JP2006104948A - Compressor - Google Patents

Compressor Download PDF

Info

Publication number
JP2006104948A
JP2006104948A JP2004289181A JP2004289181A JP2006104948A JP 2006104948 A JP2006104948 A JP 2006104948A JP 2004289181 A JP2004289181 A JP 2004289181A JP 2004289181 A JP2004289181 A JP 2004289181A JP 2006104948 A JP2006104948 A JP 2006104948A
Authority
JP
Japan
Prior art keywords
support member
vane
compression
spring
compressor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2004289181A
Other languages
Japanese (ja)
Inventor
Kosuke Ogasawara
弘丞 小笠原
Takehiro Nishikawa
剛弘 西川
Hiroyuki Yoshida
浩之 吉田
Yoshiaki Hiruma
義明 比留間
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2004289181A priority Critical patent/JP2006104948A/en
Publication of JP2006104948A publication Critical patent/JP2006104948A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Rotary Pumps (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a compressor for easily performing precision finishing processing, by easily processing a vane slot and a spring installing hole in a support member of a compression element in the compressor. <P>SOLUTION: The vane slot 16 and the spring installing hole 17 for installing a vane 11, are penetratingly arranged in the support member 7 integrally formed with a main bearing part 13. A cover member 15 for blocking up an opening of the vane slot 16 and the spring installing hole 17 generated on an upper surface of the support member 7 and a slit-like cutout part (unillustrated) generated in a part of the main bearing part 13, is installed in and fixed to the support member 7, to restrain leakage of refrigerant gas. A spring receiving part is arranged on the under surface side of the cover member 15, and an upper end part of a coil spring 18 is fixed, and this coil spring 18 is installed in the spring installing hole 17. The substantially rectangular plate-like vane 11 is fixed to a lower end part of the coil spring 18, and the vane 11 is vertically movably installed in the vane slot 16. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、冷媒ガス等の流体を圧縮して吐出する密閉型の圧縮機であって、特に回転軸と共に同心軸回転してシリンダ内の冷媒ガス等を圧縮する圧縮部材に特徴を有する圧縮機に関するものである。   The present invention is a hermetic compressor that compresses and discharges a fluid such as a refrigerant gas, and particularly has a compression member that rotates concentrically with a rotating shaft to compress the refrigerant gas or the like in a cylinder. It is about.

圧縮機としては、従来種々の方式・形態のものが知られており、そのうち回転式圧縮機(ロータリ圧縮機)は密閉容器内に駆動要素と圧縮要素とが配置され、駆動要素のステータに通電してロータを軸回転させ、このロータに軸着されている回転軸によって圧縮要素のシリンダ内でローラを偏心回転させ、このローラの外周面に常時当接しているベーンによりシリンダ内が低圧室と高圧室とに区分されており、低圧室に吸入した冷媒ガスを圧縮して密閉容器内に吐出すると共に、この密閉容器から高圧冷媒ガスを吐出させて冷媒回路に供給するように構成したものである(例えば、特許文献1)。   Various types of compressors are known as compressors. Among them, a rotary compressor (rotary compressor) has a drive element and a compression element arranged in a sealed container, and the stator of the drive element is energized. Then, the rotor is axially rotated, the roller is eccentrically rotated in the cylinder of the compression element by the rotation shaft attached to the rotor, and the inside of the cylinder is separated from the low pressure chamber by the vane that is always in contact with the outer peripheral surface of the roller. It is divided into a high-pressure chamber, and the refrigerant gas sucked into the low-pressure chamber is compressed and discharged into the sealed container, and the high-pressure refrigerant gas is discharged from the sealed container and supplied to the refrigerant circuit. There is (for example, Patent Document 1).

上記従来の回転式圧縮機は、前記駆動要素のロータに軸着された回転軸の端部近傍に偏心円盤部を設け、この偏心円盤部の外周にローラを回転自在に配設している。そして、前記のように回転軸が軸回転すると、偏心円盤部の偏心回転に伴ってローラがシリンダの圧縮空間内を偏心回転し、シリンダ内の冷媒ガスを低圧室から高圧室に移動させながら圧縮するのである。   In the conventional rotary compressor, an eccentric disk portion is provided in the vicinity of the end of the rotating shaft that is pivotally attached to the rotor of the drive element, and a roller is rotatably disposed on the outer periphery of the eccentric disk portion. When the rotating shaft rotates as described above, the roller rotates eccentrically in the compression space of the cylinder along with the eccentric rotation of the eccentric disk portion, and compresses while moving the refrigerant gas in the cylinder from the low pressure chamber to the high pressure chamber. To do.

このような構造の回転式圧縮機では、回転軸に偏心円盤部を形成しなければならず、且つこの偏心円盤部の外周にローラを回転自在に設ける必要があることから、加工性が低下し且つ部品が増えてコストアップの原因の一つになっている。又、偏心円盤部を介してローラが偏心回転するため、振動とトルク変動が大きくなる傾向がある。   In the rotary compressor having such a structure, an eccentric disk portion must be formed on the rotation shaft, and a roller must be rotatably provided on the outer periphery of the eccentric disk portion. In addition, the number of parts increases, which is one of the causes of cost increase. Further, since the roller rotates eccentrically via the eccentric disk portion, vibration and torque fluctuation tend to increase.

上記従来構造の回転圧縮機における加工性の低下、部品の増大及び振動とトルク変動の増大を防止するために、回転軸の偏心円盤部とローラとの組み合わせを用いず、回転軸に対して同心軸に圧縮部材を取り付け、この圧縮部材をシリンダの圧縮空間内を回転させることで吸入した冷媒ガスを圧縮できるようにした圧縮機が知られている(例えば、特許文献2)。   In order to prevent deterioration in workability, increase in parts, and increase in vibration and torque fluctuation in the conventional rotary compressor, the combination of the eccentric disk portion and the roller of the rotary shaft is not used, but concentric with the rotary shaft. There is known a compressor in which a compression member is attached to a shaft and the refrigerant gas sucked by compressing the compression member in a compression space of a cylinder can be compressed (for example, Patent Document 2).

回転軸と同心軸回転する圧縮部材を備えた上記圧縮機は、圧縮部材として傾斜板が用いられており、この傾斜板の両面側で冷媒ガスを圧縮するためシリンダの圧縮空間に冷媒ガスを導く吸入路及び圧縮後の冷媒ガスを吐出するための吐出路を2つずつ設けなければならない。このような構造であると、シリンダ内全域において傾斜板の上下で高圧室と低圧室とが隣接する形となるため、高低圧差が大きくなり、冷媒ガスリークによる効率悪化が問題となる。これを防止するために、本出願人は圧縮部材を比較的肉厚な部材で形成し、片面側で冷媒ガスを圧縮するようにした圧縮機を開発して先に特許出願した(特願2004−003142号)。
特開平6−307363号公報 特願2004−003142号
In the compressor provided with a compression member that rotates concentrically with the rotation shaft, an inclined plate is used as the compression member, and the refrigerant gas is guided to the compression space of the cylinder in order to compress the refrigerant gas on both sides of the inclined plate. Two suction paths and two discharge paths for discharging the compressed refrigerant gas must be provided. With such a structure, since the high pressure chamber and the low pressure chamber are adjacent to each other above and below the inclined plate in the entire area of the cylinder, the difference between the high pressure and the low pressure becomes large, and the efficiency deterioration due to refrigerant gas leakage becomes a problem. In order to prevent this, the present applicant has developed a compressor in which the compression member is formed of a relatively thick member and the refrigerant gas is compressed on one side, and a patent application has been filed earlier (Japanese Patent Application No. 2004). -003142).
JP-A-6-307363 Japanese Patent Application No. 2004-003142

上記先行出願に係る圧縮機は、回転軸に対してほぼ円柱状の圧縮部材を同心軸に設け、この圧縮部材の上面に特殊形状の傾斜面を形成することにより冷媒ガスを圧縮できるようにしたもので、駆動要素のステータに通電してロータを回転させ、このロータに軸着されている回転軸によって圧縮要素におけるシリンダ内で圧縮部材を同心軸回転させ、この圧縮部材の傾斜面に常時当接しているベーンを介してシリンダ内が低圧室と高圧室とに区分されており、低圧室に吸入した冷媒ガスを圧縮して密閉容器内に吐出すると共に、この密閉容器から高圧冷媒ガスを吐出させて冷媒回路に供給するものである。   In the compressor according to the above prior application, a substantially cylindrical compression member is provided on the concentric shaft with respect to the rotating shaft, and a specially shaped inclined surface is formed on the upper surface of the compression member so that the refrigerant gas can be compressed. Thus, the rotor of the drive element is energized to rotate the rotor, the rotation shaft mounted on the rotor rotates the compression member concentrically within the cylinder of the compression element, and is constantly applied to the inclined surface of the compression member. The inside of the cylinder is divided into a low pressure chamber and a high pressure chamber through vanes that are in contact with each other. The refrigerant gas sucked into the low pressure chamber is compressed and discharged into the sealed container, and the high pressure refrigerant gas is discharged from the sealed container. To be supplied to the refrigerant circuit.

この先行出願に係る圧縮機の構成を概略説明すると、前記圧縮要素は密閉容器に固定されて駆動要素のロータに固定した回転軸を貫通させて軸支する支持部材と、この支持部材に固定されて圧縮空間を形成するシリンダと、回転軸に同心軸固定されてシリンダの圧縮空間内を回転し一面が回転軸を中心として一周すると最も高くなる上死点から最も低くなる下死点を経て上死点に戻る略正弦波形状の傾斜面に形成された圧縮部材と、前記支持部材に設けられたベーンスロットにコイルバネを介して装着され先端が圧縮部材の傾斜面に常時当接して圧縮空間内を低圧室と高圧室とに区分するベーンとを備えている。   Schematically explaining the configuration of the compressor according to this prior application, the compression element is fixed to a hermetic container and is supported by a support member that is pivotally supported by a rotary shaft fixed to a rotor of a drive element, and is fixed to the support member. The cylinder that forms the compression space and the shaft that is fixed concentrically to the rotation shaft and rotates in the compression space of the cylinder and goes up from the highest dead center to the lowest dead center when one surface makes a round around the rotation axis. A compression member formed on a substantially sinusoidal inclined surface that returns to the dead center, and a vane slot provided in the support member is mounted via a coil spring, and the tip always contacts the inclined surface of the compression member so that the inside of the compression space Is provided with a vane for classifying the chamber into a low pressure chamber and a high pressure chamber.

しかしながら、上記支持部材はベーンを装着するためのベーンスロットとバネを装着するためのバネ装着孔を、支持部材の下面から支持部材の上面より若干下方位置までの領域に設けなければならないので加工が厄介であり、且つそれらを精密に仕上げ加工するのが困難であるという問題があった。   However, the support member must be provided with a vane slot for mounting the vane and a spring mounting hole for mounting the spring in a region from the lower surface of the support member to a position slightly below the upper surface of the support member. There was a problem that it was troublesome and it was difficult to finish them precisely.

本発明は、上記の問題を解決するためになされたもので、支持部材にベーンスロットとバネ装着孔とを容易に加工することができ、且つ簡単に精密仕上げ加工ができるようにした圧縮機を提供することを目的とする。   The present invention has been made to solve the above-described problem. A compressor capable of easily processing a vane slot and a spring mounting hole in a support member and easily performing precision finishing is provided. The purpose is to provide.

上記の目的を達成するために、本発明に係る請求項1の圧縮機は、密閉容器内に駆動要素と、この駆動要素により駆動される圧縮要素とが配置され、前記圧縮要素は前記密閉容器に固定され前記駆動要素のロータに固定した回転軸を貫通させて軸支する支持部材と、この支持部材に固定されて圧縮空間を形成するシリンダと、前記回転軸に同軸心固定されて前記シリンダの圧縮空間内を回転し一面が前記回転軸を中心として一周すると最も高くなる上死点から最も低くなる下死点を経て上死点に戻る略正弦波形状の傾斜面に形成された圧縮部材と、前記支持部材に設けられたベーンスロットにバネを介して装着され先端が前記圧縮部材の傾斜面に常時接触して前記圧縮空間内を低圧室と高圧室とに区分するベーンとを備え、前記低圧室に吸入した流体を前記圧縮部材により圧縮して前記高圧室から吐出する圧縮機であって、前記支持部材は前記回転軸を軸支する主軸受け部が一体に形成され、前記ベーンスロットが支持部材を貫通して設けられたことを特徴とする。   In order to achieve the above object, according to the compressor of claim 1 of the present invention, a driving element and a compression element driven by the driving element are arranged in a sealed container, and the compression element is the sealed container. A support member that is fixed to the rotor of the drive element and is supported by the rotation shaft. The cylinder is fixed to the support member to form a compression space, and the cylinder is coaxially fixed to the rotation shaft. A compression member formed on a substantially sinusoidal inclined surface that rotates in the compression space and returns to the top dead center through the bottom dead center that becomes the lowest when one surface makes a round around the rotation axis. And a vane that is attached to a vane slot provided in the support member via a spring and whose tip always contacts the inclined surface of the compression member to divide the compression space into a low pressure chamber and a high pressure chamber, Inhalation into the low pressure chamber A compressor that compresses the fluid by the compression member and discharges it from the high-pressure chamber, wherein the support member is integrally formed with a main bearing portion that supports the rotating shaft, and the vane slot penetrates the support member. It is characterized by being provided.

本発明に係る請求項2の圧縮機は、請求項1に記載の圧縮機において、前記ベーンスロットは支持部材を上下方向に貫通して設けられ、その上端開口を閉塞する蓋部材を支持部材に取り付け固定したことを特徴とする。   According to a second aspect of the compressor of the present invention, in the compressor according to the first aspect, the vane slot is provided through the support member in the vertical direction, and the lid member that closes the upper end opening is used as the support member. It is characterized by being fixed.

本発明に係る請求項3の圧縮機は、請求項2記載の圧縮機において、前記蓋部材の下面側にバネ受け部を設け、このバネ受け部に前記バネの上端を取り付けると共に、このバネの下端に前記ベーンを取り付けたことを特徴とする。   According to a third aspect of the compressor of the present invention, in the compressor of the second aspect, a spring receiving portion is provided on the lower surface side of the lid member, and an upper end of the spring is attached to the spring receiving portion. The vane is attached to the lower end.

上記請求項1の発明によれば、支持部材に対してベーンスロットを貫通させて設けるので、非貫通で設ける場合に比してベーンスロットの加工が容易になり、且つそのベーンスロットを簡単に精密仕上げ加工することができる。   According to the first aspect of the present invention, since the vane slot is provided so as to penetrate the support member, the processing of the vane slot is facilitated compared to the case where the vane slot is provided without being penetrated, and the vane slot is easily and precisely set. It can be finished.

上記請求項2の発明によれば、支持部材に対してベーンスロットを上下方向に貫通させて設け、その上端を閉塞する蓋部材を支持部材に取り付け固定するため、ベーンスロットからの冷媒ガスのリークを防止し、ベーン背圧空間を形成することができる。これにより、冷媒ガスの圧縮効率を向上させることが可能となる。   According to the second aspect of the present invention, the vane slot is provided so as to penetrate the support member in the vertical direction, and the lid member that closes the upper end of the support member is attached and fixed to the support member, so that the refrigerant gas leaks from the vane slot. The vane back pressure space can be formed. Thereby, it becomes possible to improve the compression efficiency of refrigerant gas.

上記請求項3の発明によれば、前記蓋部材の下面側にバネ受け部を設け、このバネ受け部にバネの上端を取り付けると共に、このバネの下端にベーンを取り付けるので、ベーンスロットに対するベーンの装着を容易に行うことができる。又、支持部材にバネの上端を取り付けるための機構を設ける必要がなくなり、更なる加工の容易化を図ることができる。   According to the third aspect of the invention, the spring receiving portion is provided on the lower surface side of the lid member, the upper end of the spring is attached to the spring receiving portion, and the vane is attached to the lower end of the spring. Mounting can be performed easily. Further, it is not necessary to provide a mechanism for attaching the upper end of the spring to the support member, and further processing can be facilitated.

次に、本発明に係る圧縮機の一実施形態を添付図面に基づいて説明する。図1は本発明に係る圧縮機の実施形態を示す概略縦断面図である。図2は本発明に係る圧縮機の実施形態におけるベーンの箇所を通る概略縦断面図である。図3は本発明に係る圧縮機の実施形態における概略横断面図である。各図において、1は密閉容器であり、有底円筒状の鉄製容器の上端部に、キャップ状の鉄製被覆部材を溶接することで構成され、この密閉容器1内の上方部には駆動要素2が、下方部には駆動要素2により駆動される圧縮要素3がそれぞれ配置されている。   Next, an embodiment of a compressor according to the present invention will be described with reference to the accompanying drawings. FIG. 1 is a schematic longitudinal sectional view showing an embodiment of a compressor according to the present invention. FIG. 2 is a schematic longitudinal sectional view passing through a vane in the compressor according to the embodiment of the present invention. FIG. 3 is a schematic cross-sectional view of the compressor according to the embodiment of the present invention. In each figure, reference numeral 1 denotes a sealed container, which is constructed by welding a cap-shaped iron covering member to the upper end of a bottomed cylindrical iron container. However, the compression elements 3 driven by the drive elements 2 are respectively arranged in the lower part.

上記駆動要素2は、密閉容器1の内壁に固定されたステータ4と、このステータ4の内側に配設されたロータ6とから電動モータが構成されており、ロータ6の中心軸部には回転軸5の上端部が軸着されている。この駆動要素2のステータ4の外周部と密閉容器1との間には上下の空間部を連通する隙間10が複数箇所に形成されている。尚、図示は省略したが、前記密閉容器1における鉄製被覆部材には取付部材を介して端子が装着され、この端子とステータ4とが内部リード線で接続される。そして、端子には外部電源からの外部リード線が接続されて、ステータ4に通電するように構成される。   The drive element 2 includes an electric motor including a stator 4 fixed to the inner wall of the hermetic container 1 and a rotor 6 disposed inside the stator 4. The upper end portion of the shaft 5 is attached to the shaft. Between the outer peripheral part of the stator 4 of the driving element 2 and the sealed container 1, a plurality of gaps 10 communicating the upper and lower spaces are formed at a plurality of locations. Although not shown, a terminal is attached to the iron covering member of the sealed container 1 via an attachment member, and the terminal and the stator 4 are connected by an internal lead wire. Then, an external lead wire from an external power source is connected to the terminal so that the stator 4 is energized.

上記圧縮要素3は、密閉容器1の内壁に固定された支持部材7と、この支持部材7の下にボルト(図略)により取り付けられたシリンダ8と、このシリンダ8内に配置された圧縮部材9(本実施形態では、スワッシュ部材と称する)と、支持部材7に対して上下動可能に装着されたベーン11と、シリンダ8の切欠部8b(図3)の側面に取り付けられた吐出バルブ12等から構成されている。又、支持部材7の上面中央部は同心円柱状に上方に突出して回転軸6の主軸受け部13が一体に形成され、下面中央部は同心円柱状に下方へ突出して突出部14が一体に形成されており、その下面14aは平滑面になっている。   The compression element 3 includes a support member 7 fixed to the inner wall of the sealed container 1, a cylinder 8 attached by bolts (not shown) below the support member 7, and a compression member disposed in the cylinder 8. 9 (referred to as a swash member in the present embodiment), a vane 11 attached to the support member 7 so as to be movable up and down, and a discharge valve 12 attached to the side surface of the notch 8b (FIG. 3) of the cylinder 8. Etc. Further, the center portion of the upper surface of the support member 7 protrudes upward in a concentric column shape and the main bearing portion 13 of the rotating shaft 6 is integrally formed, and the center portion of the lower surface protrudes downward in a concentric column shape and the protrusion portion 14 is integrally formed. The lower surface 14a is a smooth surface.

上記支持部材7にはベーンスロット16と、このベーンスロット16の中央部に位置するバネ装着孔17とが設けられている。本実施形態では、ベーンスロット16及びバネ装着孔17は、支持部材7における突出部14の下面14aから支持部材7における主軸受け部13の上面13aに貫通させて形成する。この時、主軸受け部13の一部は、図4に示すようにベーンスロット16の端部によってスリット状切欠部13bが生じる。バネ装着孔17は主軸受け部13を切り欠くことなく、バネ装着孔17の上端は支持部材7の上面に開口する。このようにベーンスロット16及びバネ装着孔17は、支持部材7を貫通させて設けることにより加工が容易となり、且つ精密に仕上げ加工することも簡単になる。   The support member 7 is provided with a vane slot 16 and a spring mounting hole 17 located at the center of the vane slot 16. In the present embodiment, the vane slot 16 and the spring mounting hole 17 are formed so as to penetrate from the lower surface 14 a of the projecting portion 14 of the support member 7 to the upper surface 13 a of the main bearing portion 13 of the support member 7. At this time, a part of the main bearing portion 13 has a slit-shaped notch portion 13b formed by the end portion of the vane slot 16 as shown in FIG. The spring mounting hole 17 does not cut out the main bearing portion 13, and the upper end of the spring mounting hole 17 opens on the upper surface of the support member 7. As described above, the vane slot 16 and the spring mounting hole 17 are easily processed by providing the support member 7 so as to penetrate therethrough, and it is also easy to finish precisely.

図5(a)、(b)は、上記支持部材7に設けたベーンスロット16及びバネ装着孔17の上端開口を塞ぐ蓋部材15を示しており、この蓋部材15は水平板片15aと、この水平板片15aの一側端部の中央に立設された垂直板片15bとから構成されている。そして、水平板片15aは、垂直板片15b側の端面15cが前記主軸受け部13の外周面に当接する曲面に形成され、垂直板片15bの内側端面15dは主軸受け部13の外周面と同一の曲率半径を有する曲面に形成され、外側端面15eは主軸受け部13の内周面と同一の曲率半径を有する曲面に形成されている。又、垂直板片15bの幅(対向側面間の距離)は、前記主軸受け部13におけるスリット状切欠部13bの幅と略等しく、垂直板片15bの厚み(対向曲面間の距離)は主軸受け部13の肉厚と略等しく、垂直板片15bの高さは主軸受け部13の高さと略等しくそれぞれ形成されている。   5 (a) and 5 (b) show a lid member 15 that closes the upper end opening of the vane slot 16 and the spring mounting hole 17 provided in the support member 7. The lid member 15 includes a horizontal plate piece 15a, The horizontal plate piece 15a is composed of a vertical plate piece 15b erected at the center of one side end portion. The horizontal plate piece 15 a is formed in a curved surface in which the end surface 15 c on the vertical plate piece 15 b side contacts the outer peripheral surface of the main bearing portion 13, and the inner end surface 15 d of the vertical plate piece 15 b is in contact with the outer peripheral surface of the main bearing portion 13. The outer end surface 15 e is formed in a curved surface having the same curvature radius as the inner peripheral surface of the main bearing portion 13. The width of the vertical plate piece 15b (distance between the opposite side surfaces) is substantially equal to the width of the slit-shaped notch 13b in the main bearing portion 13, and the thickness of the vertical plate piece 15b (distance between the opposite curved surfaces) is the main bearing. The height of the vertical plate piece 15 b is substantially equal to the height of the main bearing portion 13.

上記蓋部材15は、図4に仮想線で示すように垂直板片15bを主軸受け部13のスリット状切欠部13bに挿入すると密着状態にて嵌合し、水平板片15aの端面15cは主軸受け部13の外周面に密着し、且つ水平板片15aと垂直板片15bとによってベーンスロット16及びバネ装着孔17の上端開口部分は完全に被覆される(図2参照)。この状態にて蓋部材15は支持部材7に固定される。支持部材7の固定手段としては、溶接又はボルト等の止め具を採用することができる。これにより、冷媒ガスのリークを抑えることができる。   When the vertical plate piece 15b is inserted into the slit-shaped notch 13b of the main bearing portion 13 as shown by phantom lines in FIG. 4, the lid member 15 is fitted in close contact, and the end surface 15c of the horizontal plate piece 15a is the main shaft. The upper end opening portion of the vane slot 16 and the spring mounting hole 17 is completely covered with the horizontal plate piece 15a and the vertical plate piece 15b while being in close contact with the outer peripheral surface of the receiving portion 13 (see FIG. 2). In this state, the lid member 15 is fixed to the support member 7. As a fixing means for the support member 7, a stopper such as welding or a bolt can be employed. Thereby, leakage of the refrigerant gas can be suppressed.

又、図5(b)に示すように蓋部材15の下面側にはバネ受け部15fを設けてあり、このバネ受け部15fにコイルバネ18の上端部を取り付けると共に、コイルバネ18の下端部は前記ベーン11の上端部に固定する。これにより、ベーン11はコイルバネ18を介してベーンスロット16に沿って上下動可能に装着されることになる。   As shown in FIG. 5B, a spring receiving portion 15f is provided on the lower surface side of the lid member 15. The upper end portion of the coil spring 18 is attached to the spring receiving portion 15f, and the lower end portion of the coil spring 18 is Fix to the upper end of the vane 11. Thus, the vane 11 is mounted along the vane slot 16 via the coil spring 18 so as to be movable up and down.

前記圧縮要素3について詳しく説明すると、図1のようにシリンダ8の中央部は下方に凹陥しており、この凹陥部19内に圧縮空間20が構成されている。又、シリンダ8の凹陥部19の下面中央部には副軸受け部21が開口状態にて形成されている。尚、図7に示すように、シリンダ8の中央部に上面から下面に貫通する空所を設け、シリンダ8の下面にカバー板部材25を取り付けて上記圧縮空間20を構成し、且つカバー板部材25の中央部に副軸受け部となる軸孔25aを設けて回転軸5の下端部を回転自在に軸支するように構成してもよい。   The compression element 3 will be described in detail. As shown in FIG. 1, the central portion of the cylinder 8 is recessed downward, and a compression space 20 is formed in the recessed portion 19. Further, a sub-bearing portion 21 is formed in an open state at the center of the lower surface of the recessed portion 19 of the cylinder 8. In addition, as shown in FIG. 7, the space which penetrates from the upper surface to the lower surface is provided in the central portion of the cylinder 8, the cover plate member 25 is attached to the lower surface of the cylinder 8 to constitute the compression space 20, and the cover plate member. A shaft hole 25a serving as a sub-bearing portion may be provided at the center of the shaft 25 so that the lower end portion of the rotating shaft 5 is rotatably supported.

又、前記支持部材7の内部には管接続口7aと、この管接続口7aに連通する通路7b及び吸入口7cが設けられ、吸入口7cの端部は前記圧縮空間20に開口している。更に、密閉容器1に取り付けた吸込配管22の端部が支持部材7の管接続口7aに接続固定されている。これにより、吸込配管22から供給される冷媒ガスは、支持部材7の通路7bを通って吸入口7cから圧縮空間20内に吸い込まれる。   In addition, a pipe connection port 7a and a passage 7b and a suction port 7c communicating with the pipe connection port 7a are provided inside the support member 7, and the end of the suction port 7c opens into the compression space 20. . Furthermore, the end of the suction pipe 22 attached to the sealed container 1 is connected and fixed to the pipe connection port 7 a of the support member 7. Thereby, the refrigerant gas supplied from the suction pipe 22 is sucked into the compression space 20 from the suction port 7 c through the passage 7 b of the support member 7.

図3に示すように、支持部材7における突出部14の下端縁部には、突出部14の下面14a側から外周面側に抜ける吐出口7dが設けられ、この吐出口7dの下面側は前記圧縮空間20に開口し、吐出口7dの外周面側はシリンダ8の内部に設けられた通路8aに連通している。このシリンダ8の通路8aは、前記シリンダ8の切欠部8bに開口している。そして、シリンダ8の切欠部8bの側面には前記吐出バルブ12が取り付けられており、この吐出バルブ12によって通路8aが開閉される。これにより、圧縮空間20内で圧縮された高圧冷媒ガスは、支持部材7の吐出口7cからシリンダ8の通路8aを通って吐出バルブ12を介してシリンダ8の切欠部8b側に吐出される。   As shown in FIG. 3, the lower end edge of the protrusion 14 in the support member 7 is provided with a discharge port 7d that passes from the lower surface 14a side of the protrusion 14 to the outer peripheral surface side. It opens into the compression space 20, and the outer peripheral surface side of the discharge port 7 d communicates with a passage 8 a provided inside the cylinder 8. The passage 8a of the cylinder 8 opens into the notch 8b of the cylinder 8. The discharge valve 12 is attached to the side surface of the notch 8 b of the cylinder 8, and the passage 8 a is opened and closed by the discharge valve 12. Thereby, the high-pressure refrigerant gas compressed in the compression space 20 is discharged from the discharge port 7 c of the support member 7 through the passage 8 a of the cylinder 8 to the notch 8 b side of the cylinder 8 through the discharge valve 12.

前記ベーン11は略矩形の板状に形成されており、図3に示すように圧縮空間20に開口している吸入口7cと吐出口7dとの間に位置しており、このベーン11によって圧縮空間20内が低圧室と高圧室とに区分されている。   The vane 11 is formed in a substantially rectangular plate shape, and is positioned between the suction port 7c and the discharge port 7d opened in the compression space 20, as shown in FIG. The space 20 is divided into a low pressure chamber and a high pressure chamber.

図1のように前記回転軸5の下部にはスワッシュ部材9が一体に設けられ、前記シリンダ8の圧縮空間20内に配置されている。このスワッシュ部材9は、全体形状としては回転軸5と同心の略円柱状を呈しており、図6(a)、(b)はそれぞれスワッシュ部材9を含む回転軸5の側面図を示している。スワッシュ部材9は、一側の肉厚部9aとこれに対向する他側の肉薄部9bとを有し、円周方向に沿う上面9cは肉厚部9aにて高く、肉薄部9bにて低い連続する傾斜面に形成されている。即ち、スワッシュ部材9の上面9cは、回転軸5を中心として円周方向に一周すると最も高くなる上死点Pから最も低くなる下死点Qを経て上死点Pに戻る略正弦波形状を呈している。又、回転軸5を通る上面9cの断面形状は、回転軸5を中心として360度何れの角度の切断面においても前記支持部材7における突出部14の下面14aと平行であり、この上面9cと突出部14の下面14aとの間が前記圧縮空間20となる。   As shown in FIG. 1, a swash member 9 is integrally provided at the lower portion of the rotary shaft 5 and is disposed in the compression space 20 of the cylinder 8. The swash member 9 has a substantially cylindrical shape concentric with the rotating shaft 5 as an overall shape, and FIGS. 6A and 6B show side views of the rotating shaft 5 including the swash member 9, respectively. . The swash member 9 has a thick part 9a on one side and a thin part 9b on the other side opposite thereto, and the upper surface 9c along the circumferential direction is high at the thick part 9a and low at the thin part 9b. It is formed on a continuous inclined surface. That is, the upper surface 9c of the swash member 9 has a substantially sine wave shape that returns from the highest dead center P to the highest dead center Q through the lowest dead center Q when it goes around the rotation axis 5 in the circumferential direction. Presents. The cross-sectional shape of the upper surface 9c passing through the rotating shaft 5 is parallel to the lower surface 14a of the protruding portion 14 of the support member 7 at any angle of 360 degrees with respect to the rotating shaft 5, and the upper surface 9c The space between the lower surface 14 a of the protruding portion 14 is the compression space 20.

そして、このスワッシュ部材9の上死点Pが支持部材7の突出部14の下面14aに微少なクリアランスを介して移動自在に対向している。このクリアランスは密閉容器1内に封入されたオイルによってシールされる。又、前記ベーン11は下端が断面R形状に形成されてスワッシュ部材9の上面9cに常時当接している。前記コイルバネ18はベーン11を常時下向きに押圧することで、ベーン11の下端がスワッシュ部材9の上面9cから離れないように保持し、且つベーン11が支持部材7のベーンスロット16に沿って円滑に上下動するのを制御する作用をなす。   The top dead center P of the swash member 9 is movably opposed to the lower surface 14a of the protrusion 14 of the support member 7 through a slight clearance. This clearance is sealed by the oil enclosed in the sealed container 1. Further, the lower end of the vane 11 has an R-shaped cross section, and is always in contact with the upper surface 9c of the swash member 9. The coil spring 18 always presses the vane 11 downward to hold the lower end of the vane 11 so as not to be separated from the upper surface 9c of the swash member 9, and the vane 11 smoothly moves along the vane slot 16 of the support member 7. Acts to control vertical movement.

又、スワッシュ部材9の外周面はシリンダ8における凹陥部19の内壁面との間に微少なクリアランスを形成し、これによりスワッシュ部材9は回転自在とされている。そして、このスワッシュ部材9の外周面と凹陥部19の内壁面との間のクリアランスもオイルによってシールされる。これにより、冷媒ガスのリークを抑えることができる。   Further, a minute clearance is formed between the outer peripheral surface of the swash member 9 and the inner wall surface of the recessed portion 19 in the cylinder 8, so that the swash member 9 is rotatable. The clearance between the outer peripheral surface of the swash member 9 and the inner wall surface of the recessed portion 19 is also sealed with oil. Thereby, leakage of the refrigerant gas can be suppressed.

前記密閉容器1の上端には、図1及び図2に示すように吐出配管23が取り付けられている。前記のようにシリンダ8の圧縮空間20内で圧縮された高圧冷媒ガスは、吐出バルブ12を介してシリンダ8の切欠部8bと密閉容器1とで囲まれた空間R(図3参照)に吐出される。この空間Rに吐出された高圧冷媒ガスは、シリンダ8の切欠部8bの上に位置する支持部材7の切欠部(図略)及びこの切欠部に連通する通孔(図略)を通って密閉容器1内に吐出される。密閉容器1内に吐出された高圧冷媒ガスは、前記駆動要素2のステータ4とロータ6との間の僅かな隙間を通って密閉容器1内の上部領域に流入し、吐出配管23から外部に吐出される。吐出配管23から吐出された高圧冷媒ガスは、図示を省略した冷媒回路に供給され、この冷媒回路を循環して低圧となった冷媒ガスは、前記吸込配管22から圧縮機に戻される。   As shown in FIGS. 1 and 2, a discharge pipe 23 is attached to the upper end of the sealed container 1. The high-pressure refrigerant gas compressed in the compression space 20 of the cylinder 8 as described above is discharged into the space R (see FIG. 3) surrounded by the notch 8b of the cylinder 8 and the sealed container 1 via the discharge valve 12. Is done. The high-pressure refrigerant gas discharged into the space R is sealed through a notch (not shown) of the support member 7 located on the notch 8b of the cylinder 8 and a through hole (not shown) communicating with the notch. It is discharged into the container 1. The high-pressure refrigerant gas discharged into the hermetic container 1 flows into the upper region in the hermetic container 1 through a slight gap between the stator 4 and the rotor 6 of the driving element 2, and is discharged from the discharge pipe 23 to the outside. Discharged. The high-pressure refrigerant gas discharged from the discharge pipe 23 is supplied to a refrigerant circuit (not shown), and the refrigerant gas circulated through this refrigerant circuit and having a low pressure is returned from the suction pipe 22 to the compressor.

尚、密閉容器1の内底部にはオイル溜め24が構成され、このオイル溜め24内のオイルが回転軸5を介して圧縮要素3の所要部位に供給される。更に、密閉容器1内には例えば二酸化炭素、R134a、或はHC系の冷媒ガスが所定量封入される。   An oil reservoir 24 is formed on the inner bottom of the sealed container 1, and the oil in the oil reservoir 24 is supplied to a required portion of the compression element 3 via the rotary shaft 5. Furthermore, a predetermined amount of, for example, carbon dioxide, R134a, or HC refrigerant gas is sealed in the sealed container 1.

以上のように構成された本発明に係る圧縮機の動作に付いて説明する。この圧縮機は、駆動要素2のステータ4のコイルに通電するとロータ6が回転する。このロータ6の回転は、回転軸5を介してスワッシュ部材9に伝達され、これによりスワッシュ部材9はシリンダ8内において回転軸5と同心軸回転する。そして、スワッシュ部材9の上面9cの上死点Pがベーン11を境にして吐出側にある時、ベーン11を境にして吸入口7c側でシリンダ8、支持部材7、スワッシュ部材9及びベーン11で囲まれた空間(低圧室)内に吸込配管22、支持部材7の通路7b及び吸入口7cを介して冷媒ガスが吸い込まれる。   The operation of the compressor according to the present invention configured as described above will be described. In this compressor, when the coil of the stator 4 of the drive element 2 is energized, the rotor 6 rotates. The rotation of the rotor 6 is transmitted to the swash member 9 via the rotating shaft 5, whereby the swash member 9 rotates concentrically with the rotating shaft 5 in the cylinder 8. When the top dead center P of the upper surface 9c of the swash member 9 is on the discharge side with the vane 11 as a boundary, the cylinder 8, the support member 7, the swash member 9 and the vane 11 on the suction port 7c side with the vane 11 as a boundary. The refrigerant gas is sucked into the space (low pressure chamber) surrounded by the suction pipe 22, the passage 7b of the support member 7, and the suction port 7c.

この状態からスワッシュ部材9が回転していくと、上死点Pがベーン11、吸入口7cを過ぎた段階からスワッシュ部材9の上面9cの傾斜により低圧室の体積は狭められていき、高圧室内の冷媒ガスは圧縮されていく。これにより、上死点Pが支持部材7の吐出口7dを通過するまで高圧室内の高圧冷媒ガスは吐出口7dから吐出される。そして、上死点Pが支持部材7の吸入口7cを通過すると、低圧室の体積は拡大していくので吸入口7cから冷媒ガスが低圧室内に吸い込まれていく。   When the swash member 9 is rotated from this state, the volume of the low pressure chamber is reduced by the inclination of the upper surface 9c of the swash member 9 from the stage where the top dead center P passes the vane 11 and the suction port 7c, and the high pressure chamber is reduced. The refrigerant gas is compressed. Thus, the high-pressure refrigerant gas in the high-pressure chamber is discharged from the discharge port 7d until the top dead center P passes through the discharge port 7d of the support member 7. When the top dead center P passes through the suction port 7c of the support member 7, the volume of the low-pressure chamber increases, so that the refrigerant gas is sucked into the low-pressure chamber from the suction port 7c.

高圧室から支持部材7の吐出口7dに吐出された高圧冷媒ガスは、前記のようにシリンダ8の通路8aを通って吐出バルブ12を介して切欠部8bの空間(空間R)に吐出され、次いで支持部材7の切欠部及び通孔を通って密閉容器1内に吐出される。密閉容器1内に吐出された高圧冷媒ガスは、駆動要素2の隙間を通過して密閉容器1内の上部領域に至り、ここでオイルと分離され、吐出配管23から吐出されて冷媒回路に供給される。一方、高圧冷媒ガスから分離されたオイルは、密閉容器1とステータ4との間に形成されている前記隙間10から流下し、前記オイル溜め24に戻る。   The high-pressure refrigerant gas discharged from the high-pressure chamber to the discharge port 7d of the support member 7 passes through the passage 8a of the cylinder 8 and is discharged into the space (space R) of the notch 8b through the discharge valve 12, as described above. Subsequently, it discharges in the airtight container 1 through the notch part and through-hole of the supporting member 7. FIG. The high-pressure refrigerant gas discharged into the sealed container 1 passes through the gap between the drive elements 2 and reaches the upper region in the sealed container 1, where it is separated from the oil, discharged from the discharge pipe 23, and supplied to the refrigerant circuit. Is done. On the other hand, the oil separated from the high-pressure refrigerant gas flows down from the gap 10 formed between the sealed container 1 and the stator 4 and returns to the oil reservoir 24.

本発明に係る圧縮機は、小型で構造が簡単でありながら十分な圧縮機能を発揮することが可能である。前記のようにスワッシュ部材9は連続する肉厚部9aと肉薄部9bを有して、その上面9cが略正弦波形状を呈して傾斜しているので、シリンダ8の高圧室に対応することになる肉厚部9aにおいて圧縮空間20の内壁面との間のシール寸法を十分に確保することができる。これにより、スワッシュ部材9とシリンダ8間における冷媒ガスリークの発生を効果的に防止できるようになり、圧縮効率の高い運転が可能となる。又、スワッシュ部材9はフライホイールの役割を果たすので、トルク変動も少なくなる。   The compressor according to the present invention can exhibit a sufficient compression function while being small in size and simple in structure. As described above, the swash member 9 has the continuous thick portion 9a and the thin portion 9b, and its upper surface 9c is inclined in a substantially sinusoidal shape, so that it corresponds to the high pressure chamber of the cylinder 8. In the thick portion 9a, the seal dimension between the inner wall surface of the compression space 20 can be sufficiently ensured. Thereby, generation | occurrence | production of the refrigerant | coolant gas leak between the swash member 9 and the cylinder 8 can be prevented now effectively, and the driving | operation with high compression efficiency is attained. Further, since the swash member 9 serves as a flywheel, torque fluctuation is reduced.

上記実施形態で、シリンダ8が副軸受け部21を有している場合には、回転軸5の副軸受け用支持部材を別途設ける必要がなく、部品点数の削減と更なる小型化が可能となる。又、支持部材7にベーン11を装着するためのベーンスロット16とバネ装着孔17を設けたので、高い加工精度が必要となるシリンダ8にベーン装着機構を設ける必要がなくなり、加工性が改善される。更に、上記実施形態のごとくスワッシュ部材9を回転軸5に一体に形成すれば、スワッシュ部材9を回転軸5に取り付けるための部材が不要となり、更なる部品点数の削減が可能となる。   In the above embodiment, when the cylinder 8 has the sub-bearing portion 21, it is not necessary to separately provide a sub-bearing support member for the rotating shaft 5, and the number of parts can be reduced and further miniaturization can be achieved. . Further, since the vane slot 16 and the spring mounting hole 17 for mounting the vane 11 on the support member 7 are provided, there is no need to provide a vane mounting mechanism in the cylinder 8 that requires high processing accuracy, and the workability is improved. The Furthermore, if the swash member 9 is formed integrally with the rotating shaft 5 as in the above embodiment, a member for attaching the swash member 9 to the rotating shaft 5 becomes unnecessary, and the number of parts can be further reduced.

尚、上記実施形態では、冷凍機の冷媒回路に組み込んで使用する圧縮機について説明したが、これに限定されずに例えば空気を吸い込んで圧縮するエアーコンプレッサ等にも本発明を有効に適用することができる。   In the above embodiment, the compressor used by being incorporated in the refrigerant circuit of the refrigerator has been described. However, the present invention is not limited to this, and the present invention is effectively applied to, for example, an air compressor that sucks and compresses air. Can do.

本発明は、特に冷媒ガスを圧縮して冷凍機等の冷媒回路に供給するための圧縮機として最適に利用することができる。   Especially this invention can be optimally utilized as a compressor for compressing refrigerant gas and supplying it to refrigerant circuits, such as a refrigerator.

本発明に係る圧縮機の実施形態を示す概略縦断面図である。It is a schematic longitudinal cross-sectional view which shows embodiment of the compressor which concerns on this invention. 本発明に係る圧縮機の実施形態におけるベーンの箇所を通る概略縦断面図である。It is a schematic longitudinal cross-sectional view which passes along the location of the vane in embodiment of the compressor which concerns on this invention. 本発明に係る圧縮機の実施形態における概略横断面図である。It is a schematic cross-sectional view in the embodiment of the compressor concerning the present invention. 本発明に係る圧縮機の実施形態における支持部材にベーンスロット及びバネ装着孔を貫通して設けた状態を示す概略横断平面図である。It is a schematic cross-sectional top view which shows the state which provided the vane slot and the spring mounting hole in the support member in embodiment of the compressor based on this invention. 本発明に係る圧縮機の実施形態における蓋部材を示すもので、(a)はその斜視図、(b)は中央縦断面図である。The cover member in embodiment of the compressor which concerns on this invention is shown, (a) is the perspective view, (b) is a center longitudinal cross-sectional view. (a)、(b)はいずれも本発明に係る圧縮機の実施形態におけるスワッシュ部材を含む回転軸の側面図である。(A), (b) is a side view of the rotating shaft containing the swash member in embodiment of the compressor based on this invention. 本発明に係る圧縮機の他の実施形態における一部の概略縦断面図である。It is a one part schematic longitudinal cross-sectional view in other embodiment of the compressor based on this invention.

符号の説明Explanation of symbols

1 密閉容器
2 駆動要素
3 圧縮要素
4 ステータ
5 回転軸
6 ロータ
7 支持部材
8 シリンダ
9 スワッシュ部材(圧縮部材)
11 ベーン
12 吐出バルブ
13 主軸受け部
13b スリット状切欠部
14 突出部
15 蓋部材
15f バネ受け部
16 ベーンスロット
17 バネ装着孔
18 コイルバネ
19 凹陥部
20 圧縮空間
21 副軸受け部
22 吸込配管
23 吐出配管
24 オイル溜め
25 カバー板部材
DESCRIPTION OF SYMBOLS 1 Airtight container 2 Drive element 3 Compression element 4 Stator 5 Rotating shaft 6 Rotor 7 Support member 8 Cylinder 9 Swash member (compression member)
DESCRIPTION OF SYMBOLS 11 Vane 12 Discharge valve 13 Main bearing part 13b Slit-like notch part 14 Protrusion part 15 Cover member 15f Spring receiving part 16 Vane slot 17 Spring mounting hole 18 Coil spring 19 Recessed part 20 Compression space 21 Sub bearing part 22 Suction piping 23 Discharge piping 24 Oil sump 25 Cover plate member

Claims (3)

密閉容器内に駆動要素と、この駆動要素により駆動される圧縮要素とが配置され、前記圧縮要素は前記密閉容器に固定され前記駆動要素のロータに固定した回転軸を貫通させて軸支する支持部材と、この支持部材に固定されて圧縮空間を形成するシリンダと、前記回転軸に同軸心固定されて前記シリンダの圧縮空間内を回転し一面が前記回転軸を中心として一周すると最も高くなる上死点から最も低くなる下死点を経て上死点に戻る略正弦波形状の傾斜面に形成された圧縮部材と、前記支持部材に設けられたベーンスロットにバネを介して装着され先端が前記圧縮部材の傾斜面に常時接触して前記圧縮空間内を低圧室と高圧室とに区分するベーンとを備え、前記低圧室に吸入した流体を前記圧縮部材により圧縮して前記高圧室から吐出する圧縮機であって、前記支持部材は前記回転軸を軸支する主軸受け部が一体に形成され、前記ベーンスロットが支持部材を貫通して設けられたことを特徴とする圧縮機。   A driving element and a compression element driven by the driving element are arranged in the hermetic container, and the compression element is fixed to the hermetic container and is supported by penetrating a rotating shaft fixed to the rotor of the driving element. A member, a cylinder which is fixed to the support member to form a compression space, and which is coaxially fixed to the rotation shaft and rotates in the compression space of the cylinder so that one surface makes one turn around the rotation shaft. A compression member formed on a substantially sinusoidal inclined surface that returns to the top dead center through a bottom dead center that is lowest from the dead center, and a tip that is attached to a vane slot provided in the support member via a spring. A vane that constantly contacts the inclined surface of the compression member and divides the compression space into a low pressure chamber and a high pressure chamber, and compresses the fluid sucked into the low pressure chamber by the compression member and discharges the fluid from the high pressure chamber; Pressure A machine, wherein the support member main bearing portion for supporting the rotary shaft is formed integrally with the compressor in which the vane slot is characterized in that provided through the support member. 前記ベーンスロットは支持部材を上下方向に貫通して設けられ、その上端開口を閉塞する蓋部材を支持部材に取り付け固定したことを特徴とする請求項1に記載の圧縮機。   The compressor according to claim 1, wherein the vane slot is provided so as to penetrate the support member in the vertical direction, and a lid member that closes an upper end opening of the vane slot is fixed to the support member. 前記蓋部材の下面側にバネ受け部を設け、このバネ受け部に前記バネの上端を取り付けると共に、このバネの下端に前記ベーンを取り付けたことを特徴とする請求項2記載の圧縮機。   The compressor according to claim 2, wherein a spring receiving portion is provided on a lower surface side of the lid member, and an upper end of the spring is attached to the spring receiving portion, and the vane is attached to a lower end of the spring.
JP2004289181A 2004-09-30 2004-09-30 Compressor Withdrawn JP2006104948A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004289181A JP2006104948A (en) 2004-09-30 2004-09-30 Compressor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004289181A JP2006104948A (en) 2004-09-30 2004-09-30 Compressor

Publications (1)

Publication Number Publication Date
JP2006104948A true JP2006104948A (en) 2006-04-20

Family

ID=36374991

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004289181A Withdrawn JP2006104948A (en) 2004-09-30 2004-09-30 Compressor

Country Status (1)

Country Link
JP (1) JP2006104948A (en)

Similar Documents

Publication Publication Date Title
JP2005299653A (en) Rolling piston and rotary compressor gas leakage preventing device equipped therewith
JP4454318B2 (en) Compressor
WO2018163233A1 (en) Scroll compressor and refrigeration cycle device
JP4939884B2 (en) Fluid compressor
JP6727300B2 (en) Rotary compressor
JP4573613B2 (en) Compressor
JP2006104948A (en) Compressor
JP2019190468A (en) Scroll compressor
JP6098706B1 (en) Scroll compressor
WO2019207783A1 (en) Scroll compressor and method for manufacturing same
JP6607971B2 (en) Manufacturing method of rotary compressor
KR100341273B1 (en) structure for supporting pressure sharing plate in scroll-type compressor
JP2006104947A (en) Compressor
JP4573614B2 (en) Compressor
JP4663293B2 (en) Compressor
KR20240074140A (en) Rotary compressor with flat muffler
JP2006132347A (en) Compressor
KR20210027061A (en) Scroll compressor
JP2005163687A (en) Electric compressor and its manufacturing method
JP2006125365A (en) Compressor
JP2006097632A (en) Compressor
JP2023165449A (en) compressor
JP2006132348A (en) Compressor
JP2006097634A (en) Compressor
JP2006132346A (en) Compressor

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20070831

Free format text: JAPANESE INTERMEDIATE CODE: A621

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20091209