oil level is suppressed.
  • FIG. 4 is a partially enlarged view around the compression mechanism section 10 of the hermetic compressor according to the second embodiment.
  • the compressor 100 of the second embodiment differs from the first embodiment in that a discharge muffler 62 is provided below the lower bearing 15, and the rest of the configuration is the same as that of the first embodiment. be.
  • FIG. 4 shows the compression mechanism 10 having one cylinder 13
  • the compression mechanism 10 may have a plurality of cylinders 13 in the axial direction (direction of arrow Z).
  • the lower bearing 15 is provided with a discharge port for the refrigerant from the lower cylinder, and a discharge muffler 62 provided below the lower bearing 15 discharges the refrigerant from the lower cylinder into the container.
  • a coolant outlet is provided for cooling.
  • the discharge muffler 62 is provided so as to cover the entire boss portion 15b of the lower bearing 15, and has a convex shape protruding downward in the example shown in FIG.
  • a muffler hole 62 a is formed in the discharge muffler 62 at a position below the shaft hole 15 a of the lower bearing 15 .
  • the muffler hole 62a has a circular shape, for example, and has an opening diameter D3 that is larger than the opening diameter D2 of the opening 61 of the disc portion 60.
  • the center of the muffler hole 62a coincides with the center O of the main shaft 11 and the center of the opening 61 of the disk portion 60.
  • an annular sealing member 151 is installed on the lower end surface of the boss portion 15b of the lower bearing 15 so as to surround the muffler hole 62a.
  • the sealing material 151 is provided between the lower end surface of the boss portion 15b of the lower bearing 15 and the upper surface of the discharge muffler 62 facing the lower end surface so as to be in contact with both of them. It is configured to separate the space.
  • the seal member 151 may not be provided, and the lower end surface of the boss portion 15b and the upper surface of the discharge muffler 62 may be in direct contact.
  • an upward convex portion is formed in a portion of the discharge muffler 62 facing the lower end surface of the boss portion 15b, and the convex portion is brought into contact with the lower end surface of the boss portion 15b. It may be configured to partition the space inside the discharge muffler 62 .
  • the operation of compressing the refrigerant in the compressor 100 of the second embodiment is the same as that of the first embodiment.
  • a part of the refrigerant compressed in the compression chamber 30 is discharged into the discharge muffler 19 from the discharge port (not shown) of the upper bearing 14, and then discharged from the discharge port (not shown) of the discharge muffler 19 to the sealed container 1. discharged inside.
  • the rest of the refrigerant compressed in the compression chamber 30 is discharged from the discharge port (not shown) of the lower bearing 15 into the discharge muffler 62, and then from the discharge port (not shown) of the discharge muffler 62. It is discharged into the closed container 1 .
  • the high-pressure gaseous refrigerant discharged into the internal space of the sealed container 1 is discharged from the discharge pipe 2 to the outside of the sealed container 1 .
  • the centrifugal force generated in the hollow portion 17 sucks up the refrigerating machine oil in the oil reservoir space 50 through the opening 61 of the disk portion 60 .
  • a disk portion 60 fixed to the inner peripheral side of the lower end 11e of the main shaft 11 is provided.
  • the disc portion 60 is provided so that the lower surface 60 e of the disc portion 60 is at the same height as the lower end 15 e of the lower bearing 15 or above the lower end 15 e of the lower bearing 15 .
  • the compressor 100 of Embodiment 2 includes the discharge muffler 62 provided below the lower bearing 15 . 62a is formed.
  • An opening diameter D3 of the muffler hole 62a is larger than an opening diameter D2 of the opening 61 of the disc portion 60.
  • the discharge muffler 62 is not provided below the lower bearing 15 in the compressor 100 . Therefore, the lower end 11e of the main shaft 11 and the lower surface 60e of the disc portion 60 are exposed to the oil sump space 50, and the main shaft 11 and the disc portion 60 rotate, so that the refrigerating machine oil in the oil sump space 50 is slightly agitated. and the oil surface is disturbed.
  • the discharge muffler 62 is provided below the lower bearing 15, and the opening diameter D3 of the muffler hole 62a is smaller than the opening diameter D4 of the shaft hole 15a of the lower bearing 15.
  • FIG. 5 is a partial enlarged view of the periphery of the compression mechanism of the hermetic compressor according to Embodiment 3.
  • FIG. 5 is a partial enlarged view of the periphery of the compression mechanism of the hermetic compressor according to Embodiment 3.
  • FIG. The compressor 100 of the third embodiment differs from the first embodiment in that the lower bearing 15 is provided with the fixed pipe 63, and the rest of the configuration is the same as that of the first embodiment.
  • the fixed pipe 63 has a pipe portion 63a extending in the axial direction (the direction of the arrow Z) and a disk-shaped mounting portion 63b provided on the outer periphery of the upper end of the pipe portion 63a. is fixed to Specifically, the fixed pipe 63 is fixed to the lower bearing 15 so that the lower end surface of the boss portion 15b of the lower bearing 15 and the upper surface of the mounting portion 63b of the fixed pipe 63 are in contact with each other. A gap is provided between the tip of the pipe portion 63a of the fixed pipe 63 and the bottom surface of the sealed container 1 so that the refrigerating machine oil can flow.
  • a fixed pipe 63 is fixed to the lower bearing 15 so that the hole 63c of the pipe portion 63a is positioned below the opening 61 of the disk portion 60. More specifically, the center of the hole 63c of the pipe portion 63a coincides with the center O of the main shaft 11 and the center of the opening 61 of the disk portion 60 in plan view. Further, the opening diameter D4 of the hole 63c of the fixed pipe 63, that is, the inner diameter of the pipe portion 63a is larger than the opening diameter D2 of the opening portion 61 of the disk portion 60. As shown in FIG.
  • the operation of compressing the refrigerant and discharging it from the discharge pipe 2 to the outside of the sealed container 1 is the same as in the case of the first embodiment.
  • the fixed pipe 63 of Embodiment 3 can also be applied to the compressor 100 of Embodiment 2 described above.
  • the fixed pipe 63 is fixed to the lower bearing 15 by sandwiching the mounting portion 63b of the fixed pipe 63 between the discharge muffler 62 (see FIG. 4) of Embodiment 2 and the lower end face of the boss portion 15b of the lower bearing 15. may be configured.
  • the centrifugal force generated in the hollow portion 17 sucks up the refrigerating machine oil in the oil reservoir space 50 through the opening 61 of the disk portion 60 .
  • a disk portion 60 fixed to the inner peripheral side of the lower end 11e of the main shaft 11 is provided.
  • the disc portion 60 is provided so that the lower surface 60 e of the disc portion 60 is at the same height as the lower end 15 e of the lower bearing 15 or above the lower end 15 e of the lower bearing 15 .
  • the compressor 100 of Embodiment 3 includes a fixed pipe 63 fixed to the lower end 15e of the lower bearing 15.
  • the fixed pipe 63 extends downward from the lower end 15e of the lower bearing 15 to connect with the bottom surface of the sealed container 1. provided to form a gap between the The hole 63c of the fixed pipe 63 is positioned below the opening 61 of the disk portion 60, and the inner diameter (opening diameter D4) of the fixed pipe 63 is larger than the opening diameter D2 of the opening 61 of the disk portion 60. It has a large configuration.
  • the compressor 100 may be operated under operating conditions such that, for example, the amount of refrigerating machine oil that flows out of the compressor 100 together with the refrigerant increases and the level of the oil level in the oil reservoir space 50 decreases.
  • the compressor 100 of the present disclosure is provided with the fixed pipe 63 extending downward from the lower end 15e of the lower bearing 15, the amount of oil in the oil reservoir space 50 is reduced as described above, and the height of the oil level is lowered. Oil can be supplied from the bottom surface of the sealed container 1 through the fixed pipe 63 even under such operating conditions.
  • the fixed pipe 63 since the fixed pipe 63 is fixed to the lower bearing 15, it does not rotate, and the effect of suppressing the oil level drop in the oil reservoir space 50 is maintained.
  • the inner diameter (opening diameter D4) of the fixed pipe 63 is larger than the opening diameter D2 of the opening 61 of the disk portion 60, the action of the centrifugal pump by the main shaft 11 and the disk portion 60 is not hindered. The effect of improving the refueling property is also maintained.
  • FIG. 6 is a partial enlarged view of the periphery of a compression mechanism of a hermetic compressor according to Embodiment 4.
  • FIG. The compressor 100 of the fourth embodiment is different from the first embodiment in that a cap 64 is provided in place of the disk portion 60, and the rest of the configuration is the same as that of the first embodiment. be.
  • the cap 64 has a disc portion 64a corresponding to the disc portion 60 of the first embodiment, and a cylindrical flange portion 64b extending upward from the outer peripheral edge of the disc portion 64a. It is fixed to the lower end 15e and the inner peripheral side. Specifically, the cap 64 is fixed to the main shaft 11 so that the outer peripheral surface of the flange portion 64b and the wall surface 17a of the hollow portion 17 of the main shaft 11 are in contact with each other.
  • the disc portion 64a and the flange portion 64b are molded, for example, from sheet metal and are integrally formed.
  • An opening 61 is formed in the disc portion 64a.
  • the opening 61 is provided in the center of the disc portion 64a, and the opening diameter D2 of the opening 61 is smaller than the opening diameter D1 of the hollow portion 17 of the main shaft 11.
  • the disk portion 64a is provided on the main shaft 11 so that the center O of the main shaft 11 and the center of the opening 61 are aligned.
  • the cap 64 may be press-fitted into the hollow portion 17 of the main shaft 11, or alternatively, the wall surface 17a of the hollow portion 17 of the main shaft 11 and the outer peripheral surface of the flange portion 64b of the cap 64 are threaded, and the main shaft 11 is screwed.
  • a fixed configuration may also be used.
  • the positional relationship between the cap 64, the lower bearing 15 and the main shaft 11 in the fourth embodiment is the same as the positional relationship between the disc portion 60 (see FIG. 1), the lower bearing 15 and the main shaft 11 in the first embodiment. be. That is, the lower surface 64e of the disc portion 64a and the lower end 11e of the main shaft 11 are positioned at the same height as the lower end 15e of the lower bearing 15 or above the lower end 15e of the lower bearing 15. 11 and the cap 64 are configured so as not to protrude. Further, the lower surface 64e of the disk portion 64a may be positioned below the lower end 11e of the main shaft 11 as long as the cap 64 is fixed to the inner peripheral side of the lower end 11e of the main shaft 11 .
  • the disc portion 64a is provided, and the lower surface 64e of the disc portion 64a is at the same height as or below the lower end 15e of the lower bearing 15.
  • a cap 64 is fixed to the main shaft 11 so as to be positioned above the lower end 15 e of the bearing 15 . Therefore, a drop in the oil level due to agitation of the refrigerating machine oil is suppressed, and the height of the oil level on the radially outer wall surface 17a of the hollow portion 17 is higher than in the conventional art, thereby improving the oil supply performance. can get.
  • the compressor 100 of Embodiment 4 has a cylindrical flange portion 64b integrally formed with the disk portion 64a and extending upward from the outer peripheral edge of the disk portion 64a.
  • the disc portion 64a and the flange portion 64b can be integrally molded as the cap 64 by using easily deformable sheet metal or the like. Therefore, compared to the case where a part composed only of the disc portion 60 without the flange portion 64b is press-fitted or screw-fixed into the hollow portion 17 of the main shaft 11, it is easier to insert into the main shaft 11 during assembly or processing. , deformation of the main shaft 11 can be suppressed because the load on the main shaft 11 can be reduced. Further, for example, the insertion into the main shaft 11 is facilitated compared to the structure in which the oil supply pipe is directly inserted into the main shaft 11 .
  • FIG. 7 is a partial enlarged view of the periphery of the compression mechanism of the hermetic compressor according to Embodiment 5.
  • FIG. FIG. 8 is a BB cross-sectional view of the spindle 11 of FIG.
  • the compressor 100 of the fifth embodiment differs from the first embodiment in that a partition plate 65 is provided in the hollow portion 17 of the main shaft 11. are the same as in the first embodiment.
  • the partition plate 65 is composed of a plate-shaped member extending in the vertical direction (direction of arrow Z), and has a plate thickness t that is thinner than the opening diameter D2 of the opening 61 of the disc portion 60 .
  • the partition plate 65 has a lower end 65e in contact with the disk portion 60 as shown in FIG. 7, and both edges in contact with the wall surface 17a of the hollow portion 17 as shown in FIG. It is fixed to the main shaft 11 at the same time, and is configured to partition the hollow portion 17 into two. That is, as shown in FIG. 7, inside the hollow portion 17, a semi-cylindrical first hollow portion S1 and a second hollow portion S2 extending in the vertical direction are formed on both sides of the partition plate 65. As shown in FIG. A lower end 65e of the partition plate 67 passes through the center of the opening 61 of the disc portion 60 in plan view as shown in FIG.
  • the partition plate 65 has a flat plate shape, and the surface facing the first cavity S1 and the surface facing the second cavity S2 extend parallel to the center O of the main shaft 11. .
  • the partition plate 65 may have a spiral shape twisted by 90° or more about the longitudinal direction of the plate-like member. In this case, the first cavity S1 and the second cavity S2 formed on both sides of the partition plate 65 have a spiral shape.
  • the disk portion 60 fixed to the inner peripheral side of the lower end 11e of the main shaft 11 is provided.
  • the disc portion 60 is provided so that the lower surface 60 e of the disc portion 60 is at the same height as the lower end 15 e of the lower bearing 15 or above the lower end 15 e of the lower bearing 15 . Therefore, a drop in the oil level due to agitation of the refrigerating machine oil is suppressed, and the height of the oil level on the radially outer wall surface 17a of the hollow portion 17 is higher than in the conventional art, thereby improving the oil supply performance. can get.
  • the compressor 100 of Embodiment 5 includes a partition plate 65 arranged in the hollow portion 17 of the main shaft 11 and extending in the vertical direction. , divides the flow path of the refrigerating machine oil in the hollow portion 17 into two.
  • the flow path of the refrigerating machine oil flowing into the hollow portion 17 from the opening 61 of the disc portion 60 can be divided into two.
  • the pressure gradient in the radial direction within the hollow portion 17 is likely to increase as compared with the case where the is not provided.
  • the lower end 65e of the partition plate 65 is in contact with the disk portion 60, the effect of increasing the pressure gradient by the partition plate 65 can be obtained immediately after the refrigerating machine oil flows into the hollow portion 17 from the opening 61. can be done.
  • the oil surface on the side of the wall surface 17a in the hollow portion 17 of the main shaft 11 is higher, and the oil supply is improved.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)
  • Compressor (AREA)

Abstract

This hermetic compressor comprises: a sealed container in which an oil reservoir space for storing refrigerating machine oil is formed on a bottom part thereof; a compression mechanism unit which is disposed in the sealed container and compresses a refrigerant; an electric motor unit which is disposed in the sealed container and drives the compression mechanism unit; a main shaft which extends in the vertical direction and is fixed to and rotationally driven by the electric motor unit, and in which a cavity section from a lower end of the main shaft to a position above the compression mechanism unit is formed; and a disk part which is fixed to the lower end and inner peripheral side of the main shaft, and in which an opening is formed, wherein the refrigerating machine oil is suctioned up from the oil reservoir space via the opening of the disk part by means of the centrifugal force occurring in the cavity section due to the rotation of the main shaft, the compression mechanism unit has a lower bearing which rotatably supports the main shaft and covers the outer peripheral surface of the lower end of the main shaft, and the disk part is provided such that the lower surface of the disk part is positioned at the same height as the lower end of the lower bearing or above the lower end of the lower bearing.

Description

密閉型圧縮機hermetic compressor
 本開示は、主軸を備えた密閉型圧縮機に関する。 The present disclosure relates to a hermetic compressor with a main shaft.
 密閉型圧縮機において、主軸の中心に給油路を設け、主軸の回転に伴い遠心ポンプで密閉容器の底部の油溜め空間から冷凍機油を吸い上げるものがある。遠心ポンプで吸い上げられた冷凍機油は、主軸の給油路内を流れ、給油路の壁面に設けられた分岐路を介して圧縮機構部の各部位へ供給され、潤滑する。このような密閉型圧縮機では、一般に、主軸の下側に、給油路よりも狭い内径をもつ給油パイプが配置され、給油パイプを介して給油路に冷凍機油が吸い上げられる。回転する主軸に給油パイプが固定された構成では、圧縮機の高速運転時には給油パイプの回転によって油溜め空間の冷凍機油が撹拌され、中心の油面が低下し、圧縮機構部の潤滑に必要な冷凍機油を吸い上げられない場合があった。そこで、主軸よりも下側又は主軸の下端から一部がはみ出るように給油パイプを配置し、主軸を支持する下軸受に給油パイプを固定した技術が開示されている(例えば、特許文献1参照)。特許文献1では、主軸の下端部よりも下側に給油パイプ及び絞り板が設けられ、主軸の下端部の外周面を覆う下軸受において主軸を覆う部分よりも下側に、給油パイプ及び絞り板が固定されているので、主軸等の回転部が油溜め空間に露出しない。 In some hermetic compressors, an oil supply passage is provided in the center of the main shaft, and as the main shaft rotates, a centrifugal pump draws up refrigerating machine oil from the oil reservoir space at the bottom of the closed container. The refrigerating machine oil sucked up by the centrifugal pump flows through the oil supply passage of the main shaft and is supplied to each part of the compression mechanism through a branch passage provided on the wall surface of the oil supply passage to lubricate. In such a hermetic compressor, an oil supply pipe having an inner diameter narrower than that of the oil supply passage is generally arranged below the main shaft, and refrigerating machine oil is sucked into the oil supply passage through the oil supply pipe. In a configuration in which the oil supply pipe is fixed to the rotating main shaft, the rotation of the oil supply pipe agitates the refrigerating machine oil in the oil sump space during high-speed operation of the compressor, lowering the oil level in the center, which is necessary for lubrication of the compression mechanism. In some cases, the refrigerator oil could not be sucked up. Therefore, a technique has been disclosed in which an oil supply pipe is arranged below the main shaft or partially protrudes from the lower end of the main shaft, and the oil supply pipe is fixed to a lower bearing that supports the main shaft (see, for example, Patent Document 1). . In Patent Document 1, an oil supply pipe and a throttle plate are provided below the lower end of the spindle, and a lower bearing that covers the outer peripheral surface of the lower end of the spindle has an oil supply pipe and the throttle plate below the portion that covers the spindle. is fixed, rotating parts such as the main shaft are not exposed to the oil reservoir space.
特開平3-33493号公報JP-A-3-33493
 特許文献1のように、給油パイプが下軸受に固定される構成では、回転部が油溜め空間に露出しないことで油面の低下は抑制できるものの、給油路よりも小さい内径をもつ給油パイプが回転しないことで、給油路内での径方向の圧力勾配が小さくなってしまう。結果、給油路内で壁面側を流れる冷凍機油の量及び油面の高さが、給油パイプが回転する場合と比べて低下し、特に密閉型圧縮機が低回転数で運転している低速運転時には、圧縮機構部の上部に冷凍機油を供給できない場合があった。 As in Patent Document 1, in the structure in which the oil supply pipe is fixed to the lower bearing, although the lowering of the oil level can be suppressed by not exposing the rotating part to the oil reservoir space, the oil supply pipe having an inner diameter smaller than that of the oil supply passage is used. The lack of rotation reduces the radial pressure gradient in the oil supply passage. As a result, the amount of refrigerating machine oil flowing on the wall side in the oil supply passage and the height of the oil surface are lower than when the oil supply pipe rotates. In some cases, the refrigerating machine oil could not be supplied to the upper portion of the compression mechanism.
 本開示は、上記のような課題を解決するためになされたもので、低速運転時における給油性を向上させた密閉型圧縮機を提供することを目的とする。 The present disclosure has been made to solve the above problems, and aims to provide a hermetic compressor with improved lubrication performance during low-speed operation.
 本開示に係る密閉型圧縮機は、冷凍機油を貯留する油溜め空間が底部に形成された密閉容器と、前記密閉容器内に配置され、冷媒を圧縮する圧縮機構部と、前記密閉容器内に配置され、前記圧縮機構部を駆動する電動機部と、上下方向に延び、前記電動機部に固定されて回転駆動されるものであって、下端から前記圧縮機構部よりも上の位置まで内部に空洞部が形成された主軸と、前記主軸の前記下端且つ内周側に固定され、内部に開口部が形成された円板部と、を備え、前記主軸の回転によって前記空洞部内で生じる遠心力により前記円板部の前記開口部を介して前記油溜め空間から前記冷凍機油を吸い上げる密閉型圧縮機において、前記圧縮機構部は、前記主軸を回転自在に支持し、前記主軸の下端部の外周面を覆う下軸受を有し、前記円板部は、当該円板部の下面が前記下軸受の下端と同じ高さ又は前記下軸受の前記下端よりも上に位置するように設けられている。 A hermetic compressor according to the present disclosure includes a hermetic container having an oil reservoir space formed at the bottom for storing refrigerator oil, a compression mechanism disposed in the hermetic container for compressing a refrigerant, and a an electric motor portion arranged to drive the compression mechanism portion; and an electric motor portion extending vertically, fixed to the electric motor portion to be rotationally driven, and hollow inside from a lower end to a position above the compression mechanism portion. and a disk portion fixed to the lower end and inner peripheral side of the main shaft and having an opening formed therein. In a hermetic compressor that sucks up the refrigerating machine oil from the oil sump space through the opening of the disk portion, the compression mechanism portion rotatably supports the main shaft, and the outer peripheral surface of the lower end portion of the main shaft. and the disk portion is provided so that the lower surface of the disk portion is positioned at the same height as the lower end of the lower bearing or above the lower end of the lower bearing.
 本開示によれば、主軸の下端且つ内周側に固定され、内部に開口部が形成された円板部を備え、円板部の下面が下軸受の下端と同じ高さ又は下軸受の下端よりも上に位置するように円板部が設けられている。よって、主軸に固定されて主軸と共に回転する円板部の下面が下軸受の下端からはみ出ないので、冷凍機油の撹拌による油面の低下が抑制される。また、主軸の下端且つ内周側に固定された円板部により、主軸の空洞部よりも狭い入口が構成され、また、入口を構成する円板部は主軸と共に回転するので、低速運転時でも、給油路内での径方向の圧力勾配が増大し、壁面側の油面の高さが従来よりも高くなる。結果、密閉型圧縮機の低速運転時における給油性が向上する。 According to the present disclosure, the disc portion is fixed to the lower end and inner peripheral side of the main shaft and has an opening formed therein, and the lower surface of the disc portion is at the same height as the lower end of the lower bearing or at the lower end of the lower bearing. A disc portion is provided so as to be positioned above the . Therefore, since the lower surface of the disk portion fixed to the main shaft and rotating together with the main shaft does not protrude from the lower end of the lower bearing, the lowering of the oil level due to agitation of the refrigerating machine oil is suppressed. In addition, the disk portion fixed to the lower end and the inner peripheral side of the spindle forms an inlet narrower than the hollow portion of the spindle, and the disk portion that constitutes the inlet rotates together with the spindle, so even during low-speed operation. , the pressure gradient in the radial direction in the oil supply passage increases, and the height of the oil surface on the wall surface side becomes higher than before. As a result, it is possible to improve the lubrication efficiency during low-speed operation of the hermetic compressor.
実施の形態1に係る密閉型圧縮機の縦断面図である。1 is a longitudinal sectional view of a hermetic compressor according to Embodiment 1. FIG. 図1の密閉型圧縮機における圧縮機構部周辺の部分拡大図である。2 is a partially enlarged view around a compression mechanism in the hermetic compressor of FIG. 1; FIG. 図2の主軸のA-A断面図である。FIG. 3 is a cross-sectional view of the main shaft of FIG. 2 taken along the line AA; 実施の形態2に係る密閉型圧縮機の圧縮機構部周辺の部分拡大図である。FIG. 7 is a partially enlarged view of the periphery of a compression mechanism portion of a hermetic compressor according to Embodiment 2; 実施の形態3に係る密閉型圧縮機の圧縮機構部周辺の部分拡大図である。FIG. 11 is a partially enlarged view of the periphery of a compression mechanism of a hermetic compressor according to Embodiment 3; 実施の形態4に係る密閉型圧縮機の圧縮機構部周辺の部分拡大図である。FIG. 11 is a partially enlarged view of the periphery of a compression mechanism of a hermetic compressor according to Embodiment 4; 実施の形態5に係る密閉型圧縮機の圧縮機構部周辺の部分拡大図である。FIG. 11 is a partially enlarged view of the periphery of a compression mechanism of a hermetic compressor according to Embodiment 5; 図7の主軸のB-B断面図である。FIG. 8 is a BB cross-sectional view of the main shaft of FIG. 7;
 以下、本開示の実施の形態を図面に基づいて説明する。なお、以下に説明する実施の形態により本開示が限定されるものではない。各実施の形態では、密閉型圧縮機がロータリ圧縮機であるものとして説明するが、各実施の形態は、ロータリ圧縮機に限定されず、遠心ポンプを利用した給油形態を持つ圧縮機に適用できる。また、各実施の形態では、ロータリ圧縮機においてシリンダが1つ設けられている場合を例に説明するが、シリンダは複数設けことができる。また、各図において、同一の符号を付したものは、同一の又はこれに相当するものであり、これは明細書の全文において共通している。 Hereinafter, embodiments of the present disclosure will be described based on the drawings. It should be noted that the present disclosure is not limited by the embodiments described below. In each embodiment, the hermetic compressor is described as a rotary compressor, but each embodiment is not limited to a rotary compressor, and can be applied to a compressor having an oil supply form using a centrifugal pump. . Further, in each embodiment, a case where one cylinder is provided in the rotary compressor will be described as an example, but a plurality of cylinders can be provided. Also, in each figure, the same reference numerals denote the same or corresponding parts, which are common throughout the specification.
実施の形態1.
 図1は、実施の形態1に係る密閉型圧縮機の縦断面図である。図2は、図1の密閉型圧縮機における圧縮機構部周辺の部分拡大図である。密閉型圧縮機は、例えばロータリ圧縮機で構成されている。以下、密閉型圧縮機を、単に圧縮機100と称する場合がある。
Embodiment 1.
1 is a longitudinal sectional view of a hermetic compressor according to Embodiment 1. FIG. FIG. 2 is a partial enlarged view of the periphery of the compression mechanism in the hermetic compressor of FIG. The hermetic compressor is composed of, for example, a rotary compressor. Hereinafter, the hermetic compressor may be simply referred to as compressor 100 .
 圧縮機100は、例えば空気調和機等に用いられる冷凍サイクルの構成要素の一つとなるものである。圧縮機100は、ガス状の流体を吸入し、圧縮して高温かつ高圧の状態として吐出させる機能を有している。以下、この流体が冷媒である場合を例に説明する。 The compressor 100 is one of the components of a refrigeration cycle used in air conditioners, for example. The compressor 100 has a function of taking in a gaseous fluid, compressing it, and discharging it in a state of high temperature and high pressure. A case where this fluid is a coolant will be described below as an example.
 圧縮機100は、密閉容器1を有している。また、圧縮機100は、密閉容器1の内部に、冷媒を圧縮する圧縮機構部10と、主軸11と、主軸11を介して圧縮機構部10を駆動する電動機部20とを備えている。 The compressor 100 has a closed container 1. The compressor 100 also includes a compression mechanism section 10 that compresses refrigerant, a main shaft 11 , and an electric motor section 20 that drives the compression mechanism section 10 via the main shaft 11 , inside the sealed container 1 .
 密閉容器1は、両端部が閉塞された例えば円筒形状を有している。なお、以下の説明では、密閉容器1の長手方向(図示の上下方向。矢印Z方向)であって主軸11が延びる方向を軸方向、軸方向に垂直な方向を径方向、及び、主軸11周りの方向を周方向という。 The closed container 1 has, for example, a cylindrical shape with both ends closed. In the following description, the direction in which the main shaft 11 extends which is the longitudinal direction of the sealed container 1 (vertical direction in the drawing; arrow Z direction) is the axial direction, and the direction perpendicular to the axial direction is the radial direction. is called the circumferential direction.
 密閉容器1の側面には、冷媒を吸入するための吸入管40の一端が接続されている。吸入管40の他端は吸入マフラ41に接続されている。圧縮機構部10に液冷媒が流入して故障となるのを防止するため、吸入マフラ41は、外部(例えば、冷媒回路の蒸発器)から流入した液冷媒と冷媒ガスとを分離する。吸入管40を介して、吸入マフラ41から冷媒ガスのみが密閉容器1の内部に吸入される。また、密閉容器1の上面には、圧縮された冷媒ガスを密閉容器1の内部空間から外部(例えば、冷媒回路の凝縮器)へ吐出するための吐出管2が設けられている。また、密閉容器1の底部は、圧縮機構部10を潤滑する冷凍機油が貯蔵される油溜め空間50を形成している。 One end of a suction pipe 40 for sucking refrigerant is connected to the side surface of the sealed container 1 . The other end of the suction pipe 40 is connected to the suction muffler 41 . In order to prevent the liquid refrigerant from flowing into the compression mechanism 10 and causing a failure, the intake muffler 41 separates the liquid refrigerant and the refrigerant gas that have flowed in from the outside (for example, the evaporator of the refrigerant circuit). Only the refrigerant gas is sucked into the sealed container 1 from the suction muffler 41 through the suction pipe 40 . A discharge pipe 2 for discharging the compressed refrigerant gas from the internal space of the closed container 1 to the outside (for example, the condenser of the refrigerant circuit) is provided on the upper surface of the closed container 1 . The bottom of the closed container 1 forms an oil reservoir space 50 in which refrigerating machine oil for lubricating the compression mechanism 10 is stored.
 電動機部20は、インバータ制御等によって例えば回転数可変なものであり、固定子22と回転子21とを備えている。固定子22は、略円筒形状に形成されており、外周部が密閉容器1に例えば焼き嵌め等により固定されている。図示していないが、この固定子22には、外部電源から電力供給されるコイルが巻回されている。回転子21は、略円筒形状をしており、固定子22の内周面との間に所定の間隔を形成するように固定子22の内側に配置されている。この回転子21には主軸11が固定されており、電動機部20と圧縮機構部10とは、主軸11を介して接続された構成となっている。つまり、電動機部20が回転することにより、圧縮機構部10には、主軸11を介して回転動力が伝達されることとなる。 The electric motor unit 20 has a variable number of revolutions, for example, by inverter control or the like, and includes a stator 22 and a rotor 21 . The stator 22 is formed in a substantially cylindrical shape, and its outer peripheral portion is fixed to the sealed container 1 by shrink fitting or the like. Although not shown, the stator 22 is wound with a coil to which power is supplied from an external power supply. The rotor 21 has a substantially cylindrical shape and is arranged inside the stator 22 so as to form a predetermined gap from the inner peripheral surface of the stator 22 . A main shaft 11 is fixed to the rotor 21 , and the electric motor section 20 and the compression mechanism section 10 are connected via the main shaft 11 . That is, by rotating the electric motor portion 20 , rotational power is transmitted to the compression mechanism portion 10 via the main shaft 11 .
 図2に示されるように、圧縮機構部10は、上軸受14と、下軸受15と、シリンダ13と、主軸11と共に回転する偏心軸部12と、ピストン16と、ベーン(図示せず)とを有する。また、図2に示される例では、上軸受14に吐出マフラ19が設けられている。図1に示されるように、圧縮機構部10は、電動機部20の下方に配置されている。圧縮機構部10において、上側から下側に向かって上軸受14、シリンダ13、及び下軸受15が順次に積層されている。 As shown in FIG. 2, the compression mechanism portion 10 includes an upper bearing 14, a lower bearing 15, a cylinder 13, an eccentric shaft portion 12 that rotates together with the main shaft 11, a piston 16, and vanes (not shown). have Further, in the example shown in FIG. 2, the upper bearing 14 is provided with a discharge muffler 19 . As shown in FIG. 1 , the compression mechanism section 10 is arranged below the electric motor section 20 . In the compression mechanism portion 10, an upper bearing 14, a cylinder 13, and a lower bearing 15 are sequentially stacked from top to bottom.
 図2に示されるように、上軸受14の中央には軸穴14aが形成されており、この軸穴14aには主軸11が配置される。上軸受14の軸穴14a側の縁部には上方へ延びた円筒形状のボス部14bが形成されている。図示していないが、上軸受14には、冷媒の吐出口(図示せず)が形成されている。また、下軸受15の中央には軸穴15aが形成されており、この軸穴15aには主軸11が配置される。下軸受15の軸穴15a側の縁部には下方へ延びた円筒形状のボス部15bが形成されている。上軸受14と下軸受15とにより、圧縮機構部10の上部及び下部において主軸11が支持されている。 As shown in FIG. 2, a shaft hole 14a is formed in the center of the upper bearing 14, and the main shaft 11 is arranged in this shaft hole 14a. A cylindrical boss portion 14b extending upward is formed on the edge of the upper bearing 14 on the side of the shaft hole 14a. Although not shown, the upper bearing 14 is formed with a refrigerant discharge port (not shown). A shaft hole 15a is formed in the center of the lower bearing 15, and the main shaft 11 is arranged in this shaft hole 15a. A cylindrical boss portion 15b extending downward is formed at the edge of the lower bearing 15 on the side of the shaft hole 15a. The upper and lower bearings 14 and 15 support the main shaft 11 at upper and lower portions of the compression mechanism portion 10 .
 下軸受15は、主軸11の下端部の外周面を覆う構成とされている。具体的には、軸方向(矢印Z方向)において、下軸受15の下端15eが、主軸11の下端11eと同じ高さ又は主軸11の下端11eよりも低い位置となるように、下軸受15のボス部15bが延びた構成とされている。 The lower bearing 15 is configured to cover the outer peripheral surface of the lower end of the main shaft 11 . Specifically, the lower bearing 15 is positioned such that the lower end 15e of the lower bearing 15 is at the same height as or lower than the lower end 11e of the main shaft 11 in the axial direction (arrow Z direction). It is configured such that the boss portion 15b extends.
 シリンダ13は、平板部材で構成され、主軸11と略同心となる略円筒状の貫通孔が上下方向に貫通して形成され、シリンダ13は円筒形状を有している。シリンダ13の貫通孔には、上軸受14及び下軸受15により支持された主軸11の一部が配置されている。上軸受14によりシリンダ13の貫通孔の上端が閉塞され、下軸受15によりシリンダ13の貫通孔の下端が閉塞され、上軸受14と下軸受15との間に圧縮室30が形成されている。圧縮室30内には、主軸11に設けられた偏心軸部12と、ピストン16とが配置されている。 The cylinder 13 is made of a flat plate member, and has a substantially cylindrical through hole that is substantially concentric with the main shaft 11 and penetrates in the vertical direction, and the cylinder 13 has a cylindrical shape. A part of the main shaft 11 supported by an upper bearing 14 and a lower bearing 15 is arranged in the through hole of the cylinder 13 . An upper bearing 14 closes the upper end of the through hole of the cylinder 13 , a lower bearing 15 closes the lower end of the through hole of the cylinder 13 , and a compression chamber 30 is formed between the upper bearing 14 and the lower bearing 15 . An eccentric shaft portion 12 provided on the main shaft 11 and a piston 16 are arranged in the compression chamber 30 .
 また、図示していないが、シリンダ13には、径方向のベーン溝が形成され、ベーン溝にはベーンが摺動自在に保持されている。シリンダ13の外周側であるベーンの背面側は、密閉容器1の吐出ガス雰囲気の空間に開放されている。ベーンは密閉容器1内に放出された高圧の冷媒によって、ピストン16に押し付けられており、ピストン16の動きと連動してベーン溝内を水平方向に摺動し、圧縮室30の低圧空間と高圧空間を仕切る役割を果たす。 Although not shown, the cylinder 13 is formed with radial vane grooves, and vanes are slidably held in the vane grooves. The rear side of the vane, which is the outer peripheral side of the cylinder 13, is open to the space of the airtight atmosphere of the airtight container 1. As shown in FIG. The vane is pressed against the piston 16 by the high-pressure refrigerant discharged into the closed container 1, and slides horizontally in the vane groove in conjunction with the movement of the piston 16, and the low-pressure space of the compression chamber 30 and the high-pressure space of the compression chamber 30 are compressed. play a role in partitioning the space.
 また、図1に示されるように、シリンダ13の内周面には、圧縮室30の低圧空間に連通する水平方向の吸入口13aが形成されている。シリンダ13の吸入口13aは、吸入管40によって吸入マフラ41と接続されており、吸入口13aを介して吸入マフラ41からの冷媒が圧縮室30に導入される。 Further, as shown in FIG. 1, the inner peripheral surface of the cylinder 13 is formed with a horizontal suction port 13a that communicates with the low-pressure space of the compression chamber 30 . A suction port 13a of the cylinder 13 is connected to a suction muffler 41 by a suction pipe 40, and refrigerant from the suction muffler 41 is introduced into the compression chamber 30 through the suction port 13a.
 偏心軸部12は、主軸11に取り付けられており、主軸11の回転に伴い、主軸11の中心Oから偏心して回転する。偏心軸部12は、電動機部20から主軸11に伝達された回転力をピストン16に伝達し、ピストン16を、主軸11の中心Oから偏心して回転させる。偏心軸部12は、例えば、主軸11とは別部材で構成され、主軸11に取り付けられている。なお、偏心軸部12と主軸11とは、同一部材で一体的に構成されていてもよい。ピストン16は、環形状を有し、偏心軸部12に摺動自在に嵌合している。ピストン16は、主軸11の回転により、偏心軸部12と共に偏心回転して冷媒を圧縮する。 The eccentric shaft portion 12 is attached to the main shaft 11 and rotates eccentrically from the center O of the main shaft 11 as the main shaft 11 rotates. The eccentric shaft portion 12 transmits the rotational force transmitted from the electric motor portion 20 to the main shaft 11 to the piston 16 to rotate the piston 16 eccentrically from the center O of the main shaft 11 . The eccentric shaft portion 12 is configured by, for example, a separate member from the main shaft 11 and attached to the main shaft 11 . Note that the eccentric shaft portion 12 and the main shaft 11 may be integrally formed of the same member. The piston 16 has an annular shape and is slidably fitted to the eccentric shaft portion 12 . As the main shaft 11 rotates, the piston 16 rotates eccentrically together with the eccentric shaft portion 12 to compress the refrigerant.
 図1に示されるように、主軸11は、密閉容器1の軸方向(矢印Z方向)に延び、一端側は電動機部20の回転子21に固定され、他端側は圧縮機構部10の上軸受14及び下軸受15により支持されている。主軸11は、電動機部20により回転駆動され、圧縮機構部10に回転動力を伝達する。図1に示される例では、主軸11は、密閉容器1の軸方向に沿って上下方向に延び、電動機部20の回転動力を、電動機部20よりも下側に配置された圧縮機構部10に伝達する。 As shown in FIG. 1, the main shaft 11 extends in the axial direction (direction of arrow Z) of the sealed container 1, one end is fixed to the rotor 21 of the electric motor section 20, and the other end is above the compression mechanism section 10. It is supported by bearing 14 and lower bearing 15 . The main shaft 11 is rotationally driven by the electric motor section 20 and transmits rotational power to the compression mechanism section 10 . In the example shown in FIG. 1, the main shaft 11 extends vertically along the axial direction of the closed container 1, and the rotational power of the electric motor section 20 is transferred to the compression mechanism section 10 arranged below the electric motor section 20. introduce.
 また、主軸11の中心Oには、軸方向に延びる円柱状の空洞部17が形成されている。空洞部17は、軸方向において、主軸11の下端11eから圧縮機構部10よりも上の位置まで設けられており、圧縮機構部10を潤滑するための冷凍機油の通路となる。主軸11において空洞部17の壁面17aは、給油路としての機能だけでなく、遠心力を発生させて当該遠心力により冷凍機油を吸い上げる遠心ポンプの一部として機能する。 A cylindrical cavity 17 extending in the axial direction is formed at the center O of the main shaft 11 . The hollow portion 17 extends from the lower end 11e of the main shaft 11 to a position above the compression mechanism portion 10 in the axial direction, and serves as a passage for refrigerating machine oil for lubricating the compression mechanism portion 10 . The wall surface 17a of the hollow portion 17 in the main shaft 11 functions not only as an oil supply passage but also as part of a centrifugal pump that generates centrifugal force and sucks up the refrigerating machine oil by the centrifugal force.
 また、主軸11には、図2に示されるように、空洞部17から主軸11の外周面へ径方向に貫通した複数の分岐路18a、18b及び18cが形成されている。複数の分岐路18a、18b及び18cは、軸方向(矢印Z方向)でそれぞれ異なる高さ位置に設けられ、圧縮機構部10の特に回転する部品と接触する部品に冷凍機油が供給されるように構成されている。 In addition, as shown in FIG. 2, the main shaft 11 is formed with a plurality of branch paths 18a, 18b and 18c penetrating from the cavity 17 to the outer peripheral surface of the main shaft 11 in the radial direction. The plurality of branch paths 18a, 18b, and 18c are provided at different height positions in the axial direction (the direction of the arrow Z) so that the refrigerating machine oil is supplied to the parts of the compression mechanism 10 that come into contact with particularly the rotating parts. It is configured.
 図2に示される例では、軸方向(矢印Z方向)において、分岐路18aは上軸受14の高さ、具体的には上軸受14の下端以上となる位置に設けられ、分岐路18cは下軸受15の高さ、具体的には下軸受15の上端以下となる位置に設けられている。このような構成により、分岐路18a及び分岐路18cを介して供給される冷凍機油によって上軸受14及び下軸受15と主軸11との間の摩擦が低減し、上軸受14及び下軸受15は、油膜の流体潤滑により、主軸11を回転自在に支持することができる。 In the example shown in FIG. 2, the branch path 18a is provided at the height of the upper bearing 14, specifically, at a position higher than the lower end of the upper bearing 14 in the axial direction (the direction of the arrow Z), and the branch path 18c is provided at the lower end of the upper bearing 14. It is provided at a height of the bearing 15 , specifically, at a position equal to or lower than the upper end of the lower bearing 15 . With this configuration, the friction between the main shaft 11 and the upper and lower bearings 14 and 15 is reduced by the refrigerating machine oil supplied through the branch passages 18a and 18c. The fluid lubrication of the oil film allows the main shaft 11 to be rotatably supported.
 また、図2に示される例では、分岐路18bは、軸方向(矢印Z方向)においてピストン16の上端から下端までの間に設けられている。このような構成により、分岐路18b介して供給される冷凍機油によってピストン16と主軸11と上軸受14及び下軸受15との間の摩擦が低減し、ピストン16は、油膜の流体潤滑により、上軸受14と下軸受15との間において回転することができる。 In addition, in the example shown in FIG. 2, the branch passage 18b is provided between the upper end and the lower end of the piston 16 in the axial direction (direction of arrow Z). With such a configuration, the friction between the piston 16, the main shaft 11, the upper bearing 14, and the lower bearing 15 is reduced by the refrigerating machine oil supplied through the branch passage 18b, and the piston 16 is lubricated by the fluid lubrication of the oil film. It can rotate between the bearing 14 and the lower bearing 15 .
 また、本開示の圧縮機100は、主軸11に設けられた円板部60を備え、円板部60には開口部61が形成されている。開口部61は、円板部60の中央に設けられており、開口部61の開口径D2は、主軸11の空洞部17の開口径D1よりも小さい。円板部60は、主軸11の下端11e且つ内周側に固定されている。図2に示される例では、円板部60の下面60eと主軸11の下端面とが面一となるように、円板部60が主軸11に固定されている。また、図2に示される例では、円板部60の外周面が空洞部17の壁面17aと接触し、主軸11の中心Oと開口部61の中心とが一致するように、主軸11に円板部60が取り付けられている。円板部60は、主軸11の空洞部17に圧入される構成でもよく、あるいは、主軸11における空洞部17の壁面17aと円板部60の外周面とにネジ切りをし、主軸11にネジ固定される構成でもよい。 Further, the compressor 100 of the present disclosure includes a disc portion 60 provided on the main shaft 11, and an opening portion 61 is formed in the disc portion 60. The opening 61 is provided in the center of the disk portion 60 , and the opening diameter D2 of the opening 61 is smaller than the opening diameter D1 of the hollow portion 17 of the main shaft 11 . The disk portion 60 is fixed to the lower end 11e of the main shaft 11 and to the inner peripheral side. In the example shown in FIG. 2, the disc portion 60 is fixed to the main shaft 11 so that the lower surface 60e of the disc portion 60 and the lower end surface of the main shaft 11 are flush with each other. Further, in the example shown in FIG. 2, the outer peripheral surface of the disk portion 60 is in contact with the wall surface 17a of the hollow portion 17, and the main shaft 11 is circularly mounted so that the center O of the main shaft 11 and the center of the opening 61 are aligned. A plate portion 60 is attached. The disc portion 60 may be press-fitted into the hollow portion 17 of the main shaft 11, or alternatively, the wall surface 17a of the hollow portion 17 of the main shaft 11 and the outer peripheral surface of the disc portion 60 are threaded, and the main shaft 11 is threaded. A fixed configuration may also be used.
 上述したように、円板部60は、主軸11の下端11e且つ内周側に固定されているので、主軸11における空洞部17の入口を構成し、また、主軸11の回転に伴い回転する。すなわち、円板部60は、主軸11における空洞部17の壁面17aと共に、冷凍機油を吸い上げる遠心ポンプを構成している。そして、円板部60は、主軸11の下端11e且つ内周側に設けられているので、空洞部17は入口が狭い構成となっている。 As described above, the disk portion 60 is fixed to the lower end 11e of the main shaft 11 and on the inner peripheral side, so that it constitutes the entrance of the hollow portion 17 of the main shaft 11 and rotates as the main shaft 11 rotates. That is, the disc portion 60 constitutes a centrifugal pump that sucks up the refrigerating machine oil together with the wall surface 17a of the hollow portion 17 of the main shaft 11. As shown in FIG. Since the disk portion 60 is provided at the lower end 11e of the main shaft 11 and on the inner peripheral side, the hollow portion 17 has a narrow entrance.
 円板部60の下面60eは、下軸受15の下端15eと同じ高さ又は下軸受15の下端15eよりも上に位置する。上述したように、下軸受15は、主軸11の下端部の外周面を覆う構成とされており、下軸受15の下端15eは、主軸11の下端11eと同じ高さ又は主軸11の下端11eよりも下に位置している。つまり、下軸受15の下端15eから、主軸11及び円板部60といった回転部がいずれもはみ出ない構成とされている。 The lower surface 60e of the disc portion 60 is positioned at the same height as the lower end 15e of the lower bearing 15 or above the lower end 15e of the lower bearing 15. As described above, the lower bearing 15 is configured to cover the outer peripheral surface of the lower end portion of the main shaft 11, and the lower end 15e of the lower bearing 15 is at the same height as or lower than the lower end 11e of the main shaft 11. is also located below. In other words, the rotating parts such as the main shaft 11 and the disk part 60 do not protrude from the lower end 15 e of the lower bearing 15 .
 図2に示される例では、主軸11の下端11e及び円板部60の下面60eはいずれも、下軸受15の下端15eと同じ高さに位置している。なお、主軸11の下端11e及び円板部60の下面60eが、下軸受15の下端15eよりも上に位置する構成でもよい。ただし、空洞部17の入口である円板部60の下面60eが下軸受15の下端15eよりも高い場合、円板部60の下面60eが下軸受15の下端15eと同じ高さの場合と比べ、遠心ポンプの下端が密閉容器1の底部(図1参照)から遠くなり、給油性が若干劣る。このため、軸方向(矢印Z方向)において、円板部60の下面60eと下軸受15の下端15eとが同じ高さに位置することが好ましい。また、円板部60は、主軸11の下端11e且つ内周側に固定されていれば、円板部60の下面60eが主軸11の下端11eよりも下に位置してもよい。すなわち、円板部60は、空洞部17よりも狭い開口部61を有し、且つ下軸受15の下端15eからはみ出なければ、円板部60の一部が主軸11の下端11eからはみ出る構成でもよい。 In the example shown in FIG. 2, both the lower end 11e of the main shaft 11 and the lower surface 60e of the disk portion 60 are positioned at the same height as the lower end 15e of the lower bearing 15. The lower end 11 e of the main shaft 11 and the lower surface 60 e of the disk portion 60 may be positioned above the lower end 15 e of the lower bearing 15 . However, when the lower surface 60e of the disc portion 60, which is the inlet of the hollow portion 17, is higher than the lower end 15e of the lower bearing 15, compared to the case where the lower surface 60e of the disc portion 60 is at the same height as the lower end 15e of the lower bearing 15, , the lower end of the centrifugal pump is far from the bottom of the closed container 1 (see FIG. 1), and the lubricating property is slightly inferior. Therefore, it is preferable that the lower surface 60e of the disc portion 60 and the lower end 15e of the lower bearing 15 are positioned at the same height in the axial direction (the direction of the arrow Z). Further, the lower surface 60e of the disc portion 60 may be positioned below the lower end 11e of the main shaft 11 as long as the disc portion 60 is fixed to the inner peripheral side of the lower end 11e of the main shaft 11 . That is, if the disk portion 60 has an opening 61 narrower than the hollow portion 17 and does not protrude from the lower end 15e of the lower bearing 15, a part of the disk portion 60 may protrude from the lower end 11e of the main shaft 11. good.
 次に、図1~2を参照して圧縮機100の動作について説明する。電動機部20のコイル(図示せず)に電力が供給されると電動機部20が駆動し、電動機部20により主軸11が回転駆動される。主軸11が回転すると、主軸11に取り付けられた偏心軸部12及びピストン16が圧縮室30内で偏心回転する。ピストン16が圧縮室30内で偏心回転すると、吸入管40を介して吸入マフラ41から低圧の冷媒が圧縮室30内に供給される。また、ピストン16が回転することによって圧縮室30の容積が縮小し、低圧の冷媒が圧縮される。圧縮された冷媒は、上軸受14に形成された吐出口(図示せず)から吐出マフラ19内に吐出され、その後に吐出マフラ19の吐出口(図示せず)から密閉容器1内に吐出される。そして、密閉容器1の内部空間に吐出された高圧の冷媒は、吐出管2から密閉容器1の外部へ吐出される。 Next, operation of the compressor 100 will be described with reference to FIGS. When electric power is supplied to a coil (not shown) of the electric motor section 20 , the electric motor section 20 is driven, and the main shaft 11 is rotationally driven by the electric motor section 20 . When the main shaft 11 rotates, the eccentric shaft portion 12 and the piston 16 attached to the main shaft 11 rotate eccentrically within the compression chamber 30 . When the piston 16 rotates eccentrically within the compression chamber 30 , low-pressure refrigerant is supplied from the suction muffler 41 into the compression chamber 30 via the suction pipe 40 . Further, the rotation of the piston 16 reduces the volume of the compression chamber 30, compressing the low-pressure refrigerant. The compressed refrigerant is discharged into the discharge muffler 19 from a discharge port (not shown) formed in the upper bearing 14, and then discharged into the sealed container 1 from a discharge port (not shown) of the discharge muffler 19. be. The high-pressure refrigerant discharged into the internal space of the sealed container 1 is discharged from the discharge pipe 2 to the outside of the sealed container 1 .
 また、電動機部20により主軸11が回転駆動されると、主軸11の回転によって空洞部17内で生じる遠心力により、円板部60の開口部61を介して油溜め空間50の冷凍機油が吸い上げられる。 Further, when the main shaft 11 is rotationally driven by the electric motor portion 20 , the centrifugal force generated in the hollow portion 17 by the rotation of the main shaft 11 draws up the refrigerating machine oil in the oil reservoir space 50 through the opening 61 of the disk portion 60 . be done.
 ここで、回転する主軸11の下端部の外周面は、下軸受15に覆われており、油溜め空間50には露出しないので、主軸11が露出する構成と比べ、主軸11が回転しても密閉容器1の底部に貯留されている冷凍機油の撹拌が抑制される。さらに、主軸11と共に回転する円板部60は下軸受15内に収容されており、下軸受15の下端15eからはみ出ない構成とされているので、下軸受15よりも下側に回転部の一部が設けられる構成と比べて、冷凍機油の撹拌が抑制される。したがって、密閉容器1の底部に貯留されている冷凍機油が回転部により攪拌されることによって生じる回転部付近での油面の低下が抑制される。 Here, the outer peripheral surface of the lower end of the rotating main shaft 11 is covered with the lower bearing 15 and is not exposed to the oil reservoir space 50. Therefore, compared to the structure in which the main shaft 11 is exposed, even if the main shaft 11 rotates, Agitation of the refrigerating machine oil stored in the bottom of the sealed container 1 is suppressed. Further, the disk portion 60 that rotates together with the main shaft 11 is accommodated in the lower bearing 15 and is configured so as not to protrude from the lower end 15e of the lower bearing 15. Agitation of the refrigerating machine oil is suppressed as compared with a configuration in which a portion is provided. Therefore, a decrease in the oil level near the rotating portion caused by the stirring of the refrigerating machine oil stored in the bottom portion of the closed container 1 by the rotating portion is suppressed.
 また、主軸11の下端11e且つ内周側に円板部60が固定され、円板部60により空洞部17すなわち給油路の入口を構成している。これにより、主軸11の回転時には、空洞部17の壁面17aがいわゆる円筒容器となり、油溜め空間50から吸い上げられた冷凍機油の流れが空洞部17内で強制渦に発展し易くなる。 A disk portion 60 is fixed to the inner peripheral side of the lower end 11e of the main shaft 11, and the disk portion 60 constitutes the hollow portion 17, that is, the inlet of the oil supply passage. As a result, when the main shaft 11 rotates, the wall surface 17a of the hollow portion 17 becomes a so-called cylindrical container, and the flow of the refrigerating machine oil sucked up from the oil reservoir space 50 easily develops into a forced vortex within the hollow portion 17.
 図3は、図2の主軸11のA-A断面図である。図3中、矢印Rは主軸11の回転方向を表わしている。また、図3中、4つの点(点P1、点P2、点P3及び点P4)は、主軸11の中心Oからの距離が互いに異なる空洞部17内の位置を表し、各点を起点とした矢印の長さは、その点における冷凍機油の周方向の速度の大きさを表している。中心O側から径方向外側に向かって点P1、点P2、点P3及び点P4の順に設定されている。 FIG. 3 is a cross-sectional view of the spindle 11 of FIG. 2 taken along the line AA. In FIG. 3, an arrow R indicates the direction of rotation of the main shaft 11. As shown in FIG. In FIG. 3, four points (point P1, point P2, point P3 and point P4) represent positions in the cavity 17 at different distances from the center O of the main shaft 11, and each point is a starting point. The length of the arrow represents the magnitude of the circumferential velocity of the refrigerating machine oil at that point. A point P1, a point P2, a point P3, and a point P4 are set in this order from the center O toward the outside in the radial direction.
 図3に示されるように、主軸11と共に円板部60が回転すると、空洞部17内では主軸11の中心Oから遠い位置(例えば点P4の位置)ほど圧力が大きくなるような圧力分布が発生し、冷凍機油は強制渦となる。このとき、円板部60の開口部61から吸い込まれる冷凍機油の軸方向(矢印Z方向)の速度は、回転の影響を受けにくい。空洞部17内の圧力勾配は、円板部60の開口部61の端60aと空洞部17の壁面17aとの間で発生する。図3に示されるように、円板部60の開口部61の端60aと空洞部17の壁面17aとの間において、冷凍機油の周方向の速度の大きさは、径方向外側の位置ほどより大きくなり、また、冷凍機油に生じる圧力も径方向外側の位置ほどより大きくなる。つまり、点P1、点P2、点P3及び点P4の順に、その位置の冷凍機油の圧力が大きくなる。そして、空洞部17内での油面の高さは圧力に比例する。本開示では、円板部60を備えることで、径方向の圧力勾配が大きくなり、空洞部17の壁面17a側での油面の高さが従来よりも高くなる。 As shown in FIG. 3, when the disk portion 60 rotates together with the main shaft 11, a pressure distribution is generated in the hollow portion 17 such that the pressure increases with increasing distance from the center O of the main shaft 11 (for example, the position of point P4). Then, the refrigerating machine oil becomes a forced vortex. At this time, the speed in the axial direction (direction of arrow Z) of the refrigerating machine oil sucked through the opening 61 of the disk portion 60 is less susceptible to the rotation. A pressure gradient in the hollow portion 17 is generated between the edge 60 a of the opening 61 of the disk portion 60 and the wall surface 17 a of the hollow portion 17 . As shown in FIG. 3, between the end 60a of the opening 61 of the disk portion 60 and the wall surface 17a of the hollow portion 17, the velocity of the refrigerating machine oil in the circumferential direction increases at radially outer positions. In addition, the pressure generated in the refrigerating machine oil also increases with increasing position radially outward. That is, the pressure of the refrigerating machine oil increases in the order of point P1, point P2, point P3, and point P4. The height of the oil level inside the cavity 17 is proportional to the pressure. In the present disclosure, provision of the disk portion 60 increases the pressure gradient in the radial direction, and the oil level on the wall surface 17a side of the hollow portion 17 is higher than in the conventional art.
 図2に示されるように、円板部60の開口部61から吸い上げられて、強制渦運動により空洞部17の壁面17aを流れる冷凍機油は、壁面17aに設けられた分岐路18a、18b及び18cを介して圧縮機構部10の各部位に供給される。具体的には、分岐路18cを介して下軸受15へ、分岐路18bを介してピストン16へ、分岐路18aを介して上軸受14へ、冷凍機油が供給される。 As shown in FIG. 2, the refrigerating machine oil that is sucked up from the opening 61 of the disk portion 60 and flows along the wall surface 17a of the hollow portion 17 due to the forced vortex motion flows through branch paths 18a, 18b and 18c provided on the wall surface 17a. is supplied to each part of the compression mechanism section 10 via the . Specifically, the refrigerating machine oil is supplied to the lower bearing 15 through the branch passage 18c, to the piston 16 through the branch passage 18b, and to the upper bearing 14 through the branch passage 18a.
 一般に、圧縮機100の低速運転時には、空洞部17の壁面17a側での冷凍機油の速度が高速運転時と比べて小さくなるため、壁面17a側での油面の高さが十分に得られず、圧縮機構部10の上部(例えば、上軸受14)には給油しにくくなる。本開示では、円板部60が設けられたことで、水平方向における円板部60の開口部61の端60aから壁面17aまでの間に一定の距離が確保される。よって、空洞部17の入口から流入した冷凍機油が開口部61の端60aと壁面17aとの間で強制渦を生じることができ、従来よりも径方向の圧力勾配が大きくなる。したがって、圧縮機100の低速運転時であっても、圧縮機構部10の上部まで給油を行うことができる。 Generally, during low-speed operation of the compressor 100, the speed of the refrigerating machine oil on the wall surface 17a side of the cavity 17 is lower than that during high-speed operation, so the oil level on the wall surface 17a side cannot be sufficiently high. , it becomes difficult to supply oil to the upper portion of the compression mechanism 10 (for example, the upper bearing 14). In the present disclosure, by providing the disk portion 60, a certain distance is secured between the end 60a of the opening 61 of the disk portion 60 and the wall surface 17a in the horizontal direction. Therefore, the refrigerating machine oil that has flowed in from the inlet of the hollow portion 17 can generate a forced vortex between the end 60a of the opening 61 and the wall surface 17a, and the pressure gradient in the radial direction becomes larger than before. Therefore, even when the compressor 100 is operating at a low speed, the oil can be supplied to the upper portion of the compression mechanism portion 10 .
 なお、円板部60の開口部61の開口径D2は、小さくするほど、空洞部17の圧力勾配が大きくなり、圧縮機100の低速運転時の給油性が向上するが、入口の開口面積も小さくなるので、高速運転時には給油量が不足することがある。円板部60の開口部61の開口径D2は、給油性と給油量とのバランスを考慮して、主軸11における空洞部17の開口径D1に対して0.3D1~0.7D1程度であることが好ましい。 The smaller the opening diameter D2 of the opening 61 of the disc portion 60, the greater the pressure gradient in the hollow portion 17, and the more the compressor 100 operates at low speed. Since it becomes smaller, the amount of oil supplied may be insufficient during high-speed operation. The opening diameter D2 of the opening 61 of the disc portion 60 is about 0.3D1 to 0.7D1 with respect to the opening diameter D1 of the hollow portion 17 of the main shaft 11, taking into account the balance between the lubricating property and the amount of lubricating oil. is preferred.
 以上のように、実施の形態1の密閉型圧縮機(圧縮機100)は、冷凍機油を貯留する油溜め空間50が底部に形成された密閉容器1を備えている。また、密閉型圧縮機は、密閉容器1内に配置され、冷媒を圧縮する圧縮機構部10と、密閉容器1内に配置され、圧縮機構部10を駆動する電動機部20と、上下方向(矢印Z方向)に延び、電動機部20に固定されて回転駆動される主軸11とを備えている。主軸11には、下端11eから圧縮機構部10よりも上の位置まで内部に空洞部17が形成されている。また、密閉型圧縮機は、内部に開口部61が形成された円板部60を備え、円板部60は、主軸11の下端11e且つ内周側に固定されている。密閉型圧縮機は、主軸11の回転によって空洞部17内で生じる遠心力により円板部60の開口部61を介して油溜め空間50から冷凍機油を吸い上げるものである。圧縮機構部10は、主軸11の下端11e部の外周面を覆う下軸受15を有し、下軸受15は主軸11を回転自在に支持している。そして、円板部60は、円板部60の下面60eが下軸受15の下端15eと同じ高さ又は下軸受15の下端15eよりも上に位置するように設けられている。 As described above, the hermetic compressor (compressor 100) of Embodiment 1 includes the hermetically sealed container 1 in which the oil reservoir space 50 for storing the refrigerating machine oil is formed at the bottom. The hermetic compressor includes a compression mechanism portion 10 arranged in the closed container 1 for compressing the refrigerant, an electric motor portion 20 arranged in the closed container 1 for driving the compression mechanism portion 10, and a vertical direction (arrow and a main shaft 11 that extends in the Z direction) and that is fixed to the electric motor section 20 and driven to rotate. A hollow portion 17 is formed inside the main shaft 11 from the lower end 11 e to a position above the compression mechanism portion 10 . The hermetic compressor also includes a disk portion 60 having an opening 61 formed therein. The hermetic compressor sucks up the refrigerating machine oil from the oil reservoir space 50 through the opening 61 of the disc portion 60 by the centrifugal force generated in the hollow portion 17 by the rotation of the main shaft 11 . The compression mechanism section 10 has a lower bearing 15 covering the outer peripheral surface of the lower end 11e of the main shaft 11, and the lower bearing 15 supports the main shaft 11 so as to be rotatable. The disc portion 60 is provided so that the lower surface 60 e of the disc portion 60 is at the same height as the lower end 15 e of the lower bearing 15 or above the lower end 15 e of the lower bearing 15 .
 これにより、主軸11に固定されて主軸11と共に回転する円板部60の下面60eが下軸受15の下端15eからはみ出ないので、冷凍機油の撹拌による油面の低下が抑制される。また、主軸11の下端11e且つ内周側に固定された円板部60により、主軸11の空洞部17よりも狭い入口が構成され、また、入口を構成する円板部60が主軸11と共に回転するので、空洞部17内において径方向外側の壁面17a側での圧力が増大する。空洞部17内での油面の高さは圧力に比例するので、空洞部17内の冷凍機油の壁面17aでの油面の高さが従来よりも高くなる。したがって、密閉容器1の底部に貯留された冷凍機油の攪拌による油面の低下が抑制され、且つ、空洞部17内において壁面17a側での油面の高さが従来よりも高くなるので、圧縮機100の低速運転時における給油性が向上する。 As a result, the lower surface 60e of the disk portion 60, which is fixed to the main shaft 11 and rotates together with the main shaft 11, does not protrude from the lower end 15e of the lower bearing 15, thereby suppressing a decrease in the oil level due to agitation of the refrigerating machine oil. The disc portion 60 fixed to the lower end 11 e of the main shaft 11 and the inner peripheral side constitutes an inlet narrower than the hollow portion 17 of the main shaft 11 . As a result, the pressure on the radially outer wall surface 17a side in the hollow portion 17 increases. Since the oil level in the cavity 17 is proportional to the pressure, the oil level on the wall surface 17a of the refrigerating machine oil in the cavity 17 is higher than in the conventional case. Therefore, the lowering of the oil level due to agitation of the refrigerating machine oil stored in the bottom of the closed container 1 is suppressed, and the height of the oil level on the side of the wall surface 17a in the hollow portion 17 becomes higher than before, so that the compression Refueling is improved when the machine 100 is operated at low speed.
 また、円板部60の下面60eが主軸11の下端11eと同じ高さ又は主軸11の下端11eよりも上に位置するように円板部60が設けられている。これにより、円板部60の全部が主軸11内に収容され、主軸11の下端11eからはみ出さないので、円板部60における露出する表面積を小さくでき、径方向で下軸受15と円板部60との間においても油面の低下が抑制される。 Further, the disc portion 60 is provided so that the lower surface 60e of the disc portion 60 is at the same height as the lower end 11e of the main shaft 11 or above the lower end 11e of the main shaft 11. As a result, the disk portion 60 is entirely accommodated in the main shaft 11 and does not protrude from the lower end 11e of the main shaft 11, so that the exposed surface area of the disk portion 60 can be reduced, and the lower bearing 15 and the disk portion can be arranged in the radial direction. 60, the decrease in the oil level is suppressed.
実施の形態2.
 図4は、実施の形態2に係る密閉型圧縮機の圧縮機構部10周辺の部分拡大図である。実施の形態2の圧縮機100では、下軸受15の下方に吐出マフラ62が設けられている点が、実施の形態1の場合とは異なり、その他の構成は実施の形態1の場合と同様である。
Embodiment 2.
FIG. 4 is a partially enlarged view around the compression mechanism section 10 of the hermetic compressor according to the second embodiment. The compressor 100 of the second embodiment differs from the first embodiment in that a discharge muffler 62 is provided below the lower bearing 15, and the rest of the configuration is the same as that of the first embodiment. be.
 なお、図4にはシリンダ13を1つ有する圧縮機構部10が示されているが、圧縮機構部10は、軸方向(矢印Z方向)に複数のシリンダ13を有する構成であってもよい。この場合、下軸受15には下側のシリンダのからの冷媒の吐出口が設けられ、下軸受15の下方に設けられた吐出マフラ62には、下側のシリンダからの冷媒を容器内部に吐出するための冷媒の吐出口が設けられる。 Although FIG. 4 shows the compression mechanism 10 having one cylinder 13, the compression mechanism 10 may have a plurality of cylinders 13 in the axial direction (direction of arrow Z). In this case, the lower bearing 15 is provided with a discharge port for the refrigerant from the lower cylinder, and a discharge muffler 62 provided below the lower bearing 15 discharges the refrigerant from the lower cylinder into the container. A coolant outlet is provided for cooling.
 吐出マフラ62は、下軸受15のボス部15b全体を覆うように設けられ、図4に示される例では、下方に突出した凸形状を有している。吐出マフラ62において、下軸受15の軸穴15aの下方の位置には、マフラ孔62aが形成されている。マフラ孔62aは、例えば円形を有し、円板部60の開口部61の開口径D2よりも大きい開口径D3を有する。平面視において、マフラ孔62aの中心は、主軸11の中心O及び円板部60の開口部61の中心と一致している。 The discharge muffler 62 is provided so as to cover the entire boss portion 15b of the lower bearing 15, and has a convex shape protruding downward in the example shown in FIG. A muffler hole 62 a is formed in the discharge muffler 62 at a position below the shaft hole 15 a of the lower bearing 15 . The muffler hole 62a has a circular shape, for example, and has an opening diameter D3 that is larger than the opening diameter D2 of the opening 61 of the disc portion 60. As shown in FIG. In plan view, the center of the muffler hole 62a coincides with the center O of the main shaft 11 and the center of the opening 61 of the disk portion 60. As shown in FIG.
 また、実施の形態2では、下軸受15のボス部15bの下端面に、マフラ孔62aを囲むような環状のシール材151が設置されている。シール材151は、下軸受15のボス部15bの下端面と、当該下端面と対向する吐出マフラ62の上面との間に双方と接触して設けられ、油溜め空間50と吐出マフラ62内の空間とを仕切るように構成されている。なお、下軸受15の下方に吐出マフラ62を設ける構成において、シール材151を設けず、ボス部15bの下端面と吐出マフラ62の上面とが直接接触するように構成することができる。この場合において、吐出マフラ62におけるボス部15bの下端面と対向する部分に上に凸の凸部を形成し、当該凸部をボス部15bの下端面と接触させることにより、油溜め空間50と吐出マフラ62内の空間とを仕切る構成としてもよい。 Further, in Embodiment 2, an annular sealing member 151 is installed on the lower end surface of the boss portion 15b of the lower bearing 15 so as to surround the muffler hole 62a. The sealing material 151 is provided between the lower end surface of the boss portion 15b of the lower bearing 15 and the upper surface of the discharge muffler 62 facing the lower end surface so as to be in contact with both of them. It is configured to separate the space. In addition, in the configuration in which the discharge muffler 62 is provided below the lower bearing 15, the seal member 151 may not be provided, and the lower end surface of the boss portion 15b and the upper surface of the discharge muffler 62 may be in direct contact. In this case, an upward convex portion is formed in a portion of the discharge muffler 62 facing the lower end surface of the boss portion 15b, and the convex portion is brought into contact with the lower end surface of the boss portion 15b. It may be configured to partition the space inside the discharge muffler 62 .
 実施の形態2の圧縮機100において、冷媒を圧縮する動作は、実施の形態1の場合と同様である。圧縮室30で圧縮された冷媒の一部は、上軸受14の吐出口(図示せず)から吐出マフラ19内に吐出され、その後に吐出マフラ19の吐出口(図示せず)から密閉容器1内に吐出される。また、圧縮室30で圧縮された冷媒の残りの部分は、下軸受15の吐出口(図示せず)から吐出マフラ62内に吐出され、その後に吐出マフラ62の吐出口(図示せず)から密閉容器1内に吐出される。そして、密閉容器1の内部空間に吐出された高圧のガス状冷媒は、吐出管2から密閉容器1の外部へ吐出される。 The operation of compressing the refrigerant in the compressor 100 of the second embodiment is the same as that of the first embodiment. A part of the refrigerant compressed in the compression chamber 30 is discharged into the discharge muffler 19 from the discharge port (not shown) of the upper bearing 14, and then discharged from the discharge port (not shown) of the discharge muffler 19 to the sealed container 1. discharged inside. The rest of the refrigerant compressed in the compression chamber 30 is discharged from the discharge port (not shown) of the lower bearing 15 into the discharge muffler 62, and then from the discharge port (not shown) of the discharge muffler 62. It is discharged into the closed container 1 . Then, the high-pressure gaseous refrigerant discharged into the internal space of the sealed container 1 is discharged from the discharge pipe 2 to the outside of the sealed container 1 .
 また、主軸11が回転駆動されると、空洞部17内で生じる遠心力により、円板部60の開口部61を介して油溜め空間50の冷凍機油が吸い上げられる。実施の形態2においても、実施の形態1の場合と同様に、主軸11の下端11e且つ内周側に固定された円板部60を備える。そして、円板部60の下面60eが下軸受15の下端15eと同じ高さ又は下軸受15の下端15eよりも上に位置するように円板部60が設けられている。よって、冷凍機油の撹拌による油面の低下が抑制され、且つ、空洞部17において径方向外側の壁面17aでの油面の高さが従来よりも高くなるので、給油性が向上するという効果が得られる。 Further, when the main shaft 11 is rotationally driven, the centrifugal force generated in the hollow portion 17 sucks up the refrigerating machine oil in the oil reservoir space 50 through the opening 61 of the disk portion 60 . Also in the second embodiment, as in the case of the first embodiment, a disk portion 60 fixed to the inner peripheral side of the lower end 11e of the main shaft 11 is provided. The disc portion 60 is provided so that the lower surface 60 e of the disc portion 60 is at the same height as the lower end 15 e of the lower bearing 15 or above the lower end 15 e of the lower bearing 15 . Therefore, a drop in the oil level due to agitation of the refrigerating machine oil is suppressed, and the height of the oil level on the radially outer wall surface 17a of the hollow portion 17 is higher than in the conventional art, thereby improving the oil supply performance. can get.
 また、実施の形態2の圧縮機100は、下軸受15の下方に設けられた吐出マフラ62を備えているが、吐出マフラ62において円板部60の開口部61の下方の位置にはマフラ孔62aが形成されている。そして、マフラ孔62aの開口径D3は、円板部60の開口部61の開口径D2よりも大きい。これにより、圧縮機100において下軸受15に吐出マフラ62を設ける構成であっても、上述した主軸11及び円板部60による遠心ポンプの作用が阻害されず、実施の形態1の場合と同様に、給油性向上の効果が得られる。 Further, the compressor 100 of Embodiment 2 includes the discharge muffler 62 provided below the lower bearing 15 . 62a is formed. An opening diameter D3 of the muffler hole 62a is larger than an opening diameter D2 of the opening 61 of the disc portion 60. As shown in FIG. As a result, even if the discharge muffler 62 is provided in the lower bearing 15 in the compressor 100, the action of the centrifugal pump by the main shaft 11 and the disk portion 60 described above is not hindered, as in the case of the first embodiment. , the effect of improving lubrication is obtained.
 ところで、上述した実施の形態1では、圧縮機100において下軸受15の下方には吐出マフラ62が設けられていない。このため、主軸11の下端11e及び円板部60の下面60eは油溜め空間50に露出しており、主軸11及び円板部60は回転するので、わずかながら油溜め空間50の冷凍機油が攪拌されて油面が乱れる。これに対し、実施の形態2では、下軸受15の下方に吐出マフラ62が設けられ、マフラ孔62aの開口径D3は、下軸受15の軸穴15aの開口径D4よりも小さい構成とされている。これにより、主軸11の下端11e及び円板部60の下面60eといった回転部の下面の少なくとも一部が、吐出マフラ62で覆われる。よって、実施の形態1の場合と比べ、貯留されている冷凍機油の液面の乱れを抑制でき、給油性が更に向上する。 By the way, in the first embodiment described above, the discharge muffler 62 is not provided below the lower bearing 15 in the compressor 100 . Therefore, the lower end 11e of the main shaft 11 and the lower surface 60e of the disc portion 60 are exposed to the oil sump space 50, and the main shaft 11 and the disc portion 60 rotate, so that the refrigerating machine oil in the oil sump space 50 is slightly agitated. and the oil surface is disturbed. In contrast, in Embodiment 2, the discharge muffler 62 is provided below the lower bearing 15, and the opening diameter D3 of the muffler hole 62a is smaller than the opening diameter D4 of the shaft hole 15a of the lower bearing 15. there is As a result, at least a portion of the lower surface of the rotating portion such as the lower end 11 e of the main shaft 11 and the lower surface 60 e of the disk portion 60 is covered with the discharge muffler 62 . Therefore, as compared with the case of the first embodiment, disturbance of the liquid surface of the stored refrigerating machine oil can be suppressed, and the oil supply performance is further improved.
実施の形態3.
 図5は、実施の形態3に係る密閉型圧縮機の圧縮機構部周辺の部分拡大図である。実施の形態3の圧縮機100では、下軸受15に固定配管63が設けられている点が、実施の形態1の場合とは異なり、その他の構成は実施の形態1の場合と同様である。
Embodiment 3.
FIG. 5 is a partial enlarged view of the periphery of the compression mechanism of the hermetic compressor according to Embodiment 3. FIG. The compressor 100 of the third embodiment differs from the first embodiment in that the lower bearing 15 is provided with the fixed pipe 63, and the rest of the configuration is the same as that of the first embodiment.
 主軸11及び円板部60は回転するが、固定配管63は、それらとは独立しており、回転しない。固定配管63は、軸方向(矢印Z方向)に延びた配管部63aと、配管部63aの上端の外周に設けられた円板状の取り付け部63bと、を有し、下軸受15の下端15eに固定されている。具体的には、下軸受15のボス部15bの下端面と、固定配管63の取り付け部63bの上面とが接触するように、固定配管63が下軸受15に固定されている。固定配管63の配管部63aの先端と密閉容器1の底面との間には、冷凍機油が流入できるように隙間が設けられている。 The main shaft 11 and the disc portion 60 rotate, but the fixed pipe 63 is independent of them and does not rotate. The fixed pipe 63 has a pipe portion 63a extending in the axial direction (the direction of the arrow Z) and a disk-shaped mounting portion 63b provided on the outer periphery of the upper end of the pipe portion 63a. is fixed to Specifically, the fixed pipe 63 is fixed to the lower bearing 15 so that the lower end surface of the boss portion 15b of the lower bearing 15 and the upper surface of the mounting portion 63b of the fixed pipe 63 are in contact with each other. A gap is provided between the tip of the pipe portion 63a of the fixed pipe 63 and the bottom surface of the sealed container 1 so that the refrigerating machine oil can flow.
 また、配管部63aの孔63cが円板部60の開口部61の下方に位置するように、下軸受15に固定配管63が固定されている。より具体的には、平面視において配管部63aの孔63cの中心は、主軸11の中心O及び円板部60の開口部61の中心と一致している。また、固定配管63の孔63cの開口径D4すなわち配管部63aの内径は、円板部60の開口部61の開口径D2よりも大きい構成とされている。 A fixed pipe 63 is fixed to the lower bearing 15 so that the hole 63c of the pipe portion 63a is positioned below the opening 61 of the disk portion 60. More specifically, the center of the hole 63c of the pipe portion 63a coincides with the center O of the main shaft 11 and the center of the opening 61 of the disk portion 60 in plan view. Further, the opening diameter D4 of the hole 63c of the fixed pipe 63, that is, the inner diameter of the pipe portion 63a is larger than the opening diameter D2 of the opening portion 61 of the disk portion 60. As shown in FIG.
 実施の形態3の圧縮機100において、冷媒を圧縮し、吐出管2から密閉容器1の外部へ吐出する動作は、実施の形態1の場合と同様である。なお、実施の形態3の固定配管63は、上述した実施の形態2の圧縮機100に適用することもできる。この場合、実施の形態2の吐出マフラ62(図4参照)と下軸受15のボス部15bの下端面とで固定配管63の取り付け部63bを挟み込むことで固定配管63を下軸受15に固定する構成としてもよい。 In the compressor 100 of the third embodiment, the operation of compressing the refrigerant and discharging it from the discharge pipe 2 to the outside of the sealed container 1 is the same as in the case of the first embodiment. Note that the fixed pipe 63 of Embodiment 3 can also be applied to the compressor 100 of Embodiment 2 described above. In this case, the fixed pipe 63 is fixed to the lower bearing 15 by sandwiching the mounting portion 63b of the fixed pipe 63 between the discharge muffler 62 (see FIG. 4) of Embodiment 2 and the lower end face of the boss portion 15b of the lower bearing 15. may be configured.
 また、主軸11が回転駆動されると、空洞部17内で生じる遠心力により、円板部60の開口部61を介して油溜め空間50の冷凍機油が吸い上げられる。実施の形態3においても、実施の形態1の場合と同様に、主軸11の下端11e且つ内周側に固定された円板部60を備える。そして、円板部60の下面60eが下軸受15の下端15eと同じ高さ又は下軸受15の下端15eよりも上に位置するように円板部60が設けられている。よって、冷凍機油の撹拌による油面の低下が抑制され、且つ、空洞部17において径方向外側の壁面17aでの油面の高さが従来よりも高くなるので、給油性が向上するという効果が得られる。 Further, when the main shaft 11 is rotationally driven, the centrifugal force generated in the hollow portion 17 sucks up the refrigerating machine oil in the oil reservoir space 50 through the opening 61 of the disk portion 60 . Also in the third embodiment, as in the case of the first embodiment, a disk portion 60 fixed to the inner peripheral side of the lower end 11e of the main shaft 11 is provided. The disc portion 60 is provided so that the lower surface 60 e of the disc portion 60 is at the same height as the lower end 15 e of the lower bearing 15 or above the lower end 15 e of the lower bearing 15 . Therefore, a drop in the oil level due to agitation of the refrigerating machine oil is suppressed, and the height of the oil level on the radially outer wall surface 17a of the hollow portion 17 is higher than in the conventional art, thereby improving the oil supply performance. can get.
 また、実施の形態3の圧縮機100は、下軸受15の下端15eに固定された固定配管63を備え、固定配管63は、下軸受15の下端15eから下方へ延び、密閉容器1の底面との間に隙間を形成するように設けられている。そして、固定配管63の孔63cは、円板部60の開口部61の下方に位置し、固定配管63の内径(開口径D4)は、円板部60の開口部61の開口径D2よりも大きい構成とされている。 Further, the compressor 100 of Embodiment 3 includes a fixed pipe 63 fixed to the lower end 15e of the lower bearing 15. The fixed pipe 63 extends downward from the lower end 15e of the lower bearing 15 to connect with the bottom surface of the sealed container 1. provided to form a gap between the The hole 63c of the fixed pipe 63 is positioned below the opening 61 of the disk portion 60, and the inner diameter (opening diameter D4) of the fixed pipe 63 is larger than the opening diameter D2 of the opening 61 of the disk portion 60. It has a large configuration.
 一般に、圧縮機100では、例えば、冷媒と共に圧縮機100の外部へ流出する冷凍機油の量が多くなる、油溜め空間50の油面の高さが低下するような運転条件で運転されることがある。本開示の圧縮機100では、下軸受15の下端15eから下方へ延びた固定配管63を備えているので、上記のように油溜め空間50の油量が減少して油面の高さが低下するような運転条件下であっても、固定配管63を介して密閉容器1の底面からの給油ができる。 In general, the compressor 100 may be operated under operating conditions such that, for example, the amount of refrigerating machine oil that flows out of the compressor 100 together with the refrigerant increases and the level of the oil level in the oil reservoir space 50 decreases. be. Since the compressor 100 of the present disclosure is provided with the fixed pipe 63 extending downward from the lower end 15e of the lower bearing 15, the amount of oil in the oil reservoir space 50 is reduced as described above, and the height of the oil level is lowered. Oil can be supplied from the bottom surface of the sealed container 1 through the fixed pipe 63 even under such operating conditions.
 ここで、固定配管63は下軸受15に固定されているので回転せず、油溜め空間50における油面低下の抑制の効果が維持される。また、固定配管63の内径(開口径D4)は、円板部60の開口部61の開口径D2よりも大きいので、上述した主軸11及び円板部60による遠心ポンプの作用が阻害されず、給油性向上の効果も維持される。 Here, since the fixed pipe 63 is fixed to the lower bearing 15, it does not rotate, and the effect of suppressing the oil level drop in the oil reservoir space 50 is maintained. In addition, since the inner diameter (opening diameter D4) of the fixed pipe 63 is larger than the opening diameter D2 of the opening 61 of the disk portion 60, the action of the centrifugal pump by the main shaft 11 and the disk portion 60 is not hindered. The effect of improving the refueling property is also maintained.
実施の形態4.
 図6は、実施の形態4に係る密閉型圧縮機の圧縮機構部周辺の部分拡大図である。実施の形態4の圧縮機100では、円板部60の代わりにキャップ64が設けられている点が、実施の形態1の場合とは異なり、その他の構成は実施の形態1の場合と同様である。
Embodiment 4.
FIG. 6 is a partial enlarged view of the periphery of a compression mechanism of a hermetic compressor according to Embodiment 4. FIG. The compressor 100 of the fourth embodiment is different from the first embodiment in that a cap 64 is provided in place of the disk portion 60, and the rest of the configuration is the same as that of the first embodiment. be.
 キャップ64は、実施の形態1の円板部60に相当する円板部64aと、円板部64aの外周縁から上方へ延びた円筒形状のフランジ部64bと、を有し、下軸受15の下端15e且つ内周側に固定されている。具体的には、フランジ部64bの外周面と、主軸11における空洞部17の壁面17aとが接触するように、主軸11にキャップ64が固定されている。円板部64aとフランジ部64bとは、例えば板金等で成型され、一体的に構成されている。 The cap 64 has a disc portion 64a corresponding to the disc portion 60 of the first embodiment, and a cylindrical flange portion 64b extending upward from the outer peripheral edge of the disc portion 64a. It is fixed to the lower end 15e and the inner peripheral side. Specifically, the cap 64 is fixed to the main shaft 11 so that the outer peripheral surface of the flange portion 64b and the wall surface 17a of the hollow portion 17 of the main shaft 11 are in contact with each other. The disc portion 64a and the flange portion 64b are molded, for example, from sheet metal and are integrally formed.
 円板部64aには開口部61が形成されている。開口部61は、円板部64aの中央に設けられており、開口部61の開口径D2は、主軸11の空洞部17の開口径D1よりも小さい。円板部64aは、主軸11の中心Oと開口部61の中心とが一致するように、主軸11に設けられている。キャップ64は、主軸11の空洞部17に圧入される構成でもよく、あるいは、主軸11における空洞部17の壁面17aとキャップ64のフランジ部64bの外周面とにネジ切りをし、主軸11にネジ固定される構成でもよい。 An opening 61 is formed in the disc portion 64a. The opening 61 is provided in the center of the disc portion 64a, and the opening diameter D2 of the opening 61 is smaller than the opening diameter D1 of the hollow portion 17 of the main shaft 11. As shown in FIG. The disk portion 64a is provided on the main shaft 11 so that the center O of the main shaft 11 and the center of the opening 61 are aligned. The cap 64 may be press-fitted into the hollow portion 17 of the main shaft 11, or alternatively, the wall surface 17a of the hollow portion 17 of the main shaft 11 and the outer peripheral surface of the flange portion 64b of the cap 64 are threaded, and the main shaft 11 is screwed. A fixed configuration may also be used.
 実施の形態4におけるキャップ64と、下軸受15及び主軸11との位置関係は、実施の形態1における円板部60(図1参照)と、下軸受15及び主軸11との位置関係と同様である。すなわち、円板部64aの下面64e及び主軸11の下端11eは、下軸受15の下端15eと同じ高さ又は下軸受15の下端15eよりも上に位置し、下軸受15の下端15eから、主軸11及びキャップ64といった回転部がいずれもはみ出ない構成とされている。また、キャップ64は、主軸11の下端11e且つ内周側に固定されていれば、円板部64aの下面64eが主軸11の下端11eよりも下に位置してもよい。 The positional relationship between the cap 64, the lower bearing 15 and the main shaft 11 in the fourth embodiment is the same as the positional relationship between the disc portion 60 (see FIG. 1), the lower bearing 15 and the main shaft 11 in the first embodiment. be. That is, the lower surface 64e of the disc portion 64a and the lower end 11e of the main shaft 11 are positioned at the same height as the lower end 15e of the lower bearing 15 or above the lower end 15e of the lower bearing 15. 11 and the cap 64 are configured so as not to protrude. Further, the lower surface 64e of the disk portion 64a may be positioned below the lower end 11e of the main shaft 11 as long as the cap 64 is fixed to the inner peripheral side of the lower end 11e of the main shaft 11 .
 以上のように、実施の形態4においても、実施の形態1の場合と同様に、円板部64aを有し、円板部64aの下面64eが下軸受15の下端15eと同じ高さ又は下軸受15の下端15eよりも上に位置するように、主軸11にキャップ64が固定されている。よって、冷凍機油の撹拌による油面の低下が抑制され、且つ、空洞部17において径方向外側の壁面17aでの油面の高さが従来よりも高くなるので、給油性が向上するという効果が得られる。 As described above, in the fourth embodiment, as in the case of the first embodiment, the disc portion 64a is provided, and the lower surface 64e of the disc portion 64a is at the same height as or below the lower end 15e of the lower bearing 15. A cap 64 is fixed to the main shaft 11 so as to be positioned above the lower end 15 e of the bearing 15 . Therefore, a drop in the oil level due to agitation of the refrigerating machine oil is suppressed, and the height of the oil level on the radially outer wall surface 17a of the hollow portion 17 is higher than in the conventional art, thereby improving the oil supply performance. can get.
 また、実施の形態4の圧縮機100は、円板部64aと一体的に形成され、円板部64aの外周縁から上方へ延びた円筒形状のフランジ部64bを有している。これにより、円板部64aとフランジ部64bとをキャップ64として、変形し易い板金等で一体的に成型することができる。よって、フランジ部64bが設けられていない円板部60のみで構成された部品を主軸11の空洞部17に圧入又はネジ固定する場合と比べ、組立時又は加工時に主軸11へ挿入し易く、また、主軸11への負荷が低減できるので主軸11の変形が抑制できる。また、例えば、給油パイプを主軸11に直接差し込む構成と比べても、主軸11への挿入が容易となる。 Further, the compressor 100 of Embodiment 4 has a cylindrical flange portion 64b integrally formed with the disk portion 64a and extending upward from the outer peripheral edge of the disk portion 64a. As a result, the disc portion 64a and the flange portion 64b can be integrally molded as the cap 64 by using easily deformable sheet metal or the like. Therefore, compared to the case where a part composed only of the disc portion 60 without the flange portion 64b is press-fitted or screw-fixed into the hollow portion 17 of the main shaft 11, it is easier to insert into the main shaft 11 during assembly or processing. , deformation of the main shaft 11 can be suppressed because the load on the main shaft 11 can be reduced. Further, for example, the insertion into the main shaft 11 is facilitated compared to the structure in which the oil supply pipe is directly inserted into the main shaft 11 .
実施の形態5.
 図7は、実施の形態5に係る密閉型圧縮機の圧縮機構部周辺の部分拡大図である。図8は、図7の主軸11のB-B断面図である。図7に示されるように、実施の形態5の圧縮機100では、主軸11の空洞部17内に仕切板65が設けられている点が、実施の形態1の場合とは異なり、その他の構成は実施の形態1の場合と同様である。
Embodiment 5.
FIG. 7 is a partial enlarged view of the periphery of the compression mechanism of the hermetic compressor according to Embodiment 5. FIG. FIG. 8 is a BB cross-sectional view of the spindle 11 of FIG. As shown in FIG. 7, the compressor 100 of the fifth embodiment differs from the first embodiment in that a partition plate 65 is provided in the hollow portion 17 of the main shaft 11. are the same as in the first embodiment.
 仕切板65は、上下方向(矢印Z方向)に延びた板状の部材で構成され、円板部60の開口部61の開口径D2よりも薄い板厚tを有する。仕切板65は、図7に示されるように、その下端65eが円板部60と接触し、また、図8に示されるように、その両縁が空洞部17の壁面17aと接触するようにして主軸11に固定され、空洞部17を2つに仕切る構成とされている。すなわち、空洞部17内には、図7に示されるように、仕切板65の両側に上下方向に延びた半円柱形状の第1空洞部S1及び第2空洞部S2が形成されている。仕切板67の下端65eは、図8に示されるように平面視において、円板部60の開口部61の中心を通る。 The partition plate 65 is composed of a plate-shaped member extending in the vertical direction (direction of arrow Z), and has a plate thickness t that is thinner than the opening diameter D2 of the opening 61 of the disc portion 60 . The partition plate 65 has a lower end 65e in contact with the disk portion 60 as shown in FIG. 7, and both edges in contact with the wall surface 17a of the hollow portion 17 as shown in FIG. It is fixed to the main shaft 11 at the same time, and is configured to partition the hollow portion 17 into two. That is, as shown in FIG. 7, inside the hollow portion 17, a semi-cylindrical first hollow portion S1 and a second hollow portion S2 extending in the vertical direction are formed on both sides of the partition plate 65. As shown in FIG. A lower end 65e of the partition plate 67 passes through the center of the opening 61 of the disc portion 60 in plan view as shown in FIG.
 図7に示される例では、仕切板65は平板形状を有し、第1空洞部S1と対向する面及び第2空洞部S2と対向する面はそれぞれ主軸11の中心Oと平行に延びている。なお、仕切板65は、板状の部材の長手方向を軸に90°以上ひねられた螺旋形状を有する構成であってもよい。この場合、仕切板65の両側に形成される第1空洞部S1及び第2空洞部S2は螺旋形状となる。 In the example shown in FIG. 7, the partition plate 65 has a flat plate shape, and the surface facing the first cavity S1 and the surface facing the second cavity S2 extend parallel to the center O of the main shaft 11. . The partition plate 65 may have a spiral shape twisted by 90° or more about the longitudinal direction of the plate-like member. In this case, the first cavity S1 and the second cavity S2 formed on both sides of the partition plate 65 have a spiral shape.
 以上のように、実施の形態5においても、実施の形態1の場合と同様に、主軸11の下端11e且つ内周側に固定された円板部60を備える。そして、円板部60の下面60eが下軸受15の下端15eと同じ高さ又は下軸受15の下端15eよりも上に位置するように円板部60が設けられている。よって、冷凍機油の撹拌による油面の低下が抑制され、且つ、空洞部17において径方向外側の壁面17aでの油面の高さが従来よりも高くなるので、給油性が向上するという効果が得られる。 As described above, in the fifth embodiment, similarly to the first embodiment, the disk portion 60 fixed to the inner peripheral side of the lower end 11e of the main shaft 11 is provided. The disc portion 60 is provided so that the lower surface 60 e of the disc portion 60 is at the same height as the lower end 15 e of the lower bearing 15 or above the lower end 15 e of the lower bearing 15 . Therefore, a drop in the oil level due to agitation of the refrigerating machine oil is suppressed, and the height of the oil level on the radially outer wall surface 17a of the hollow portion 17 is higher than in the conventional art, thereby improving the oil supply performance. can get.
 また、実施の形態5の圧縮機100は、主軸11の空洞部17内に配置され、上下方向に延びた仕切板65を備え、仕切板65は、その下端65eが円板部60と接触し、空洞部17内の冷凍機油の流路を二分する。 Further, the compressor 100 of Embodiment 5 includes a partition plate 65 arranged in the hollow portion 17 of the main shaft 11 and extending in the vertical direction. , divides the flow path of the refrigerating machine oil in the hollow portion 17 into two.
 これにより、主軸11の空洞部17内に仕切板65が配置されることにより、円板部60の開口部61から空洞部17内に流入する冷凍機油の流路を二分できるので、仕切板65を設けない場合と比べて、空洞部17内で径方向の圧力勾配が増大し易くなる。また、仕切板65の下端65eは円板部60と接触しているので、冷凍機油が開口部61から空洞部17内に流入した直後から、仕切板65による圧力勾配を増大させる効果を得ることができる。結果、仕切板65を設けない場合と比べて、主軸11の空洞部17内において壁面17a側での油面の高さが高くなり、給油性が向上する。 Thus, by disposing the partition plate 65 in the hollow portion 17 of the main shaft 11, the flow path of the refrigerating machine oil flowing into the hollow portion 17 from the opening 61 of the disc portion 60 can be divided into two. The pressure gradient in the radial direction within the hollow portion 17 is likely to increase as compared with the case where the is not provided. Further, since the lower end 65e of the partition plate 65 is in contact with the disk portion 60, the effect of increasing the pressure gradient by the partition plate 65 can be obtained immediately after the refrigerating machine oil flows into the hollow portion 17 from the opening 61. can be done. As a result, compared to the case where the partition plate 65 is not provided, the oil surface on the side of the wall surface 17a in the hollow portion 17 of the main shaft 11 is higher, and the oil supply is improved.
 なお、各実施の形態を組み合わせたり、各実施の形態を適宜、変形、省略したりすることが可能である。 It should be noted that it is possible to combine each embodiment, and to modify or omit each embodiment as appropriate.
 1 密閉容器、2 吐出管、10 圧縮機構部、11 主軸、11e 下端、12 偏心軸部、13 シリンダ、13a 吸入口、14 上軸受、14a 軸穴、14b ボス部、15 下軸受、15a 軸穴、15b ボス部、15e 下端、16 ピストン、17 空洞部、17a 壁面、18a 分岐路、18b 分岐路、18c 分岐路、19 吐出マフラ、20 電動機部、21 回転子、22 固定子、30 圧縮室、40 吸入管、41 吸入マフラ、50 油溜め空間、60 円板部、60a 端、60e 下面、61 開口部、62 吐出マフラ、62a マフラ孔、63 固定配管、63a 配管部、63b 取り付け部、63c 孔、64 キャップ、64a 円板部、64b フランジ部、64e 下面、65 仕切板、65e 下端、67 仕切板、100 圧縮機、151 シール材、D1、D2、D3、D4 開口径、O 中心、S1 第1空洞部、S2 第2空洞部、t 板厚。 1 closed container, 2 discharge pipe, 10 compression mechanism, 11 main shaft, 11e lower end, 12 eccentric shaft, 13 cylinder, 13a inlet, 14 upper bearing, 14a shaft hole, 14b boss, 15 lower bearing, 15a shaft hole , 15b boss portion, 15e lower end, 16 piston, 17 cavity portion, 17a wall surface, 18a branch passage, 18b branch passage, 18c branch passage, 19 discharge muffler, 20 electric motor section, 21 rotor, 22 stator, 30 compression chamber, 40 suction pipe, 41 suction muffler, 50 oil reservoir space, 60 disc portion, 60a end, 60e lower surface, 61 opening, 62 discharge muffler, 62a muffler hole, 63 fixed pipe, 63a pipe portion, 63b mounting portion, 63c hole , 64 Cap, 64a Disc portion, 64b Flange portion, 64e Lower surface, 65 Partition plate, 65e Lower end, 67 Partition plate, 100 Compressor, 151 Seal material, D1, D2, D3, D4 Opening diameter, O center, S1 th 1 cavity, S2 second cavity, t plate thickness.

Claims (7)

  1.  冷凍機油を貯留する油溜め空間が底部に形成された密閉容器と、
     前記密閉容器内に配置され、冷媒を圧縮する圧縮機構部と、
     前記密閉容器内に配置され、前記圧縮機構部を駆動する電動機部と、
     上下方向に延び、前記電動機部に固定されて回転駆動されるものであって、下端から前記圧縮機構部よりも上の位置まで内部に空洞部が形成された主軸と、
     前記主軸の前記下端且つ内周側に固定され、内部に開口部が形成された円板部と、を備え、
     前記主軸の回転によって前記空洞部内で生じる遠心力により前記円板部の前記開口部を介して前記油溜め空間から前記冷凍機油を吸い上げる密閉型圧縮機において、
     前記圧縮機構部は、
     前記主軸を回転自在に支持し、前記主軸の下端部の外周面を覆う下軸受を有し、
     前記円板部は、当該円板部の下面が前記下軸受の下端と同じ高さ又は前記下軸受の前記下端よりも上に位置するように設けられている
     密閉型圧縮機。
    a closed container having an oil reservoir space formed at the bottom for storing refrigerating machine oil;
    a compression mechanism section arranged in the sealed container for compressing a refrigerant;
    an electric motor unit arranged in the closed container for driving the compression mechanism;
    a main shaft extending in the vertical direction, fixed to the electric motor portion and driven to rotate, and having a hollow portion formed therein from a lower end to a position above the compression mechanism portion;
    a disk portion fixed to the lower end and inner peripheral side of the main shaft and having an opening formed therein;
    A hermetic compressor that sucks up the refrigerating machine oil from the oil reservoir space through the opening of the disc portion by centrifugal force generated in the hollow portion by the rotation of the main shaft,
    The compression mechanism section is
    a lower bearing that rotatably supports the main shaft and covers the outer peripheral surface of the lower end of the main shaft;
    The disk portion is provided such that the lower surface of the disk portion is positioned at the same height as or above the lower end of the lower bearing.
  2.  前記円板部は、当該円板部の前記下面が前記主軸の前記下端と同じ高さ又は前記主軸の前記下端よりも上に位置するように設けられている
     請求項1に記載の密閉型圧縮機。
    2. The hermetic compression according to claim 1, wherein the disk portion is provided such that the lower surface of the disk portion is positioned at the same height as the lower end of the main shaft or above the lower end of the main shaft. machine.
  3.  前記下軸受の下方に設けられた吐出マフラを備え、
     前記吐出マフラにおいて前記円板部の前記開口部の下方の位置には、前記開口部の開口径よりも大きい開口径を有するマフラ孔が形成されている
     請求項1又は2に記載の密閉型圧縮機。
    A discharge muffler provided below the lower bearing,
    3. The closed type compression according to claim 1, wherein a muffler hole having an opening diameter larger than that of said opening is formed in said discharge muffler at a position below said opening of said disc portion. machine.
  4.  前記マフラ孔の開口径は、前記円板部の前記開口部の前記開口径よりも大きく、且つ前記下軸受の軸穴の開口径よりも小さい
     請求項3に記載の密閉型圧縮機。
    The hermetic compressor according to claim 3, wherein the opening diameter of the muffler hole is larger than the opening diameter of the opening of the disk portion and smaller than the opening diameter of the shaft hole of the lower bearing.
  5.  前記下軸受の前記下端に固定され、当該下端から下方へ延び、前記密閉容器の底面との間に隙間を形成するように設けられた固定配管を備え、
     前記固定配管の孔は、前記円板部の前記開口部の下方に位置し、前記固定配管の内径は、前記円板部の前記開口部の開口径よりも大きい
     請求項1~4のいずれか一項に記載の密閉型圧縮機。
    A fixed pipe fixed to the lower end of the lower bearing, extending downward from the lower end, and provided to form a gap with the bottom surface of the closed container,
    The hole of the fixed pipe is positioned below the opening of the disk portion, and the inner diameter of the fixed pipe is larger than the opening diameter of the opening of the disk portion. 1. The hermetic compressor according to claim 1.
  6.  前記円板部と一体的に形成され、前記円板部の外周縁から上方へ延びた円筒形状のフランジ部を有する
     請求項1~5のいずれか一項に記載の密閉型圧縮機。
    The hermetic compressor according to any one of claims 1 to 5, further comprising a cylindrical flange portion integrally formed with the disk portion and extending upward from the outer peripheral edge of the disk portion.
  7.  前記主軸の前記空洞部内に配置され、上下方向に延びた仕切板を備え、
     前記仕切板は、その下端が前記円板部と接触し、前記空洞部内の前記冷凍機油の流路を二分する
     請求項1~6のいずれか一項に記載の密閉型圧縮機。
    a partition plate disposed in the hollow portion of the main shaft and extending in the vertical direction;
    The hermetic compressor according to any one of claims 1 to 6, wherein the partition plate has a lower end in contact with the disk portion and bisects the flow path of the refrigerating machine oil in the hollow portion.
PCT/JP2021/015523 2021-04-15 2021-04-15 Hermetic compressor WO2022219761A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/015523 WO2022219761A1 (en) 2021-04-15 2021-04-15 Hermetic compressor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/015523 WO2022219761A1 (en) 2021-04-15 2021-04-15 Hermetic compressor

Publications (1)

Publication Number Publication Date
WO2022219761A1 true WO2022219761A1 (en) 2022-10-20

Family

ID=83640225

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/015523 WO2022219761A1 (en) 2021-04-15 2021-04-15 Hermetic compressor

Country Status (1)

Country Link
WO (1) WO2022219761A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51134210U (en) * 1975-04-22 1976-10-29
JPS5324906U (en) * 1976-08-11 1978-03-02
JPS60125387U (en) * 1984-02-03 1985-08-23 三菱重工業株式会社 rotary compressor
JP2000186669A (en) * 1998-12-21 2000-07-04 Funai Electric Co Ltd Compressor
JP2013217281A (en) * 2012-04-09 2013-10-24 Mitsubishi Electric Corp Rotary compressor
US20160040672A1 (en) * 2014-08-07 2016-02-11 Lg Electronics Inc. Compressor

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51134210U (en) * 1975-04-22 1976-10-29
JPS5324906U (en) * 1976-08-11 1978-03-02
JPS60125387U (en) * 1984-02-03 1985-08-23 三菱重工業株式会社 rotary compressor
JP2000186669A (en) * 1998-12-21 2000-07-04 Funai Electric Co Ltd Compressor
JP2013217281A (en) * 2012-04-09 2013-10-24 Mitsubishi Electric Corp Rotary compressor
US20160040672A1 (en) * 2014-08-07 2016-02-11 Lg Electronics Inc. Compressor

Similar Documents

Publication Publication Date Title
US8992188B2 (en) Revolution type compressor
MXPA01001069A (en) Horizontal scroll compressor.
US20010026766A1 (en) Scroll compressor
US7114930B2 (en) Compressor
JP6048044B2 (en) Rotary compressor
WO2022219761A1 (en) Hermetic compressor
JP2014152747A (en) Displacement type compressor
JP2004239256A (en) Horizontal compressor
JPS6287692A (en) Closed type scroll compressor
JPH07158569A (en) Scroll fluid machinery
JP2004150406A (en) Compressor
JP2014234785A (en) Scroll compressor
JP2014105672A (en) Scroll compressor
US20230258185A1 (en) Scroll electric compressor
JP7406916B2 (en) Compressor for refrigerator
JPS6113757Y2 (en)
JP2001041184A (en) Scroll fluid machine
US20180195511A1 (en) Fluid compressor
JP2006329141A (en) Scroll compressor
JP2512089B2 (en) Hermetic scroll compressor
JP2006052679A (en) Compressor and air conditioner
KR0136065Y1 (en) Rotary compressor having eccentric shaft
JPS63272991A (en) Compressor
JP2020186651A (en) Air conditioning compressor
JP2006132347A (en) Compressor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21936962

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21936962

Country of ref document: EP

Kind code of ref document: A1