JP2006123020A - Method of polishing piezoelectric wafer - Google Patents

Method of polishing piezoelectric wafer Download PDF

Info

Publication number
JP2006123020A
JP2006123020A JP2004311194A JP2004311194A JP2006123020A JP 2006123020 A JP2006123020 A JP 2006123020A JP 2004311194 A JP2004311194 A JP 2004311194A JP 2004311194 A JP2004311194 A JP 2004311194A JP 2006123020 A JP2006123020 A JP 2006123020A
Authority
JP
Japan
Prior art keywords
polishing
wafer
thickness
piezoelectric wafer
piezoelectric
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004311194A
Other languages
Japanese (ja)
Other versions
JP4398344B2 (en
Inventor
Hiroaki Uetake
宏明 植竹
Koichi Shimada
弘一 島田
Makoto Mogi
真 茂木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Instruments Inc
Original Assignee
Seiko Instruments Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Instruments Inc filed Critical Seiko Instruments Inc
Priority to JP2004311194A priority Critical patent/JP4398344B2/en
Publication of JP2006123020A publication Critical patent/JP2006123020A/en
Application granted granted Critical
Publication of JP4398344B2 publication Critical patent/JP4398344B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a polishing method considerably reducing the manufacturing cost of a thickness shear vibrator with little dispersion in thickness even if using a large bore piezoelectric wafer in machining the piezoelectric wafer using a planetary gear type polishing machine. <P>SOLUTION: In the case of polishing in two or more stages in polishing the piezoelectric wafer, polishing is temporarily stopped halfway in final stage polishing, and after reversing the piezoelectric wafer, polishing is restarted to polish it up to the final thickness. Thickness dispersion in the whole plane of the piezoelectric wafer is thereby minimized. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、薄板からなる圧電体ウエハの研摩方法に関する。   The present invention relates to a method for polishing a piezoelectric wafer made of a thin plate.

デジタルスチルカメラ(DSC)や小型液晶テレビあるいはノートPC等の携帯情報(端末)機器や、携帯情報(端末)機器間を無線で結ぶbluetooth(ブルーツース)などの通信モジュールには、水晶に代表される圧電体振動子が数多く使用されている。このように広く用いられる圧電体振動子の製造コストを低減するための1方法として、圧電体材料のウエハを大口径化してその中に作り込む振動片の個数を大幅に増やすことが挙げられる。例えば、音叉型水晶振動子の場合には、口径3インチΦのウエハの中に800個以上の振動片が形成されている。しかしながら、同一の水晶材料であっても、音叉型振動子とは振動モードの異なる厚みすベリ振動子(AT振動子及びBT振動子)では、その発振周波数が振動片の厚みに依存するために、ウエハ面内で厚みのバラツキが大きいと振動片間で周波数のバラツキも大きくなる。振動子の最終的な周波数調整は、組立工程において振動片の両面に形成された金属電極膜の片面をイオン照射で削って周波数を合わせ込むので、周波数は最終的には所定の範囲に調整可能であるが、厚みバラツキが大きいと、この周波数調整工程に多くの時間を費やすことになる。この結果、ウエハの口径を大きくしても製造コストを下げることが難しくなる。ウエハの面内バラツキは、携帯端末に多く用いられる10MHzから50MHz程度の周波数範囲において0.1μm以下が必要である。それ故、厚みすべり振動子の製造には、長年に渡って、9mm角や11mm角の小さなウエハ(素板)を用いて、厚みバラツキが大きくなるのを避けていた。尚、以後、振動片とは、圧電ウエハ上に形成された段階あるいはそれを切り取った段階の個々のチップ形状のものを指し、振動子とは、振動片を所定の気密容器に封入した完成体を指すものとする。   A communication module such as a digital information camera (DSC), a portable information (terminal) device such as a small-sized liquid crystal television or a notebook PC, or Bluetooth (Bluetooth) that wirelessly connects between portable information (terminal) devices is represented by crystal. Many piezoelectric vibrators are used. One method for reducing the manufacturing cost of such a widely used piezoelectric vibrator is to enlarge the diameter of the wafer of piezoelectric material and greatly increase the number of vibrating pieces formed in the wafer. For example, in the case of a tuning fork type crystal resonator, 800 or more vibrating pieces are formed in a wafer having a diameter of 3 inches Φ. However, even with the same quartz material, the thickness of a Berri vibrator (AT vibrator and BT vibrator) having a vibration mode different from that of a tuning fork vibrator depends on the thickness of the vibrating piece. When the thickness variation is large in the wafer surface, the frequency variation between the vibrating pieces also increases. The final frequency adjustment of the vibrator is achieved by adjusting the frequency by scraping one side of the metal electrode film formed on both sides of the vibrating piece with ion irradiation in the assembly process, so that the frequency can be adjusted to a predetermined range. However, if the thickness variation is large, a lot of time is spent on this frequency adjustment process. As a result, it is difficult to reduce the manufacturing cost even if the diameter of the wafer is increased. The in-plane variation of the wafer needs to be 0.1 μm or less in a frequency range of about 10 MHz to 50 MHz often used for portable terminals. Therefore, for the manufacture of the thickness shear vibrator, for a long time, a 9 mm square or 11 mm square small wafer (base plate) was used to avoid an increase in thickness variation. In the following description, the term “vibration piece” refers to the individual chip shape at the stage of being formed on the piezoelectric wafer or the stage at which it is cut out, and the vibrator means a complete body in which the vibration piece is enclosed in a predetermined airtight container. Shall be pointed to.

しかしながら、9mm角や11mm角といった小さなウエハを用いている限り、振動片の製造コストを大幅に低減することは難しく、できるだけ大きなウエハを用いることがコスト低減に不可欠である。このためには、結晶の原石から切断した後のウエハを、研磨工程において、広いウエハ面内に厚みのバラツキをできるだけ生じさせない技術が必要とされる。   However, as long as a small wafer of 9 mm square or 11 mm square is used, it is difficult to significantly reduce the manufacturing cost of the resonator element, and it is indispensable to use a wafer as large as possible. For this purpose, a technique is required in which, after the wafer is cut from the raw crystal ore, the thickness of the wafer is not varied as much as possible within the wide wafer surface in the polishing process.

研磨対象であるワーク(ウエハ)の平坦度などの研磨精度向上を目的とした文献として、特許文献1がある。この特許文献1では、ガラスや金属の厚いワーク(厚さ30mmのワークの実施例が記載されている。)を、高速研磨する本加工と精度の向上を目的とした仕上げ加工に分けている。仕上げ加工では、加工条件を変更して加工することで、平坦度などの研磨精度の向上が可能であるとしている。しかしながら、振動子のような極めて薄いウエハの加工においては、回転速度や荷重の条件を大きく変更することは、ウエハの割れ、ウエハ端面の欠けやキャリアの破損に伴う歩留り低下を誘発しやすいこと、なおかつ振動子用ウエハとして要求される研磨精度も、平坦度(厚みのバラツキ)は0.1μm以下と極めて高いことから、容易には実施しがたいことである。従って、別の視点からの考察が必要である。   As a document for the purpose of improving polishing accuracy such as flatness of a workpiece (wafer) to be polished, there is Patent Document 1. In this Patent Document 1, a thick glass or metal workpiece (an example of a workpiece having a thickness of 30 mm is described) is divided into a main processing for high-speed polishing and a finishing processing for the purpose of improving accuracy. In finishing processing, it is said that polishing accuracy such as flatness can be improved by changing the processing conditions. However, in the processing of extremely thin wafers such as vibrators, greatly changing the rotational speed and load conditions can easily induce yield reduction due to wafer cracks, chipping of wafer end faces and carrier damage. In addition, the polishing accuracy required for the vibrator wafer is also difficult to implement because the flatness (thickness variation) is extremely high at 0.1 μm or less. Therefore, consideration from another viewpoint is necessary.

通常行われるウエハの研磨加工において、ウエハと研磨装置の定盤間の加工軌跡長(定盤上でウエハが通過する道のり)が、ウエハ上の場所によって差が生じて、これにより研磨加工量がウエハ上の場所により異なり、最終的な厚みバラツキを生じさせている。加工軌跡長を調整する方法としてウエハを保持するキャリアの自公転比(単位時間当たりのキャリアの自転数と公転数との比)を変化させる方法があるが、実現できる最小厚みバラツキには限界がある。このことについて以下に簡単に説明する。   In a normal wafer polishing process, the processing trajectory length between the wafer and the surface plate of the polishing apparatus (the path along which the wafer passes on the surface plate) varies depending on the location on the wafer, which reduces the amount of polishing processing. Depending on the location on the wafer, there is a final thickness variation. There is a method to change the revolving ratio (the ratio between the number of revolutions of the carrier per unit time and the number of revolutions per unit time) of the carrier holding the wafer as a method of adjusting the processing trajectory length, but there is a limit to the minimum thickness variation that can be realized is there. This will be briefly described below.

圧電体材料としてATカットされた水晶ウエハを用いて予備実験を行い、厚みバラツキを調査した。実験に用いたウエハ寸法は、34mm×30mmである。この角ウエハの面積は、現在生産に用いられている11mm角ウエハの面積の約8.4倍であり、格段に多くの振動片を形成する意図で選ばれている。ウエハの研磨前の厚みは約80μmであり、これを約60μmまで研磨した。研磨材は、酸化ジルコニウムを主成分とするFO#4000を用いた。ウエハは、原石から切断された後、80μmまでは前段階の加工としてFO#2000を用いて研磨してある。   Preliminary experiments were conducted using an AT-cut quartz wafer as a piezoelectric material, and the thickness variation was investigated. The wafer size used in the experiment is 34 mm × 30 mm. The area of this square wafer is about 8.4 times the area of the 11 mm square wafer currently used for production, and is selected with the intention of forming a much larger number of vibrating pieces. The thickness of the wafer before polishing was about 80 μm, and this was polished to about 60 μm. As the abrasive, FO # 4000 containing zirconium oxide as a main component was used. After the wafer is cut from the raw stone, the wafer is polished up to 80 μm using FO # 2000 as a pre-process.

研磨装置は汎用の両面ラッピング装置で、図8に示す様に、サンギヤ(太陽歯車)6とインターナルギヤ(内歯車)7及びキャリア(遊星歯車)2からなる遊星歯車機構を有している。定盤は、下定盤8が回転し、上定盤9は固定した3ウエイ方式である。それぞれの回転方向が矢印12から15で示されているが、キャリアの回転方向15は自公転比によって異なる場合がある。また、図8(b)に示す様に、上定盤の1箇所に後述する研磨加工中のウエハの厚み計測用センサー10が埋め込まれている。キャリアの直径は6インチで、図7に示す様に5枚のウエハがこのキャリアに入るように設計されている。1バッチの研磨加工で55枚のウエハを研磨した。研磨終了後のウエハの厚みは1バッチにつき任意の5枚を測定した。測定ポイントは図6に示す様に、ウエハ外周から3mm以上内側の範囲に等間隔に25点(5×5点)とした。黒丸が計測点を表しており、P1からP25までの番号をつけた。各点での発振周波数を計測した後、AT振動子の発振周波数とウエハ厚みの間の公知の関係式(明記せず)により、厚みに換算した。ウエハ全体25点の厚みの最大値と最小値をそのウエハの厚みバラツキ(ここではΔtと記す)とした。自公転比を0.608から1.308の範囲で7点変化させた実験の結果、自公転比を大きくかえても厚みバラツキの変化は小さく、0.18から0.25μmの範囲であった。これは、目標とする0.1μmを達成できていない。このように、キャリアの自公転比の調整による研磨方法では、キャリア外周側と中心側におけるウエハの研磨軌跡長に起因する仕上り厚みの差が生じ、結果として加工後のウエハの面内厚みバラツキΔtを低減することに限界がある。
特開2001−260013号公報
The polishing apparatus is a general-purpose double-sided lapping apparatus, and has a planetary gear mechanism comprising a sun gear (sun gear) 6, an internal gear (internal gear) 7, and a carrier (planetary gear) 2 as shown in FIG. The surface plate is a three-way system in which the lower surface plate 8 rotates and the upper surface plate 9 is fixed. Although the respective rotation directions are indicated by arrows 12 to 15, the rotation direction 15 of the carrier may differ depending on the rotation ratio. Further, as shown in FIG. 8B, a wafer thickness measuring sensor 10 to be described later is embedded in one place of the upper surface plate. The carrier has a diameter of 6 inches and is designed so that five wafers can enter the carrier as shown in FIG. 55 wafers were polished by one batch of polishing. As for the thickness of the wafer after polishing, arbitrary 5 wafers were measured per batch. As shown in FIG. 6, the measurement points were 25 points (5 × 5 points) at equal intervals in the range 3 mm or more from the wafer outer periphery. Black circles represent measurement points, and numbers from P1 to P25 are assigned. After measuring the oscillation frequency at each point, it was converted into thickness by a known relational expression (not specified) between the oscillation frequency of the AT vibrator and the wafer thickness. The maximum value and the minimum value of the thickness of the entire 25 points of the wafer were defined as the thickness variation of the wafer (herein referred to as Δt). As a result of an experiment in which the rotation / revolution ratio was changed by 7 points in the range of 0.608 to 1.308, the variation in thickness was small even when the rotation / revolution ratio was changed to a large value, and was in the range of 0.18 to 0.25 μm. . This cannot achieve the target of 0.1 μm. As described above, in the polishing method by adjusting the carrier revolution ratio, the difference in the finished thickness due to the wafer polishing trajectory length between the carrier outer peripheral side and the center side occurs, and as a result, the in-plane thickness variation Δt of the processed wafer. There is a limit to reducing this.
JP 2001-260013 A

本発明は上記問題を解決し、遊星歯車方式の研摩機を用いた圧電体ウエハの研摩加工において、大口径の圧電体ウエハを用いても厚みバラツキが小さく、厚みすべり振動子の製造コストを大幅に低減可能な研摩方法を提供することを目的とする。   The present invention solves the above-mentioned problems, and in the polishing of a piezoelectric wafer using a planetary gear type polishing machine, the thickness variation is small even when a large diameter piezoelectric wafer is used, and the manufacturing cost of the thickness shear vibrator is greatly increased. It is an object of the present invention to provide a polishing method that can be reduced.

請求項1記載の発明では、遊星歯車方式を用いた圧電体ウエハの研磨加工において、2段階以上の研磨加工を行う場合に、最終段階の研磨加工の途中で、研磨加工を一時停止し、ウエハの反転を行った後に、再び研磨を開始して最終の厚みまで研磨する方法とした。   According to the first aspect of the present invention, in the polishing of the piezoelectric wafer using the planetary gear system, when two or more stages of polishing are performed, the polishing is temporarily stopped in the middle of the final stage of polishing. After reversing, the polishing was started again to polish to the final thickness.

請求項2記載の発明では、請求項1記載の圧電体ウエハの研磨方法において、ワークとなる前記ウエハを角型とし、該ウエハの長辺と短辺の寸法が共に11mmを超え、かつ長辺を略34mm以下、短辺を略30mm以下とした。   According to a second aspect of the present invention, in the method for polishing a piezoelectric wafer according to the first aspect, the wafer to be a workpiece is a square shape, and the long side and short side dimensions of the wafer both exceed 11 mm, and the long side Was about 34 mm or less and the short side was about 30 mm or less.

請求項3記載の発明では、請求項1または請求項2記載の圧電体ウエハの研磨方法において、ワークとなる前記圧電体ウエハの材料を水晶とした。   According to a third aspect of the present invention, in the piezoelectric wafer polishing method according to the first or second aspect, the material of the piezoelectric wafer serving as a workpiece is quartz.

請求項4記載の発明では、請求項3記載の圧電体ウエハの研磨方法において、ワークとなる水晶ウエハを、ATカットまたはBTカットされたウエハとした。   According to a fourth aspect of the present invention, in the piezoelectric wafer polishing method according to the third aspect, the quartz wafer serving as a workpiece is an AT cut or BT cut wafer.

請求項5記載の発明では、請求項4記載の圧電体ウエハの研磨方法において、最終段階の研磨加工の途中で研磨を一時停止して前記水晶ウエハを反転する時のタイミングを、前記水晶ウエハの厚みが、最終狙い値の厚みに略1.2μmを加えた厚み以下に到達した時点とした。   According to a fifth aspect of the present invention, in the method for polishing a piezoelectric wafer according to the fourth aspect, the timing at which the polishing is temporarily stopped in the middle of the final stage polishing process and the crystal wafer is reversed is determined. The thickness was determined to be equal to or less than the final target thickness plus approximately 1.2 μm.

請求項6記載の発明では、請求項4記載の圧電体ウエハの研磨方法において、最終段階の研磨加工の途中で研磨を一時停止して前記水晶ウエハを反転する時のタイミングを、ウエハの厚みが最終狙い値の厚みに略0.5μmを加えた厚み以下に到達した時点とした。   According to a sixth aspect of the present invention, in the piezoelectric wafer polishing method according to the fourth aspect, the timing when the polishing is temporarily stopped in the middle of the final stage polishing process and the crystal wafer is inverted is determined by the thickness of the wafer. It was set as the time when it reached below the thickness which added about 0.5 micrometer to the thickness of the last target value.

請求項7記載の発明では、請求項4乃至6のいずれかに記載の圧電体ウエハの研磨方法において、研磨加工中に研磨を一時停止する制御信号を、空隙法を用いたウエハの厚みのその場計測(in−situ計測)を利用して得ることとした。   According to a seventh aspect of the present invention, in the method for polishing a piezoelectric wafer according to any one of the fourth to sixth aspects, the control signal for temporarily stopping the polishing during the polishing process is applied to the thickness of the wafer using the gap method. It was decided to use field measurement (in-situ measurement).

請求項8記載の発明では、請求項5乃至7のいずれかに記載の圧電体ウエハの研磨方法において、ウエハの研磨仕上げの厚みを略30μm以上で160μm以下とした。   According to an eighth aspect of the present invention, in the method for polishing a piezoelectric wafer according to any one of the fifth to seventh aspects, the thickness of the polishing finish of the wafer is about 30 μm or more and 160 μm or less.

遊星歯車方式を用いた圧電体ウエハの研磨加工において、2段階以上の研磨加工を行う場合に、最終段階の研磨加工の途中で、研磨加工を一時停止し、圧電体ウエハの反転を行った後に、再び研磨を開始して最終厚みまで研磨することにより、圧電体ウエハ面内全体での厚みバラツキを最小限に抑えることができる。遊星歯車方式の研磨機におけるキャリア外周側と中心側とでのウエハ仕上り厚みの差に着目した結果、圧電体ウエハをキャリアの外周側と中心側で反転させて、再度一定量の研磨加工を行うことで、仕上り時におけるウエハのキャリア内位置による仕上り厚み差を最小化することができる。以下、この方法を反転法と呼ぶことにする。   In the polishing process of a piezoelectric wafer using a planetary gear system, when two or more stages of polishing are performed, the polishing process is temporarily stopped and the piezoelectric wafer is reversed in the middle of the final stage polishing process. By starting polishing again and polishing to the final thickness, it is possible to minimize the thickness variation in the entire surface of the piezoelectric wafer. As a result of paying attention to the difference in wafer finished thickness between the carrier outer peripheral side and the center side in the planetary gear type polishing machine, the piezoelectric wafer is reversed between the carrier outer peripheral side and the center side, and a certain amount of polishing processing is performed again. Thus, it is possible to minimize the difference in the finished thickness due to the position of the wafer in the carrier at the time of finishing. Hereinafter, this method is called an inversion method.

前記反転法に加え、さらに、研磨加工のワークとなる圧電体ウエハを角型とし、該ウエハの長辺と短辺の寸法が共に11mmを超え、かつ長辺を略34mm以下、短辺を略30mm以下とすることにより、従来から用いられていたウエハの8倍以上の面積をもつウエハであるにもかかわらず、ウエハ面内の厚みバラツキを低減できる。従って、振動片の取り個数が増加し、厚みの揃った振動片が研磨加工で大量に製造でき、振動片の製造コストを大幅に低減できる。   In addition to the reversal method, the piezoelectric wafer serving as a workpiece to be polished is square, and the wafer has a long side and a short side both of which exceed 11 mm, the long side is approximately 34 mm or less, and the short side is approximately By setting the thickness to 30 mm or less, it is possible to reduce the thickness variation in the wafer surface even though the wafer has an area of 8 times or more that of a conventionally used wafer. Accordingly, the number of vibrating pieces to be picked up can be increased, a large number of vibrating pieces having a uniform thickness can be manufactured by polishing, and the manufacturing cost of the vibrating pieces can be greatly reduced.

前記反転法に加え、さらに、圧電体ウエハ材料を水晶としたことにより、他の圧電材料であるLiTaO3やLiNbO3に比較して、発振周波数の温度安定性に格段に優れ、各種の制御信号のタイミング基準源、リファレンス信号、あるいは時刻源として、携帯情報(端末)機器から、家電製品、事務機器や医療機器用まで極めて広範な用途の振動片の製造に適用することができる。   In addition to the inversion method, the piezoelectric wafer material is made of quartz, so that it has much superior oscillation frequency temperature stability compared to other piezoelectric materials such as LiTaO3 and LiNbO3, and the timing of various control signals. As a reference source, a reference signal, or a time source, it can be applied to the manufacture of vibrating pieces for a very wide range of applications from portable information (terminal) devices to home appliances, office equipment, and medical equipment.

さらに、水晶ウエハを、ATカットまたはBTカットされたウエハとすることにより、製造のタクトタイムの短縮効果がより大きくなり、結果として製造コストの更なる低減が可能となる。ATカット及びBTカットの振動モードは、厚みすべり振動であって、発振周波数は振動片の厚みに依存する(逆比例する関係にある)。ウエハ面内で厚みのバラツキが大きいと振動片間の発振周波数のバラツキも大きくなるため、周波数調整工程で調整時間に多くの時間がかかる。従って、ATカットまたはBTカットのウエハで、厚みバラツキが低減されることは、製造のタクトタイムの短縮に効果が大きく、結果として製造コストの低減を達成するものである。   Further, by making the quartz wafer into an AT-cut or BT-cut wafer, the effect of shortening the manufacturing tact time becomes larger, and as a result, the manufacturing cost can be further reduced. The vibration mode of AT cut and BT cut is thickness shear vibration, and the oscillation frequency depends on the thickness of the resonator element (having an inversely proportional relationship). If the variation in thickness within the wafer surface is large, the variation in oscillation frequency between the resonator elements also increases, and therefore, the adjustment time takes a lot of time in the frequency adjustment process. Therefore, reduction in thickness variation in an AT-cut or BT-cut wafer has a great effect on shortening the manufacturing tact time, and as a result, achieves a reduction in manufacturing cost.

圧電体ウエハの研磨方法において、最終段階の研磨加工の途中で研磨を一時停止してワークである前記水晶ウエハを反転する時のタイミングを、前記水晶ウエハの厚みが、最終狙い値の厚みに略1.2μmを加えた厚み以下に到達して時点とすることにより、少なくともワークを反転しない場合よりもウエハ面内厚みのバラツキを低減できる。研磨加工を途中で一時停止するタイミングには、有効な範囲が存在する。   In the piezoelectric wafer polishing method, the timing when the polishing is temporarily stopped in the middle of the polishing process at the final stage and the quartz wafer as the workpiece is reversed, the thickness of the quartz wafer is approximately the thickness of the final target value. By reaching the point of time when the thickness reaches 1.2 μm or less, it is possible to reduce the variation in the wafer in-plane thickness at least as compared with the case where the workpiece is not reversed. There is an effective range for the timing at which the polishing process is temporarily stopped.

さらに、前記水晶ウエハを反転する時のタイミングを、前記水晶ウエハの厚みが、最終狙い値の厚みに略0.5μmを加えた厚み以下に到達した時点とすることにより、面内厚みのバラツキを、略0.1μm以下とすることができる。現行使用される11mm角の小型ウエハの8倍以上の面積を持つ34mm×30mm角ウエハにおいても、面内厚みバラツキΔtを0.10μmに向上させることで、後工程における周波数調整時間は、約11mm角の小型ウエハから振動片を製作した場合に要する調整時間と略同じにすることができる。従って、ウエハを大型化して振動子の製造コストを低減することができる。   Further, the timing of reversing the quartz wafer is set to the time when the thickness of the quartz wafer reaches below the final target thickness plus approximately 0.5 μm, thereby reducing in-plane thickness variation. About 0.1 μm or less. Even in a 34 mm × 30 mm square wafer having an area more than eight times that of a currently used 11 mm square small wafer, by increasing the in-plane thickness variation Δt to 0.10 μm, the frequency adjustment time in the subsequent process is about 11 mm. It can be made substantially the same as the adjustment time required when the resonator element is manufactured from a small corner wafer. Therefore, the wafer can be enlarged to reduce the manufacturing cost of the vibrator.

さらに、圧電体ウエハの研磨方法において、研磨加工中に研磨を一時停止する制御信号を、空隙法を用いたウエハの厚みのその場計測(in−situ計測)を利用して得ることとしたことにより、研磨加工中に常時ウエハの厚みをモニタリング可能である。モニタリングの本体にネットワークアナライザを用いると、計測値の信号処理に優れ、モニタ画面に共振曲線や厚み情報の変化が表示可能であり、オペレータの視認性に優れる。   Furthermore, in the method for polishing a piezoelectric wafer, a control signal for temporarily stopping polishing during polishing processing is obtained by using in-situ measurement of wafer thickness using an air gap method. Therefore, it is possible to constantly monitor the thickness of the wafer during the polishing process. If a network analyzer is used for the main body of monitoring, it is excellent in signal processing of measured values, and a change in resonance curve and thickness information can be displayed on the monitor screen, which is excellent in operator visibility.

さらに、圧電体ウエハの研磨方法において、ウエハの研磨仕上げの厚みを略30μm以上で160μm以下としたことにより、実用的な周波数範囲のAT振動子及びBT振動子を製作でき、それら振動子の量産時の歩留りを向上させることができる。ウエハの厚みの上下限値は、遊星歯車方式を用いてウエハを研磨する場合には、量産上の実用的な研磨歩留と、必要とされる研磨仕上げ厚みを勘案して決定される。下限値である略30μmは、研磨加工中のウエハの割れ、欠けやキャリアの破損による歩留低下を考慮した値である。一方、上限値である160μmは、ATカットまたはBTカットに要求される周波数帯に相当する厚みと、水晶原石を切断した後に実施される粗研磨加工の取しろ値とを勘案した値である。AT振動子及びBT振動子の実用的な周波数範囲は、そのウエハの厚みに換算して30μmから160μmにあるので、広い周波数帯の振動片の研磨加工に本発明を適用することが可能である。   Furthermore, in the method for polishing piezoelectric wafers, the thickness of the polished wafer is set to approximately 30 μm or more and 160 μm or less, so that AT vibrators and BT vibrators in a practical frequency range can be manufactured, and mass production of these vibrators is performed. The yield of time can be improved. The upper and lower limit values of the wafer thickness are determined in consideration of a practical polishing yield in mass production and a required polishing finish thickness when the wafer is polished using the planetary gear system. The lower limit of about 30 μm is a value that takes into account yield reduction due to wafer cracking, chipping or carrier breakage during polishing. On the other hand, the upper limit of 160 μm is a value that takes into account the thickness corresponding to the frequency band required for AT cut or BT cut and the margin for rough polishing performed after cutting the quartz crystal. Since the practical frequency range of the AT vibrator and the BT vibrator is in the range of 30 μm to 160 μm in terms of the thickness of the wafer, the present invention can be applied to polishing of a vibrating piece in a wide frequency band. .

実施例に基づいて本発明を詳細に説明する。実施例で用いたウエハは、ATカットされた水晶ウエハである。寸法は、前述した予備実験と同一であり、長辺34mm×短辺30mmの角ウエハで、ウエハの厚みは約80μmである。これを約60μmまで両面研磨した。研磨材は、酸化ジルコニウムを主成分とするFO#4000を用いた。ウエハは、原石から切断された後、80μmまで前段回の加工としてFO#2000を用いて研磨してある。研磨装置も予備実験で用いたものと同一の装置である。研磨後のウエハの厚みも、予備実験と全く同様に、1枚のウエハ上で25点の発振周波数を測定し各ポイントでの厚みに換算した。以下の説明は、ATカットウエハで行うが、同じ厚みすべりモードで振動するBTカットウエハの場合も同様に成立する。   The present invention will be described in detail based on examples. The wafer used in the examples is an AT-cut quartz crystal wafer. The dimensions are the same as in the preliminary experiment described above, a square wafer with a long side of 34 mm × short side of 30 mm, and the wafer thickness is about 80 μm. This was polished on both sides to about 60 μm. As the abrasive, FO # 4000 containing zirconium oxide as a main component was used. After the wafer is cut from the raw stone, it is polished using FO # 2000 as a first-stage process up to 80 μm. The polishing apparatus is the same as that used in the preliminary experiment. The thickness of the polished wafer was also converted to the thickness at each point by measuring the oscillation frequency at 25 points on one wafer, just as in the preliminary experiment. The following description will be given for an AT cut wafer, but the same holds true for a BT cut wafer that vibrates in the same thickness sliding mode.

本発明の研磨加工フローを図1に示した。研摩加工の作業を開始する(ステップ30)。オペレータは、まず、キャリアにウエハをセットする(ステップ31)。次に、荷重や定盤の回転数などの加工諸条件をセットする(ステップ31)。続いて、研磨の目標値を、最終の狙い値よりわずかに厚い値(目標値+α)にセットする(ステップ33)。 ここで、αをどのように決めるかについては後述する。このように入力が整った後、研磨加工を開始する(ステップ34)。研磨が開始されると、プログラムに従って、加工条件が自動的に変化しながら、ウエハは研磨されていく。研磨中のウエハの厚みは、空隙法を利用した厚み測定装置(オートラップコントローラなどの名前で知られる)で刻々と計測可能である(ステップ35)。本実施例においては、センサー部6は直径6mmで、上定盤に埋め込まれており、計測装置本体11には、ネットワークアナライアザを用いて研磨中のウエハの厚みを常時モニタリングする構成となっている(in−situ計測)。ウエハの厚みが(目標値+α)に到達した時点で、ネットワークアナライザ11から研磨装置に停止の制御信号が出され、研磨装置は自動的に加工を一時停止する(ステップ36)。   The polishing process flow of the present invention is shown in FIG. The polishing process is started (step 30). The operator first sets a wafer on the carrier (step 31). Next, processing conditions such as the load and the number of rotations of the surface plate are set (step 31). Subsequently, the polishing target value is set to a value (target value + α) slightly thicker than the final target value (step 33). Here, how α is determined will be described later. After the input is thus completed, the polishing process is started (step 34). When polishing is started, the wafer is polished while the processing conditions are automatically changed according to the program. The thickness of the wafer being polished can be measured momentarily with a thickness measuring device (known by the name of an auto lap controller or the like) using a gap method (step 35). In the present embodiment, the sensor unit 6 has a diameter of 6 mm and is embedded in the upper surface plate, and the measurement apparatus main body 11 is configured to constantly monitor the thickness of the wafer being polished using a network analyzer. (In-situ measurement). When the thickness of the wafer reaches (target value + α), a stop control signal is output from the network analyzer 11 to the polishing apparatus, and the polishing apparatus automatically pauses processing (step 36).

次に、オペレータはキャリアからウエハを取り出し、ウエハの向きを反転してセットし直す。すなわち、取り出したウエハの表裏を逆さまにして、次に面内方向で180度回転させた状態でキャリアにセットする(ステップ37)。この状態では、一時停止前までキャリアの外周側にあった部分はキャリアの内周側に来ている。また、逆に、キャリアの内周側にきていた部分は、キャリアの外周側に置かれる。これを図2に示した。ウエハのセット終了後、目標値は、本来の最終狙い値にセットする(ステップ38)。研磨加工を再開すると(ステップ39)、再び厚み測定装置が機能して、ウエハ厚みが目標値まで到達した時点で、加工が自動的に終了する(ステップ41)。オペレータはウエハをキャリアから取り出し(ステップ42)、研摩加工が終了する(ステップ43)。   Next, the operator removes the wafer from the carrier, reverses the orientation of the wafer, and resets it. That is, the front and back of the taken-out wafer are turned upside down, and then set on the carrier while being rotated 180 degrees in the in-plane direction (step 37). In this state, the portion that was on the outer peripheral side of the carrier before the temporary stop comes to the inner peripheral side of the carrier. Conversely, the portion that has been on the inner peripheral side of the carrier is placed on the outer peripheral side of the carrier. This is shown in FIG. After the wafer is set, the target value is set to the original final target value (step 38). When the polishing process is resumed (step 39), the thickness measuring device functions again, and when the wafer thickness reaches the target value, the process automatically ends (step 41). The operator removes the wafer from the carrier (step 42), and the polishing process is completed (step 43).

次にαの値の決め方について述べる。αは、目標値よりもどの程度厚い段階で一時停止させて反転させるかを示す値である。あらかじめ実験を行い、最適値を決定する。これについて実験結果に基づき一例を説明する。αの値として、0.5μm、0.8μm、1.0μm、2.0μmの4通りとして、この中で最適値を選択することにした。   Next, how to determine the value of α will be described. α is a value indicating how much thicker the target value is to be stopped and reversed. Perform an experiment in advance to determine the optimum value. An example of this will be described based on experimental results. As the value of α, four values of 0.5 μm, 0.8 μm, 1.0 μm, and 2.0 μm were selected, and the optimum value was selected among them.

図3は、各αの値に対するウエハの厚みバラツキΔtを1つのαについて5枚のウエハを測定した結果を示している。ここで、α=0は、途中でウエハを反転しない従来の研磨方法の場合を示している。α=2.0μmの場合は、反転しない場合によりも逆に厚みバラツキΔtが増加したが、α=1.0μmでは、厚みバラツキは減少し、α=0.8μmではさらにΔtが減少する傾向となった。α=0.5μmの場合は、5枚中4枚のウエハの厚みバラツキΔtが0.1μm未満となり、残り1枚の厚みバラツキΔtは、0.11μmとなり、平均値では、0.10μmが得られた。これより、α=0.5μmでは、ウエハの厚みバラツキΔtは略0.1μmを満たしていると言える。   FIG. 3 shows a result of measuring five wafers for one α with respect to a thickness variation Δt of the wafer with respect to each α value. Here, α = 0 indicates the case of the conventional polishing method in which the wafer is not reversed halfway. In the case of α = 2.0 μm, the thickness variation Δt increased in contrast to the case where it was not reversed. However, when α = 1.0 μm, the thickness variation decreased, and when α = 0.8 μm, Δt further decreased. became. When α = 0.5 μm, the thickness variation Δt of four of the five wafers is less than 0.1 μm, the thickness variation Δt of the remaining one is 0.11 μm, and an average value of 0.10 μm is obtained. It was. From this, it can be said that when α = 0.5 μm, the wafer thickness variation Δt satisfies approximately 0.1 μm.

図4は、図3で示した各αでのウエハ5枚の平均の厚みバラツキΔtの値をグラフにしたものである。これによれば、α=1.26μmで反転のない場合の厚みバラツキを下回り、この値以下でより有効に作用し、前述の様に、α=0.5μmで目標とした厚みバラツキである略0.1μmに到達している。α=1.26μmの値は、安全側に切り下げて1.2μmとするのが実用上取扱易い。   FIG. 4 is a graph showing the average thickness variation Δt of five wafers at each α shown in FIG. According to this, the thickness variation is less than the thickness variation in the case of α = 1.26 μm and no reversal, and it works more effectively below this value. As described above, the target thickness variation is approximately equal to α = 0.5 μm. It has reached 0.1 μm. A value of α = 1.26 μm is practically easy to handle by setting it to 1.2 μm by rounding down to the safe side.

ウエハ上で、図6に示す中心ライン3(外周側、中心、内周側を結ぶライン)上の5箇所の計測点であるP3、P8、P13、P18、P23での厚みデータもとにウエハの形状を説明する。図5は、α=2.0μm、1.0μm、0.5μmの場合の実験で、各αについてウエハ1枚を任意に選び、各ウエハごとに、前記5点の計測点での厚みの最大値を1として正規化して示したものである。研磨加工後のウエハ形状を詳細に見ると、α=2.0μmで反転したウエハは、反転後に外周側に位置した部分(計測点P3)の研磨が急速に進んで、逆に薄くなってしまっている。反転後に外周側に置かれたこの部分は、反転前はキャリアの内周側にあり、ウエハ内で厚みが相対的に厚かった部分である。即ち、反転後2.0μm研磨する間に、元の内外周差を除去するだけでなく、さらに外周部の研磨が進んだことになる。反転後の研磨量を1.0μmに減らしていくと、外周側の研磨量(計測点P3)が徐々に少なくなり、内周(計測点P23)と外周(計測点P3)がバランスよく研磨された状態に近づく。α=0.5μmのタイミングで反転したウエハは最もフラットな状態に近づいた。この時、ウエハの中心ライン3上の5点であるP3、P8、P13、P18,P23の各点間の厚みの差は、0.1%以下即ち約0.06μm以下になっている。従って、本加工条件においては、ウエハの最終狙い値より0.5μm厚い段階で反転するのが最適である。   On the wafer, the wafer is based on thickness data at P3, P8, P13, P18, and P23 which are five measurement points on the center line 3 (line connecting the outer periphery side, the center, and the inner periphery side) shown in FIG. The shape of will be described. FIG. 5 is an experiment in the case of α = 2.0 μm, 1.0 μm, and 0.5 μm. One wafer is arbitrarily selected for each α, and the maximum thickness at the five measurement points for each wafer is selected. The values are normalized and shown as 1. Looking at the shape of the wafer after polishing in detail, the wafer inverted at α = 2.0 μm is rapidly thinned by polishing the portion (measurement point P3) located on the outer peripheral side after the inversion, and conversely becomes thin. ing. This portion placed on the outer peripheral side after the reversal is a portion that is on the inner peripheral side of the carrier before the reversal and is relatively thick in the wafer. That is, during the polishing of 2.0 μm after the reversal, not only the original inner and outer peripheral differences are removed, but also the outer peripheral portion is further polished. When the polishing amount after inversion is reduced to 1.0 μm, the polishing amount on the outer peripheral side (measurement point P3) gradually decreases, and the inner periphery (measurement point P23) and the outer periphery (measurement point P3) are polished in a well-balanced manner. The state approaches. The wafer inverted at the timing of α = 0.5 μm approached the flattest state. At this time, the difference in thickness between the points P3, P8, P13, P18, and P23, which are the five points on the center line 3 of the wafer, is 0.1% or less, that is, about 0.06 μm or less. Therefore, under the present processing conditions, it is optimal to reverse at a stage 0.5 μm thicker than the final target value of the wafer.

以上述べたように、研磨加工途中にウエハのキャリア内での反転を行うことにより、面内厚みバラツキは、従来の方法による値Δt=0.18〜0.25μmからΔt=0.10μmに向上させることができた。これにより、後工程における周波数調整工程でのタクトタイムは、アルゴンイオン照射により振動片上に形成された電極金属薄膜をスパッタリングして調整する主流の周波数調整方式の場合、従来約8秒を要していたが、これを半分以下に短縮可能であった。この周波数調整時間は、寸法が約11mm角の小さなウエハから振動片を製作した場合に要する調整時間とほぼ同じである。   As described above, the in-plane thickness variation is improved from the value Δt = 0.18 to 0.25 μm by the conventional method to Δt = 0.10 μm by performing reversal in the wafer carrier during the polishing process. I was able to. As a result, the tact time in the frequency adjustment step in the post-process conventionally requires about 8 seconds in the case of the mainstream frequency adjustment method in which the electrode metal thin film formed on the resonator element is adjusted by irradiation with argon ions. However, this could be reduced to less than half. This frequency adjustment time is substantially the same as the adjustment time required when the resonator element is manufactured from a small wafer having a size of about 11 mm square.

本実施例では、研磨の最終仕上げの厚みが約60μm程度の場合のデータで説明した。デジタルビデオカメラやデジタルスチルカメラに用いられる24MHzや27MHzのAT振動子用の振動片は、仕上げ研磨の厚みが約60μmから65μmであり、本実施例が直ちに適用できる。ウエハの厚みが65μmより厚い場合にも、勿論、本発明は適用可能である。具体的には、発振周波数が10MHz代の場合、即ち約160μmの厚さでも可能である。AT振動子用のウエハは、通常バンドソーやワイヤソーを用いて、水晶のランバード原石から約200μmから220μm程度の厚みに切断される。切断後に、粗研摩加工で好ましくは約40μm加工するので、仕上げ研摩加工の厚みとしては略160μmが上限となる。   In this embodiment, the case where the final thickness of polishing is about 60 μm is described. A vibrating piece for a 24 MHz or 27 MHz AT vibrator used in a digital video camera or a digital still camera has a finish polishing thickness of about 60 μm to 65 μm, and this embodiment can be applied immediately. Of course, the present invention is also applicable when the thickness of the wafer is greater than 65 μm. Specifically, when the oscillation frequency is in the 10 MHz range, that is, a thickness of about 160 μm is possible. A wafer for an AT vibrator is usually cut into a thickness of about 200 μm to 220 μm from a quartz lumbard rough using a band saw or a wire saw. After cutting, preferably about 40 μm is processed by rough polishing, so the upper limit is about 160 μm as the thickness of the finish polishing.

一方、本発明は、ウエハの厚みが60μmよりさらに薄い場合にはより有効である。例えば、前述した液晶テレビに用いられる48MHzAT振動子用の場合、仕上げ研磨の厚みは約34μmである。このとき、0.1μmの厚みバラツキは、約2930ppmの周波数バラツキに相当している。27MHzの場合、0.1μmの厚みバラツキは、周波数に換算して約1620ppmに相当するから、48MHzAT振動子用の場合は、27MHzに比較して、厚みバラツキの感度は約2倍大きい。従って、圧電体材料の厚みがより薄くなる場合、即ち振動片がより高周波に対応したものになればなるほどウエハ面内の厚みバラツキの管理が重要であり、本発明の厚みバラツキ低減方法が有効となる。
ウエハの厚みが20μm代になると、研摩加工の途中でキャリアの破損やウエハの割れが多発するようになり、本発明で述べたような大型のウエハを遊星歯車方式の研磨機で研磨加工することは、実用上難しくなる。従って、実用上のウエハの厚み下限は略30μmである。
On the other hand, the present invention is more effective when the thickness of the wafer is thinner than 60 μm. For example, in the case of the 48 MHz AT vibrator used in the above-described liquid crystal television, the thickness of the finish polishing is about 34 μm. At this time, the thickness variation of 0.1 μm corresponds to the frequency variation of about 2930 ppm. In the case of 27 MHz, the thickness variation of 0.1 μm corresponds to about 1620 ppm in terms of frequency. Therefore, in the case of the 48 MHz AT vibrator, the sensitivity of the thickness variation is about twice as large as that of 27 MHz. Therefore, when the thickness of the piezoelectric material becomes thinner, that is, as the vibration piece becomes more compatible with high frequency, it is more important to manage the thickness variation in the wafer surface, and the thickness variation reducing method of the present invention is more effective. Become.
When the wafer thickness is in the 20 μm range, carrier breakage and wafer cracking frequently occur during the polishing process, and polishing a large wafer as described in the present invention with a planetary gear type polishing machine. Becomes practically difficult. Therefore, the practical lower limit of the wafer thickness is about 30 μm.

本発明が適用されるウエハの厚みの範囲はこのように広いレンジを持つので、最終目標となるウエハの厚みに応じて、前段階のウエハの研磨加工に要する研磨回数は異なる。これは、ウエハを保持するキャリアの保持孔からウエハが飛び出ないように適切な厚みのキャリアを準備しなければならないことによる。本実施例で示したATウエハの場合は、水晶のランバード原石から、35度10分±1分の切断角度を持って、ワイヤーソーにより略220μmの厚みに切断した後、第1回目の研磨として、220μmから130μmの厚みまで研磨を行い、次に、第2回目の研磨として、キャリアを交換して、130μmから80μmまでの厚みに研磨した。1回目の研磨においては、厚みが120μmの板厚のキャリアを用い、2回目の研磨加工では、70μmの板厚のキャリアを用いた。キャリアの厚みは、研磨の目標値とする厚みよりは薄く、保持すべきウエハの厚みの約半分よりは厚い数値を選択するのが望ましい。例えば、第1回目の場合は、目標値である130μmよりは薄く、ウエハの厚みの半分である110μmよりは厚い120μmが選ばれている。このような厚みのキャリアを用いることで、研磨加工を安定して行うことができる。 最終の仕上げ厚みが略30μmの場合は、前段階の研磨加工としては、更にもう一回の前加工が必要であり、前段階の研磨加工が3回、最終段階である研磨加工が1回となり、合計で4回の研磨加工が必要となる。逆に、最終の仕上げ厚みが略160μmの場合には、前段階の研磨加工は1回にでき、最終段階の研磨加工1回と合わせて合計2回の研磨加工となる。   Since the range of the thickness of the wafer to which the present invention is applied has such a wide range, the number of times of polishing required for the polishing of the wafer in the previous stage varies depending on the final target wafer thickness. This is because a carrier having an appropriate thickness must be prepared so that the wafer does not jump out of the holding hole of the carrier holding the wafer. In the case of the AT wafer shown in the present embodiment, the first polishing is carried out after cutting from a rough lumbard crystal with a cutting angle of 35 degrees 10 minutes ± 1 minute with a wire saw to a thickness of about 220 μm. Polishing was carried out to a thickness of 220 μm to 130 μm, and then, as a second polishing, the carrier was exchanged to polish to a thickness of 130 μm to 80 μm. In the first polishing, a carrier having a thickness of 120 μm was used, and in the second polishing, a carrier having a thickness of 70 μm was used. The thickness of the carrier is preferably selected to be smaller than the target thickness for polishing and thicker than about half the thickness of the wafer to be held. For example, in the first case, 120 μm is selected which is thinner than the target value of 130 μm and thicker than 110 μm which is half the thickness of the wafer. By using the carrier having such a thickness, the polishing process can be stably performed. When the final finish thickness is approximately 30 μm, the previous stage polishing process requires one more time, and the previous stage polishing process is three times and the final stage polishing process is one time. In total, four polishing processes are required. On the contrary, when the final finished thickness is about 160 μm, the polishing process in the previous stage can be performed once, and the polishing process is performed twice in total, including the final polishing process once.

本発明に係る圧電体ウエハの研磨加工のフローチャートである。It is a flowchart of the grinding | polishing process of the piezoelectric material wafer which concerns on this invention. 本発明に係る圧電体ウエハの研磨加工におけるウエハの反転を説明する図であり、(a)はウエハの上下反転を示す図、(b)はウエハの表裏反転を示す図である。It is a figure explaining the inversion of the wafer in the grinding | polishing process of the piezoelectric material wafer which concerns on this invention, (a) is a figure which shows the wafer upside down, (b) is a figure which shows the front-back inversion of a wafer. 本発明の研磨加工による各αでの5枚の圧電体ウエハの厚みバラツキΔtを示す図である。It is a figure which shows thickness variation (DELTA) t of the five piezoelectric material wafers in each (alpha) by the grinding | polishing process of this invention. 本発明の研磨加工による各αでの5枚のウエハの厚みバラツキΔtの平均値を示す図である。It is a figure which shows the average value of thickness variation (DELTA) t of five wafers in each (alpha) by the grinding | polishing process of this invention. α=2.0μm、1.0μm、0.5μmにおけるウエハ中心線上の5点の正規化厚みを示す図である。It is a figure which shows the normalized thickness of 5 points | pieces on a wafer centerline in (alpha) = 2.0micrometer, 1.0 micrometer, and 0.5 micrometer. ウエハの厚み測定ポイントを示す図である。It is a figure which shows the thickness measurement point of a wafer. キャリアとウエハの位置関係を示す図である。It is a figure which shows the positional relationship of a carrier and a wafer. 研磨機の定盤とキャリアの関係を示す模式図であり、(a)は研磨機の上方から見た平面図、(b)は(a)におけるAA’断面図である。It is a schematic diagram which shows the relationship between the surface plate of a grinder and a carrier, (a) is a top view seen from the upper direction of a grinder, (b) is AA 'sectional drawing in (a).

符号の説明Explanation of symbols

1 ウエハ
2 キャリア
3 ウエハ中心ライン
4 キャリア外周側
5 キャリア中心側
6 サンギヤ(太陽歯車)
7 インターナルギヤ(内歯車)
8 下定盤
9 上定盤
10 ウエハ周波数計測装置センサー部
11 ウエハ周波数計測装置本体
12 サンギヤ回転方向(矢印の向き)
13 ウンターナルギヤ回転方向(矢印の向き)
14 下定盤回転方向(矢印の向き)
15 キャリア回転方向(矢印の向き)
DESCRIPTION OF SYMBOLS 1 Wafer 2 Carrier 3 Wafer center line 4 Carrier outer peripheral side 5 Carrier center side 6 Sun gear (sun gear)
7 Internal gear (internal gear)
8 Lower surface plate 9 Upper surface plate 10 Wafer frequency measuring device sensor unit 11 Wafer frequency measuring device body 12 Sun gear rotation direction (direction of arrow)
13 Direction of rotation of internal gear (direction of arrow)
14 Lower platen rotation direction (direction of arrow)
15 Carrier rotation direction (direction of arrow)

Claims (8)

遊星歯車方式の研磨機を用いた圧電体ウエハの研磨加工において、2段階以上の研磨加工を行う場合に、最終段階の研磨工程の途中で、研磨加工を一時停止し、前記圧電体ウエハの反転を行った後に、再び研磨を開始して最終の厚みまで研磨することを特徴とする圧電体ウエハの研磨方法。   In the polishing process of a piezoelectric wafer using a planetary gear type polishing machine, when two or more polishing processes are performed, the polishing process is temporarily stopped during the final polishing process, and the piezoelectric wafer is reversed. A method for polishing a piezoelectric wafer, wherein polishing is started again and polishing is performed to a final thickness. 請求項1記載の研磨方法において、ワークとなる前記圧電体ウエハの形状が角型であり、前記圧電体ウエハの長辺・短辺共に11mmを越え、かつ長辺が略34mm以下、短辺が略30mm以下であることを特徴とする圧電体ウエハの研磨方法。   2. The polishing method according to claim 1, wherein the shape of the piezoelectric wafer serving as a workpiece is a square shape, both the long side and the short side of the piezoelectric wafer exceed 11 mm, the long side is approximately 34 mm or less, and the short side is A method for polishing a piezoelectric wafer, characterized by being approximately 30 mm or less. 請求項1また請求項2記載のいずれかの研磨方法において、ワークとなる前記圧電体ウエハの材料は水晶であることを特徴とする圧電体ウエハの研磨方法。   3. The method for polishing a piezoelectric wafer according to claim 1, wherein a material of the piezoelectric wafer to be a workpiece is quartz. 請求項3記載の研磨方法において、ワークとなる水晶ウエハは、ATカットまたはBTカットされたウエハであることを特徴とする圧電体ウエハの研磨方法。   4. The polishing method according to claim 3, wherein the quartz wafer serving as a workpiece is an AT-cut or BT-cut wafer. 請求項4記載の研磨方法において、最終段階の研磨加工の途中で研磨を一時停止して前記水晶ウエハを反転する時のタイミングは、前記水晶ウエハの厚みが、最終狙い値の厚みに略1.2μmを加えた厚み以下に到達した時点であることを特徴とする圧電体ウエハの研磨方法。   5. The polishing method according to claim 4, wherein when the polishing is temporarily stopped during the final polishing process and the quartz wafer is inverted, the thickness of the quartz wafer is approximately equal to the final target thickness. A method for polishing a piezoelectric wafer, characterized by being at a time when the thickness reaches 2 μm or less. 請求項4記載の研磨方法において、最終段階の研磨加工の途中で研磨を一時停止して前記水晶ウエハを反転する時のタイミングは、前記水晶ウエハの厚みが、最終狙い値の厚みに略0.5μmを加えた厚み以下に到達した時点であることを特徴とする圧電体ウエハの研磨方法。   5. The polishing method according to claim 4, wherein when the polishing is temporarily stopped during the polishing process in the final stage and the quartz wafer is turned over, the thickness of the quartz wafer is about 0. 0 to the final target thickness. A method for polishing a piezoelectric wafer, characterized in that it is a point of time when the thickness reaches 5 μm or less. 請求項4乃至6のいずれかに記載の研磨方法であって、研磨加工中に研磨を一時停止する制御信号を、空隙法を用いたウエハ厚みのその場計測(in−situ計測)を利用して得ることを特徴とする圧電体ウエハの研磨方法。   7. The polishing method according to claim 4, wherein a control signal for temporarily stopping polishing during polishing processing is performed using in-situ measurement of wafer thickness (in-situ measurement) using a gap method. A method for polishing a piezoelectric wafer, characterized by: 請求項4乃至7のいずれかに記載の研磨方法であって、前記水晶ウエハの研磨仕上げ厚みが略30μm以上で略160μm以下であることを特徴とする圧電体ウエハの研磨方法。   8. The polishing method according to claim 4, wherein the quartz wafer has a polished finish thickness of about 30 μm to about 160 μm. 9.
JP2004311194A 2004-10-26 2004-10-26 Polishing method of piezoelectric wafer Expired - Fee Related JP4398344B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004311194A JP4398344B2 (en) 2004-10-26 2004-10-26 Polishing method of piezoelectric wafer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004311194A JP4398344B2 (en) 2004-10-26 2004-10-26 Polishing method of piezoelectric wafer

Publications (2)

Publication Number Publication Date
JP2006123020A true JP2006123020A (en) 2006-05-18
JP4398344B2 JP4398344B2 (en) 2010-01-13

Family

ID=36718236

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004311194A Expired - Fee Related JP4398344B2 (en) 2004-10-26 2004-10-26 Polishing method of piezoelectric wafer

Country Status (1)

Country Link
JP (1) JP4398344B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009178780A (en) * 2008-01-29 2009-08-13 Seiko Instruments Inc Carrier, device and method of grinding wafer, piezoelectric transducer and its manufacturing method, oscillator, electric instrument and atomic clock
JP2010045279A (en) * 2008-08-18 2010-02-25 Nippon Steel Corp Method for polishing both surface of semiconductor substrate

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009178780A (en) * 2008-01-29 2009-08-13 Seiko Instruments Inc Carrier, device and method of grinding wafer, piezoelectric transducer and its manufacturing method, oscillator, electric instrument and atomic clock
JP2010045279A (en) * 2008-08-18 2010-02-25 Nippon Steel Corp Method for polishing both surface of semiconductor substrate

Also Published As

Publication number Publication date
JP4398344B2 (en) 2010-01-13

Similar Documents

Publication Publication Date Title
TWI462170B (en) Silicon wafer wiping device and silicon wafer manufacturing method and by etching silicon wafer
JP5384313B2 (en) Composite substrate manufacturing method and composite substrate
JP6071611B2 (en) Method for manufacturing circular wafer by polishing peripheral edge of wafer made of crystalline material having notch portion such as orientation flat using polishing tape
EP2461480B1 (en) Composite substrate and manufacturing method for the same
KR101143290B1 (en) Method and device for polishing plate-like body
KR20140129001A (en) Method for polishing both surfaces of wafer
JP2016203342A (en) Method for manufacturing truer and method for manufacturing semiconductor wafer, and chamfering device for semiconductor wafer
JP4398344B2 (en) Polishing method of piezoelectric wafer
JPH11309665A (en) Manufacture of oxide single crystal substrate
JP2001332949A (en) Method for manufacturing surface acoustic wave element
JP2019111618A (en) Method for processing single crystal substrate
JP2008149386A (en) Method for polishing wafer
JP5823908B2 (en) Wafer processing method
JP2010207935A (en) Wafer machining method and numerical control blasting device
JP3399179B2 (en) Wafer processing method
JPH11333707A (en) Carrier
JP2007104042A (en) Crystal resonation element and manufacturing method thereof
JP7085672B2 (en) Wafer front / back determination device and chamfering device using it
JP2003017983A (en) Wafer for elastic wave and elastic wave device employing the same
JP2017226026A (en) Manufacturing method of piezoelectric monocrystal wafer
JP2022068748A (en) Oxide single-crystal wafer, wafer for composite substrate, composite substrate, method for processing oxide single-crystal wafer, method for producing oxide single-crystal wafer, method for producing wafer for composite substrate, and method for producing composite substrate
JP2001170859A (en) Method and device for polishing and polishing carrier used for it
JP6383164B2 (en) Method for manufacturing piezoelectric vibrating piece
JP2002200546A (en) Manufacturing method for rugged shape material and method of grinding machining therefor
JP2013043246A (en) Method for forming crystal piece

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070510

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081217

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081224

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090219

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090317

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090501

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091020

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091022

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121030

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20091105

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20091112

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121030

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131030

Year of fee payment: 4

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees