JP2006120816A - 半導体装置の製造方法 - Google Patents

半導体装置の製造方法 Download PDF

Info

Publication number
JP2006120816A
JP2006120816A JP2004306410A JP2004306410A JP2006120816A JP 2006120816 A JP2006120816 A JP 2006120816A JP 2004306410 A JP2004306410 A JP 2004306410A JP 2004306410 A JP2004306410 A JP 2004306410A JP 2006120816 A JP2006120816 A JP 2006120816A
Authority
JP
Japan
Prior art keywords
film
silicon oxide
oxide film
metal
insulating film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004306410A
Other languages
English (en)
Inventor
Katsuyuki Hotta
勝之 堀田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Renesas Technology Corp
Original Assignee
Renesas Technology Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Renesas Technology Corp filed Critical Renesas Technology Corp
Priority to JP2004306410A priority Critical patent/JP2006120816A/ja
Publication of JP2006120816A publication Critical patent/JP2006120816A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Insulated Gate Type Field-Effect Transistor (AREA)
  • Formation Of Insulating Films (AREA)

Abstract

【課題】 プロセス上好ましくない高温長時間の熱処理をすることなく、ゲート絶縁膜のEOTを薄くすることができる半導体装置の製造方法を得る。
【解決手段】 半導体基板上にシリコン酸化膜を形成する工程と、シリコン酸化膜の表面を、金属又は金属化合物を含むラジカル又はプラズマからなる活性ガスの雰囲気にさらすことにより、シリコン酸化膜の半導体基板との界面付近以外の部分を金属シリケート膜に改変する工程と高誘電体膜上に導電体膜を形成する工程と、導電体膜をエッチングしてゲート電極を形成する工程とを有する。
【選択図】 図1

Description

本発明は、プロセス上好ましくない高温長時間の熱処理をすることなく、ゲート絶縁膜のEOTを薄くすることができる半導体装置の製造方法に関するものである。
近年の電子機器の高性能化と省電力化の要求により、集積回路には微細化と低消費電力化が求められている。従って、集積回路を構成するトランジスタにおいては、しきい値を下げて低電圧動作においてもオン電流は大きく保ちながら、かつオフ電流は小さくして待機時の漏れ電流を抑えること、即ち、そのスイッチング特性を高めることが求められている。
そのため、ゲート絶縁膜は世代を追う毎に薄膜化され、ゲートによるチャネルのオン/オフのコントローラビィリティが高められてきた。しかし、ゲート絶縁膜の薄膜化を進めるにつれ、待機時において、ゲート酸化膜の漏れ電流(ゲートリーク電流)がオフ電流よりも支配的になる。
そこで、従来のシリコン酸化膜よりも誘電率の高いシリコン酸窒化膜(SixOyNz)をゲート絶縁膜として用いることで、比較的厚い膜を用いながらシリコン酸化膜に換算した場合の実効的な膜厚(EOT: Equivalent Oxide Thickness)を薄く抑え、ゲートのコントローラビィリティが高められるようになった。しかし、さらなる微細化の要求によって、より誘電率の高い絶縁膜が求められている。
シリコン酸窒化膜よりも誘電率の高い絶縁膜としてはアルミ酸化膜(Al)やハフニウム酸化膜(HfO)、ジルコニウム酸化膜(ZrO)などは、地表近傍での埋蔵量が多く、扱いやすく、シリコン基板上で比較的安定である。従って、近年、これらの膜をトランジスタに適用した例が報告されている。これらの膜を用いることで実膜厚を厚くして漏れ電流を抑えつつ、EOTが飛躍的に薄いゲート絶縁膜を形成することができる。
これらの膜を堆積するために、一般にCVD(Chemical Vapor Deposition)法が用いられる。しかし、これらの膜を直接シリコン基板上に堆積すると、Siとの反応層ができたり、界面準位が多く発生して移動度が低下したりするために、絶縁膜の信頼性やオン電流確保の点で問題があった。
この問題を解消するために、第1の従来技術として、界面層として薄膜のシリコン酸化膜を形成し、その上にCVD法で誘電率の高い絶縁膜を堆積する方法が提案されている。この従来の半導体装置の製造方法について図3を用いて説明する。
まず、図3(a)に示すように、シリコン基板11に素子分離膜12を形成する。そして、イオン注入法によりウェル注入やトランジスタのしきい値を決めるための注入を行う。さらに、酸化炉を用いた熱酸化法により、シリコン基板11の表面にシリコン酸化膜からなるゲート絶縁膜13を形成する。
次に、図3(b)に示すように、ゲート絶縁膜13の上に、薄膜の制御性に適したALCVD(Atomic Layer CVD)やMOCVD(Metal Organic CVD)等のCVD法により、シリコン窒化膜よりも誘電率の高い金属シリケート膜14として例えばハフニウムオキサイド(HfO)を堆積する。
次に、図3(c)に示すように、ゲート電極材料を全面に堆積した後、写真製版とドライエッチング法を用いて所望の領域にゲート電極15を形成する。
次に、図3(d)に示すように、サイドウォール16及びソース・ドレイン領域17を形成する。以上の工程により、電解効果型トランジスタが完成する。
また、第2の従来技術として、シリコン酸化膜に熱拡散で金属原子を導入して、EOTが薄い金属シリケート膜を作る方法も提案されている(例えば、特許文献1参照)。
特開2001−332547
しかし、第1の従来技術では、下敷きのシリコン酸化膜が存在するために、ゲート絶縁膜全体のEOTが厚くなるという問題があった。そして、誘電体膜の堆積膜厚を精度良くコントロールするために高価なCVD装置を導入する必要があった。また、第2の従来技術では、プロセス上好ましくない高温長時間の熱処理が必要であった。
本発明は、上述のような課題を解決するためになされたもので、その目的は、プロセス上好ましくない高温長時間の熱処理をすることなく、ゲート絶縁膜のEOTを薄くすることができる半導体装置の製造方法を得るものである。
本発明に係る半導体装置の製造方法は、半導体基板上にシリコン酸化膜を形成する工程と、シリコン酸化膜の表面を、金属又は金属化合物を含むラジカル又はプラズマからなる活性ガスの雰囲気にさらすことにより、シリコン酸化膜の半導体基板との界面付近以外の部分を金属シリケート膜に改変する工程と高誘電体膜上に導電体膜を形成する工程と、導電体膜をエッチングしてゲート電極を形成する工程とを有する。本発明のその他の特徴は以下に明らかにする。
本発明により、プロセス上好ましくない高温長時間の熱処理をすることなく、ゲート絶縁膜のEOTを薄くすることができる。これにより、スイッチング特性に優れたトランジスタを得ることができる。そして、結果的に動作速度が速く消費電力の低い集積回路を得ることができる。
本発明の実施の形態に係る半導体装置の製造方法について図1を参照しながら説明する。
まず、図1(a)に示すように、シリコン基板11の所定の領域に、シリコン酸化膜を埋込んだ後にCMPによって平坦化することで深さ150〜350nm程度の素子分離膜12を形成する。そして、イオン注入法により、トランジスタを作る領域にウェル注入やトランジスタのしきい値を決めるためのチャネル注入を行った後に、急速熱酸化法やラジカル酸化法等の膜厚制御性の高い方法で0.5〜2nm程度の膜厚でシリコン酸化膜からなるゲート絶縁膜13を形成する。
次に、図1(b)に示すように、ゲート絶縁膜13をハフニウム(Hf)単体又はその化合物を含むプラズマ雰囲気にさらすことにより、ゲート絶縁膜13をシリコン酸化膜(SiO)から誘電率の高いハフニウムシリケート(HfxSiyOz)に組成改変する。
この時、プラズマにさらす時間やプラズマ中のハフニウム(Hf)の量を調整することにより、図2に示すように、ゲート絶縁膜13とシリコン基板11の界面付近の組成をシリコン酸化膜のままとし、ゲート絶縁膜13中のハフニウムシリケートの組成が連続的に変化するようにする。
ここで、このプラズマ雰囲気は、通常のプラズマ装置を用いてハフニウム電極上でアルゴンなどの不活性ガスのプラズマを発生させ、ハフニウムをスパッタしてプラズマ中に引き寄せ、ハフニウムを電離させることで発生させる。
なお、ハフニウム(Hf)単体又はその化合物の代わりに、ジルコニウム(Zr)単体又はその化合物、ランタン(La)単体又はその化合物、アルミニウム(Al)単体又はその化合物、又は、これらのうちの2種類以上の物質などの金属又は金属化合物を用いてもよい。
また、上記のプラズマに窒素を混合するか、又は、上記のプラズマにさらした後に連続して窒素プラズマにさらすことによって、ゲート絶縁膜13中に窒素を導入してもよい。これにより、本来非晶質であるゲート絶縁膜材料の結晶化を抑制することができ、ゲート電極15内のボロンなどの不純物がゲート絶縁膜13中へ拡散するのを防止することができる。
次に、ゲート電極材料としてポリシリコン膜を50〜200nm程度の膜厚で全面に堆積し、写真製版とドライエッチング法を用いて所望の領域にゲート電極15を残す。
その後、必要であればシリコン基板11にエクステンション注入やポケット注入を行う。さらに、例えば10〜50nm程度のシリコン窒化膜を堆積してエッチバックすることでサイドウォール16を形成する。その後、ソース・ドレイン領域17を形成する。以上の工程により、電解効果型トランジスタが完成する。ただし、必要であれば、ゲート電極15上やソース・ドレイン領域17の表面をシリサイド化してもよい。その後、コンタクトや配線層により無数のトランジスタやその他の能動素子を相互に接続することで集積回路が完成する。
以上説明した実施の形態に係る半導体装置の製造方法によれば、ゲート絶縁膜の半導体基板との界面付近をシリコン酸化膜とすることにより、従来のシリコン酸化膜からなるゲート絶縁膜と同様に、ゲート絶縁膜とシリコン基板の界面に界面準位が発生するのを抑制でき、移動度の低下を防ぐことができる。
また、ゲート絶縁膜の半導体基板との界面付近以外の部分を金属シリケート膜とすることにより、ゲート絶縁膜のEOTを薄くすることができる。これにより、スイッチング特性に優れたトランジスタを得ることができる。そして、結果的に、動作速度が速く消費電力の低い集積回路を得ることができる。
そして、ゲート絶縁膜が連続的に組成変化させることで、シリコン酸化膜と金属シリケート膜の界面領域が存在せず、界面領域における電荷トラップの発生等が起こりにくいため、ゲート絶縁膜の経時劣化を防ぐことができる。
また、プラズマ又はラジカルからなる活性ガスを用いる方法は低温プロセスであるため、プロセス上好ましくない高温長時間の熱処理をすることがないため、トランジスタの急峻な不純物プロファイルを損なうことがない。
そして、通常のプラズマ装置を用いてラジカル酸化・窒化と同様の方法でゲート絶縁膜を改変することができるため、高価なCVD装置を新たに導入することなく精度良くEOTの薄い絶縁膜を形成することができ、トランジスタを高性能化することができる。
本発明の実施の形態に係る半導体装置の製造方法を示す断面図である。 基板/絶縁膜界面からの距離と組成比におけるHfの割合の相関図である。 従来の半導体装置の製造方法を示す断面図である。
符号の説明
11 シリコン基板
12 素子分離膜
13 ゲート絶縁膜
15 ゲート電極
16 サイドウォール
17 ソース・ドレイン領域

Claims (3)

  1. 半導体基板上にシリコン酸化膜を形成する工程と、
    前記シリコン酸化膜の表面を、金属又は金属化合物を含むラジカル又はプラズマからなる活性ガスの雰囲気にさらすことにより、前記シリコン酸化膜の前記半導体基板との界面付近以外の部分を金属シリケート膜に改変する工程と
    前記高誘電体膜上に導電体膜を形成する工程と、
    前記導電体膜をエッチングしてゲート電極を形成する工程とを有することを特徴とする半導体装置の製造方法。
  2. 前記金属又は金属化合物で構成された電極上で不活性ガスのプラズマを発生させ、前記電極をスパッタして前記金属又は金属化合物をプラズマ中に引き寄せて電離させることで前記活性ガスを生成する工程を更に有することを特徴とする請求項1に記載の半導体装置の製造方法。
  3. 前記金属又は金属化合物としてハフニウム又はハフニウム化合物を用いることを特徴とする請求項1又は2に記載の半導体装置の製造方法。
JP2004306410A 2004-10-21 2004-10-21 半導体装置の製造方法 Pending JP2006120816A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004306410A JP2006120816A (ja) 2004-10-21 2004-10-21 半導体装置の製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004306410A JP2006120816A (ja) 2004-10-21 2004-10-21 半導体装置の製造方法

Publications (1)

Publication Number Publication Date
JP2006120816A true JP2006120816A (ja) 2006-05-11

Family

ID=36538422

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004306410A Pending JP2006120816A (ja) 2004-10-21 2004-10-21 半導体装置の製造方法

Country Status (1)

Country Link
JP (1) JP2006120816A (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011007702A1 (ja) * 2009-07-15 2011-01-20 ソニー株式会社 イオン伝導性微粒子とその製造方法、イオン伝導性複合体、膜電極接合体(mea)、及び電気化学装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011007702A1 (ja) * 2009-07-15 2011-01-20 ソニー株式会社 イオン伝導性微粒子とその製造方法、イオン伝導性複合体、膜電極接合体(mea)、及び電気化学装置

Similar Documents

Publication Publication Date Title
US7446379B2 (en) Transistor with dopant-bearing metal in source and drain
EP1711959B1 (en) Transistor with doped gate dielectric and method of manufacturing the same
JP2006344836A (ja) 半導体装置及びその製造方法
US20120045876A1 (en) Method for manufacturing a semiconductor device
JP2007208160A (ja) 半導体装置およびその製造方法
EP1892759A2 (en) Method for Fabricating dual-metal gate CMOS transistors
US11923441B2 (en) Gate all around I/O engineering
KR101562955B1 (ko) 반도체 구조에 물질층을 형성하는 방법
JP2005064317A (ja) 半導体装置
JP5050351B2 (ja) 半導体装置の製造方法
KR100618698B1 (ko) 반도체 소자 및 그의 제조방법
JP2006120816A (ja) 半導体装置の製造方法
JP4639000B2 (ja) Mis型半導体装置及びその製造方法
JP2010040710A (ja) 半導体装置及びその製造方法
JP2006019615A (ja) 半導体装置及びその製造方法
JP2005079306A (ja) 半導体装置の製造方法
US20090072328A1 (en) Semiconductor device and method of fabricating the same
JP2007157739A (ja) Cmos半導体素子とその製造方法
WO2024055423A1 (zh) 半导体结构及其形成方法
KR100790567B1 (ko) 고유전율의 복합 게이트절연막을 갖는 반도체소자 및 그제조방법
JP2006352162A (ja) 半導体装置の製造方法
JP2010251508A (ja) 半導体装置の製造方法
TW476117B (en) Method to achieve larger L-shape spacer width
CN113809176A (zh) 半导体结构的形成方法
CN103578947A (zh) 一种高介电金属栅极制造方法