WO2018163233A1 - Scroll compressor and refrigeration cycle device - Google Patents

Scroll compressor and refrigeration cycle device Download PDF

Info

Publication number
WO2018163233A1
WO2018163233A1 PCT/JP2017/008719 JP2017008719W WO2018163233A1 WO 2018163233 A1 WO2018163233 A1 WO 2018163233A1 JP 2017008719 W JP2017008719 W JP 2017008719W WO 2018163233 A1 WO2018163233 A1 WO 2018163233A1
Authority
WO
WIPO (PCT)
Prior art keywords
pair
scroll
oldham
key portions
fixed
Prior art date
Application number
PCT/JP2017/008719
Other languages
French (fr)
Japanese (ja)
Inventor
森田 慎也
石園 文彦
友寿 松井
修平 小山
祐司 ▲高▼村
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2017/008719 priority Critical patent/WO2018163233A1/en
Priority to JP2019503826A priority patent/JP6678811B2/en
Publication of WO2018163233A1 publication Critical patent/WO2018163233A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/02Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents

Definitions

  • the present invention relates to a scroll compressor and a refrigeration cycle apparatus in which relative phase alignment is performed between a fixed scroll and an orbiting scroll.
  • the swing scroll is supported by a frame fixed to the inner wall of the shell.
  • a fixed scroll is provided at a position facing the swing scroll.
  • a crankshaft is attached to the orbiting scroll. As the crankshaft rotates, the swinging scroll swings with respect to the fixed scroll. By this swinging motion, the refrigerant is compressed in a compression chamber formed by combining the swing scroll and the fixed scroll.
  • the fixed scroll and the orbiting scroll forming the compression chamber maintain a mutual phase relationship with respect to the frame. That is, the phase relationship between the fixed scroll and the frame is determined using a reamer pin or the like.
  • the fixed scroll whose phase relationship is determined is fixed to the frame by bolt fastening.
  • the phase relationship between the orbiting scroll and the frame is determined by a connecting member such as an Oldham ring.
  • the orbiting scroll whose phase relationship is determined is accommodated in the frame.
  • the fixed scroll and the orbiting scroll perform the relative phase alignment indirectly through the frame (for example, see Patent Document 1).
  • the fixed scroll and the orbiting scroll which require high phase relationship accuracy, indirectly perform relative phase alignment via the frame, which increases the number of parts and makes the assembly complicated and increases costs. Will occur.
  • the present invention has been made to solve the above-mentioned problems, and a scroll compressor and a refrigeration cycle in which a fixed scroll and an orbiting scroll can directly perform relative phase alignment by an Oldham ring and the degree of freedom in designing an orbiting scroll can be improved.
  • An object is to provide an apparatus.
  • a scroll compressor includes a fixed scroll and an orbiting scroll in which respective plate-like spiral teeth are engaged to form a compression chamber, an Oldham ring for preventing the orbiting scroll from rotating, and the orbiting scroll.
  • a frame that rotatably supports a driving main shaft, and a shell that is a casing in which the fixed scroll, the orbiting scroll, the Oldham ring, and the frame are provided, and the fixed scroll includes a pair of A pair of second Oldham grooves, and the Oldham ring is inserted into and accommodated in each of the pair of first Oldham grooves of the fixed scroll.
  • a pair of second keys that are inserted into and housed in each of the pair of second Oldham grooves of the orbiting scroll. It includes a part, the said fixed scroll and said frame is one that is fixed to the shell.
  • a refrigeration cycle apparatus includes the scroll compressor described above.
  • the Oldham ring is inserted into each of the pair of first Oldham grooves of the fixed scroll, and the pair of swinging scrolls. And a pair of second key portions that are inserted into and accommodated in each of the second Oldham grooves.
  • the fixed scroll and the frame were fixed to the shell. Therefore, the relative phase of the fixed scroll and the swing scroll can be directly adjusted by the Oldham ring, the degree of freedom of design of the swing scroll can be improved, and the cost can be reduced.
  • FIG. 1 is an exploded perspective view showing a scroll compressor according to Embodiment 1 of the present invention. It is a perspective view which shows the fixed scroll in the scroll compressor which concerns on Embodiment 1 of this invention. It is a perspective view which shows the rocking scroll in the scroll compressor which concerns on Embodiment 1 of this invention. It is a top view which shows the 2nd board
  • FIG. 1 It is an enlarged view which shows the area
  • FIG. 10 is a schematic diagram collectively showing the positional relationship of one rotation of the main frame, thrust plate, Oldham ring, and orbiting scroll in the scroll compressor according to Embodiment 1 of the present invention.
  • FIG. 15 is a schematic diagram collectively showing a positional relationship of one rotation of the main frame, Oldham ring, and orbiting scroll in the scroll compressor according to the second embodiment of the present invention
  • It is a refrigerant circuit figure which shows the refrigerating-cycle apparatus to which the scroll compressor which concerns on Embodiment 4 of this invention is applied.
  • FIG. 1 is a schematic configuration diagram showing a scroll compressor 100 according to Embodiment 1 of the present invention.
  • FIG. 2 is a schematic configuration diagram showing a state in which the phase of the scroll compressor 100 according to Embodiment 1 of the present invention is changed by 90 ° from FIG.
  • FIG. 3 is an exploded perspective view showing the scroll compressor 100 according to Embodiment 1 of the present invention.
  • the scroll compressor 100 shown in FIG. 1 is a so-called vertical scroll compressor that is used in a state where the central axis of the crankshaft 6 is perpendicular to the ground.
  • the scroll compressor 100 includes a shell 1, a main frame 2, a compression mechanism portion 3, a drive mechanism portion 4, a subframe 5, a crankshaft 6, a slider balancer 7, and a power feeding portion 8. Yes.
  • the main frame 2 is used as a reference, and the upper side where the compression mechanism unit 3 is provided is oriented as one end side U and the lower side where the drive mechanism unit 4 is provided is oriented as the other end side L.
  • the shell 1 is a cylindrical casing made of a metal member and closed at both ends, and includes a main shell 11, an upper shell 12, and a lower shell 13.
  • the main shell 11 has a cylindrical shape, and a suction pipe 14 is connected to the side wall thereof by welding or the like.
  • the suction pipe 14 is a pipe for introducing a refrigerant into the shell 1 and communicates with the main shell 11.
  • the upper shell 12 is a first shell having a substantially hemispherical shape. A part of the side wall of the upper shell 12 is connected to the upper end portion of the main shell 11 by welding or the like, and covers the upper opening of the main shell 11.
  • a discharge pipe 15 is connected to the upper part of the upper shell 12 by welding or the like. The discharge pipe 15 is a pipe for discharging the refrigerant to the outside of the shell 1 and communicates with the internal space of the main shell 11.
  • the lower shell 13 is a second shell having a substantially hemispherical shape. A part of the side wall of the lower shell 13 is connected to the lower end of the main shell 11 by welding or the like, and covers the lower opening of the main shell 11.
  • the lower shell 13 is supported by a fixed base 17 having a plurality of holes. A plurality of holes are formed in the fixed base 17.
  • the scroll compressor 100 can be fixed to another member such as a casing of the outdoor unit through the plurality of holes.
  • the main frame 2 is a hollow metal frame in which a cavity is formed, and is provided inside the shell 1 that is a housing.
  • the main frame 2 rotatably supports the crankshaft 6 that drives the orbiting scroll 32.
  • the main frame 2 includes a main body portion 21, a main bearing portion 22, and an oil return pipe 23.
  • the main body 21 is fixed to the inner wall surface on one end side U of the main shell 11.
  • An accommodation space 211 is formed in the center of the main body 21 along the longitudinal direction of the shell 1.
  • one end side U is open, and the space becomes narrower toward the other end side L.
  • An annular flat thrust surface 212 is formed on one end side U of the main body 21 so as to surround the accommodation space 211.
  • On the thrust surface 212 a ring-shaped thrust plate 24 made of a steel plate material is disposed. Therefore, the thrust plate 24 functions as a thrust bearing.
  • a suction port 213 is formed at a position that does not overlap the thrust plate 24 on the outer end side of the thrust surface 212.
  • the suction port 213 is a space penetrating in the vertical direction of the main body 21, that is, the upper shell 12 side and the lower shell 13 side.
  • the main bearing portion 22 is formed continuously on the other end side L of the main body portion 21.
  • a shaft hole 221 is formed in the main bearing portion 22.
  • the shaft hole 221 passes through the main bearing portion 22 in the vertical direction.
  • One end U of the shaft hole 221 communicates with the accommodation space 211.
  • the oil return pipe 23 is a pipe that returns the lubricating oil accumulated in the accommodation space 211 to the oil sump inside the lower shell 13.
  • the oil return pipe 23 is inserted and fixed in an oil drain hole formed through the main frame 2 in and out.
  • Lubricating oil is stored in the lower part of the shell 1, that is, in the lower shell 13, and is sucked up by the crankshaft 6.
  • the sucked lubricating oil reduces the wear of mechanically contacting parts such as the compression mechanism section 3, improves the temperature control of the sliding section, and improves the sealing performance.
  • As the lubricating oil an oil having an appropriate viscosity as well as excellent lubrication characteristics, electrical insulation, stability, refrigerant solubility, low-temperature fluidity and the like is suitable.
  • the compression mechanism unit 3 is a scroll compression mechanism that includes a fixed scroll 31, an orbiting scroll 32, and an Oldham ring 33 in order to compress the refrigerant.
  • the fixed scroll 31, the swing scroll 32, and the Oldham ring 33 are provided inside the shell 1 that is a casing.
  • FIG. 4 is a perspective view showing fixed scroll 31 in scroll compressor 100 according to Embodiment 1 of the present invention.
  • the fixed scroll 31 includes a first substrate 311 and a first spiral body 312.
  • the first substrate 311 is formed in a disk shape.
  • a discharge port 313 is formed in the center of the first substrate 311 so as to penetrate in the vertical direction.
  • the first spiral body 312 protrudes from the surface on the other end side L of the first substrate 311 to form a spiral wall.
  • the tip of the first spiral body 312 protrudes to the other end L.
  • a first Oldham groove 314 is formed on the surface of the first substrate 311.
  • the first Oldham groove 314 is a rectangular groove.
  • the first Oldham groove 314 is provided so that a pair faces the axis of the crankshaft 6.
  • the first Oldham groove 314 is formed in a space long in the radial direction.
  • FIG. 5A is a perspective view showing orbiting scroll 32 in scroll compressor 100 according to Embodiment 1 of the present invention.
  • FIG. 5B is a top view showing second substrate 321 of orbiting scroll 32 in scroll compressor 100 according to Embodiment 1 of the present invention.
  • the swing scroll 32 includes a second substrate 321, a second spiral body 322, a tubular portion 323, and a second Oldham groove 324.
  • the second substrate 321 is located on the one end side U surface on which the first spiral body 312 is formed, on the other end side L surface on which at least a part of the outer peripheral region is a sliding surface, and on the outermost portion in the radial direction. And a side surface connecting both surfaces of the one end U side and the other end L side.
  • the sliding surface of the second substrate 321 is supported by the main frame 2 so as to be slidable on the thrust plate 24.
  • the second spiral body 322 protrudes from the surface on one end side U of the second substrate 321 to form a spiral wall.
  • the tip of the second spiral body 322 protrudes to one end side U.
  • a seal member that suppresses refrigerant leakage is provided at the tip of the first spiral body 312 of the fixed scroll 31 and the tip of the second spiral body 322 of the orbiting scroll 32.
  • the cylindrical portion 323 is a cylindrical boss formed so as to protrude from the approximate center of the surface on the other end L side of the second substrate 321 to the other end L.
  • a swing bearing that supports the slider 71 in a freely rotatable manner, a so-called journal bearing is provided.
  • the center axis of the journal bearing is set parallel to the axis of the crankshaft 6.
  • a second Oldham groove 324 is formed on the surface on the other end side L of the second substrate 321.
  • the second Oldham groove 324 is a rectangular groove.
  • the second Oldham groove 324 is provided so that a pair faces the axis of the crankshaft 6.
  • the second Oldham groove 324 is formed in a space long in the radial direction.
  • the third imaginary line connecting the pair of first Oldham grooves 314 and the fourth imaginary line connecting the pair of second Oldham grooves 324 are orthogonal to each other on a plane orthogonal to the axial direction of the main shaft portion 61 of the crankshaft.
  • Two U-shaped cutout portions 325 are provided on the second substrate 321 of the orbiting scroll 32 so as to face each other.
  • the notch 325 is formed at a position that does not always block the suction port 213 of the main frame 2 and does not interfere with the Oldham ring 33 during compressor operation. A detailed opening range of the notch 325 will be described later.
  • An Oldham ring 33 is provided in the Oldham accommodating portion 214 of the main frame 2. That is, the Oldham ring 33 is accommodated in the Oldham accommodating portion 214 in the main frame 2 that is located on the opposite side of the fixed scroll 31 with respect to the swing scroll 32. The Oldham ring 33 prevents the swing scroll 32 from rotating.
  • the Oldham ring 33 includes an annular part 331, a pair of arm parts 334, a pair of first key parts 332, and a pair of second key parts 333.
  • the annular portion 331 has a ring shape, and is provided with a pair of arm portions 334 that are respectively connected to the pair of first key portions 332.
  • the pair of arm portions 334 extends radially outward with respect to the axis of the crankshaft 6.
  • the first key portion 332 is formed on the surface on one end side U of the pair of arm portions 334 extending from the annular portion 331. That is, the Oldham ring 33 is provided on each of the pair of arm portions 334 in which each of the pair of first key portions 332 extends from the annular portion 331 outward in the radial direction.
  • the pair of first key portions 332 are inserted and accommodated in the pair of first Oldham grooves 314 of the fixed scroll 31, respectively.
  • the pair of first key portions 332 extend through each of the pair of notch portions 325 of the orbiting scroll 32 so as to be inserted and accommodated in each of the pair of first Oldham grooves 314.
  • the second key portion 333 is formed so that a pair faces the surface on one end side U of the annular portion 331. That is, the Oldham ring 33 is provided with a pair of second key portions 333 in the annular portion 331.
  • the pair of second key portions 333 are inserted and accommodated in the pair of second Oldham grooves 324 of the swing scroll 32.
  • the pair of second key portions 333 are extended in the same direction as the pair of first key portions 332 so as to be inserted and accommodated in the pair of second Oldham grooves 324, respectively, and the pair of first key portions 332. It is formed shorter.
  • the pair of second key portions 333 are formed such that the tip ends are longer outside the root portion in the radial direction.
  • the first imaginary line connecting the pair of first key portions 332 and the second imaginary line connecting the pair of second key portions 333 are orthogonal to each other on a plane orthogonal to the axial direction of the main shaft portion 61 of the crankshaft 6.
  • Each of the pair of first Oldham grooves 314 is formed in a space that is longer in the radial direction than each of the pair of first key portions 332 accommodated therein.
  • each of the pair of second Oldham grooves 324 is formed in a space that is longer in the radial direction than each of the pair of second key portions 333 accommodated therein.
  • Each of the pair of second Oldham grooves 324 accommodates each of the pair of second key portions 333 so as to be movable in the radial direction while sliding in the width direction perpendicular to the radial direction. Therefore, the orbiting scroll 32 is held by the crankshaft 6 and the pair of second key portions 333 so as to be able to swing.
  • the first key portion 332 slides in the first Oldham groove 314, and the second key portion 333 slides in the second Oldham groove 324.
  • the Oldham ring 33 prevents the orbiting scroll 32 from rotating.
  • the Oldham ring 33 performs a swinging motion.
  • the compression chamber 34 is formed when the first spiral body 312 of the fixed scroll 31 and the second spiral body 322 of the swing scroll 32 mesh with each other.
  • the compression chamber 34 has a volume that decreases in the radial direction from the outside toward the inside. For this reason, the refrigerant is taken in from the outer ends of the first spiral body 312 and the second spiral body 322 and gradually compressed by moving to the center side.
  • the compression chamber 34 communicates with the discharge port 313 of the fixed scroll 31.
  • a muffler 35 having a discharge hole 351 is provided on the surface of one end U of the fixed scroll 31, and a discharge valve 36 that opens and closes the discharge hole 351 to prevent the refrigerant from flowing backward is provided.
  • the drive mechanism 4 is provided on the other end L of the main frame 2 inside the shell 1.
  • the drive mechanism unit 4 includes a stator 41 and a rotor 42.
  • the stator 41 is a stator formed by winding a winding through an insulating layer on an iron core formed by laminating a plurality of electromagnetic steel plates, for example, and is formed in a ring shape.
  • the stator 41 is fixedly supported inside the main shell 11 by shrink fitting or the like.
  • the rotor 42 is a cylindrical rotor having a built-in permanent magnet inside an iron core formed by laminating a plurality of electromagnetic steel plates and having a through-hole penetrating in the vertical direction in the center, and is disposed in the internal space of the stator 41. ing.
  • the sub frame 5 is a metal frame and is provided inside the shell 1 on the other end side L of the drive mechanism unit 4.
  • the subframe 5 is fixedly supported on the inner peripheral surface of the other end L of the main shell 11 by shrink fitting or welding.
  • the sub frame 5 includes a sub bearing portion 51 and an oil pump 52.
  • the sub-bearing portion 51 is a ball bearing provided on the upper side of the center portion of the sub-frame 5 and has a hole penetrating in the vertical direction at the center.
  • the oil pump 52 is provided below the center portion of the subframe 5 and is disposed so that at least a part of the oil pump 52 is immersed in the lubricating oil stored in the oil reservoir of the shell 1.
  • crankshaft 6 is a long metal rod-like member and is provided inside the shell 1.
  • the crankshaft 6 includes a main shaft portion 61, an eccentric shaft portion 62, and an oil passage 63.
  • the main shaft portion 61 is a shaft constituting the main portion of the crankshaft 6.
  • the central axis of the main shaft portion 61 is disposed so as to coincide with the central axis of the main shell 11.
  • a rotor 42 is fixed in contact with the outer surface of the main shaft portion 61.
  • the eccentric shaft part 62 is provided on one end side U of the main shaft part 61 so that the central axis of the eccentric shaft part 62 is eccentric with respect to the central axis of the main shaft part 61.
  • the oil passage 63 is provided through the main shaft portion 61 and the eccentric shaft portion 62 so as to penetrate vertically.
  • the crankshaft 6 has one end U of the main shaft 61 inserted into the main bearing 22 of the main frame 2 and the other end L inserted and fixed to the sub-bearing 51 of the subframe 5.
  • the eccentric shaft portion 62 is arranged in the cylinder of the cylindrical portion 323, and the outer circumferential surface of the rotor 42 is arranged with a predetermined gap from the inner circumferential surface of the stator 41.
  • a first balancer 64 is provided at one end U of the main shaft portion 61.
  • a second balancer 65 is provided on the other end side L of the main shaft portion 61. The first balancer 64 and the second balancer 65 are provided in order to cancel out the imbalance caused by the swing of the swing scroll 32.
  • the slider balancer 7 includes two parts and includes a slider 71 and a balance weight 72.
  • the slider 71 is a cylindrical member in which a collar is formed, and is fitted into each of the eccentric shaft portion 62 and the cylindrical portion 323.
  • the balance weight 72 is a donut-shaped member provided with a weight portion 721 having a substantially C shape as viewed from one end side U as shown in FIG.
  • the balance weight 72 is provided eccentrically with respect to the rotation center in order to cancel the centrifugal force of the orbiting scroll 32.
  • the balance weight 72 is fitted to the flange of the slider 71 by shrink fitting, for example.
  • the power supply unit 8 is a power supply member that supplies power to the scroll compressor 100, and is formed on the outer peripheral surface of the main shell 11 of the shell 1.
  • the power supply unit 8 includes a cover 81, a power supply terminal 82, and a wiring 83.
  • the cover 81 is a cover member having a bottomed opening.
  • the power supply terminal 82 is made of a metal member, one is provided inside the cover 81, and the other connected from the other is provided inside the shell 1.
  • One of the wires 83 is connected to the power supply terminal 82, and the other connected to one is connected to the stator 41.
  • FIG. 7 is an enlarged view showing a region B indicated by a two-dot chain line in FIG. 6 in the scroll compressor 100 according to Embodiment 1 of the present invention.
  • the shell 1 has a first inner wall surface 111.
  • the shell 1 has a first protrusion 112 that protrudes from the first inner wall surface 111 and positions the fixed scroll 31.
  • the shell 1 has a first positioning surface 113 that faces the upper shell 12 side in the first protrusion 112. That is, the main shell 11 includes a stepped portion whose inner diameter increases toward the other end side L.
  • the fixed scroll 31 is fixed to the first inner wall surface 111 by shrink fitting or the like while being positioned on the first positioning surface 113. That is, the fixed scroll 31 is fixed to the shell 1 which is a housing as a single unit.
  • the main frame 2 is fixed to a shell 1 as a single body as will be described later. As described above, the fixed scroll 31 and the main frame 2 are separately and independently fixed to the shell 1 which is a casing with a space between each other.
  • This structure eliminates the need for a wall for fixing the main frame 2 and the fixed scroll 31 with screws as in the prior art. That is, the wall of the main frame 2 is not interposed between the side surface of the second substrate 321 of the orbiting scroll 32 and the inner wall surface of the main shell 11. The side surface of the second substrate 321 and the inner wall surface of the main shell 11 are arranged to face each other. Therefore, the refrigerant intake space 37 that is provided between the first substrate 311 of the fixed scroll 31 and the thrust bearing of the main frame 2 in the main shell 11 and in which the orbiting scroll 32 is disposed is wider than before.
  • main frame 2 is also fixed to the second inner wall surface 114 by shrink fitting or the like in a state where the main frame 2 is positioned by the second positioning surface of the second protruding portion 115 protruding from the second inner wall surface 114 of the shell 1.
  • FIG. 8 is a perspective view showing the main frame 2 in the scroll compressor 100 according to Embodiment 1 of the present invention.
  • a ring-shaped protruding wall 216 that protrudes toward the upper shell 12 is formed at the outer end portion of the thrust surface 212 of the main frame 2.
  • the thrust plate 24 is disposed so as to cover the thrust surface 212 inside the protruding wall 216.
  • the height of the protruding wall 216 from the thrust surface 212 is set smaller than the thickness of the thrust plate 24. For this reason, the orbiting scroll 32 is slid with the thrust plate 24.
  • the spiral tip gap which is the distance between the substrate of one scroll and the spiral body of the other scroll, can be set within a suitable range.
  • convex portions or concave portions are formed on the thrust plate 24 and the protruding wall 216.
  • a notch 217 capable of suppressing the rotation of the thrust plate 24 is engaged with the convex portion or the concave portion.
  • the thrust plate 24 rotates with respect to the thrust surface 212 as the swing scroll 32 swings. However, the rotation of the thrust plate 24 is suppressed by engaging the convex portion with the concave portion.
  • the recess includes a pair of notches 217 formed in the direction from the protruding wall 216 to the thrust plate 24.
  • the convex portion is constituted by a protruding portion 242 formed on the outer peripheral portion of the thrust plate 24.
  • the pair of notches 217 are provided so as to be locked to the opposing sides of the pair of protrusions 242, respectively.
  • the rotation of the thrust plate 24 is suppressed by two sets of unevenness.
  • the opening 241 of the thrust plate 24 is disposed so as to overlap the pair of suction ports 213 of the main frame 2. That is, the refrigerant passes through the opening 241 and is taken into the refrigerant intake space 37 without being blocked by the thrust plate 24.
  • the opening 241 also serves as the storage space 215 of the Oldham ring 33 described above, and is formed in an opening region where the Oldham ring 33 during operation of the compressor does not interfere.
  • FIG. 9 is a schematic diagram showing a positional relationship among the main frame 2, the thrust plate 24, the Oldham ring 33, and the orbiting scroll 32 in the scroll compressor 100 according to Embodiment 1 of the present invention.
  • FIG. 10 is a schematic diagram collectively showing the positional relationship of one rotation of the main frame 2, the thrust plate 24, the Oldham ring 33, and the orbiting scroll 32 in the scroll compressor 100 according to Embodiment 1 of the present invention.
  • the suction space composed of the suction port 213 and the opening 241 also functions as the suction port and Oldham storage space as described above.
  • the cutout portion 325 of the orbiting scroll 32 is formed so as not to block the suction space during one rotation of the orbiting scroll 32. That is, each of the pair of cutout portions 325 communicates with the suction port 213 of the main frame 2 and is formed in a space that is wider than the respective operating time trajectory ranges of the pair of first key portions 332.
  • the opening area of the notch 325 of the U-shaped orbiting scroll 32 will be described.
  • the notch 325 of the orbiting scroll 32 is preferably formed in a U shape as shown in FIG. 9 so as not to block the suction space with the maximum thrust area.
  • each side of the notch 325 is determined by the size of the suction port 213 of the main frame 2 and the operating range of the orbiting scroll 32.
  • This operating range is determined by design parameters such as the spiral involute curve and tooth thickness of the second spiral body 322 of the orbiting scroll 32. Since it is a well-known technique, description is abbreviate
  • the operating range of the aforementioned orbiting scroll 32 is referred to as a crank radius.
  • the orbiting scroll 32 moves up and down and left and right on the drawing
  • the orbiting scroll 32 moves up and down and left and right on the drawing by the crank radius.
  • the length of the long side of the notch 325 is set to a length that is widened by the crank radius from the opening width in the left-right direction of the suction port 213.
  • the length of the short side of the notch portion 325 needs to be a minimum length that does not interfere with the first key portion 332 of the Oldham ring 33, and the crank radius is determined from the radial length of the thrust surface 212 of the main frame 2. It is set to the extended length.
  • the area of the second substrate 321 of the orbiting scroll 32 is maximized, and the refrigerant is stably sucked into the compression mechanism unit 3 without closing the suction space at any phase during operation. Further, the area of the second substrate 321 is maximized, which leads to an increase in capacity by increasing the configurable area of the second spiral body 322 and an improvement in reliability by maximizing the thrust area.
  • the U-shaped long side and the short side of the cutout portion 325 of the orbiting scroll 32 are preferably perpendicular to each other in accordance with the shape of the suction space. Even if a curved R shape is attached, there is no problem as long as the above-described conditions are satisfied.
  • the notch 325 has a U-shaped opening area. However, it is not limited to this. Instead of the notch, it may be an opening having four sides.
  • the refrigerant sucked into the shell 1 from the suction pipe 14 reaches the refrigerant intake space 37 through the suction port 213 of the main frame 2 and swings with the fixed scroll 31. It is taken into a compression chamber 34 formed by the moving scroll 32. Then, the refrigerant is compressed by reducing the volume while moving from the outer peripheral portion toward the center along with the eccentric revolving motion of the orbiting scroll 32.
  • the orbiting scroll 32 moves in the radial direction together with the slider balancer 7 by its centrifugal force, and the side walls of the second spiral body 322 and the first spiral body 312 are in close contact with each other. To do.
  • the compressed refrigerant reaches the discharge hole 351 of the muffler 35 from the discharge port 313 of the fixed scroll 31 and is discharged outside the shell 1 against the discharge valve 36.
  • the scroll compressor 100 includes the fixed scroll 31 and the orbiting scroll 32 that form the compression chamber 34 by meshing the respective plate-like spiral teeth.
  • the scroll compressor 100 includes an Oldham ring 33 that prevents the swinging scroll 32 from rotating.
  • the scroll compressor 100 includes a main frame 2 that rotatably supports the crankshaft 6 that drives the orbiting scroll 32.
  • the scroll compressor 100 includes a shell 1 that is a casing in which a fixed scroll 31, an orbiting scroll 32, an Oldham ring 33, and a main frame 2 are provided.
  • the fixed scroll 31 has a pair of first Oldham grooves 314.
  • the swing scroll 32 has a pair of second Oldham grooves 324.
  • the Oldham ring 33 has a pair of first key portions 332 that are inserted into and housed in the pair of first Oldham grooves 314 of the fixed scroll 31.
  • the Oldham ring 33 has a pair of second key portions 333 that are inserted and accommodated in the pair of second Oldham grooves 324 of the swing scroll 32.
  • the fixed scroll 31 and the main frame 2 are respectively fixed to the shell 1. According to this configuration, the fixed scroll 31 and the swing scroll 32 can directly perform relative phase alignment by the Oldham ring 33.
  • the fixed scroll 31 and the main frame 2 are separately and independently fixed to the shell 1 that is a casing. Thereby, the wall of the main frame 2 for fixing the fixed scroll 31 which was conventionally required can be deleted.
  • the Oldham ring 33 is the minimum necessary component. Therefore, the space of the compression chamber 34 that can be formed between the fixed scroll 31 and the main frame 2 can be effectively used, and the degree of freedom in designing the orbiting scroll 32 can be improved. Further, the number of parts can be reduced, the assembly can be simplified, and the cost can be reduced. In addition, a large space can be formed between the fixed scroll 31 and the main frame 2.
  • the area of the second substrate 321 of the orbiting scroll 32 can be utilized to the maximum, the configurable area of the plate-like spiral teeth can be increased, the plate-like spiral teeth can be increased in capacity, and the thrust area can be expanded,
  • the swing motion of the swing scroll 32 can be stabilized and the reliability can be improved.
  • the Oldham ring 33 is accommodated in the main frame 2 located on the opposite side of the fixed scroll 31 with respect to the orbiting scroll 32.
  • the rocking scroll 32 has a pair of notch portions 325.
  • the pair of first key portions 332 extends through each of the pair of notch portions 325 of the swing scroll 32 and is inserted and accommodated in each of the pair of first Oldham grooves 314 of the fixed scroll 31.
  • the pair of second key portions 333 extend in the same direction as the pair of first key portions 332, are shorter than the pair of first key portions 332, and are formed on the pair of second Oldham grooves 324 of the orbiting scroll 32. It is inserted and accommodated in each.
  • the fixed scroll 31 and the swing scroll 32 can directly perform relative phase alignment by the Oldham ring 33.
  • a larger space without the Oldham ring 33 can be formed between the fixed scroll 31 and the main frame 2.
  • the area of the second substrate 321 of the orbiting scroll 32 can be utilized to the maximum, the configurable area of the plate-like spiral teeth can be increased, the plate-like spiral teeth can be increased in capacity, and the thrust area can be expanded,
  • the swing motion of the swing scroll 32 can be stabilized and the reliability can be improved.
  • each of the pair of cutout portions 325 communicates with the suction port 213 of the main frame 2 and has a space wider than the respective operating trajectory ranges of the pair of first key portions 332. Is formed. According to this configuration, each of the pair of notch portions 325 does not interfere with the movement of each of the pair of first key portions 332, and the swinging motion of the swing scroll 32 can be performed smoothly. In addition, each of the pair of notch portions 325 is a space having a wider area than the respective operating trajectory range of the pair of first key portions 332. For this reason, a gap is generated between each edge of the pair of cutout portions 325 and each of the pair of first key portions 332, and the refrigerant can be guided from the suction port 213 of the main frame 2 to the compression chamber 34.
  • the Oldham ring 33 is provided on each of the pair of arm portions 334 in which each of the pair of first key portions 332 extends from the annular portion 331 to the outside in the radial direction.
  • a second key portion 333 is provided in the annular portion 331.
  • each of the pair of first key portions 332 is provided on each of the pair of arm portions 334, so that the area where the plate-like spiral teeth of the orbiting scroll 32 can be configured is not reduced. It can be accommodated in each of the grooves 314. Thereby, the fixed scroll 31 and the swing scroll 32 can directly perform relative phase alignment by the Oldham ring 33.
  • the first imaginary line connecting the pair of first key portions 332 and the second imaginary line connecting the pair of second key portions 333 are orthogonal on a plane orthogonal to the axial direction of the crankshaft 6. is doing. According to this configuration, the pair of first key portions 332 and the pair of second key portions 333 do not interfere with each other in the moving direction, and the swing motion of the swing scroll 32 can be performed smoothly.
  • each of the pair of first Oldham grooves 314 is formed in a space that is longer in the radial direction than each of the pair of first key portions 332 accommodated therein.
  • Each of the pair of second Oldham grooves 324 is formed in a space longer in the radial direction than each of the pair of second key portions 333 accommodated.
  • each of the pair of first key portions 332 is accommodated in each of the pair of first Oldham grooves 314 and can slide smoothly.
  • each of the pair of second key portions 333 is accommodated in each of the pair of second Oldham grooves 324 and can slide smoothly. Thereby, the swing motion of the swing scroll 32 can be performed smoothly.
  • the fixed scroll 31 and the main frame 2 are respectively fixed to the shell 1 that is a casing. According to this configuration, the fixed scroll 31 and the main frame 2 are fixed to the shell 1 separately. Thereby, the wall of the main frame 2 for fixing the fixed scroll 31 which was conventionally required can be deleted. In addition, a bolt for fastening the fixed scroll 31 and the main frame 2 becomes unnecessary. In addition, since the phase relationship between the fixed scroll 31 and the orbiting scroll 32 is maintained, only the Oldham ring 33 is the minimum necessary component. Therefore, the space of the compression chamber 34 can be used effectively, and the degree of freedom in designing the orbiting scroll 32 can be improved. Further, the number of parts can be reduced, the assembly can be simplified, and the cost can be reduced.
  • Embodiment 2 FIG. Next, a second embodiment will be described. In the second embodiment, the description of the same configuration described in the first embodiment will be omitted, and only the characteristic part will be described.
  • FIG. 11 is a schematic configuration diagram showing an upper half of the scroll compressor 100 according to Embodiment 2 of the present invention.
  • FIG. 12 is a schematic configuration diagram showing a state where the phase of the upper half of the scroll compressor 100 according to Embodiment 2 of the present invention is changed by 90 ° from FIG.
  • FIG. 13 is an exploded perspective view showing the scroll compressor 100 according to Embodiment 2 of the present invention.
  • FIG. 14 is a schematic diagram showing a positional relationship among the main frame 2, the Oldham ring 33, and the orbiting scroll 32 in the scroll compressor 100 according to Embodiment 2 of the present invention.
  • FIG. 11 is a schematic configuration diagram showing an upper half of the scroll compressor 100 according to Embodiment 2 of the present invention.
  • FIG. 12 is a schematic configuration diagram showing a state where the phase of the upper half of the scroll compressor 100 according to Embodiment 2 of the present invention is changed by 90 ° from FIG.
  • FIG. 13 is an exploded perspective view showing the scroll compressor 100 according to Em
  • FIG. 15 is a schematic view collectively showing the positional relationship of one rotation of the main frame 2, the Oldham ring 33, and the swinging scroll 32 in the scroll compressor 100 according to Embodiment 2 of the present invention.
  • Is a schematic diagram showing the positional relationship of ⁇ 0 °
  • FIG. 15D is a schematic diagram
  • the Oldham ring 33 is housed in the Oldham housing portion 214 in the main frame 2 located on the opposite side of the fixed scroll 31 with respect to the orbiting scroll 32.
  • the pair of first key portions 332 passes through the radially outer side of the orbiting scroll 32 and extends to the one end side U, and is inserted and accommodated in each of the pair of first Oldham grooves 314 of the fixed scroll 31.
  • the pair of second key portions 333 extend in the same direction as the pair of first key portions 332, are formed shorter than the pair of first key portions 332, and are formed on the outer side in the radial direction to be paired with the orbiting scroll 32.
  • Each of the pair of cut out second Oldham grooves 324 is inserted and accommodated.
  • Oldham accommodation part 214 is set inside main frame 2.
  • a thrust surface 212 is set inside the main frame 2.
  • the annular portion 331 of the Oldham ring 33 is enlarged so as to conform to the configuration of the main frame 2 described above.
  • a pair of first key portions 332 and a pair of second key portions 333 are provided on the annular portion 331. That is, the Oldham ring 33 is provided with a pair of first key portions 332 and a pair of second key portions 333 in the annular portion 331.
  • the thrust plate 24 is reduced along the thrust surface 212.
  • the setting condition of the notch 325 of the U-shaped orbiting scroll 32 is the same as that of the first embodiment.
  • the area of the second substrate 321 of the orbiting scroll 32 is maximized, and the capacity can be increased by increasing the configurable area of the second spiral body 322.
  • the Oldham ring 33 is accommodated in the main frame 2 located on the opposite side of the fixed scroll 31 with respect to the swing scroll 32.
  • the pair of first key portions 332 extends through the outer side in the radial direction of the orbiting scroll 32 and is inserted and accommodated in each of the pair of first Oldham grooves 314 of the fixed scroll 31.
  • the pair of second key portions 333 extend in the same direction as the pair of first key portions 332, are shorter than the pair of first key portions 332, and are formed on the pair of second Oldham grooves 324 of the orbiting scroll 32. It is inserted and accommodated in each.
  • the fixed scroll 31 and the swing scroll 32 can directly perform relative phase alignment by the Oldham ring 33.
  • the area of the second substrate 321 of the orbiting scroll 32 can be utilized to the maximum, the configurable area of the plate-like spiral teeth can be increased, the plate-like spiral teeth can be increased in capacity, and the thrust area can be expanded,
  • the swing motion of the swing scroll 32 can be stabilized and the reliability can be improved.
  • the Oldham ring 33 is provided with a pair of first key portions 332 and a pair of second key portions 333 in the annular portion 331. According to this configuration, the locus of movement of the annular portion 331 of the Oldham ring 33 becomes a circular region in which the annular portion 331 is enlarged, and the Oldham ring 33 can be moved smoothly. Further, the relative scroll alignment between the fixed scroll 31 and the swing scroll 32 can be performed directly by the Oldham ring 33.
  • Embodiment 3 FIG. Next, Embodiment 3 will be described.
  • the description of the same configuration described in the first and second embodiments is omitted, and only the characteristic part is described.
  • FIG. 16 is a schematic configuration diagram showing an upper half of the scroll compressor 100 according to Embodiment 3 of the present invention.
  • FIG. 17 is a schematic configuration diagram illustrating a state where the phase of the upper half of the scroll compressor 100 according to the third embodiment of the present invention is changed by 90 ° from FIG. 16.
  • FIG. 18 is an exploded perspective view showing the scroll compressor 100 according to Embodiment 3 of the present invention.
  • the Oldham ring 33 is accommodated between the fixed scroll 31 and the swing scroll 32 in contact with the swing scroll 32.
  • the pair of first key portions 332 is inserted and accommodated in the pair of first Oldham grooves 314 of the fixed scroll 31.
  • the pair of second key portions 333 extends in the opposite direction to the pair of first key portions 332, is formed shorter than the pair of first key portions 332, and includes a pair of second Oldham grooves 324 of the orbiting scroll 32. It is inserted and accommodated in each.
  • the pair of first Oldham grooves 314 formed on the back surface of the fixed scroll 31 and the pair of second Oldham grooves 324 formed on the back surface of the orbiting scroll 32 are engaged by the Oldham ring 33. Combined. For this reason, a highly accurate Oldham ring 33 is required which is large in size and has problems in mass productivity and cost. Further, the thrust bearing provided on the back surface of the orbiting scroll 32 is divided by a pair of arms 334 of the Oldham ring 33 and the like in terms of structure.
  • the Oldham ring 33 is sandwiched between the orbiting scroll 32 and the fixed scroll 31. For this reason, the Oldham ring 33 becomes compact.
  • oil is accumulated on the back surface of the swing scroll 32 as an oil supply path.
  • the sealing performance at the thrust surface 212 which is the contact surface between the upper surface of the main frame 2 and the back surface of the orbiting scroll 32, can be ensured, and oil rising can be suppressed.
  • the thrust bearing has a stable oil supply, can use the entire back surface of the orbiting scroll 32, and has high bearing reliability.
  • the main frame 2 has no wall, and the degree of freedom in the arrangement of the spiral structure can be secured while maintaining the phase accuracy between the orbiting scroll 32 and the fixed scroll 31.
  • the Oldham ring 33 is accommodated in contact with the orbiting scroll 32 between the fixed scroll 31 and the orbiting scroll 32.
  • the pair of first key portions 332 is inserted and accommodated in the pair of first Oldham grooves 314 of the fixed scroll 31.
  • the pair of second key portions 333 extend in the opposite direction to the pair of first key portions 332, and are inserted into and housed in the pair of second Oldham grooves 324 of the orbiting scroll 32.
  • the fixed scroll 31 and the swing scroll 32 can directly perform relative phase alignment by the Oldham ring 33.
  • the Oldham ring 33 becomes compact. In this structure, oil is accumulated on the back surface of the swing scroll 32 as an oil supply path.
  • the sealing performance at the thrust surface 212 which is the contact surface between the upper surface of the main frame 2 and the back surface of the orbiting scroll 32, can be ensured, and oil rising can be suppressed.
  • the thrust bearing has a stable oil supply, can use the entire back surface of the orbiting scroll 32, and has high bearing reliability.
  • the main frame 2 has no wall, and the degree of freedom in the arrangement of the spiral structure can be secured while maintaining the phase accuracy between the orbiting scroll 32 and the fixed scroll 31.
  • the pair of second key portions 333 are formed shorter than the pair of first key portions 332. According to this configuration, the fixed scroll 31 and the swing scroll 32 can directly perform relative phase alignment by the Oldham ring 33. Further, the pair of second key portions 333 are accommodated in the pair of second Oldham grooves 324 that are formed on the surface of the orbiting scroll 32 and do not penetrate through, thereby saving the space of the compression mechanism portion 3.
  • the notch 217 of the main frame 2 and the protrusion 242 of the thrust plate 24 are engaged so as not to rotate.
  • engagement at the concavo-convex portion is not essential.
  • a configuration in which a concave portion is set on the thrust plate 24 side and a convex portion is set on the main frame 2 side may be employed.
  • the thrust plate 24 may be partially bent and locked to an opening such as the suction port 213 of the main frame 2 to prevent rotation.
  • the thrust plate 24 is not an essential component, and the thrust surface 212 of the main frame 2 may slide with the orbiting scroll 32.
  • the suction port 213 of the main frame 2 and the cutout portion 325 of the swing scroll 32 serve as the suction space and the storage space 215 of the first key portion 332 of the Oldham ring 33.
  • the suction port 233 of the main frame 2 and the cutout portion 325 of the orbiting scroll 32 are not connected. The number does not have to be equal.
  • the structure which forms separately the suction space and the space which does not interfere with the 1st key part 332 of the Oldham ring 33 may be sufficient.
  • the area of the second substrate 321 of the orbiting scroll 32 is the largest when the notch 325 of the orbiting scroll 32 is set to be U-shaped.
  • the shape of the cutout portion 325 of the orbiting scroll 32 is not limited to the U shape as long as the suction space is not completely blocked during operation and the first key portion 332 of the Oldham ring 33 is not interfered.
  • the opening illustrated in the notch 325 may be U-shaped, V-shaped, or the like, or a donut-shaped hole such as a round hole or a long hole is formed in the second substrate 321 while the swinging outer peripheral part is connected. A configuration may be used.
  • FIG. 19 is a refrigerant circuit diagram showing a refrigeration cycle apparatus 200 to which the scroll compressor 100 according to Embodiment 4 of the present invention is applied.
  • the refrigeration cycle apparatus 200 includes a scroll compressor 100, a condenser 201, an expansion valve 202, and an evaporator 203.
  • the scroll compressor 100, the condenser 201, the expansion valve 202, and the evaporator 203 are connected by a refrigerant pipe to form a refrigeration cycle circuit. Then, the refrigerant flowing out of the evaporator 203 is sucked into the scroll compressor 100 and becomes high temperature and pressure.
  • the high-temperature and high-pressure refrigerant is condensed in the condenser 201 to become a liquid.
  • the refrigerant that has become liquid is decompressed and expanded by the expansion valve 202 to form a low-temperature and low-pressure gas-liquid two-phase, and the gas-liquid two-phase refrigerant is heat-exchanged in the evaporator 203.
  • the scroll compressor 100 according to the first to third embodiments can be applied to such a refrigeration cycle apparatus 200.
  • the refrigeration cycle apparatus 200 include an air conditioner, a refrigeration apparatus, and a water heater.
  • the refrigeration cycle apparatus 200 includes the scroll compressor 100 described in the first to third embodiments. According to this configuration, in the refrigeration cycle apparatus 200 including the scroll compressor 100, the fixed scroll 31 and the swing scroll 32 can directly perform relative phase alignment by the Oldham ring 33, and the degree of freedom of design of the swing scroll 32 is improved. Can be improved and the cost can be reduced.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Rotary Pumps (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)

Abstract

The scroll compressor is provided with a fixed scroll, an orbiting scroll, an Oldham ring, a frame, and a shell. The fixed scroll has one pair of first Oldham grooves, the orbiting scroll has one pair of second Oldham grooves, the Oldham ring has one pair of first key parts which are respectively inserted and accommodated in the one pair of first Oldham grooves of the fixed scroll and one pair of second key parts which are respectively inserted and accommodated in the one pair of second Oldham grooves of the orbiting scroll, and the fixed scroll and the orbiting scroll are respectively fixed to the shell.

Description

スクロール圧縮機および冷凍サイクル装置Scroll compressor and refrigeration cycle apparatus
 本発明は、固定スクロールと揺動スクロールとの相対位相合わせが行われるスクロール圧縮機および冷凍サイクル装置に関するものである。 The present invention relates to a scroll compressor and a refrigeration cycle apparatus in which relative phase alignment is performed between a fixed scroll and an orbiting scroll.
 従来のスクロール圧縮機は、シェル内壁に固定されたフレームに揺動スクロールが支持されている。揺動スクロールに対向した位置には、固定スクロールが設けられている。揺動スクロールには、クランクシャフトが取り付けられている。クランクシャフトが回転することにより、揺動スクロールが固定スクロールに対して揺動運動する。この揺動運動により、揺動スクロールと固定スクロールとを組み合わせて形成された圧縮室で冷媒が圧縮される。 In the conventional scroll compressor, the swing scroll is supported by a frame fixed to the inner wall of the shell. A fixed scroll is provided at a position facing the swing scroll. A crankshaft is attached to the orbiting scroll. As the crankshaft rotates, the swinging scroll swings with respect to the fixed scroll. By this swinging motion, the refrigerant is compressed in a compression chamber formed by combining the swing scroll and the fixed scroll.
 ここで、圧縮室を形成する固定スクロールと揺動スクロールとは、フレームを基準として互いの位相関係を保持している。
 すなわち、固定スクロールとフレームとは、リーマピンなどを用いて位相関係を定められている。位相関係を定められた固定スクロールは、フレームにボルト締結によって固定されている。
 一方、揺動スクロールとフレームとは、オルダムリングなどの連結部材によって位相関係を定められている。そして、位相関係を定められた揺動スクロールは、フレーム内に収容されている。
Here, the fixed scroll and the orbiting scroll forming the compression chamber maintain a mutual phase relationship with respect to the frame.
That is, the phase relationship between the fixed scroll and the frame is determined using a reamer pin or the like. The fixed scroll whose phase relationship is determined is fixed to the frame by bolt fastening.
On the other hand, the phase relationship between the orbiting scroll and the frame is determined by a connecting member such as an Oldham ring. The orbiting scroll whose phase relationship is determined is accommodated in the frame.
 以上のように、従来のスクロール圧縮機では、固定スクロールと揺動スクロールとは、フレームを介して相対位相合わせを間接的に行っている(たとえば、特許文献1参照)。 As described above, in the conventional scroll compressor, the fixed scroll and the orbiting scroll perform the relative phase alignment indirectly through the frame (for example, see Patent Document 1).
特開2013-238142号公報JP 2013-238142 A
 特許文献1に記載のスクロール圧縮機では、固定スクロールがフレームに固定されるため、揺動スクロールよりも半径方向の外側にあるフレームの壁が揺動スクロールをまたぐように固定スクロールの方に延出されている。そのため、固定スクロールのフレームに対する取り付けが容易である。 In the scroll compressor described in Patent Document 1, since the fixed scroll is fixed to the frame, the wall of the frame that is radially outward from the swing scroll extends toward the fixed scroll so as to straddle the swing scroll. Has been. Therefore, the fixed scroll can be easily attached to the frame.
 しかし、フレームに壁が存在すると、フレーム内の揺動スクロールを配置する空間が狭くなっている。フレーム内の空間が狭いと、揺動スクロールの設計などに制約が生じてしまう。 However, if there is a wall in the frame, the space for placing the orbiting scroll in the frame is narrowed. If the space in the frame is narrow, there will be restrictions on the design of the orbiting scroll.
 また、位相関係の高精度化が必要な固定スクロールと揺動スクロールとがフレームを介して相対位相合わせを間接的に行うことにより、部品点数が増加したり組立が煩雑化したりしてコストの増加が生じてしまう。 In addition, the fixed scroll and the orbiting scroll, which require high phase relationship accuracy, indirectly perform relative phase alignment via the frame, which increases the number of parts and makes the assembly complicated and increases costs. Will occur.
 本発明は、上記課題を解決するためのものであり、固定スクロールと揺動スクロールとがオルダムリングによって相対位相合わせを直接行え、揺動スクロールの設計の自由度が向上できるスクロール圧縮機および冷凍サイクル装置を提供することを目的とする。 The present invention has been made to solve the above-mentioned problems, and a scroll compressor and a refrigeration cycle in which a fixed scroll and an orbiting scroll can directly perform relative phase alignment by an Oldham ring and the degree of freedom in designing an orbiting scroll can be improved. An object is to provide an apparatus.
 本発明に係るスクロール圧縮機は、それぞれの板状渦巻歯が噛み合わされて圧縮室を形成する固定スクロールおよび揺動スクロールと、前記揺動スクロールの自転を防止するオルダムリングと、前記揺動スクロールを駆動する主軸を回転自在に支持するフレームと、前記固定スクロールと前記揺動スクロールと前記オルダムリングと前記フレームとを内部に設けた筐体であるシェルと、を備え、前記固定スクロールは、一対の第1オルダム溝を有し、前記揺動スクロールは、一対の第2オルダム溝を有し、前記オルダムリングは、前記固定スクロールの前記一対の第1オルダム溝のそれぞれに差し込まれて収容される一対の第1キー部と、前記揺動スクロールの前記一対の第2オルダム溝のそれぞれに差し込まれて収容される一対の第2キー部と、を有し、前記固定スクロールと前記フレームとは、前記シェルにそれぞれ固定されたものである。 A scroll compressor according to the present invention includes a fixed scroll and an orbiting scroll in which respective plate-like spiral teeth are engaged to form a compression chamber, an Oldham ring for preventing the orbiting scroll from rotating, and the orbiting scroll. A frame that rotatably supports a driving main shaft, and a shell that is a casing in which the fixed scroll, the orbiting scroll, the Oldham ring, and the frame are provided, and the fixed scroll includes a pair of A pair of second Oldham grooves, and the Oldham ring is inserted into and accommodated in each of the pair of first Oldham grooves of the fixed scroll. And a pair of second keys that are inserted into and housed in each of the pair of second Oldham grooves of the orbiting scroll. It includes a part, the said fixed scroll and said frame is one that is fixed to the shell.
 本発明に係る冷凍サイクル装置は、上記のスクロール圧縮機を備えたものである。 A refrigeration cycle apparatus according to the present invention includes the scroll compressor described above.
 本発明に係るスクロール圧縮機および冷凍サイクル装置によれば、オルダムリングは、固定スクロールの一対の第1オルダム溝のそれぞれに差し込まれて収容される一対の第1キー部と、揺動スクロールの一対の第2オルダム溝のそれぞれに差し込まれて収容される一対の第2キー部と、を有した。また、固定スクロールとフレームとは、シェルにそれぞれ固定された。したがって、固定スクロールと揺動スクロールとがオルダムリングによって相対位相合わせを直接行え、揺動スクロールの設計の自由度が向上でき、コストが低減できる。 According to the scroll compressor and the refrigeration cycle apparatus according to the present invention, the Oldham ring is inserted into each of the pair of first Oldham grooves of the fixed scroll, and the pair of swinging scrolls. And a pair of second key portions that are inserted into and accommodated in each of the second Oldham grooves. The fixed scroll and the frame were fixed to the shell. Therefore, the relative phase of the fixed scroll and the swing scroll can be directly adjusted by the Oldham ring, the degree of freedom of design of the swing scroll can be improved, and the cost can be reduced.
本発明の実施の形態1に係るスクロール圧縮機を示す概略構成図である。It is a schematic block diagram which shows the scroll compressor which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係るスクロール圧縮機の図1から90°位相を変えた状態を示す概略構成図である。It is a schematic block diagram which shows the state which changed the 90 degree phase from FIG. 1 of the scroll compressor which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係るスクロール圧縮機を示す分解斜視図である。1 is an exploded perspective view showing a scroll compressor according to Embodiment 1 of the present invention. 本発明の実施の形態1に係るスクロール圧縮機における固定スクロールを示す斜視図である。It is a perspective view which shows the fixed scroll in the scroll compressor which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係るスクロール圧縮機における揺動スクロールを示す斜視図である。It is a perspective view which shows the rocking scroll in the scroll compressor which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係るスクロール圧縮機における揺動スクロールの第2基板を示す上面図である。It is a top view which shows the 2nd board | substrate of the rocking scroll in the scroll compressor which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係るスクロール圧縮機における図1の一点鎖線の領域Aを示す拡大図である。It is an enlarged view which shows the area | region A of the dashed-dotted line of FIG. 1 in the scroll compressor which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係るスクロール圧縮機における図6の二点鎖線の領域Bを示す拡大図である。It is an enlarged view which shows the area | region B of the dashed-two dotted line of FIG. 6 in the scroll compressor which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係るスクロール圧縮機におけるメインフレームを示す斜視図である。It is a perspective view which shows the main frame in the scroll compressor which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係るスクロール圧縮機におけるメインフレーム、スラストプレート、オルダムリングおよび揺動スクロールの位置関係を示す模式図である。It is a schematic diagram which shows the positional relationship of the main frame, thrust plate, Oldham ring, and rocking scroll in the scroll compressor which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係るスクロール圧縮機におけるメインフレーム、スラストプレート、オルダムリングおよび揺動スクロールの一回転の位置関係をまとめて示す模式図であり、図10(a)がθ=0°の位置関係を示す模式図であり、図10(b)がθ=90°の位置関係を示す模式図であり、図10(c)がθ=180°の位置関係を示す模式図であり、図10(d)がθ=270°の位置関係を示す模式図である。FIG. 10 is a schematic diagram collectively showing the positional relationship of one rotation of the main frame, thrust plate, Oldham ring, and orbiting scroll in the scroll compressor according to Embodiment 1 of the present invention. FIG. 10 (b) is a schematic diagram showing a positional relationship of θ = 90 °, and FIG. 10 (c) is a schematic diagram showing a positional relationship of θ = 180 °. FIG. 10D is a schematic diagram showing a positional relationship of θ = 270 °. 本発明の実施の形態2に係るスクロール圧縮機の上半体を示す概略構成図である。It is a schematic block diagram which shows the upper half body of the scroll compressor which concerns on Embodiment 2 of this invention. 本発明の実施の形態2に係るスクロール圧縮機の上半体の図1から90°位相を変えた状態を示す概略構成図である。It is a schematic block diagram which shows the state which changed the 90 degree phase from FIG. 1 of the upper half of the scroll compressor which concerns on Embodiment 2 of this invention. 本発明の実施の形態2に係るスクロール圧縮機を示す分解斜視図である。It is a disassembled perspective view which shows the scroll compressor which concerns on Embodiment 2 of this invention. 本発明の実施の形態2に係るスクロール圧縮機におけるメインフレーム、オルダムリングおよび揺動スクロールの位置関係を示す模式図である。It is a schematic diagram which shows the positional relationship of the main frame, an Oldham ring, and a rocking scroll in the scroll compressor which concerns on Embodiment 2 of this invention. 本発明の実施の形態2に係るスクロール圧縮機におけるメインフレーム、オルダムリングおよび揺動スクロールの一回転の位置関係をまとめて示す模式図であり、図15(a)がθ=0°の位置関係を示す模式図であり、図15(b)がθ=90°の位置関係を示す模式図であり、図15(c)がθ=180°の位置関係を示す模式図であり、図15(d)がθ=270°の位置関係を示す模式図である。FIG. 15 is a schematic diagram collectively showing a positional relationship of one rotation of the main frame, Oldham ring, and orbiting scroll in the scroll compressor according to the second embodiment of the present invention, and FIG. 15A is a positional relationship of θ = 0 °. 15 (b) is a schematic diagram showing a positional relationship of θ = 90 °, FIG. 15 (c) is a schematic diagram showing a positional relationship of θ = 180 °, and FIG. d) is a schematic diagram showing a positional relationship of θ = 270 °. 本発明の実施の形態3に係るスクロール圧縮機の上半体を示す概略構成図である。It is a schematic block diagram which shows the upper half body of the scroll compressor which concerns on Embodiment 3 of this invention. 本発明の実施の形態3に係るスクロール圧縮機の上半体の図16から90°位相を変えた状態を示す概略構成図である。It is a schematic block diagram which shows the state which changed the 90 degree phase from FIG. 16 of the upper half of the scroll compressor which concerns on Embodiment 3 of this invention. 本発明の実施の形態3に係るスクロール圧縮機を示す分解斜視図である。It is a disassembled perspective view which shows the scroll compressor which concerns on Embodiment 3 of this invention. 本発明の実施の形態4に係るスクロール圧縮機を適用した冷凍サイクル装置を示す冷媒回路図である。It is a refrigerant circuit figure which shows the refrigerating-cycle apparatus to which the scroll compressor which concerns on Embodiment 4 of this invention is applied.
 以下、図面を参照して、この発明の一実施の形態について説明する。なお、各図中、同一または相当する部分には、同一符号を付して、その説明を適宜省略または簡略化する。また、各図に記載の構成について、その形状、大きさおよび配置などは、この発明の範囲内で適宜変更できる。 Hereinafter, an embodiment of the present invention will be described with reference to the drawings. In the drawings, the same or corresponding parts are denoted by the same reference numerals, and the description thereof is omitted or simplified as appropriate. Moreover, the shape, size, arrangement, and the like of the configurations described in the drawings can be changed as appropriate within the scope of the present invention.
実施の形態1.
<スクロール圧縮機100の構成>
 図1は、本発明の実施の形態1に係るスクロール圧縮機100を示す概略構成図である。図2は、本発明の実施の形態1に係るスクロール圧縮機100の図1から90°位相を変えた状態を示す概略構成図である。図3は、本発明の実施の形態1に係るスクロール圧縮機100を示す分解斜視図である。
Embodiment 1 FIG.
<Configuration of scroll compressor 100>
FIG. 1 is a schematic configuration diagram showing a scroll compressor 100 according to Embodiment 1 of the present invention. FIG. 2 is a schematic configuration diagram showing a state in which the phase of the scroll compressor 100 according to Embodiment 1 of the present invention is changed by 90 ° from FIG. FIG. 3 is an exploded perspective view showing the scroll compressor 100 according to Embodiment 1 of the present invention.
 ここで、図1に示すスクロール圧縮機100は、クランクシャフト6の中心軸が地面に対して垂直の状態で使用される、いわゆる縦型のスクロール圧縮機である。 Here, the scroll compressor 100 shown in FIG. 1 is a so-called vertical scroll compressor that is used in a state where the central axis of the crankshaft 6 is perpendicular to the ground.
 スクロール圧縮機100は、シェル1と、メインフレーム2と、圧縮機構部3と、駆動機構部4と、サブフレーム5と、クランクシャフト6と、スライダバランサ7と、給電部8と、を備えている。以下では、メインフレーム2を基準として、圧縮機構部3が設けられた上側を一端側U、駆動機構部4が設けられた下側を他端側Lと方向付けて説明する。 The scroll compressor 100 includes a shell 1, a main frame 2, a compression mechanism portion 3, a drive mechanism portion 4, a subframe 5, a crankshaft 6, a slider balancer 7, and a power feeding portion 8. Yes. Below, the main frame 2 is used as a reference, and the upper side where the compression mechanism unit 3 is provided is oriented as one end side U and the lower side where the drive mechanism unit 4 is provided is oriented as the other end side L.
<シェル1>
 シェル1は、金属部材からなる両端が閉塞された筒状の筐体であり、メインシェル11と、アッパーシェル12と、ロアシェル13と、を備えている。
<Shell 1>
The shell 1 is a cylindrical casing made of a metal member and closed at both ends, and includes a main shell 11, an upper shell 12, and a lower shell 13.
 メインシェル11は、円筒状を呈し、その側壁には吸入管14が溶接などにより接続されている。吸入管14は、冷媒をシェル1内に導入する管であり、メインシェル11内と連通している。 The main shell 11 has a cylindrical shape, and a suction pipe 14 is connected to the side wall thereof by welding or the like. The suction pipe 14 is a pipe for introducing a refrigerant into the shell 1 and communicates with the main shell 11.
 アッパーシェル12は、略半球状を呈する第1シェルである。アッパーシェル12の側壁の一部がメインシェル11の上端部において溶接などにより接続され、メインシェル11の上側の開口を覆っている。アッパーシェル12の上部には、吐出管15が溶接などにより接続されている。吐出管15は、冷媒をシェル1外に吐出する管であり、メインシェル11の内部空間と連通している。 The upper shell 12 is a first shell having a substantially hemispherical shape. A part of the side wall of the upper shell 12 is connected to the upper end portion of the main shell 11 by welding or the like, and covers the upper opening of the main shell 11. A discharge pipe 15 is connected to the upper part of the upper shell 12 by welding or the like. The discharge pipe 15 is a pipe for discharging the refrigerant to the outside of the shell 1 and communicates with the internal space of the main shell 11.
 ロアシェル13は、略半球状を呈する第2シェルである。ロアシェル13の側壁の一部がメインシェル11の下端部において溶接などにより接続され、メインシェル11の下側の開口を覆っている。なお、ロアシェル13は、複数の穴を備える固定台17によって支持されている。固定台17には、複数の穴が形成されている。スクロール圧縮機100は、それらの複数の穴を通じて室外機の筐体などの他の部材に固定できる。 The lower shell 13 is a second shell having a substantially hemispherical shape. A part of the side wall of the lower shell 13 is connected to the lower end of the main shell 11 by welding or the like, and covers the lower opening of the main shell 11. The lower shell 13 is supported by a fixed base 17 having a plurality of holes. A plurality of holes are formed in the fixed base 17. The scroll compressor 100 can be fixed to another member such as a casing of the outdoor unit through the plurality of holes.
<メインフレーム2>
 メインフレーム2は、空洞が形成された中空な金属製のフレームであり、筐体であるシェル1の内部に設けられている。メインフレーム2は、揺動スクロール32を駆動するクランクシャフト6を回転自在に支持する。メインフレーム2は、本体部21と、主軸受部22と、返油管23と、を備えている。
<Mainframe 2>
The main frame 2 is a hollow metal frame in which a cavity is formed, and is provided inside the shell 1 that is a housing. The main frame 2 rotatably supports the crankshaft 6 that drives the orbiting scroll 32. The main frame 2 includes a main body portion 21, a main bearing portion 22, and an oil return pipe 23.
 本体部21は、メインシェル11の一端側Uの内壁面に固定されている。本体部21の中央には、シェル1の長手方向に沿って収容空間211が形成されている。収容空間211では、一端側Uが開口しているとともに、他端側Lに向かって空間が狭くなる段差状になっている。本体部21の一端側Uには、収容空間211を囲むように環状の平坦であるスラスト面212が形成されている。スラスト面212には、鋼板系材料からなるリング状のスラストプレート24が配置されている。よって、スラストプレート24がスラスト軸受として機能する。また、スラスト面212の外端側のスラストプレート24と重ならない位置には、吸入ポート213が形成されている。吸入ポート213は、本体部21の上下方向、すなわちアッパーシェル12側とロアシェル13側とに貫通する空間である。 The main body 21 is fixed to the inner wall surface on one end side U of the main shell 11. An accommodation space 211 is formed in the center of the main body 21 along the longitudinal direction of the shell 1. In the accommodation space 211, one end side U is open, and the space becomes narrower toward the other end side L. An annular flat thrust surface 212 is formed on one end side U of the main body 21 so as to surround the accommodation space 211. On the thrust surface 212, a ring-shaped thrust plate 24 made of a steel plate material is disposed. Therefore, the thrust plate 24 functions as a thrust bearing. A suction port 213 is formed at a position that does not overlap the thrust plate 24 on the outer end side of the thrust surface 212. The suction port 213 is a space penetrating in the vertical direction of the main body 21, that is, the upper shell 12 side and the lower shell 13 side.
 主軸受部22は、本体部21の他端側Lに連続して形成されている。主軸受部22の内部には、軸孔221が形成されている。軸孔221は、主軸受部22の上下方向に貫通している。軸孔221の一端側Uは、収容空間211と連通している。 The main bearing portion 22 is formed continuously on the other end side L of the main body portion 21. A shaft hole 221 is formed in the main bearing portion 22. The shaft hole 221 passes through the main bearing portion 22 in the vertical direction. One end U of the shaft hole 221 communicates with the accommodation space 211.
 返油管23は、収容空間211に溜まった潤滑油をロアシェル13の内側の油溜めに戻す管である。返油管23は、メインフレーム2に内外に貫通して形成された排油孔に挿入固定されている。 The oil return pipe 23 is a pipe that returns the lubricating oil accumulated in the accommodation space 211 to the oil sump inside the lower shell 13. The oil return pipe 23 is inserted and fixed in an oil drain hole formed through the main frame 2 in and out.
 潤滑油は、シェル1の下部、すなわちロアシェル13に貯留されており、クランクシャフト6で吸い上げられる。吸い上げられた潤滑油は、圧縮機構部3などの機械的に接触する部品同士の摩耗低減、摺動部の温度調節、シール性を改善する。潤滑油としては、潤滑特性、電気絶縁性、安定性、冷媒溶解性、低温流動性などに優れるとともに、適度な粘度の油が好適である。 Lubricating oil is stored in the lower part of the shell 1, that is, in the lower shell 13, and is sucked up by the crankshaft 6. The sucked lubricating oil reduces the wear of mechanically contacting parts such as the compression mechanism section 3, improves the temperature control of the sliding section, and improves the sealing performance. As the lubricating oil, an oil having an appropriate viscosity as well as excellent lubrication characteristics, electrical insulation, stability, refrigerant solubility, low-temperature fluidity and the like is suitable.
<圧縮機構部3>
 圧縮機構部3は、冷媒を圧縮するために、固定スクロール31と、揺動スクロール32と、オルダムリング33と、を備えたスクロール圧縮機構である。固定スクロール31と、揺動スクロール32と、オルダムリング33と、は、筐体であるシェル1の内部に設けられている。
<Compression mechanism part 3>
The compression mechanism unit 3 is a scroll compression mechanism that includes a fixed scroll 31, an orbiting scroll 32, and an Oldham ring 33 in order to compress the refrigerant. The fixed scroll 31, the swing scroll 32, and the Oldham ring 33 are provided inside the shell 1 that is a casing.
<固定スクロール31>
 図4は、本発明の実施の形態1に係るスクロール圧縮機100における固定スクロール31を示す斜視図である。図4に示すように、固定スクロール31は、第1基板311と、第1渦巻体312と、を備えている。
<Fixed scroll 31>
FIG. 4 is a perspective view showing fixed scroll 31 in scroll compressor 100 according to Embodiment 1 of the present invention. As shown in FIG. 4, the fixed scroll 31 includes a first substrate 311 and a first spiral body 312.
 第1基板311は、円盤状に形成されている。第1基板311の中央には、上下方向に貫通して吐出ポート313が形成されている。 The first substrate 311 is formed in a disk shape. A discharge port 313 is formed in the center of the first substrate 311 so as to penetrate in the vertical direction.
 第1渦巻体312は、第1基板311の他端側Lの面から突出して渦巻状の壁を形成している。第1渦巻体312の先端は、他端側Lに突出している。 The first spiral body 312 protrudes from the surface on the other end side L of the first substrate 311 to form a spiral wall. The tip of the first spiral body 312 protrudes to the other end L.
 第1基板311の面には、第1オルダム溝314が形成されている。第1オルダム溝314は、長方形状の溝である。第1オルダム溝314は、クランクシャフト6の軸線に対して一対が対向するように設けられている。第1オルダム溝314は、半径方向に長い空間に形成されている。 A first Oldham groove 314 is formed on the surface of the first substrate 311. The first Oldham groove 314 is a rectangular groove. The first Oldham groove 314 is provided so that a pair faces the axis of the crankshaft 6. The first Oldham groove 314 is formed in a space long in the radial direction.
<揺動スクロール32>
 図5Aは、本発明の実施の形態1に係るスクロール圧縮機100における揺動スクロール32を示す斜視図である。図5Bは、本発明の実施の形態1に係るスクロール圧縮機100における揺動スクロール32の第2基板321を示す上面図である。図5A、図5Bに示すように、揺動スクロール32は、第2基板321と、第2渦巻体322と、筒状部323と、第2オルダム溝324と、を備えている。
<Oscillatory scroll 32>
FIG. 5A is a perspective view showing orbiting scroll 32 in scroll compressor 100 according to Embodiment 1 of the present invention. FIG. 5B is a top view showing second substrate 321 of orbiting scroll 32 in scroll compressor 100 according to Embodiment 1 of the present invention. As shown in FIGS. 5A and 5B, the swing scroll 32 includes a second substrate 321, a second spiral body 322, a tubular portion 323, and a second Oldham groove 324.
 第2基板321は、第1渦巻体312が形成された一端側Uの面と、外周領域の少なくとも一部が摺動面となる他端側Lの面と、径方向の最外部に位置して一端側Uの面と他端側Lの面との両方の面を接続する側面と、を備えた円盤状に形成されている。第2基板321の摺動面は、スラストプレート24に摺動可能なようにメインフレーム2に支持されている。 The second substrate 321 is located on the one end side U surface on which the first spiral body 312 is formed, on the other end side L surface on which at least a part of the outer peripheral region is a sliding surface, and on the outermost portion in the radial direction. And a side surface connecting both surfaces of the one end U side and the other end L side. The sliding surface of the second substrate 321 is supported by the main frame 2 so as to be slidable on the thrust plate 24.
 第2渦巻体322は、第2基板321の一端側Uの面から突出して渦巻状の壁を形成している。第2渦巻体322の先端は、一端側Uに突出している。なお、固定スクロール31の第1渦巻体312の先端部と、揺動スクロール32の第2渦巻体322の先端部とには、冷媒の漏れを抑制するシール部材が設けられている。 The second spiral body 322 protrudes from the surface on one end side U of the second substrate 321 to form a spiral wall. The tip of the second spiral body 322 protrudes to one end side U. A seal member that suppresses refrigerant leakage is provided at the tip of the first spiral body 312 of the fixed scroll 31 and the tip of the second spiral body 322 of the orbiting scroll 32.
 筒状部323は、第2基板321の他端側Lの面の略中央から他端側Lに突出して形成された円筒状のボスである。筒状部323の内周面には、スライダ71を回転自在に支持する揺動軸受、いわゆるジャーナル軸受が設けられている。ジャーナル軸受の中心軸は、クランクシャフト6の軸線と平行に設定されている。 The cylindrical portion 323 is a cylindrical boss formed so as to protrude from the approximate center of the surface on the other end L side of the second substrate 321 to the other end L. On the inner peripheral surface of the cylindrical portion 323, a swing bearing that supports the slider 71 in a freely rotatable manner, a so-called journal bearing is provided. The center axis of the journal bearing is set parallel to the axis of the crankshaft 6.
 第2基板321の他端側Lの面には、第2オルダム溝324が形成されている。第2オルダム溝324は、長方形状の溝である。第2オルダム溝324は、クランクシャフト6の軸線に対して一対が対向するように設けられている。第2オルダム溝324は、半径方向に長い空間に形成されている。一対の第1オルダム溝314を結ぶ第3仮想線と一対の第2オルダム溝324を結ぶ第4仮想線とは、クランクシャフトの主軸部61の軸線方向に直交する平面で直交している。 A second Oldham groove 324 is formed on the surface on the other end side L of the second substrate 321. The second Oldham groove 324 is a rectangular groove. The second Oldham groove 324 is provided so that a pair faces the axis of the crankshaft 6. The second Oldham groove 324 is formed in a space long in the radial direction. The third imaginary line connecting the pair of first Oldham grooves 314 and the fourth imaginary line connecting the pair of second Oldham grooves 324 are orthogonal to each other on a plane orthogonal to the axial direction of the main shaft portion 61 of the crankshaft.
 揺動スクロール32の第2基板321には、2箇所のU字形の切欠き部325が対向して設けられている。切欠き部325は、圧縮機運転中において常にメインフレーム2の吸入ポート213を塞がず、かつ、オルダムリング33が干渉しない位置に形成されている。詳細な切欠き部325の開口範囲については、後述する。 Two U-shaped cutout portions 325 are provided on the second substrate 321 of the orbiting scroll 32 so as to face each other. The notch 325 is formed at a position that does not always block the suction port 213 of the main frame 2 and does not interfere with the Oldham ring 33 during compressor operation. A detailed opening range of the notch 325 will be described later.
<オルダムリング33>
 メインフレーム2のオルダム収容部214には、オルダムリング33が設けられている。つまり、オルダムリング33は、揺動スクロール32に対して固定スクロール31とは反対側に位置するメインフレーム2内のオルダム収容部214に収容されている。オルダムリング33は、揺動スクロール32の自転を防止する。オルダムリング33は、円環部331と、一対の腕部334と、一対の第1キー部332と、一対の第2キー部333と、を備えている。
<Oldham Ring 33>
An Oldham ring 33 is provided in the Oldham accommodating portion 214 of the main frame 2. That is, the Oldham ring 33 is accommodated in the Oldham accommodating portion 214 in the main frame 2 that is located on the opposite side of the fixed scroll 31 with respect to the swing scroll 32. The Oldham ring 33 prevents the swing scroll 32 from rotating. The Oldham ring 33 includes an annular part 331, a pair of arm parts 334, a pair of first key parts 332, and a pair of second key parts 333.
 円環部331は、リング状であり、一対の第1キー部332にそれぞれ繋がる一対の腕部334を設けている。一対の腕部334は、クランクシャフト6の軸線に対して対称に半径方向の外側に延出している。 The annular portion 331 has a ring shape, and is provided with a pair of arm portions 334 that are respectively connected to the pair of first key portions 332. The pair of arm portions 334 extends radially outward with respect to the axis of the crankshaft 6.
 第1キー部332は、円環部331から延出した一対の腕部334の一端側Uの面に形成されている。つまり、オルダムリング33は、一対の第1キー部332のそれぞれを円環部331から半径方向の外側に延出させた一対の腕部334のそれぞれに設けている。一対の第1キー部332は、固定スクロール31の一対の第1オルダム溝314のそれぞれに差し込まれて収容される。一対の第1キー部332は、一対の第1オルダム溝314のそれぞれに差し込まれて収容されるように、揺動スクロール32の一対の切欠き部325のそれぞれを通って延出されている。 The first key portion 332 is formed on the surface on one end side U of the pair of arm portions 334 extending from the annular portion 331. That is, the Oldham ring 33 is provided on each of the pair of arm portions 334 in which each of the pair of first key portions 332 extends from the annular portion 331 outward in the radial direction. The pair of first key portions 332 are inserted and accommodated in the pair of first Oldham grooves 314 of the fixed scroll 31, respectively. The pair of first key portions 332 extend through each of the pair of notch portions 325 of the orbiting scroll 32 so as to be inserted and accommodated in each of the pair of first Oldham grooves 314.
 第2キー部333は、円環部331の一端側Uの面に一対が対向するように形成されている。つまり、オルダムリング33は、一対の第2キー部333を円環部331に設けている。一対の第2キー部333は、揺動スクロール32の一対の第2オルダム溝324のそれぞれに差し込まれて収容される。一対の第2キー部333は、一対の第2オルダム溝324のそれぞれに差し込まれて収容されるように、一対の第1キー部332と同一方向に延出され、一対の第1キー部332よりも短く形成されている。一対の第2キー部333は、先端部を根元部よりも半径方向の外側に長く形成されている。一対の第1キー部332を繋ぐ第1仮想線と一対の第2キー部333を繋ぐ第2仮想線とは、クランクシャフト6の主軸部61の軸線方向に直交する平面で直交している。 The second key portion 333 is formed so that a pair faces the surface on one end side U of the annular portion 331. That is, the Oldham ring 33 is provided with a pair of second key portions 333 in the annular portion 331. The pair of second key portions 333 are inserted and accommodated in the pair of second Oldham grooves 324 of the swing scroll 32. The pair of second key portions 333 are extended in the same direction as the pair of first key portions 332 so as to be inserted and accommodated in the pair of second Oldham grooves 324, respectively, and the pair of first key portions 332. It is formed shorter. The pair of second key portions 333 are formed such that the tip ends are longer outside the root portion in the radial direction. The first imaginary line connecting the pair of first key portions 332 and the second imaginary line connecting the pair of second key portions 333 are orthogonal to each other on a plane orthogonal to the axial direction of the main shaft portion 61 of the crankshaft 6.
 一対の第1オルダム溝314のそれぞれは、収容される一対の第1キー部332のそれぞれよりも半径方向に長い空間に形成されている。また、一対の第2オルダム溝324のそれぞれは、収容される一対の第2キー部333のそれぞれよりも半径方向に長い空間に形成されている。一対の第2オルダム溝324のそれぞれは、一対の第2キー部333のそれぞれを半径方向に直交する幅方向については摺動しつつ規制して半径方向に移動可能に収容している。このため、揺動スクロール32は、クランクシャフト6と一対の第2キー部333とによって揺動可能に保持されている。 Each of the pair of first Oldham grooves 314 is formed in a space that is longer in the radial direction than each of the pair of first key portions 332 accommodated therein. Further, each of the pair of second Oldham grooves 324 is formed in a space that is longer in the radial direction than each of the pair of second key portions 333 accommodated therein. Each of the pair of second Oldham grooves 324 accommodates each of the pair of second key portions 333 so as to be movable in the radial direction while sliding in the width direction perpendicular to the radial direction. Therefore, the orbiting scroll 32 is held by the crankshaft 6 and the pair of second key portions 333 so as to be able to swing.
 これにより、クランクシャフト6の回転によって揺動スクロール32が摺動する際に、第1キー部332が第1オルダム溝314でスライドし、第2キー部333が第2オルダム溝324でスライドする。そして、オルダムリング33は、揺動スクロール32が自転することを防止する。オルダムリング33は、揺動運動を行う。 Thus, when the orbiting scroll 32 slides due to rotation of the crankshaft 6, the first key portion 332 slides in the first Oldham groove 314, and the second key portion 333 slides in the second Oldham groove 324. The Oldham ring 33 prevents the orbiting scroll 32 from rotating. The Oldham ring 33 performs a swinging motion.
<圧縮室34>
 これら固定スクロール31の第1渦巻体312と、揺動スクロール32の第2渦巻体322と、が互いに噛み合わせることにより、圧縮室34が形成される。圧縮室34は、半径方向において、外側から内側へ向かうに従って容積が縮小するものである。このため、冷媒は、第1渦巻体312および第2渦巻体322の外端側から取り入れられて、中央側に移動することにより徐々に圧縮される。圧縮室34は、固定スクロール31の吐出ポート313と連通している。固定スクロール31の一端側Uの面には、吐出孔351を有するマフラー35が設けられているとともに、吐出孔351を所定に開閉し、冷媒の逆流を防止する吐出弁36が設けられている。
<Compression chamber 34>
The compression chamber 34 is formed when the first spiral body 312 of the fixed scroll 31 and the second spiral body 322 of the swing scroll 32 mesh with each other. The compression chamber 34 has a volume that decreases in the radial direction from the outside toward the inside. For this reason, the refrigerant is taken in from the outer ends of the first spiral body 312 and the second spiral body 322 and gradually compressed by moving to the center side. The compression chamber 34 communicates with the discharge port 313 of the fixed scroll 31. A muffler 35 having a discharge hole 351 is provided on the surface of one end U of the fixed scroll 31, and a discharge valve 36 that opens and closes the discharge hole 351 to prevent the refrigerant from flowing backward is provided.
<駆動機構部4>
 駆動機構部4は、シェル1内部のメインフレーム2の他端側Lに設けられている。駆動機構部4はステータ41と、ロータ42と、を備えている。
<Drive mechanism section 4>
The drive mechanism 4 is provided on the other end L of the main frame 2 inside the shell 1. The drive mechanism unit 4 includes a stator 41 and a rotor 42.
 ステータ41は、たとえば電磁鋼板を複数積層してなる鉄心に、絶縁層を介して巻線を巻回してなる固定子であり、リング状に形成されている。ステータ41は、焼き嵌めなどによりメインシェル11内部に固着支持されている。 The stator 41 is a stator formed by winding a winding through an insulating layer on an iron core formed by laminating a plurality of electromagnetic steel plates, for example, and is formed in a ring shape. The stator 41 is fixedly supported inside the main shell 11 by shrink fitting or the like.
 ロータ42は、電磁鋼板を複数積層してなる鉄心の内部に永久磁石を内蔵するとともに、中央に上下方向に貫通する貫通穴を有する円筒状の回転子であり、ステータ41の内部空間に配置されている。 The rotor 42 is a cylindrical rotor having a built-in permanent magnet inside an iron core formed by laminating a plurality of electromagnetic steel plates and having a through-hole penetrating in the vertical direction in the center, and is disposed in the internal space of the stator 41. ing.
<サブフレーム5>
 サブフレーム5は、金属製のフレームであり、シェル1の内部に駆動機構部4の他端側Lに設けられている。サブフレーム5は、焼き嵌めまたは溶接などによりメインシェル11の他端側Lの内周面に固着支持されている。サブフレーム5は、副軸受部51と、オイルポンプ52と、を備えている。
<Subframe 5>
The sub frame 5 is a metal frame and is provided inside the shell 1 on the other end side L of the drive mechanism unit 4. The subframe 5 is fixedly supported on the inner peripheral surface of the other end L of the main shell 11 by shrink fitting or welding. The sub frame 5 includes a sub bearing portion 51 and an oil pump 52.
 副軸受部51は、サブフレーム5の中央部上側に設けられたボールベアリングであり、中央に上下方向に貫通する孔を有している。 The sub-bearing portion 51 is a ball bearing provided on the upper side of the center portion of the sub-frame 5 and has a hole penetrating in the vertical direction at the center.
 オイルポンプ52は、サブフレーム5の中央部下側に設けられており、シェル1の油溜めに貯留された潤滑油に少なくとも一部が浸漬するように配置されている。 The oil pump 52 is provided below the center portion of the subframe 5 and is disposed so that at least a part of the oil pump 52 is immersed in the lubricating oil stored in the oil reservoir of the shell 1.
<クランクシャフト6>
 クランクシャフト6は、長尺な金属製の棒状部材であり、シェル1の内部に設けられている。クランクシャフト6は、主軸部61と、偏心軸部62と、通油路63と、を備えている。
<Crankshaft 6>
The crankshaft 6 is a long metal rod-like member and is provided inside the shell 1. The crankshaft 6 includes a main shaft portion 61, an eccentric shaft portion 62, and an oil passage 63.
 主軸部61は、クランクシャフト6の主要部を構成する軸である。主軸部61の中心軸は、メインシェル11の中心軸と一致するように配置されている。主軸部61の外表面には、ロータ42が接触固定されている。 The main shaft portion 61 is a shaft constituting the main portion of the crankshaft 6. The central axis of the main shaft portion 61 is disposed so as to coincide with the central axis of the main shell 11. A rotor 42 is fixed in contact with the outer surface of the main shaft portion 61.
 偏心軸部62は、偏心軸部62の中心軸が主軸部61の中心軸に対して偏心するように主軸部61の一端側Uに設けられている。 The eccentric shaft part 62 is provided on one end side U of the main shaft part 61 so that the central axis of the eccentric shaft part 62 is eccentric with respect to the central axis of the main shaft part 61.
 通油路63は、主軸部61および偏心軸部62の内部に上下に貫通して設けられている。 The oil passage 63 is provided through the main shaft portion 61 and the eccentric shaft portion 62 so as to penetrate vertically.
 クランクシャフト6は、主軸部61の一端側Uがメインフレーム2の主軸受部22内に挿入され、他端側Lがサブフレーム5の副軸受部51に挿入固定される。これにより、偏心軸部62が筒状部323の筒内に配置され、ロータ42の外周面がステータ41の内周面と所定の隙間を保って配置される。また、主軸部61の一端側Uには、第1バランサ64が設けられている。主軸部61の他端側Lには、第2バランサ65が設けられている。第1バランサ64および第2バランサ65は、揺動スクロール32の搖動によるアンバランスを相殺するために設けられている。 The crankshaft 6 has one end U of the main shaft 61 inserted into the main bearing 22 of the main frame 2 and the other end L inserted and fixed to the sub-bearing 51 of the subframe 5. As a result, the eccentric shaft portion 62 is arranged in the cylinder of the cylindrical portion 323, and the outer circumferential surface of the rotor 42 is arranged with a predetermined gap from the inner circumferential surface of the stator 41. A first balancer 64 is provided at one end U of the main shaft portion 61. A second balancer 65 is provided on the other end side L of the main shaft portion 61. The first balancer 64 and the second balancer 65 are provided in order to cancel out the imbalance caused by the swing of the swing scroll 32.
<スライダバランサ7>
 スライダバランサ7は、2部品で構成され、スライダ71と、バランスウエイト72と、を備える。
<Slider balancer 7>
The slider balancer 7 includes two parts and includes a slider 71 and a balance weight 72.
 スライダ71は、鍔が形成された筒状の部材であり、偏心軸部62および筒状部323のそれぞれに嵌入されている。 The slider 71 is a cylindrical member in which a collar is formed, and is fitted into each of the eccentric shaft portion 62 and the cylindrical portion 323.
 バランスウエイト72は、図3に示すように一端側Uから見た形状が略C状を呈するウエイト部721を備えたドーナツ状の部材である。バランスウエイト72は、揺動スクロール32の遠心力を相殺するために、回転中心に対して偏芯して設けられている。バランスウエイト72は、たとえばスライダ71の鍔に焼嵌めなどにより嵌合されている。 The balance weight 72 is a donut-shaped member provided with a weight portion 721 having a substantially C shape as viewed from one end side U as shown in FIG. The balance weight 72 is provided eccentrically with respect to the rotation center in order to cancel the centrifugal force of the orbiting scroll 32. The balance weight 72 is fitted to the flange of the slider 71 by shrink fitting, for example.
<給電部8>
 給電部8は、スクロール圧縮機100に給電する給電部材であり、シェル1のメインシェル11の外周面に形成されている。給電部8は、カバー81と、給電端子82と、配線83と、を備えている。カバー81は、有底開口のカバー部材である。給電端子82は、金属部材からなり、一方がカバー81の内部に設けられ、一方から繋がる他方がシェル1の内部に設けられている。配線83は、一方が給電端子82と接続され、一方と繋がる他方がステータ41と接続されている。
<Power supply unit 8>
The power supply unit 8 is a power supply member that supplies power to the scroll compressor 100, and is formed on the outer peripheral surface of the main shell 11 of the shell 1. The power supply unit 8 includes a cover 81, a power supply terminal 82, and a wiring 83. The cover 81 is a cover member having a bottomed opening. The power supply terminal 82 is made of a metal member, one is provided inside the cover 81, and the other connected from the other is provided inside the shell 1. One of the wires 83 is connected to the power supply terminal 82, and the other connected to one is connected to the stator 41.
<シェル1と圧縮機構部3の関係>
 図6は、本発明の実施の形態1に係るスクロール圧縮機100における図1の一点鎖線の領域Aを示す拡大図である。図7は、本発明の実施の形態1に係るスクロール圧縮機100における図6の二点鎖線の領域Bを示す拡大図である。
<Relationship Between Shell 1 and Compression Mechanism 3>
6 is an enlarged view showing a region A indicated by a one-dot chain line in FIG. 1 in the scroll compressor 100 according to Embodiment 1 of the present invention. FIG. 7 is an enlarged view showing a region B indicated by a two-dot chain line in FIG. 6 in the scroll compressor 100 according to Embodiment 1 of the present invention.
 図6に示すように、シェル1は、第1内壁面111を有している。シェル1は、第1内壁面111から突出して固定スクロール31を位置決めする第1突出部112を有している。シェル1は、第1突出部112においてアッパーシェル12の側に向いている第1位置決め面113を有している。つまり、メインシェル11は、他端側Lに向かって内径が大きくなる段状の部分を備えている。そして、固定スクロール31は、第1位置決め面113で位置決めされた状態で、第1内壁面111に焼嵌めなどにより固定されている。つまり、固定スクロール31は、筐体であるシェル1に単体で固定されている。また、メインフレーム2は、後述のように筐体であるシェル1に単体で固定されている。このように、固定スクロール31とメインフレーム2とは、筐体であるシェル1に互いの間に間隔を空けてそれぞれ別個独立に固定されている。 As shown in FIG. 6, the shell 1 has a first inner wall surface 111. The shell 1 has a first protrusion 112 that protrudes from the first inner wall surface 111 and positions the fixed scroll 31. The shell 1 has a first positioning surface 113 that faces the upper shell 12 side in the first protrusion 112. That is, the main shell 11 includes a stepped portion whose inner diameter increases toward the other end side L. The fixed scroll 31 is fixed to the first inner wall surface 111 by shrink fitting or the like while being positioned on the first positioning surface 113. That is, the fixed scroll 31 is fixed to the shell 1 which is a housing as a single unit. The main frame 2 is fixed to a shell 1 as a single body as will be described later. As described above, the fixed scroll 31 and the main frame 2 are separately and independently fixed to the shell 1 which is a casing with a space between each other.
 この構造により、従来のようにメインフレーム2と固定スクロール31とをネジ固定するための壁が不要になる。すなわち、揺動スクロール32の第2基板321の側面とメインシェル11の内壁面との間に、メインフレーム2の壁が介在しない。そして、第2基板321の側面とメインシェル11の内壁面とが対向して配置される構造になる。そのため、メインシェル11内における固定スクロール31の第1基板311とメインフレーム2のスラスト軸受との間に設けられるとともに揺動スクロール32が配置される冷媒取込空間37が従来よりも広げられる。 This structure eliminates the need for a wall for fixing the main frame 2 and the fixed scroll 31 with screws as in the prior art. That is, the wall of the main frame 2 is not interposed between the side surface of the second substrate 321 of the orbiting scroll 32 and the inner wall surface of the main shell 11. The side surface of the second substrate 321 and the inner wall surface of the main shell 11 are arranged to face each other. Therefore, the refrigerant intake space 37 that is provided between the first substrate 311 of the fixed scroll 31 and the thrust bearing of the main frame 2 in the main shell 11 and in which the orbiting scroll 32 is disposed is wider than before.
 冷媒取込空間37が広がることにより種々のメリットが得られる。たとえば、駆動機構部4が配置されたメインシェル11内の空間の圧力が冷媒取込空間37の圧力よりも低くなる、いわゆる低圧シェル構造である場合には、圧縮された冷媒の圧力によって揺動スクロール32の第2基板321がスラストプレート24に押し付けられる。このため、摺動箇所でのスラスト荷重が増加する。そこで、第2渦巻体322などは従来設計のままで、揺動スクロール32の第2基板321およびスラストプレート24の直径が大きくなり、摺動面積が大きくなることにより、スラスト面圧が低減できる。 Various advantages can be obtained by expanding the refrigerant intake space 37. For example, in the case of a so-called low-pressure shell structure in which the pressure in the main shell 11 in which the drive mechanism unit 4 is disposed is lower than the pressure in the refrigerant intake space 37, the pressure fluctuates due to the compressed refrigerant pressure. The second substrate 321 of the scroll 32 is pressed against the thrust plate 24. For this reason, the thrust load in a sliding location increases. Accordingly, the second spiral body 322 and the like remain in the conventional design, and the thrust surface pressure can be reduced by increasing the diameter of the second substrate 321 and the thrust plate 24 of the orbiting scroll 32 and increasing the sliding area.
 なお、メインフレーム2も、シェル1の第2内壁面114から突出する第2突出部115の第2位置決め面で位置決めされた状態で、第2内壁面114に焼嵌めなどにより固定されている。 Note that the main frame 2 is also fixed to the second inner wall surface 114 by shrink fitting or the like in a state where the main frame 2 is positioned by the second positioning surface of the second protruding portion 115 protruding from the second inner wall surface 114 of the shell 1.
 図8は、本発明の実施の形態1に係るスクロール圧縮機100におけるメインフレーム2を示す斜視図である。図8に示すように、メインフレーム2のスラスト面212の外端部には、アッパーシェル12方向に突出するリング状の突壁216が形成されている。スラストプレート24は、突壁216の内側のスラスト面212に覆って配置されている。図6に示すように、突壁216のスラスト面212からの高さは、スラストプレート24の厚みより小さく設定されている。このため、揺動スクロール32は、スラストプレート24と摺動させられる。なお、スラストプレート24の厚みが調整されることにより、一方のスクロールの基板と、他方のスクロールの渦巻体との間隔である渦巻先端隙間も好適な範囲に設定できる。 FIG. 8 is a perspective view showing the main frame 2 in the scroll compressor 100 according to Embodiment 1 of the present invention. As shown in FIG. 8, a ring-shaped protruding wall 216 that protrudes toward the upper shell 12 is formed at the outer end portion of the thrust surface 212 of the main frame 2. The thrust plate 24 is disposed so as to cover the thrust surface 212 inside the protruding wall 216. As shown in FIG. 6, the height of the protruding wall 216 from the thrust surface 212 is set smaller than the thickness of the thrust plate 24. For this reason, the orbiting scroll 32 is slid with the thrust plate 24. In addition, by adjusting the thickness of the thrust plate 24, the spiral tip gap, which is the distance between the substrate of one scroll and the spiral body of the other scroll, can be set within a suitable range.
 ここで、スラストプレート24および突壁216には、凸部または凹部が形成されている。この凸部または凹部には、スラストプレート24の回転を抑止可能な切欠き部217が係合している。ここで、メインフレーム2のスラスト面212およびスラストプレート24は、ともにリング状であることにより、揺動スクロール32の揺動に伴ってスラストプレート24がスラスト面212に対して回転する。しかし、凹部に凸部を係止することにより、スラストプレート24の回転を抑制する。 Here, convex portions or concave portions are formed on the thrust plate 24 and the protruding wall 216. A notch 217 capable of suppressing the rotation of the thrust plate 24 is engaged with the convex portion or the concave portion. Here, since the thrust surface 212 and the thrust plate 24 of the main frame 2 are both ring-shaped, the thrust plate 24 rotates with respect to the thrust surface 212 as the swing scroll 32 swings. However, the rotation of the thrust plate 24 is suppressed by engaging the convex portion with the concave portion.
 実施の形態1では、凹部は、突壁216からスラストプレート24の方向に形成された一対の切欠き部217で構成される。凸部は、スラストプレート24の外周部分に形成された突起部242で構成される。一対の切欠き部217は、一対の突起部242の対向する辺にそれぞれ係止されるように設けられている。 In the first embodiment, the recess includes a pair of notches 217 formed in the direction from the protruding wall 216 to the thrust plate 24. The convex portion is constituted by a protruding portion 242 formed on the outer peripheral portion of the thrust plate 24. The pair of notches 217 are provided so as to be locked to the opposing sides of the pair of protrusions 242, respectively.
 なお、実施の形態1では、2組の凹凸でスラストプレート24の回転を抑制している。しかし、スラストプレート24が回転を抑止可能であれば、メインフレーム2とスラストプレート24との凹凸は1つでも問題ない。スラストプレート24の開口部241は、メインフレーム2の一対の吸入ポート213に重なるように配置されている。すなわち、冷媒は、開口部241を通過することにより、スラストプレート24によって遮られることなく、冷媒取込空間37に取り込まれる。また、開口部241は、前述のオルダムリング33の格納空間215も兼ねており、圧縮機運転中のオルダムリング33が干渉しないような開口領域に形成されている。 In the first embodiment, the rotation of the thrust plate 24 is suppressed by two sets of unevenness. However, as long as the thrust plate 24 can suppress rotation, there is no problem even if there is one unevenness between the main frame 2 and the thrust plate 24. The opening 241 of the thrust plate 24 is disposed so as to overlap the pair of suction ports 213 of the main frame 2. That is, the refrigerant passes through the opening 241 and is taken into the refrigerant intake space 37 without being blocked by the thrust plate 24. Further, the opening 241 also serves as the storage space 215 of the Oldham ring 33 described above, and is formed in an opening region where the Oldham ring 33 during operation of the compressor does not interfere.
<切欠き部325>
 図9は、本発明の実施の形態1に係るスクロール圧縮機100におけるメインフレーム2、スラストプレート24、オルダムリング33および揺動スクロール32の位置関係を示す模式図である。図10は、本発明の実施の形態1に係るスクロール圧縮機100におけるメインフレーム2、スラストプレート24、オルダムリング33および揺動スクロール32の一回転の位置関係をまとめて示す模式図であり、図10(a)がθ=0°の位置関係を示す模式図であり、図10(b)がθ=90°の位置関係を示す模式図であり、図10(c)がθ=180°の位置関係を示す模式図であり、図10(d)がθ=270°の位置関係を示す模式図である。吸入ポート213および開口部241からなる吸入空間は、前述の通り吸入口およびオルダム格納空間の機能を兼ねている。また、揺動スクロール32の切欠き部325は、図10(a)~(d)に示すように、揺動スクロール32の一回転中において常に吸入空間を塞がないように形成されている。つまり、一対の切欠き部325のそれぞれは、メインフレーム2の吸入ポート213と連通され、一対の第1キー部332のそれぞれの動作時軌跡範囲よりも広い広さの空間に形成されている。
<Notch 325>
FIG. 9 is a schematic diagram showing a positional relationship among the main frame 2, the thrust plate 24, the Oldham ring 33, and the orbiting scroll 32 in the scroll compressor 100 according to Embodiment 1 of the present invention. FIG. 10 is a schematic diagram collectively showing the positional relationship of one rotation of the main frame 2, the thrust plate 24, the Oldham ring 33, and the orbiting scroll 32 in the scroll compressor 100 according to Embodiment 1 of the present invention. 10 (a) is a schematic diagram showing a positional relationship of θ = 0 °, FIG. 10 (b) is a schematic diagram showing a positional relationship of θ = 90 °, and FIG. 10 (c) is a diagram showing θ = 180 °. It is a schematic diagram which shows a positional relationship, FIG.10 (d) is a schematic diagram which shows the positional relationship of (theta) = 270 degrees. The suction space composed of the suction port 213 and the opening 241 also functions as the suction port and Oldham storage space as described above. Further, as shown in FIGS. 10A to 10D, the cutout portion 325 of the orbiting scroll 32 is formed so as not to block the suction space during one rotation of the orbiting scroll 32. That is, each of the pair of cutout portions 325 communicates with the suction port 213 of the main frame 2 and is formed in a space that is wider than the respective operating time trajectory ranges of the pair of first key portions 332.
 U字形の揺動スクロール32の切欠き部325の開口領域について説明する。揺動スクロール32の切欠き部325は、最大スラスト面積かつ吸入空間を塞がないような図9のようにU字形に形成されることが望ましい。 The opening area of the notch 325 of the U-shaped orbiting scroll 32 will be described. The notch 325 of the orbiting scroll 32 is preferably formed in a U shape as shown in FIG. 9 so as not to block the suction space with the maximum thrust area.
 切欠き部325の各辺の長さは、メインフレーム2の吸入ポート213の大きさと揺動スクロール32の稼働域によって決定される。この稼働域は、揺動スクロール32の第2渦巻体322の渦巻インボリュート曲線、歯厚などの設計パラメータによって決定される。周知の技術であるため、ここでは説明を省略する。以下、前述の揺動スクロール32の稼働域をクランク半径と呼ぶ。 The length of each side of the notch 325 is determined by the size of the suction port 213 of the main frame 2 and the operating range of the orbiting scroll 32. This operating range is determined by design parameters such as the spiral involute curve and tooth thickness of the second spiral body 322 of the orbiting scroll 32. Since it is a well-known technique, description is abbreviate | omitted here. Hereinafter, the operating range of the aforementioned orbiting scroll 32 is referred to as a crank radius.
 図10(a)~図10(d)に示すように、図面上の最も上下左右に揺動スクロール32が寄った際には、クランク半径分、揺動スクロール32が図面上の上下左右に移動する。切欠き部325の長辺の長さは、吸入ポート213の左右方向の開口幅からクランク半径分広げた長さに設定される。また、切欠き部325の短辺の長さは、オルダムリング33の第1キー部332に干渉しない長さを最低限必要とし、メインフレーム2のスラスト面212の径方向の長さからクランク半径分、広げた長さに設定される。 As shown in FIGS. 10 (a) to 10 (d), when the orbiting scroll 32 moves up and down and left and right on the drawing, the orbiting scroll 32 moves up and down and left and right on the drawing by the crank radius. To do. The length of the long side of the notch 325 is set to a length that is widened by the crank radius from the opening width in the left-right direction of the suction port 213. Further, the length of the short side of the notch portion 325 needs to be a minimum length that does not interfere with the first key portion 332 of the Oldham ring 33, and the crank radius is determined from the radial length of the thrust surface 212 of the main frame 2. It is set to the extended length.
 上述の条件を満たすことにより、揺動スクロール32の第2基板321の面積が最大となり、運転中に吸入空間をどの位相でも塞ぐことなく冷媒が安定的に圧縮機構部3に吸入される。また、第2基板321の面積が最大となり、第2渦巻体322の構成可能面積の増加による大容量化とスラスト面積の最大化による信頼性向上とに繋がる。揺動スクロール32の切欠き部325のU字形の長辺と短辺とは、吸入空間の形に従い、垂直に交わることが望ましいが、加工上の制約などにより加工刃物の形状が転写された内側に曲がったR形状が付いていても、上述の条件を満たしていれば問題ない。 By satisfying the above-mentioned conditions, the area of the second substrate 321 of the orbiting scroll 32 is maximized, and the refrigerant is stably sucked into the compression mechanism unit 3 without closing the suction space at any phase during operation. Further, the area of the second substrate 321 is maximized, which leads to an increase in capacity by increasing the configurable area of the second spiral body 322 and an improvement in reliability by maximizing the thrust area. The U-shaped long side and the short side of the cutout portion 325 of the orbiting scroll 32 are preferably perpendicular to each other in accordance with the shape of the suction space. Even if a curved R shape is attached, there is no problem as long as the above-described conditions are satisfied.
 なお、実施の形態1では、切欠き部325としてU字形の開口領域を有するものを例示した。しかし、これに限られない。切欠き部ではなく、4辺を有する開口部であってもよい。 In the first embodiment, the notch 325 has a U-shaped opening area. However, it is not limited to this. Instead of the notch, it may be an opening having four sides.
<スクロール圧縮機100の動作>
 給電部8の給電端子82に通電すると、ステータ41とロータ42とにトルクが発生し、これに伴ってクランクシャフト6が回転する。クランクシャフト6の回転は、偏心軸部62およびスライダバランサ7を介して揺動スクロール32に伝えられる。回転駆動力が伝達された揺動スクロール32は、オルダムリング33により自転を規制され、固定スクロール31に対して偏心公転運動する。その際、揺動スクロール32の他方の面が、スラストプレート24と摺動する。
<Operation of Scroll Compressor 100>
When the power supply terminal 82 of the power supply unit 8 is energized, torque is generated in the stator 41 and the rotor 42, and the crankshaft 6 rotates accordingly. The rotation of the crankshaft 6 is transmitted to the orbiting scroll 32 via the eccentric shaft portion 62 and the slider balancer 7. The orbiting scroll 32 to which the rotational driving force has been transmitted is restricted from rotating by the Oldham ring 33, and performs an eccentric revolving motion with respect to the fixed scroll 31. At this time, the other surface of the orbiting scroll 32 slides with the thrust plate 24.
 揺動スクロール32の揺動運動に伴い、吸入管14からシェル1の内部に吸入された冷媒は、メインフレーム2の吸入ポート213を通って冷媒取込空間37に到達し、固定スクロール31と揺動スクロール32とで形成される圧縮室34に取り込まれる。そして、冷媒は、揺動スクロール32の偏心公転運動に伴い、外周部から中心方向に移動しながら体積を減じられて圧縮される。揺動スクロール32の偏心公転運転時には、揺動スクロール32は、自身の遠心力により、スライダバランサ7とともに径方向に移動し、第2渦巻体322と第1渦巻体312との側壁面同士が密接する。したがって、圧縮室34において高圧側から低圧側への冷媒漏れが防止され、効率の良い圧縮が行われる。圧縮された冷媒は、固定スクロール31の吐出ポート313からマフラー35の吐出孔351に至り、吐出弁36に逆らってシェル1の外部に吐出される。 As the swinging scroll 32 swings, the refrigerant sucked into the shell 1 from the suction pipe 14 reaches the refrigerant intake space 37 through the suction port 213 of the main frame 2 and swings with the fixed scroll 31. It is taken into a compression chamber 34 formed by the moving scroll 32. Then, the refrigerant is compressed by reducing the volume while moving from the outer peripheral portion toward the center along with the eccentric revolving motion of the orbiting scroll 32. During the eccentric revolution operation of the orbiting scroll 32, the orbiting scroll 32 moves in the radial direction together with the slider balancer 7 by its centrifugal force, and the side walls of the second spiral body 322 and the first spiral body 312 are in close contact with each other. To do. Therefore, refrigerant leakage from the high pressure side to the low pressure side is prevented in the compression chamber 34, and efficient compression is performed. The compressed refrigerant reaches the discharge hole 351 of the muffler 35 from the discharge port 313 of the fixed scroll 31 and is discharged outside the shell 1 against the discharge valve 36.
<実施の形態1の効果>
 実施の形態1によれば、スクロール圧縮機100は、それぞれの板状渦巻歯が噛み合わされて圧縮室34を形成する固定スクロール31および揺動スクロール32を備えている。スクロール圧縮機100は、揺動スクロール32の自転を防止するオルダムリング33を備えている。スクロール圧縮機100は、揺動スクロール32を駆動するクランクシャフト6を回転自在に支持するメインフレーム2を備えている。スクロール圧縮機100は、固定スクロール31と揺動スクロール32とオルダムリング33とメインフレーム2とを内部に設けた筐体であるシェル1を備えている。固定スクロール31は、一対の第1オルダム溝314を有している。揺動スクロール32は、一対の第2オルダム溝324を有している。オルダムリング33は、固定スクロール31の一対の第1オルダム溝314のそれぞれに差し込まれて収容される一対の第1キー部332を有している。オルダムリング33は、揺動スクロール32の一対の第2オルダム溝324のそれぞれに差し込まれて収容される一対の第2キー部333を有している。固定スクロール31とメインフレーム2とは、シェル1にそれぞれ固定されている。
 この構成によれば、固定スクロール31と揺動スクロール32とがオルダムリング33によって相対位相合わせを直接行える。また、固定スクロール31とメインフレーム2とは、筐体であるシェル1にそれぞれ別個独立に固定されている。これにより、従来必要であった固定スクロール31を固定するためのメインフレーム2の壁を削除できる。また、固定スクロール31と揺動スクロール32との位相関係が保持されるために、オルダムリング33だけが必要最低限の必須構成要素になる。そのため、固定スクロール31とメインフレーム2との間に形成できる圧縮室34のスペースが有効活用でき、揺動スクロール32の設計の自由度が向上できる。また、部品点数が削減でき、組立が簡略化でき、コストが低減できる。
 加えて、固定スクロール31とメインフレーム2との間に大きなスペースが形成できる。これにより、揺動スクロール32の第2基板321の面積が最大限大きく活用でき、板状渦巻歯の構成可能面積が増加して板状渦巻歯が大容量化できるとともに、スラスト面積が拡大でき、揺動スクロール32の揺動運動が安定でき、信頼性が向上できる。
<Effect of Embodiment 1>
According to the first embodiment, the scroll compressor 100 includes the fixed scroll 31 and the orbiting scroll 32 that form the compression chamber 34 by meshing the respective plate-like spiral teeth. The scroll compressor 100 includes an Oldham ring 33 that prevents the swinging scroll 32 from rotating. The scroll compressor 100 includes a main frame 2 that rotatably supports the crankshaft 6 that drives the orbiting scroll 32. The scroll compressor 100 includes a shell 1 that is a casing in which a fixed scroll 31, an orbiting scroll 32, an Oldham ring 33, and a main frame 2 are provided. The fixed scroll 31 has a pair of first Oldham grooves 314. The swing scroll 32 has a pair of second Oldham grooves 324. The Oldham ring 33 has a pair of first key portions 332 that are inserted into and housed in the pair of first Oldham grooves 314 of the fixed scroll 31. The Oldham ring 33 has a pair of second key portions 333 that are inserted and accommodated in the pair of second Oldham grooves 324 of the swing scroll 32. The fixed scroll 31 and the main frame 2 are respectively fixed to the shell 1.
According to this configuration, the fixed scroll 31 and the swing scroll 32 can directly perform relative phase alignment by the Oldham ring 33. The fixed scroll 31 and the main frame 2 are separately and independently fixed to the shell 1 that is a casing. Thereby, the wall of the main frame 2 for fixing the fixed scroll 31 which was conventionally required can be deleted. In addition, since the phase relationship between the fixed scroll 31 and the orbiting scroll 32 is maintained, only the Oldham ring 33 is the minimum necessary component. Therefore, the space of the compression chamber 34 that can be formed between the fixed scroll 31 and the main frame 2 can be effectively used, and the degree of freedom in designing the orbiting scroll 32 can be improved. Further, the number of parts can be reduced, the assembly can be simplified, and the cost can be reduced.
In addition, a large space can be formed between the fixed scroll 31 and the main frame 2. Thereby, the area of the second substrate 321 of the orbiting scroll 32 can be utilized to the maximum, the configurable area of the plate-like spiral teeth can be increased, the plate-like spiral teeth can be increased in capacity, and the thrust area can be expanded, The swing motion of the swing scroll 32 can be stabilized and the reliability can be improved.
 実施の形態1によれば、オルダムリング33は、揺動スクロール32に対して固定スクロール31とは反対側に位置するメインフレーム2内に収容されている。揺動スクロール32は、一対の切欠き部325を有している。一対の第1キー部332は、揺動スクロール32の一対の切欠き部325のそれぞれを通って延出され、固定スクロール31の一対の第1オルダム溝314のそれぞれに差し込まれて収容されている。一対の第2キー部333は、一対の第1キー部332と同一方向に延出され、一対の第1キー部332よりも短く形成され、揺動スクロール32の一対の第2オルダム溝324のそれぞれに差し込まれて収容されている。
 この構成によれば、固定スクロール31と揺動スクロール32とがオルダムリング33によって相対位相合わせを直接行える。
 加えて、固定スクロール31とメインフレーム2との間に、オルダムリング33の無いより大きなスペースが形成できる。これにより、揺動スクロール32の第2基板321の面積が最大限大きく活用でき、板状渦巻歯の構成可能面積が増加して板状渦巻歯が大容量化できるとともに、スラスト面積が拡大でき、揺動スクロール32の揺動運動が安定でき、信頼性が向上できる。
According to the first embodiment, the Oldham ring 33 is accommodated in the main frame 2 located on the opposite side of the fixed scroll 31 with respect to the orbiting scroll 32. The rocking scroll 32 has a pair of notch portions 325. The pair of first key portions 332 extends through each of the pair of notch portions 325 of the swing scroll 32 and is inserted and accommodated in each of the pair of first Oldham grooves 314 of the fixed scroll 31. . The pair of second key portions 333 extend in the same direction as the pair of first key portions 332, are shorter than the pair of first key portions 332, and are formed on the pair of second Oldham grooves 324 of the orbiting scroll 32. It is inserted and accommodated in each.
According to this configuration, the fixed scroll 31 and the swing scroll 32 can directly perform relative phase alignment by the Oldham ring 33.
In addition, a larger space without the Oldham ring 33 can be formed between the fixed scroll 31 and the main frame 2. Thereby, the area of the second substrate 321 of the orbiting scroll 32 can be utilized to the maximum, the configurable area of the plate-like spiral teeth can be increased, the plate-like spiral teeth can be increased in capacity, and the thrust area can be expanded, The swing motion of the swing scroll 32 can be stabilized and the reliability can be improved.
 実施の形態1によれば、一対の切欠き部325のそれぞれは、メインフレーム2の吸入ポート213と連通され、一対の第1キー部332のそれぞれの動作時軌跡範囲よりも広い広さの空間に形成されている。
 この構成によれば、一対の切欠き部325のそれぞれが一対の第1キー部332のそれぞれの移動に干渉せず、揺動スクロール32の揺動運動がスムーズに行える。また、一対の切欠き部325のそれぞれは、一対の第1キー部332のそれぞれの動作時軌跡範囲よりも広い広さの空間である。このため、一対の切欠き部325のそれぞれの縁部と一対の第1キー部332のそれぞれとの間に隙間が生じ、メインフレーム2の吸入ポート213から圧縮室34に冷媒が導ける。
According to the first embodiment, each of the pair of cutout portions 325 communicates with the suction port 213 of the main frame 2 and has a space wider than the respective operating trajectory ranges of the pair of first key portions 332. Is formed.
According to this configuration, each of the pair of notch portions 325 does not interfere with the movement of each of the pair of first key portions 332, and the swinging motion of the swing scroll 32 can be performed smoothly. In addition, each of the pair of notch portions 325 is a space having a wider area than the respective operating trajectory range of the pair of first key portions 332. For this reason, a gap is generated between each edge of the pair of cutout portions 325 and each of the pair of first key portions 332, and the refrigerant can be guided from the suction port 213 of the main frame 2 to the compression chamber 34.
 実施の形態1によれば、オルダムリング33は、一対の第1キー部332のそれぞれを円環部331から半径方向の外側に延出させた一対の腕部334のそれぞれに設けるとともに、一対の第2キー部333を円環部331に設けている。
 この構成によれば、一対の第1キー部332のそれぞれが一対の腕部334のそれぞれに設けられて揺動スクロール32の板状渦巻歯の構成可能面積を狭めることなく、一対の第1オルダム溝314のそれぞれに収容できる。これにより、固定スクロール31と揺動スクロール32とがオルダムリング33によって相対位相合わせを直接行える。
According to the first embodiment, the Oldham ring 33 is provided on each of the pair of arm portions 334 in which each of the pair of first key portions 332 extends from the annular portion 331 to the outside in the radial direction. A second key portion 333 is provided in the annular portion 331.
According to this configuration, each of the pair of first key portions 332 is provided on each of the pair of arm portions 334, so that the area where the plate-like spiral teeth of the orbiting scroll 32 can be configured is not reduced. It can be accommodated in each of the grooves 314. Thereby, the fixed scroll 31 and the swing scroll 32 can directly perform relative phase alignment by the Oldham ring 33.
 実施の形態1によれば、一対の第1キー部332を繋ぐ第1仮想線と一対の第2キー部333を繋ぐ第2仮想線とは、クランクシャフト6の軸線方向に直交する平面で直交している。
 この構成によれば、一対の第1キー部332と一対の第2キー部333とが移動方向を互いに干渉せず、揺動スクロール32の揺動運動がスムーズに行える。
According to the first embodiment, the first imaginary line connecting the pair of first key portions 332 and the second imaginary line connecting the pair of second key portions 333 are orthogonal on a plane orthogonal to the axial direction of the crankshaft 6. is doing.
According to this configuration, the pair of first key portions 332 and the pair of second key portions 333 do not interfere with each other in the moving direction, and the swing motion of the swing scroll 32 can be performed smoothly.
 実施の形態1によれば、一対の第1オルダム溝314のそれぞれは、収容される一対の第1キー部332のそれぞれよりも半径方向に長い空間に形成されている。一対の第2オルダム溝324のそれぞれは、収容される一対の第2キー部333のそれぞれよりも半径方向に長い空間に形成されている。
 この構成によれば、一対の第1キー部332のそれぞれが一対の第1オルダム溝314のそれぞれに収容されてスムーズにスライドできる。また、一対の第2キー部333のそれぞれが一対の第2オルダム溝324のそれぞれに収容されてスムーズにスライドできる。それにより、揺動スクロール32の揺動運動がスムーズに行える。
According to the first embodiment, each of the pair of first Oldham grooves 314 is formed in a space that is longer in the radial direction than each of the pair of first key portions 332 accommodated therein. Each of the pair of second Oldham grooves 324 is formed in a space longer in the radial direction than each of the pair of second key portions 333 accommodated.
According to this configuration, each of the pair of first key portions 332 is accommodated in each of the pair of first Oldham grooves 314 and can slide smoothly. Also, each of the pair of second key portions 333 is accommodated in each of the pair of second Oldham grooves 324 and can slide smoothly. Thereby, the swing motion of the swing scroll 32 can be performed smoothly.
 実施の形態1によれば、固定スクロール31とメインフレーム2とは、筐体であるシェル1にそれぞれ固定されている。
 この構成によれば、固定スクロール31とメインフレーム2とは、別々にシェル1に固定される。これにより、従来必要であった固定スクロール31を固定するためのメインフレーム2の壁を削除できる。加えて、固定スクロール31とメインフレーム2とを締結するボルトなどが必要なくなる。また、固定スクロール31と揺動スクロール32との位相関係が保持されるために、オルダムリング33だけが必要最低限の必須構成要素になる。そのため、圧縮室34のスペースが有効活用でき、揺動スクロール32の設計の自由度が向上できる。また、部品点数が削減でき、組立が簡略化でき、コストが低減できる。
According to the first embodiment, the fixed scroll 31 and the main frame 2 are respectively fixed to the shell 1 that is a casing.
According to this configuration, the fixed scroll 31 and the main frame 2 are fixed to the shell 1 separately. Thereby, the wall of the main frame 2 for fixing the fixed scroll 31 which was conventionally required can be deleted. In addition, a bolt for fastening the fixed scroll 31 and the main frame 2 becomes unnecessary. In addition, since the phase relationship between the fixed scroll 31 and the orbiting scroll 32 is maintained, only the Oldham ring 33 is the minimum necessary component. Therefore, the space of the compression chamber 34 can be used effectively, and the degree of freedom in designing the orbiting scroll 32 can be improved. Further, the number of parts can be reduced, the assembly can be simplified, and the cost can be reduced.
実施の形態2.
 次に、実施の形態2について説明する。実施の形態2では、上記実施の形態1で説明した同一の構成については説明を省略し、その特徴部分のみを説明する。
Embodiment 2. FIG.
Next, a second embodiment will be described. In the second embodiment, the description of the same configuration described in the first embodiment will be omitted, and only the characteristic part will be described.
<スクロール圧縮機100の構成>
 図11は、本発明の実施の形態2に係るスクロール圧縮機100の上半体を示す概略構成図である。図12は、本発明の実施の形態2に係るスクロール圧縮機100の上半体の図1から90°位相を変えた状態を示す概略構成図である。図13は、本発明の実施の形態2に係るスクロール圧縮機100を示す分解斜視図である。図14は、本発明の実施の形態2に係るスクロール圧縮機100におけるメインフレーム2、オルダムリング33および揺動スクロール32の位置関係を示す模式図である。図15は、本発明の実施の形態2に係るスクロール圧縮機100におけるメインフレーム2、オルダムリング33および揺動スクロール32の一回転の位置関係をまとめて示す模式図であり、図15(a)がθ=0°の位置関係を示す模式図であり、図15(b)がθ=90°の位置関係を示す模式図であり、図15(c)がθ=180°の位置関係を示す模式図であり、図15(d)がθ=270°の位置関係を示す模式図である。
<Configuration of scroll compressor 100>
FIG. 11 is a schematic configuration diagram showing an upper half of the scroll compressor 100 according to Embodiment 2 of the present invention. FIG. 12 is a schematic configuration diagram showing a state where the phase of the upper half of the scroll compressor 100 according to Embodiment 2 of the present invention is changed by 90 ° from FIG. FIG. 13 is an exploded perspective view showing the scroll compressor 100 according to Embodiment 2 of the present invention. FIG. 14 is a schematic diagram showing a positional relationship among the main frame 2, the Oldham ring 33, and the orbiting scroll 32 in the scroll compressor 100 according to Embodiment 2 of the present invention. FIG. 15 is a schematic view collectively showing the positional relationship of one rotation of the main frame 2, the Oldham ring 33, and the swinging scroll 32 in the scroll compressor 100 according to Embodiment 2 of the present invention. Is a schematic diagram showing the positional relationship of θ = 0 °, FIG. 15B is a schematic diagram showing the positional relationship of θ = 90 °, and FIG. 15C shows the positional relationship of θ = 180 °. FIG. 15D is a schematic diagram, and FIG. 15D is a schematic diagram showing a positional relationship of θ = 270 °.
 オルダムリング33は、揺動スクロール32に対して固定スクロール31とは反対側に位置するメインフレーム2内のオルダム収容部214に収容されている。一対の第1キー部332は、揺動スクロール32の半径方向の外側を通って一端側Uへ延出され、固定スクロール31の一対の第1オルダム溝314のそれぞれに差し込まれて収容されている。一対の第2キー部333は、一対の第1キー部332と同一方向に延出され、一対の第1キー部332よりも短く形成され、揺動スクロール32の対になる半径方向の外側に延出する切り欠かれた一対の第2オルダム溝324のそれぞれに差し込まれて収容されている。 The Oldham ring 33 is housed in the Oldham housing portion 214 in the main frame 2 located on the opposite side of the fixed scroll 31 with respect to the orbiting scroll 32. The pair of first key portions 332 passes through the radially outer side of the orbiting scroll 32 and extends to the one end side U, and is inserted and accommodated in each of the pair of first Oldham grooves 314 of the fixed scroll 31. . The pair of second key portions 333 extend in the same direction as the pair of first key portions 332, are formed shorter than the pair of first key portions 332, and are formed on the outer side in the radial direction to be paired with the orbiting scroll 32. Each of the pair of cut out second Oldham grooves 324 is inserted and accommodated.
 オルダム収容部214がメインフレーム2の内側に設定されている。スラスト面212がメインフレーム2の内側に設定されている。前述のメインフレーム2の構成に沿うように、オルダムリング33の円環部331が拡大されている。そして、円環部331上に、一対の第1キー部332と、一対の第2キー部333と、を設けている。つまり、オルダムリング33は、一対の第1キー部332と一対の第2キー部333とを円環部331に設けている。スラストプレート24は、スラスト面212に沿うように縮小化する。U字形の揺動スクロール32の切欠き部325の設定条件は、実施の形態1と同様である。 Oldham accommodation part 214 is set inside main frame 2. A thrust surface 212 is set inside the main frame 2. The annular portion 331 of the Oldham ring 33 is enlarged so as to conform to the configuration of the main frame 2 described above. A pair of first key portions 332 and a pair of second key portions 333 are provided on the annular portion 331. That is, the Oldham ring 33 is provided with a pair of first key portions 332 and a pair of second key portions 333 in the annular portion 331. The thrust plate 24 is reduced along the thrust surface 212. The setting condition of the notch 325 of the U-shaped orbiting scroll 32 is the same as that of the first embodiment.
 この構成においても、実施の形態1と同様に、揺動スクロール32の第2基板321の面積が最大となり、第2渦巻体322の構成可能面積の増加による大容量化ができる。 Also in this configuration, similarly to the first embodiment, the area of the second substrate 321 of the orbiting scroll 32 is maximized, and the capacity can be increased by increasing the configurable area of the second spiral body 322.
<実施の形態2の効果>
 実施の形態2によれば、オルダムリング33は、揺動スクロール32に対して固定スクロール31とは反対側に位置するメインフレーム2内に収容されている。一対の第1キー部332は、揺動スクロール32の半径方向の外側を通って延出され、固定スクロール31の一対の第1オルダム溝314のそれぞれに差し込まれて収容されている。一対の第2キー部333は、一対の第1キー部332と同一方向に延出され、一対の第1キー部332よりも短く形成され、揺動スクロール32の一対の第2オルダム溝324のそれぞれに差し込まれて収容されている。
 この構成によれば、固定スクロール31と揺動スクロール32とがオルダムリング33によって相対位相合わせを直接行える。
 加えて、固定スクロール31とメインフレーム2との間にオルダムリング33が無く大きなスペースが形成できる。これにより、揺動スクロール32の第2基板321の面積が最大限大きく活用でき、板状渦巻歯の構成可能面積が増加して板状渦巻歯が大容量化できるとともに、スラスト面積が拡大でき、揺動スクロール32の揺動運動が安定でき、信頼性が向上できる。
<Effect of Embodiment 2>
According to the second embodiment, the Oldham ring 33 is accommodated in the main frame 2 located on the opposite side of the fixed scroll 31 with respect to the swing scroll 32. The pair of first key portions 332 extends through the outer side in the radial direction of the orbiting scroll 32 and is inserted and accommodated in each of the pair of first Oldham grooves 314 of the fixed scroll 31. The pair of second key portions 333 extend in the same direction as the pair of first key portions 332, are shorter than the pair of first key portions 332, and are formed on the pair of second Oldham grooves 324 of the orbiting scroll 32. It is inserted and accommodated in each.
According to this configuration, the fixed scroll 31 and the swing scroll 32 can directly perform relative phase alignment by the Oldham ring 33.
In addition, there is no Oldham ring 33 between the fixed scroll 31 and the main frame 2, and a large space can be formed. Thereby, the area of the second substrate 321 of the orbiting scroll 32 can be utilized to the maximum, the configurable area of the plate-like spiral teeth can be increased, the plate-like spiral teeth can be increased in capacity, and the thrust area can be expanded, The swing motion of the swing scroll 32 can be stabilized and the reliability can be improved.
 実施の形態2によれば、オルダムリング33は、一対の第1キー部332と一対の第2キー部333とを円環部331に設けている。
 この構成によれば、オルダムリング33の円環部331の移動時軌跡が円環部331を拡大した円形領域になり、オルダムリング33の移動がスムーズに行える。また、固定スクロール31と揺動スクロール32とがオルダムリング33によって相対位相合わせを直接行える。
According to the second embodiment, the Oldham ring 33 is provided with a pair of first key portions 332 and a pair of second key portions 333 in the annular portion 331.
According to this configuration, the locus of movement of the annular portion 331 of the Oldham ring 33 becomes a circular region in which the annular portion 331 is enlarged, and the Oldham ring 33 can be moved smoothly. Further, the relative scroll alignment between the fixed scroll 31 and the swing scroll 32 can be performed directly by the Oldham ring 33.
実施の形態3.
 次に、実施の形態3について説明する。実施の形態3では、上記実施の形態1、2で説明した同一の構成については説明を省略し、その特徴部分のみを説明する。
Embodiment 3 FIG.
Next, Embodiment 3 will be described. In the third embodiment, the description of the same configuration described in the first and second embodiments is omitted, and only the characteristic part is described.
<スクロール圧縮機100の構成>
 図16は、本発明の実施の形態3に係るスクロール圧縮機100の上半体を示す概略構成図である。図17は、本発明の実施の形態3に係るスクロール圧縮機100の上半体の図16から90°位相を変えた状態を示す概略構成図である。図18は、本発明の実施の形態3に係るスクロール圧縮機100を示す分解斜視図である。
<Configuration of scroll compressor 100>
FIG. 16 is a schematic configuration diagram showing an upper half of the scroll compressor 100 according to Embodiment 3 of the present invention. FIG. 17 is a schematic configuration diagram illustrating a state where the phase of the upper half of the scroll compressor 100 according to the third embodiment of the present invention is changed by 90 ° from FIG. 16. FIG. 18 is an exploded perspective view showing the scroll compressor 100 according to Embodiment 3 of the present invention.
 オルダムリング33は、固定スクロール31と揺動スクロール32との間に揺動スクロール32に接触して収容されている。一対の第1キー部332は、固定スクロール31の一対の第1オルダム溝314のそれぞれに差し込まれて収容されている。一対の第2キー部333は、一対の第1キー部332と逆方向に延出され、一対の第1キー部332よりも短く形成され、揺動スクロール32の一対の第2オルダム溝324のそれぞれに差し込まれて収容されている。 The Oldham ring 33 is accommodated between the fixed scroll 31 and the swing scroll 32 in contact with the swing scroll 32. The pair of first key portions 332 is inserted and accommodated in the pair of first Oldham grooves 314 of the fixed scroll 31. The pair of second key portions 333 extends in the opposite direction to the pair of first key portions 332, is formed shorter than the pair of first key portions 332, and includes a pair of second Oldham grooves 324 of the orbiting scroll 32. It is inserted and accommodated in each.
 上記実施の形態1、2では、固定スクロール31の背面に形成された一対の第1オルダム溝314と揺動スクロール32の背面に形成された一対の第2オルダム溝324とがオルダムリング33で係合される。このため、サイズが大きく、量産性およびコストが課題となる高精度なオルダムリング33が必要になる。また、揺動スクロール32の背面に設けられたスラスト軸受は、構造上、オルダムリング33の一対の腕部334などにより分断される。 In the first and second embodiments, the pair of first Oldham grooves 314 formed on the back surface of the fixed scroll 31 and the pair of second Oldham grooves 324 formed on the back surface of the orbiting scroll 32 are engaged by the Oldham ring 33. Combined. For this reason, a highly accurate Oldham ring 33 is required which is large in size and has problems in mass productivity and cost. Further, the thrust bearing provided on the back surface of the orbiting scroll 32 is divided by a pair of arms 334 of the Oldham ring 33 and the like in terms of structure.
 一方、実施の形態3では、揺動スクロール32と固定スクロール31の間にオルダムリング33を挟み込む構造である。このため、オルダムリング33がコンパクトになる。給油経路として揺動スクロール32の背面に油が溜まる構造である。このため、メインフレーム2の上面と揺動スクロール32の背面との接触面であるスラスト面212でのシール性が確保でき、油上がりが抑制できる。スラスト軸受は、給油量が安定し、揺動スクロール32の背面全体を利用でき、軸受信頼性が高い。また、メインフレーム2の壁が無い構造であり、揺動スクロール32と固定スクロール31との位相精度を維持したまま渦巻構造の配置の自由度が確保できる。 On the other hand, in the third embodiment, the Oldham ring 33 is sandwiched between the orbiting scroll 32 and the fixed scroll 31. For this reason, the Oldham ring 33 becomes compact. In this structure, oil is accumulated on the back surface of the swing scroll 32 as an oil supply path. For this reason, the sealing performance at the thrust surface 212, which is the contact surface between the upper surface of the main frame 2 and the back surface of the orbiting scroll 32, can be ensured, and oil rising can be suppressed. The thrust bearing has a stable oil supply, can use the entire back surface of the orbiting scroll 32, and has high bearing reliability. Further, the main frame 2 has no wall, and the degree of freedom in the arrangement of the spiral structure can be secured while maintaining the phase accuracy between the orbiting scroll 32 and the fixed scroll 31.
<実施の形態3の効果>
 実施の形態3によれば、オルダムリング33は、固定スクロール31と揺動スクロール32との間に揺動スクロール32に接触して収容されている。一対の第1キー部332は、固定スクロール31の一対の第1オルダム溝314のそれぞれに差し込まれて収容されている。一対の第2キー部333は、一対の第1キー部332と逆方向に延出され、揺動スクロール32の一対の第2オルダム溝324のそれぞれに差し込まれて収容されている。
 この構成によれば、固定スクロール31と揺動スクロール32とがオルダムリング33によって相対位相合わせを直接行える。
 加えて、オルダムリング33がコンパクトになる。給油経路として揺動スクロール32の背面に油が溜まる構造である。このため、メインフレーム2の上面と揺動スクロール32の背面との接触面であるスラスト面212でのシール性が確保でき、油上がりが抑制できる。スラスト軸受は、給油量が安定し、揺動スクロール32の背面全体を利用でき、軸受信頼性が高い。また、メインフレーム2の壁が無い構造であり、揺動スクロール32と固定スクロール31との位相精度を維持したまま渦巻構造の配置の自由度が確保できる。
<Effect of Embodiment 3>
According to the third embodiment, the Oldham ring 33 is accommodated in contact with the orbiting scroll 32 between the fixed scroll 31 and the orbiting scroll 32. The pair of first key portions 332 is inserted and accommodated in the pair of first Oldham grooves 314 of the fixed scroll 31. The pair of second key portions 333 extend in the opposite direction to the pair of first key portions 332, and are inserted into and housed in the pair of second Oldham grooves 324 of the orbiting scroll 32.
According to this configuration, the fixed scroll 31 and the swing scroll 32 can directly perform relative phase alignment by the Oldham ring 33.
In addition, the Oldham ring 33 becomes compact. In this structure, oil is accumulated on the back surface of the swing scroll 32 as an oil supply path. For this reason, the sealing performance at the thrust surface 212, which is the contact surface between the upper surface of the main frame 2 and the back surface of the orbiting scroll 32, can be ensured, and oil rising can be suppressed. The thrust bearing has a stable oil supply, can use the entire back surface of the orbiting scroll 32, and has high bearing reliability. Further, the main frame 2 has no wall, and the degree of freedom in the arrangement of the spiral structure can be secured while maintaining the phase accuracy between the orbiting scroll 32 and the fixed scroll 31.
 実施の形態3によれば、一対の第2キー部333は、一対の第1キー部332よりも短く形成されている。
 この構成によれば、固定スクロール31と揺動スクロール32とがオルダムリング33によって相対位相合わせを直接行える。また、一対の第2キー部333は、揺動スクロール32の表面に形成されて突き抜けない一対の第2オルダム溝324に収容され、圧縮機構部3の省スペース化が図れる。
According to Embodiment 3, the pair of second key portions 333 are formed shorter than the pair of first key portions 332.
According to this configuration, the fixed scroll 31 and the swing scroll 32 can directly perform relative phase alignment by the Oldham ring 33. Further, the pair of second key portions 333 are accommodated in the pair of second Oldham grooves 324 that are formed on the surface of the orbiting scroll 32 and do not penetrate through, thereby saving the space of the compression mechanism portion 3.
<その他>
 ここで、実施の形態1~3において、メインフレーム2の切欠き部217とスラストプレート24の突起部242とで回転が不能なように係合されている。しかし、スラストプレート24が回転抑止可能であれば、凹凸部での係合は必須ではない。スラストプレート24側に凹部が設定され、メインフレーム2側に凸部が設定される構成でも良い。また、スラストプレート24を一部折り曲げ、メインフレーム2の吸入ポート213などの開口部に係止して回転抑止する構成でも良い。
<Others>
Here, in the first to third embodiments, the notch 217 of the main frame 2 and the protrusion 242 of the thrust plate 24 are engaged so as not to rotate. However, as long as the thrust plate 24 can be prevented from rotating, engagement at the concavo-convex portion is not essential. A configuration in which a concave portion is set on the thrust plate 24 side and a convex portion is set on the main frame 2 side may be employed. Alternatively, the thrust plate 24 may be partially bent and locked to an opening such as the suction port 213 of the main frame 2 to prevent rotation.
 実施の形態1~3において、スラストプレート24は必須構成要素ではなく、メインフレーム2のスラスト面212が揺動スクロール32と摺動する構成でも良い。 In the first to third embodiments, the thrust plate 24 is not an essential component, and the thrust surface 212 of the main frame 2 may slide with the orbiting scroll 32.
 実施の形態1、2では、メインフレーム2の吸入ポート213と揺動スクロール32の切欠き部325とは、吸入空間とオルダムリング33の第1キー部332の格納空間215とを兼ねている。しかし、運転中に吸入空間を完全に塞がず、オルダムリング33の第1キー部332に干渉しない構造であれば、メインフレーム2の吸入ポート233と揺動スクロール32の切欠き部325との数は、等数でなくて良い。また、吸入空間とオルダムリング33の第1キー部332に干渉しない空間とを別に形成する構成でも良い。 In the first and second embodiments, the suction port 213 of the main frame 2 and the cutout portion 325 of the swing scroll 32 serve as the suction space and the storage space 215 of the first key portion 332 of the Oldham ring 33. However, if the structure does not completely block the suction space during operation and does not interfere with the first key portion 332 of the Oldham ring 33, the suction port 233 of the main frame 2 and the cutout portion 325 of the orbiting scroll 32 are not connected. The number does not have to be equal. Moreover, the structure which forms separately the suction space and the space which does not interfere with the 1st key part 332 of the Oldham ring 33 may be sufficient.
 実施の形態1、2では、揺動スクロール32の切欠き部325の設定についてU字形であると、最も揺動スクロール32の第2基板321の面積が大きくなる。しかし、運転中に吸入空間を完全に塞がず、オルダムリング33の第1キー部332に干渉しない構造であれば、揺動スクロール32の切欠き部325の形状はU字形に限定されない。切欠き部325に例示される開口部は、U字形、V字形などの構成でも良いし、揺動外周部が繋がったまま第2基板321に丸穴、長穴などのドーナツ状の穴を開けた構成でも良い。 In the first and second embodiments, the area of the second substrate 321 of the orbiting scroll 32 is the largest when the notch 325 of the orbiting scroll 32 is set to be U-shaped. However, the shape of the cutout portion 325 of the orbiting scroll 32 is not limited to the U shape as long as the suction space is not completely blocked during operation and the first key portion 332 of the Oldham ring 33 is not interfered. The opening illustrated in the notch 325 may be U-shaped, V-shaped, or the like, or a donut-shaped hole such as a round hole or a long hole is formed in the second substrate 321 while the swinging outer peripheral part is connected. A configuration may be used.
実施の形態4.
<冷凍サイクル装置200>
 図19は、本発明の実施の形態4に係るスクロール圧縮機100を適用した冷凍サイクル装置200を示す冷媒回路図である。
 図19に示すように、冷凍サイクル装置200は、スクロール圧縮機100、凝縮器201、膨張弁202および蒸発器203を備えている。これらスクロール圧縮機100、凝縮器201、膨張弁202および蒸発器203が冷媒配管で接続されて冷凍サイクル回路を形成している。そして、蒸発器203から流出した冷媒は、スクロール圧縮機100に吸入されて高温高圧となる。高温高圧となった冷媒は、凝縮器201において凝縮されて液体になる。液体となった冷媒は、膨張弁202で減圧膨張されて低温低圧の気液二相となり、気液二相の冷媒が蒸発器203において熱交換される。
 実施の形態1~3のスクロール圧縮機100は、このような冷凍サイクル装置200に適用できる。なお、冷凍サイクル装置200としては、たとえば空気調和機、冷凍装置および給湯器などが挙げられる。
Embodiment 4 FIG.
<Refrigeration cycle apparatus 200>
FIG. 19 is a refrigerant circuit diagram showing a refrigeration cycle apparatus 200 to which the scroll compressor 100 according to Embodiment 4 of the present invention is applied.
As shown in FIG. 19, the refrigeration cycle apparatus 200 includes a scroll compressor 100, a condenser 201, an expansion valve 202, and an evaporator 203. The scroll compressor 100, the condenser 201, the expansion valve 202, and the evaporator 203 are connected by a refrigerant pipe to form a refrigeration cycle circuit. Then, the refrigerant flowing out of the evaporator 203 is sucked into the scroll compressor 100 and becomes high temperature and pressure. The high-temperature and high-pressure refrigerant is condensed in the condenser 201 to become a liquid. The refrigerant that has become liquid is decompressed and expanded by the expansion valve 202 to form a low-temperature and low-pressure gas-liquid two-phase, and the gas-liquid two-phase refrigerant is heat-exchanged in the evaporator 203.
The scroll compressor 100 according to the first to third embodiments can be applied to such a refrigeration cycle apparatus 200. Note that examples of the refrigeration cycle apparatus 200 include an air conditioner, a refrigeration apparatus, and a water heater.
<実施の形態4の効果>
 冷凍サイクル装置200は、上記の実施の形態1~3に記載のスクロール圧縮機100を備えている。
 この構成によれば、スクロール圧縮機100を備えている冷凍サイクル装置200は、固定スクロール31と揺動スクロール32とがオルダムリング33によって相対位相合わせを直接行え、揺動スクロール32の設計の自由度が向上でき、コストが低減できる。
<Effect of Embodiment 4>
The refrigeration cycle apparatus 200 includes the scroll compressor 100 described in the first to third embodiments.
According to this configuration, in the refrigeration cycle apparatus 200 including the scroll compressor 100, the fixed scroll 31 and the swing scroll 32 can directly perform relative phase alignment by the Oldham ring 33, and the degree of freedom of design of the swing scroll 32 is improved. Can be improved and the cost can be reduced.
 1 シェル、2 メインフレーム、3 圧縮機構部、4 駆動機構部、5 サブフレーム、6 クランクシャフト、7 スライダバランサ、8 給電部、11 メインシェル、12 アッパーシェル、13 ロアシェル、14 吸入管、15 吐出管、17 固定台、21 本体部、22 主軸受部、23 返油管、24 スラストプレート、31 固定スクロール、32 揺動スクロール、33 オルダムリング、34 圧縮室、35 マフラー、36 吐出弁、37 冷媒取込空間、41 ステータ、42 ロータ、51 副軸受部、52 オイルポンプ、61 主軸部、62 偏心軸部、63 通油路、64 第1バランサ、65 第2バランサ、71 スライダ、72 バランスウエイト、81 カバー、82 給電端子、83 配線、100 スクロール圧縮機、111 第1内壁面、112 第1突出部、113 第1位置決め面、114 第2内壁面、115 第2突出部、200 冷凍サイクル装置、201 凝縮器、202 膨張弁、203 蒸発器、211 収容空間、212 スラスト面、213 吸入ポート、214 オルダム収容部、215 格納空間、216 突壁、217 切欠き部、221 軸孔、233 吸入ポート、241 開口部、242 突起部、311 第1基板、312 第1渦巻体、313 吐出ポート、314 第1オルダム溝、321 第2基板、322 第2渦巻体、323 筒状部、324 第2オルダム溝、325 切欠き部、331 円環部、332 第1キー部、333 第2キー部、334 腕部、351 吐出孔、721 ウエイト部。 1 shell, 2 main frame, 3 compression mechanism section, 4 drive mechanism section, 5 subframe, 6 crankshaft, 7 slider balancer, 8 power feeding section, 11 main shell, 12 upper shell, 13 lower shell, 14 suction pipe, 15 discharge Pipe, 17 fixed base, 21 body part, 22 main bearing part, 23 oil return pipe, 24 thrust plate, 31 fixed scroll, 32 rocking scroll, 33 Oldham ring, 34 compression chamber, 35 muffler, 36 discharge valve, 37 refrigerant removal Entry space, 41 stator, 42 rotor, 51 sub bearing, 52 oil pump, 61 main shaft, 62 eccentric shaft, 63 oil passage, 64 first balancer, 65 second balancer, 71 slider, 72 balance weight, 81 Cover, 82 Power supply terminal, 83 Wire, 100 scroll compressor, 111 first inner wall surface, 112 first protrusion, 113 first positioning surface, 114 second inner wall surface, 115 second protrusion, 200 refrigeration cycle apparatus, 201 condenser, 202 expansion valve, 203 evaporator, 211 accommodating space, 212 thrust surface, 213 suction port, 214 Oldham accommodating part, 215 containment space, 216 protruding wall, 217 notch, 221 axial hole, 233 suction port, 241 opening, 242 protrusion, 311 1st substrate, 312 1st spiral body, 313 discharge port, 314 1st Oldham groove, 321 2nd substrate, 322 2nd spiral body, 323 cylindrical part, 324 2nd Oldham groove, 325 notch part, 331 yen Ring part, 332 First key part, 333 Second key part, 334 Arm part, 351 Hole, 721 weight portion.

Claims (11)

  1.  それぞれの板状渦巻歯が噛み合わされて圧縮室を形成する固定スクロールおよび揺動スクロールと、
     前記揺動スクロールの自転を防止するオルダムリングと、
     前記揺動スクロールを駆動する主軸を回転自在に支持するフレームと、
     前記固定スクロールと前記揺動スクロールと前記オルダムリングと前記フレームとを内部に設けた筐体であるシェルと、
    を備え、
     前記固定スクロールは、一対の第1オルダム溝を有し、
     前記揺動スクロールは、一対の第2オルダム溝を有し、
     前記オルダムリングは、前記固定スクロールの前記一対の第1オルダム溝のそれぞれに差し込まれて収容される一対の第1キー部と、前記揺動スクロールの前記一対の第2オルダム溝のそれぞれに差し込まれて収容される一対の第2キー部と、を有し、
     前記固定スクロールと前記フレームとは、前記シェルにそれぞれ固定されたスクロール圧縮機。
    A fixed scroll and an orbiting scroll in which the respective plate-like spiral teeth are meshed to form a compression chamber;
    An Oldham ring to prevent rotation of the orbiting scroll;
    A frame that rotatably supports a main shaft that drives the orbiting scroll;
    A shell which is a housing provided with the fixed scroll, the swing scroll, the Oldham ring, and the frame;
    With
    The fixed scroll has a pair of first Oldham grooves,
    The orbiting scroll has a pair of second Oldham grooves,
    The Oldham ring is inserted into each of the pair of first Oldham grooves of the fixed scroll and each of the pair of second Oldham grooves of the swing scroll. And a pair of second key portions to be housed,
    The fixed scroll and the frame are scroll compressors fixed to the shell, respectively.
  2.  前記オルダムリングは、前記揺動スクロールに対して前記固定スクロールとは反対側に位置する前記フレーム内に収容され、
     前記揺動スクロールは、一対の開口部を有し、
     前記一対の第1キー部は、前記揺動スクロールの前記一対の開口部のそれぞれを通って延出され、前記固定スクロールの前記一対の第1オルダム溝のそれぞれに差し込まれて収容され、
     前記一対の第2キー部は、前記一対の第1キー部と同一方向に延出され、前記一対の第1キー部よりも短く形成され、前記揺動スクロールの前記一対の第2オルダム溝のそれぞれに差し込まれて収容された請求項1に記載のスクロール圧縮機。
    The Oldham ring is housed in the frame located on the opposite side of the fixed scroll with respect to the orbiting scroll,
    The swing scroll has a pair of openings,
    The pair of first key portions extend through each of the pair of openings of the orbiting scroll, and are inserted and accommodated in each of the pair of first Oldham grooves of the fixed scroll,
    The pair of second key portions extend in the same direction as the pair of first key portions, are formed shorter than the pair of first key portions, and are formed on the pair of second Oldham grooves of the swing scroll. The scroll compressor according to claim 1, which is inserted and accommodated in each.
  3.  前記一対の開口部のそれぞれは、前記フレームの吸入ポートと連通され、前記一対の第1キー部のそれぞれの動作時軌跡範囲よりも広い広さの空間に形成された請求項2に記載のスクロール圧縮機。 3. The scroll according to claim 2, wherein each of the pair of openings is communicated with a suction port of the frame, and is formed in a space having a width wider than a movement range of each of the pair of first key portions. Compressor.
  4.  前記オルダムリングは、前記一対の第1キー部のそれぞれを円環部から半径方向の外側に延出させた一対の腕部のそれぞれに設けるとともに、前記一対の第2キー部を前記円環部に設けた請求項2または3に記載のスクロール圧縮機。 The Oldham ring is provided on each of a pair of arms extending each of the pair of first key portions radially outward from the annular portion, and the pair of second key portions is provided on the annular portion. The scroll compressor according to claim 2 or 3 provided in.
  5.  前記オルダムリングは、前記揺動スクロールに対して前記固定スクロールとは反対側に位置する前記フレーム内に収容され、
     前記一対の第1キー部は、前記揺動スクロールの半径方向の外側を通って延出され、前記固定スクロールの前記一対の第1オルダム溝のそれぞれに差し込まれて収容され、
     前記一対の第2キー部は、前記一対の第1キー部と同一方向に延出され、前記一対の第1キー部よりも短く形成され、前記揺動スクロールの一対の第2オルダム溝のそれぞれに差し込まれて収容された請求項1に記載のスクロール圧縮機。
    The Oldham ring is housed in the frame located on the opposite side of the fixed scroll with respect to the orbiting scroll,
    The pair of first key portions are extended through the outer side in the radial direction of the orbiting scroll, and are inserted into and housed in the pair of first Oldham grooves of the fixed scroll, respectively.
    The pair of second key portions extend in the same direction as the pair of first key portions, are formed shorter than the pair of first key portions, and each of the pair of second Oldham grooves of the swing scroll. The scroll compressor according to claim 1, wherein the scroll compressor is inserted and accommodated.
  6.  前記オルダムリングは、前記固定スクロールと前記揺動スクロールとの間に前記揺動スクロールに接触して収容され、
     前記一対の第1キー部は、前記固定スクロールの前記一対の第1オルダム溝のそれぞれに差し込まれて収容され、
     前記一対の第2キー部は、前記一対の第1キー部と逆方向に延出され、前記揺動スクロールの一対の第2オルダム溝のそれぞれに差し込まれて収容された請求項1に記載のスクロール圧縮機。
    The Oldham ring is accommodated in contact with the orbiting scroll between the fixed scroll and the orbiting scroll,
    The pair of first key portions are inserted and accommodated in the pair of first Oldham grooves of the fixed scroll,
    2. The pair of second key parts according to claim 1, wherein the pair of second key parts extends in a direction opposite to the pair of first key parts, and is inserted and accommodated in each of the pair of second Oldham grooves of the swing scroll. Scroll compressor.
  7.  前記一対の第2キー部は、前記一対の第1キー部よりも短く形成された請求項6に記載のスクロール圧縮機。 The scroll compressor according to claim 6, wherein the pair of second key portions are formed shorter than the pair of first key portions.
  8.  前記オルダムリングは、前記一対の第1キー部と前記一対の第2キー部とを円環部に設けた請求項5~7のいずれか1項に記載のスクロール圧縮機。 The scroll compressor according to any one of claims 5 to 7, wherein the Oldham ring has the pair of first key portions and the pair of second key portions provided in an annular portion.
  9.  前記一対の第1キー部を繋ぐ第1仮想線と前記一対の第2キー部を繋ぐ第2仮想線とは、前記主軸の軸線方向に直交する平面で直交した請求項1~8のいずれか1項に記載のスクロール圧縮機。 9. The first imaginary line connecting the pair of first key portions and the second imaginary line connecting the pair of second key portions are orthogonal to each other in a plane orthogonal to the axial direction of the main axis. The scroll compressor according to item 1.
  10.  前記一対の第1オルダム溝のそれぞれは、収容される前記一対の第1キー部のそれぞれよりも半径方向に長い空間に形成され、
     前記一対の第2オルダム溝のそれぞれは、収容される前記一対の第2キー部のそれぞれよりも半径方向に長い空間に形成された請求項1~9のいずれか1項に記載のスクロール圧縮機。
    Each of the pair of first Oldham grooves is formed in a space longer in the radial direction than each of the pair of first key portions to be accommodated,
    The scroll compressor according to any one of claims 1 to 9, wherein each of the pair of second Oldham grooves is formed in a space that is longer in the radial direction than each of the pair of second key portions to be accommodated. .
  11.  請求項1~10のいずれか1項に記載のスクロール圧縮機を備えた冷凍サイクル装置。 A refrigeration cycle apparatus comprising the scroll compressor according to any one of claims 1 to 10.
PCT/JP2017/008719 2017-03-06 2017-03-06 Scroll compressor and refrigeration cycle device WO2018163233A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2017/008719 WO2018163233A1 (en) 2017-03-06 2017-03-06 Scroll compressor and refrigeration cycle device
JP2019503826A JP6678811B2 (en) 2017-03-06 2017-03-06 Scroll compressor and refrigeration cycle device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/008719 WO2018163233A1 (en) 2017-03-06 2017-03-06 Scroll compressor and refrigeration cycle device

Publications (1)

Publication Number Publication Date
WO2018163233A1 true WO2018163233A1 (en) 2018-09-13

Family

ID=63447512

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/008719 WO2018163233A1 (en) 2017-03-06 2017-03-06 Scroll compressor and refrigeration cycle device

Country Status (2)

Country Link
JP (1) JP6678811B2 (en)
WO (1) WO2018163233A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020250337A1 (en) * 2019-06-12 2020-12-17 三菱電機株式会社 Scroll compressor and method for manufacturing this scroll compressor
WO2021009839A1 (en) * 2019-07-16 2021-01-21 三菱電機株式会社 Scroll compressor
JPWO2021100153A1 (en) * 2019-11-20 2021-05-27
CN113423952A (en) * 2019-02-14 2021-09-21 三菱电机株式会社 Scroll compressor having a plurality of scroll members

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11107938A (en) * 1997-10-01 1999-04-20 Mitsubishi Electric Corp Coolant compressor
JP2002242856A (en) * 2001-02-14 2002-08-28 Mitsubishi Heavy Ind Ltd Scroll type fluid device
JP2007016790A (en) * 1993-11-03 2007-01-25 Copeland Corp Scroll type machine

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007016790A (en) * 1993-11-03 2007-01-25 Copeland Corp Scroll type machine
JPH11107938A (en) * 1997-10-01 1999-04-20 Mitsubishi Electric Corp Coolant compressor
JP2002242856A (en) * 2001-02-14 2002-08-28 Mitsubishi Heavy Ind Ltd Scroll type fluid device

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113423952B (en) * 2019-02-14 2023-09-15 三菱电机株式会社 Scroll compressor having a rotor with a rotor shaft having a rotor shaft with a
CN113423952A (en) * 2019-02-14 2021-09-21 三菱电机株式会社 Scroll compressor having a plurality of scroll members
JPWO2020250337A1 (en) * 2019-06-12 2021-11-18 三菱電機株式会社 Scroll compressor and method for manufacturing the scroll compressor
WO2020250337A1 (en) * 2019-06-12 2020-12-17 三菱電機株式会社 Scroll compressor and method for manufacturing this scroll compressor
JP7055245B2 (en) 2019-06-12 2022-04-15 三菱電機株式会社 Scroll compressor and method for manufacturing the scroll compressor
CN113906217A (en) * 2019-06-12 2022-01-07 三菱电机株式会社 Scroll compressor and method for manufacturing the same
EP4001650A4 (en) * 2019-07-16 2022-07-27 Mitsubishi Electric Corporation Scroll compressor
JPWO2021009839A1 (en) * 2019-07-16 2021-01-21
WO2021009839A1 (en) * 2019-07-16 2021-01-21 三菱電機株式会社 Scroll compressor
JP7345550B2 (en) 2019-07-16 2023-09-15 三菱電機株式会社 scroll compressor
WO2021100153A1 (en) * 2019-11-20 2021-05-27 三菱電機株式会社 Scroll compressor and method for manufacturing scroll compressor
JPWO2021100153A1 (en) * 2019-11-20 2021-05-27
JP7150196B2 (en) 2019-11-20 2022-10-07 三菱電機株式会社 Scroll compressor and scroll compressor manufacturing method

Also Published As

Publication number Publication date
JP6678811B2 (en) 2020-04-08
JPWO2018163233A1 (en) 2019-06-27

Similar Documents

Publication Publication Date Title
KR101487022B1 (en) Compressor
JP6678762B2 (en) Scroll compressor, refrigeration cycle device and shell
US20190203709A1 (en) Motor-operated compressor
EP2594797B1 (en) Compressor for vehicle
WO2018163233A1 (en) Scroll compressor and refrigeration cycle device
US8366424B2 (en) Rotary fluid machine with reverse moment generating mechanism
US9145890B2 (en) Rotary compressor with dual eccentric portion
JP7118177B2 (en) scroll compressor
JP2012184709A (en) Scroll compressor
JP6057535B2 (en) Refrigerant compressor
WO2019207759A1 (en) Scroll compressor
JP6104396B2 (en) Scroll compressor
WO2023181173A1 (en) Scroll compressor
JP6374737B2 (en) Cylinder rotary compressor
JP7191246B2 (en) Scroll compressor and refrigeration cycle equipment
WO2021014641A1 (en) Scroll compressor
JP7313570B2 (en) scroll compressor
WO2016157688A1 (en) Rotating cylinder type compressor
WO2023100304A1 (en) Scroll compressor
JP7395004B2 (en) scroll compressor
WO2018150525A1 (en) Scroll compressor
JP2007092738A (en) Compressor
KR20210027061A (en) Scroll compressor
WO2018142536A1 (en) Compressor
JP2020033908A (en) Scroll compressor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17899642

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019503826

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17899642

Country of ref document: EP

Kind code of ref document: A1