JP2006120504A - Photoelectric conversion device and optical power generating device using it - Google Patents

Photoelectric conversion device and optical power generating device using it Download PDF

Info

Publication number
JP2006120504A
JP2006120504A JP2004308078A JP2004308078A JP2006120504A JP 2006120504 A JP2006120504 A JP 2006120504A JP 2004308078 A JP2004308078 A JP 2004308078A JP 2004308078 A JP2004308078 A JP 2004308078A JP 2006120504 A JP2006120504 A JP 2006120504A
Authority
JP
Japan
Prior art keywords
photoelectric conversion
conversion device
dye
light
platinum group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004308078A
Other languages
Japanese (ja)
Other versions
JP4637543B2 (en
Inventor
Hisashi Sakai
久 坂井
Rui Kamata
塁 鎌田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2004308078A priority Critical patent/JP4637543B2/en
Publication of JP2006120504A publication Critical patent/JP2006120504A/en
Application granted granted Critical
Publication of JP4637543B2 publication Critical patent/JP4637543B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/542Dye sensitized solar cells

Abstract

<P>PROBLEM TO BE SOLVED: To provide a photoelectric conversion device with conversion efficiency improved and cost reduction realized, as well as an optical power generating device using the same. <P>SOLUTION: The photoelectric conversion device 1 is provided with a conductive substrate 11 with an oxide semiconductor electrode (an electron transport body) 12, dyes 13 adhered to the oxidation insulation semiconductor electrode 12, electrolyte 14, and a counter electrode (a transparent conductive layer) with platinum group metal (a catalyst layer) 20 containing oxygen adhered. By forming of a bond like Pt-O arousing a catalytic function such as that of Adam's catalyst due to adhesion of the platinum group metal containing oxygen to the counter electrode, or of a structure containing absorption oxygen, re-reduction of the electrolyte (redox) 14 is promoted, and the conversion efficiency is improved, so that the photoelectric conversion device 1 such as a high-efficiency solar cell and a photo acceptance element can be provided. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、高い光電変換効率が期待できる太陽電池や受光素子等の光電変換装置およびそれを用いた光発電装置に関するものである。   The present invention relates to a photoelectric conversion device such as a solar cell or a light receiving element that can be expected to have high photoelectric conversion efficiency, and a photovoltaic device using the photoelectric conversion device.

光電変換装置の一つである色素増感型太陽電池は、高温処理や真空装置を必要としないことから低コスト化に有利であると考えられ、近年急速に研究開発が進められている。この色素増感型太陽電池は、例えば、導電性ガラス基板上に粒径20nm程度の微粒子を焼結して得られる多孔質酸化チタン層を設け、この多孔質酸化チタン層の粒子表面に色素を単分子吸着させた電極を光作用極として用い、白金をスパッタした導電性ガラス対極との間に、ヨウ素/ヨウ化物レドックス対を含む電解質溶液を満たし、この電解質溶液を封止した構造を有する。このような多孔質化により光作用極の表面積を1000倍以上に高めて、吸着色素による光吸収を効率よく行ない光発電することができる。   A dye-sensitized solar cell, which is one of photoelectric conversion devices, is considered advantageous for cost reduction because it does not require high-temperature treatment or a vacuum device, and research and development have been promoted rapidly in recent years. In this dye-sensitized solar cell, for example, a porous titanium oxide layer obtained by sintering fine particles having a particle diameter of about 20 nm is provided on a conductive glass substrate, and the dye is applied to the particle surface of the porous titanium oxide layer. A single molecule adsorbed electrode is used as a photoworking electrode, and a conductive glass counter electrode sputtered with platinum is filled with an electrolyte solution containing an iodine / iodide redox pair, and the electrolyte solution is sealed. By making such a porous structure, the surface area of the light working electrode can be increased by 1000 times or more, and light absorption by the adsorbing dye can be efficiently performed to generate photovoltaic power.

しかし、色素増感型太陽電池を実用化するためにはさらなる光電変換効率の向上が必要であり、光電変換効率を向上させるためには、導電性基板を一方電極とし、それに対する対極において、正孔輸送体として機能する電解質(レドックス)を効率よく再還元する必要があった。   However, in order to put the dye-sensitized solar cell into practical use, it is necessary to further improve the photoelectric conversion efficiency. In order to improve the photoelectric conversion efficiency, a conductive substrate is used as one electrode and the counter electrode is positive. It was necessary to efficiently reduce the electrolyte functioning as a pore transporter (redox).

特許文献1には、半導体含有層、電荷移動層および対極を有し、対極がX線回折測定による(220)面/(111)面の強度比が0.35以上の白金を含むことにより、高い変換効率を有する光電変換素子が開示されている。これによれば、理由は不明であるが、Cu管球を用いたX線回折測定による白金の(220)面/(111)面の強度比が0.30以上で対極から電荷移動層への電子移動を効率よく行なう効果が出始め、強度比が0.35以上でエネルギー変換効率に優れた色素増感光電変換素子が得られたというものである。
特開2001−102102号公報
Patent Document 1 includes a semiconductor-containing layer, a charge transfer layer, and a counter electrode, and the counter electrode contains platinum having a (220) plane / (111) plane intensity ratio of 0.35 or more as measured by X-ray diffraction measurement. An efficient photoelectric conversion element is disclosed. According to this, although the reason is unknown, electron transfer from the counter electrode to the charge transfer layer when the intensity ratio of (220) plane / (111) plane of platinum is 0.30 or more by X-ray diffraction measurement using a Cu tube. Thus, a dye-sensitized photoelectric conversion element having an intensity ratio of 0.35 or more and excellent energy conversion efficiency has been obtained.
Japanese Patent Laid-Open No. 2001-102102

上述したように、色素増感型太陽電池は、高温処理や真空装置を必要としないことから最も低コストで製造が可能な太陽電池と考えられている。しかしながら、変換効率が低く、バルク型結晶系シリコン太陽電池や積層型薄膜シリコン系太陽電池に及ばない。この変換効率向上が第1の課題である。また、長波長光感度を高めたブラックダイ等の新しいルテニウム錯体色素が開発されたが、期待されたほどの変換効率の向上に至っていない。さらに、金属フリー、特にルテニウムの無い有機色素がいろいろと開発されているが、ルテニウム錯体色素を超えるものは見出されておらず、様々な研究開発が盛んに行なわれている。例えば、色素に長波長感度を持たせるために、色素分子の共役長を大きくする等の手法が行なわれているが、この手法では、色素分子自身も大きくなり、高分子量化するため、溶媒への溶解が困難となり、多孔質の酸化物半導体への吸着が困難となる。   As described above, the dye-sensitized solar cell is considered as a solar cell that can be manufactured at the lowest cost because it does not require high-temperature treatment or a vacuum apparatus. However, the conversion efficiency is low and it does not reach the bulk type crystalline silicon solar cell and the laminated thin film silicon solar cell. This conversion efficiency improvement is the first problem. In addition, new ruthenium complex dyes such as black dyes with improved long wavelength photosensitivity have been developed, but the conversion efficiency has not been improved as expected. Furthermore, various organic dyes that are free of metal, particularly ruthenium-free dyes, have been developed. However, nothing more than ruthenium complex dyes has been found, and various research and development have been actively conducted. For example, in order to give the dye a long wavelength sensitivity, a technique such as increasing the conjugate length of the dye molecule has been carried out. However, in this technique, the dye molecule itself becomes large and has a high molecular weight. Is difficult to dissolve, and adsorption to a porous oxide semiconductor becomes difficult.

一方、特許文献1に開示された技術によれば、対極がX線回折測定による(220)面/(111)面の強度比が0.35以上の白金を含むことにより、高い変換効率を有する光電変換素子が得られるというものである。   On the other hand, according to the technology disclosed in Patent Document 1, photoelectric conversion having high conversion efficiency can be achieved because the counter electrode contains platinum having an intensity ratio of (220) plane / (111) plane of 0.35 or more by X-ray diffraction measurement. An element is obtained.

しかし、X線回折測定による(220)面/(111)面の強度比が0.35以上とは、多結晶体の白金では強度比が0.31程度であることから(220)面配向させる必要があり、そのためには下地基板の結晶性制御も必要であることから、再現性良く強度比が0.35以上の結晶性を得ることは困難である。また、Pt(白金)触媒についてはPt−O結合が触媒機能として重要な活性点であることが知られているのに対し、強度比が0.35以上の結晶性は熱処理により得るので、その際の加熱により不安定なPt−O結合を減少させることになるため、高性能な太陽電池として有用な光電変換素子の作製は困難である。   However, the intensity ratio of (220) plane / (111) plane by X-ray diffraction measurement is 0.35 or more, and since the intensity ratio of polycrystalline platinum is about 0.31, it is necessary to orient (220) plane, For this purpose, it is necessary to control the crystallinity of the base substrate, and it is difficult to obtain crystallinity with an intensity ratio of 0.35 or more with good reproducibility. In addition, for the Pt (platinum) catalyst, it is known that the Pt-O bond is an important active point as a catalyst function, whereas crystallinity with an intensity ratio of 0.35 or more is obtained by heat treatment. Since unstable Pt—O bonds are reduced by heating, it is difficult to produce a photoelectric conversion element useful as a high-performance solar cell.

本発明はかかる事情に鑑みてなされたものであり、その目的は、変換効率を高めた光電変換装置およびそれを用いた光発電装置を提供することにある。   This invention is made | formed in view of this situation, The objective is to provide the photoelectric conversion apparatus which improved conversion efficiency, and a photovoltaic device using the same.

上記目的を達成するために、本発明の光電変換装置は、1)酸化物半導体電極を形成した導電性基板と、電解質と、酸素を含んだ白金族金属が被着された対極とを具備することを特徴とするものである。   In order to achieve the above object, a photoelectric conversion device of the present invention includes 1) a conductive substrate on which an oxide semiconductor electrode is formed, an electrolyte, and a counter electrode on which a platinum group metal containing oxygen is deposited. It is characterized by this.

また、本発明の光電変換装置は、2)上記1)の構成において、前記対極の外側に光電変換層が積層されていることを特徴とするものである。   The photoelectric conversion device of the present invention is characterized in that 2) in the configuration of 1), a photoelectric conversion layer is laminated outside the counter electrode.

また、本発明の光電変換装置は、3)上記1)または2)の構成において、前記白金族金属がこの白金族金属の酸化物もしくは水酸化物を含むことを特徴とするものである。   In addition, the photoelectric conversion device of the present invention is characterized in that, 3) in the configuration of 1) or 2), the platinum group metal includes an oxide or hydroxide of the platinum group metal.

また、本発明の光電変換装置は、4)上記1)または2)の構成において、前記白金族金属が非晶質であることを特徴とするものである。   In addition, the photoelectric conversion device of the present invention is characterized in that, 4) in the configuration of 1) or 2), the platinum group metal is amorphous.

また、本発明の光電変換装置は、5)上記1)乃至4)のいずれかの本発明の光電変換装置を発電手段として用い、この発電手段の発電電力を負荷へ供給するように成したことを特徴とするものである。   In addition, the photoelectric conversion device of the present invention is such that 5) the photoelectric conversion device of any one of 1) to 4) above is used as a power generation means, and the generated power of this power generation means is supplied to a load. It is characterized by.

本発明の光電変換装置によれば、1)酸化物半導体電極を形成した導電性基板と、酸化物半導体電極に付着した色素と、電解質と、酸素を含んだ白金族金属が被着された対極とを具備するものであり、対極に酸素を含んだ白金族金属が被着されていることによって、アダムス触媒のような触媒機能を引き起こすPt−Oのような結合の形成や吸着酸素を含む構造の形成により、電解質(レドックス)の再還元を促進することができるので、その結果、変換効率を向上させることができ、高効率の太陽電池や受光素子等の光電変換装置を提供することができる。また、対極は白金族金属が被着された例えば導電性の基板から構成することができるので、導電性の基板の表面に高価な白金族金属を薄く被着させるだけで対極の抵抗を下げることができ、しかも電解質の再還元を促進することができるため、光電変換装置の高効率化と低コスト化の両立を図るうえでも有利である。   According to the photoelectric conversion device of the present invention, 1) a conductive substrate on which an oxide semiconductor electrode is formed, a dye attached to the oxide semiconductor electrode, an electrolyte, and a counter electrode on which a platinum group metal containing oxygen is deposited A structure containing Pt-O-like bonds that cause a catalytic function such as an Adams catalyst and adsorbed oxygen by adhering a platinum group metal containing oxygen to the counter electrode. As a result, the re-reduction of the electrolyte (redox) can be promoted. As a result, the conversion efficiency can be improved, and a highly efficient photoelectric conversion device such as a solar cell or a light receiving element can be provided. . In addition, the counter electrode can be composed of, for example, a conductive substrate coated with a platinum group metal, so that the resistance of the counter electrode can be lowered by simply depositing an expensive platinum group metal thinly on the surface of the conductive substrate. In addition, since re-reduction of the electrolyte can be promoted, it is advantageous for achieving both high efficiency and low cost of the photoelectric conversion device.

また、本発明の光電変換装置によれば、2)対極の外側に光電変換層が積層されているときには、対極に酸素を含んだ白金族金属が被着されていることによって、同じ膜厚でも白金族金属に比べて酸素を含んだ白金族金属の方が結晶性が低く、金属性が低くなり、光の反射率が低く、光吸収係数が低いため光透過率を向上させることができるので、光電変換層との積層間で必要な対極の光透過率を向上させることができ、それにより積層された光電変換層の変換効率を向上させることができるので、高効率の太陽電池や受光素子等の光電変換装置を提供することができる。   In addition, according to the photoelectric conversion device of the present invention, 2) when the photoelectric conversion layer is laminated outside the counter electrode, the platinum group metal containing oxygen is deposited on the counter electrode, so that the same film thickness can be obtained. Compared with platinum group metals, platinum group metals containing oxygen have lower crystallinity, lower metallicity, lower light reflectivity, and lower light absorption coefficient, so that light transmittance can be improved. The light transmittance of the counter electrode required between the stacked layers with the photoelectric conversion layer can be improved, and thereby the conversion efficiency of the stacked photoelectric conversion layer can be improved, so a highly efficient solar cell or light receiving element Etc. can be provided.

さらに、本発明の光電変換装置によれば、3)白金族金属がこの白金族金属の酸化物もしくは水酸化物を含むときには、アダムス触媒のような触媒機能を引き起こすPt−Oのような結合を形成している白金族金属が被着された対極によって電解質(レドックス)の再還元を効率よく促進することができるので、その結果、変換効率を向上させることができ、高効率の太陽電池や受光素子等の光電変換装置を提供することができる。   Furthermore, according to the photoelectric conversion device of the present invention, 3) when the platinum group metal contains an oxide or hydroxide of the platinum group metal, a bond such as Pt—O that causes a catalytic function such as an Adams catalyst is formed. The counter electrode on which the platinum group metal is deposited can efficiently promote redox reduction of the electrolyte (redox). As a result, conversion efficiency can be improved, and high-efficiency solar cells and light-receiving A photoelectric conversion device such as an element can be provided.

さらに、本発明の光電変換装置によれば、4)白金族金属が非晶質(アモルファス)であるときには、白金族金属においてアダムス触媒のような触媒機能を引き起こすPt−Oのような結合の形成が容易であり、それによって電解質(レドックス)の再還元を促進することができるので、その結果、変換効率を向上させることができ、高効率の太陽電池や受光素子等の光電変換装置を提供することができる。また、結晶質の白金族金属に比べて、非晶質の白金族金属は光の吸収係数が小さいため、光電変換体である色素への光到達効率を向上させることができ、それによっても、変換効率を向上させることができ、高効率の太陽電池や受光素子等の光電変換装置を提供することができる。   Furthermore, according to the photoelectric conversion device of the present invention, 4) when the platinum group metal is amorphous, formation of a bond such as Pt—O that causes a catalytic function such as an Adams catalyst in the platinum group metal. Therefore, the re-reduction of the electrolyte (redox) can be promoted. As a result, the conversion efficiency can be improved, and a photoelectric conversion device such as a high-efficiency solar cell or light receiving element is provided. be able to. In addition, since the amorphous platinum group metal has a small light absorption coefficient compared to the crystalline platinum group metal, it can improve the light arrival efficiency to the pigment that is a photoelectric converter, Conversion efficiency can be improved and a photoelectric conversion device such as a high-efficiency solar cell or light receiving element can be provided.

なお、白金族金属がスパッタリング法によって被着されたものであるときには、被着時に基板温度を高くする必要がないため、導電性基板側に用いられる透明導電性膜であるフッ素ドープ酸化スズ(FTO)あるいはスズ添加酸化インジウム(ITO)の高抵抗化を抑制することができるので、その結果、変換効率を向上させることができ、高効率の太陽電池や受光素子等の光電変換装置を提供するうえで有利となる。   Note that when the platinum group metal is deposited by sputtering, it is not necessary to increase the substrate temperature during deposition. Therefore, fluorine-doped tin oxide (FTO), which is a transparent conductive film used on the conductive substrate side, is used. ) Or tin-doped indium oxide (ITO) can be prevented from increasing in resistance, and as a result, the conversion efficiency can be improved, and a photoelectric conversion device such as a high-efficiency solar cell or light receiving element can be provided. Is advantageous.

さらに、本発明の光発電装置は、5)上記1)乃至4)のいずれかの本発明の光電変換装置を発電手段として用い、この発電手段の発電電力を負荷へ供給するように成したことから、高効率で耐久性のある光発電装置を低コストで提供することができる。   Furthermore, the photovoltaic device of the present invention is configured to use 5) the photoelectric conversion device of any of the above 1) to 4) as a power generation means, and supply the generated power of this power generation means to a load. Therefore, a highly efficient and durable photovoltaic device can be provided at low cost.

以下、本発明の実施の形態の例について図面を参照しつつ詳細に説明する。なお、図面において同一部材には同一符号を付すものとする。   Hereinafter, an example of an embodiment of the present invention will be described in detail with reference to the drawings. In the drawings, the same members are denoted by the same reference numerals.

色素増感型太陽電池の基本構造をなす本発明の光電変換装置の実施の形態の一例を模式的に示す断面図を図1に、積層型の場合の本発明の光電変換装置の実施の形態の他の例を模式的に示す断面図を図2にそれぞれ示す。なお、図1および図2において、図中の矢印LおよびL’は光の入射する様子(方向)を示す。   FIG. 1 is a cross-sectional view schematically showing an example of an embodiment of a photoelectric conversion device of the present invention that forms the basic structure of a dye-sensitized solar cell. Embodiment of the photoelectric conversion device of the present invention in the case of a stacked type Cross-sectional views schematically showing other examples are shown in FIG. In FIGS. 1 and 2, arrows L and L ′ in the drawings indicate the incident state (direction) of light.

図1に示す光電変換装置1は、導電性支持体である導電性基板11上に、光電変換を行なう色素13を吸着させた一導電型輸送体である電子輸送体(酸化物半導体電極)12を形成し、これを他方導電型輸送体である電解質14中に存在する状態で配設したものである。この構造は、色素13の増感作用により光電変換を行なう色素増感型光電変換体をなしており、この色素増感型光電変換体は、導電性基板11上に形成され色素13を担持した多孔質の電子輸送体(酸化物半導体電極)12と、この電子輸送体12を埋めるように配置された逆多孔質の逆導電型輸送体である電解質14と、酸素を含んだ白金やパラジウム等の白金族金属からなる触媒層20を被着させた、対極としての透明導電層17および透光性基板18からなる。   A photoelectric conversion device 1 shown in FIG. 1 includes an electron transporter (oxide semiconductor electrode) 12 that is a one-conductivity transporter in which a dye 13 that performs photoelectric conversion is adsorbed on a conductive substrate 11 that is a conductive support. And is disposed in a state of being present in the electrolyte 14 which is the other conductivity type transporter. This structure forms a dye-sensitized photoelectric converter that performs photoelectric conversion by the sensitizing action of the dye 13, and this dye-sensitized photoelectric converter is formed on the conductive substrate 11 and carries the dye 13. Porous electron transporter (oxide semiconductor electrode) 12, electrolyte 14 which is a reverse porous reverse conductivity transporter arranged so as to fill electron transporter 12, platinum or palladium containing oxygen, etc. It consists of a transparent conductive layer 17 and a translucent substrate 18 as counter electrodes to which a catalyst layer 20 made of a platinum group metal is deposited.

図2に示す光電変換装置1は、一主面側から光を入射させる導電性基板11の一主面上に、色素13が付着した電子輸送体(酸化物半導体電極)12と、電解質14と、酸素を含む白金族金属からなる触媒層20が被着された対極としての透明導電層17とを有し、色素13の増感作用により光電変換を行なう色素増感型光電変換体と、この対極の外側に薄膜形成法により作製された、光電変換を行なう無機半導体層を有し光を透過させる薄膜光電変換体とを積層してなる積層型光電変換装置を構成したものであり、色素増感型光電変換体が薄膜光電変換体より長波長側にピーク感度を有し、薄膜光電変換体を透過した光を吸収する。   A photoelectric conversion device 1 shown in FIG. 2 includes an electron transporter (oxide semiconductor electrode) 12 having a dye 13 attached on one main surface of a conductive substrate 11 on which light is incident from one main surface side, an electrolyte 14, and the like. A dye-sensitized photoelectric converter having a transparent conductive layer 17 as a counter electrode on which a catalyst layer 20 made of a platinum group metal containing oxygen is applied, and performing photoelectric conversion by a sensitizing action of the dye 13; and A laminated photoelectric conversion device is formed by laminating a thin-film photoelectric conversion body that has an inorganic semiconductor layer that performs photoelectric conversion and transmits light, which is manufactured by a thin film formation method on the outer side of the counter electrode. The sensitive photoelectric converter has a peak sensitivity on the longer wavelength side than the thin film photoelectric converter, and absorbs light transmitted through the thin film photoelectric converter.

薄膜光電変換体は、酸素を含む白金やパラジウム等の白金族金属からなる触媒層20が被着された第1の透明導電層17上に、薄膜光電変換層16、第2の透明導電層15および透光性基板18が順次積層された構成を有する。なお、薄膜光電変換層16としては、シリコン系の薄膜pin接合層でもよく、CIGS(CuInGaSe)等の化合物半導体系の薄膜接合層でもよく、有機半導体の薄膜接合層でもよい。また、これらの接合層はpin接合型,pn接合型,ショットキー接合型,ヘテロ接合型等の内部電界を生じるものがよい。シリコン系としては、アモルファスシリコン系,ナノサイズ結晶を含むアモルファスシリコン系,微結晶シリコン系等がよく、特に短波長感度を有するアモルファスシリコン系や光劣化が抑制されるナノサイズ結晶を含むアモルファスシリコン系がよい。ここで、アモルファスシリコン系とは、アモルファスシリコンカーバイド,アモルファスシリコンナイトライド等の合金系を含む。   The thin film photoelectric conversion body comprises a thin film photoelectric conversion layer 16 and a second transparent conductive layer 15 on a first transparent conductive layer 17 on which a catalyst layer 20 made of platinum group metal such as platinum containing oxygen or palladium is deposited. The light-transmitting substrate 18 is sequentially laminated. The thin film photoelectric conversion layer 16 may be a silicon thin film pin junction layer, a compound semiconductor thin film junction layer such as CIGS (CuInGaSe), or an organic semiconductor thin film junction layer. These junction layers are preferably those that generate an internal electric field such as a pin junction type, a pn junction type, a Schottky junction type, and a hetero junction type. As silicon-based materials, amorphous silicon-based materials, amorphous silicon-based materials including nano-sized crystals, microcrystalline silicon-based materials, etc. are particularly suitable. Amorphous silicon-based materials including short-wavelength-sensitive amorphous silicon-based materials and nano-sized crystals that suppress light degradation Is good. Here, the amorphous silicon system includes alloy systems such as amorphous silicon carbide and amorphous silicon nitride.

薄膜光電変換体からの第1の出力と、色素増感型光電変換体からの第2の出力とは、それぞれ独立して出力しても、接続して出力してもよい。図2に示すような積層型光電変換装置の場合であれば、第1の出力の電流と第2の出力の電流とが同じになるように両光電変換装置の性能を合わせてやれば、第1の透明電極層17から外部に出力を取り出す必要がなく、集積化等を行なう際の電極配線構造がシンプルになって具合がよい。両光電流を合わせるには、それぞれの膜厚や感度等を調整すればよい。   The first output from the thin film photoelectric converter and the second output from the dye-sensitized photoelectric converter may be output independently or connected to each other. In the case of a stacked photoelectric conversion device as shown in FIG. 2, if the performance of both photoelectric conversion devices is matched so that the current of the first output and the current of the second output are the same, It is not necessary to extract the output from one transparent electrode layer 17 to the outside, and the electrode wiring structure at the time of integration or the like is simple and good. In order to match both photocurrents, the film thickness, sensitivity, etc. of each may be adjusted.

また、本発明の光電変換装置1は、図3に本発明の光電変換装置の実施の形態のさらに他の例を模式的に示す断面図で示すように、酸素を含んだ白金やパラジウム等の白金族金属からなる触媒層20が被着された対極としての透明導電層17bおよび透明基板17aを間に挟んで、第2の色素19を有する光電変換体2bと第1の色素13を設けた光電変換体2aとを積層させた構造とすることも可能である。この積層型光電変換装置によっても、透明な導電性基板17の両側に吸収スペクトルの異なるあるいは同じ光電変換体2aと光電変換体2bとを設けたことから、光吸収波長を広くすることや光吸光度を大きくすることができ、変換効率の向上と耐久性を図ることができる。   In addition, as shown in a cross-sectional view schematically showing still another example of the embodiment of the photoelectric conversion device of the present invention in FIG. 3, the photoelectric conversion device 1 of the present invention includes platinum or palladium containing oxygen. A photoelectric conversion body 2b having a second dye 19 and a first dye 13 are provided with a transparent conductive layer 17b as a counter electrode on which a catalyst layer 20 made of a platinum group metal is deposited and a transparent substrate 17a interposed therebetween. It is also possible to have a structure in which the photoelectric conversion body 2a is laminated. Also in this stacked photoelectric conversion device, the photoelectric conversion body 2a and the photoelectric conversion body 2b having different absorption spectra or the same are provided on both sides of the transparent conductive substrate 17, so that the light absorption wavelength is widened and the light absorbance is increased. The conversion efficiency can be improved and the durability can be improved.

次に、上述した光電変換装置1の各構成について詳細に説明する。   Next, each structure of the photoelectric conversion apparatus 1 mentioned above is demonstrated in detail.

<導電性基板>
導電性基板11としては、図1に示す光電変換装置1の場合は、薄い金属シートを単独で用いればよく、チタン,ステンレス,アルミニウム,銀,銅,ニッケル等がよい。また、カーボンや金属の微粒子や微細線を含浸した樹脂、導電性有機樹脂等がよい。また、金属薄膜のチタン,ステンレス,アルミニウム,銀,銅,ニッケル等、あるいは透明導電膜のITO,SnO:F,ZnO:Al等、あるいは積層体のTi/ITO/Ti等の透明導電膜11b付き絶縁基板11a等がよい。また、図3に示す光電変換装置1のように、導電性基板11が透光性の場合には、ITO,SnO:F等の透明導電膜11b付きの透明絶縁基板11a等がよい。絶縁基板11aの材料としては、PET(ポリエチレンテレフタレート),PEN(ポリエチレンナフタレート),ポリイミド,ポリカーボネート等の樹脂材料や青板ガラス,ソーダガラス,硼珪酸ガラス,セラミックス等の無機質材料,導電性有機樹脂材料,有機無機ハイブリッド材料等がよい。
<Conductive substrate>
As the conductive substrate 11, in the case of the photoelectric conversion device 1 shown in FIG. 1, a thin metal sheet may be used alone, and titanium, stainless steel, aluminum, silver, copper, nickel and the like are preferable. Further, a resin impregnated with carbon or metal fine particles or fine lines, a conductive organic resin, or the like is preferable. Further, a transparent conductive film 11b such as titanium, stainless steel, aluminum, silver, copper, nickel or the like of a metal thin film, ITO, SnO 2 : F, ZnO: Al or the like of a transparent conductive film, or Ti / ITO / Ti of a laminate. The attached insulating substrate 11a is preferable. When the conductive substrate 11 is translucent like the photoelectric conversion device 1 shown in FIG. 3, a transparent insulating substrate 11a with a transparent conductive film 11b such as ITO or SnO 2 : F is preferable. As a material for the insulating substrate 11a, resin materials such as PET (polyethylene terephthalate), PEN (polyethylene naphthalate), polyimide, polycarbonate, etc., inorganic materials such as blue plate glass, soda glass, borosilicate glass, ceramics, and conductive organic resin materials Organic-inorganic hybrid materials are good.

導電性基板11に光反射性を持たせると、透過光を反射させて再利用することができる。導電性基板11に金属基板を用いる場合は、銀やアルミニウム等がよい。また、透明導電膜11bを形成する場合は、銀,密着層付きTi/Ag/Ti等の積層膜等がよく、それらは真空蒸着法,イオンプレーティング法,スパッタリング法,電解析出法等で形成するのがよい。導電性基板11の厚みは0.01mm〜5mm、好ましくは0.02mm〜3mmがよい。透明導電膜11bの厚みは0.001μm〜10μm、好ましくは0.05μm〜2μmがよい。また、導電性基板11が透光性の場合(SnO:F膜付き青板ガラス等)には、基板の裏面に光反射性のアルミニウムや銀等のシートや膜等を用いて光反射性を持たせるようにしても構わない。 If the conductive substrate 11 has light reflectivity, the transmitted light can be reflected and reused. When a metal substrate is used for the conductive substrate 11, silver, aluminum, or the like is preferable. In the case of forming the transparent conductive film 11b, a laminated film of silver, Ti / Ag / Ti with an adhesion layer, etc. is preferable, and these can be obtained by vacuum deposition, ion plating, sputtering, electrolytic deposition, etc. It is good to form. The thickness of the conductive substrate 11 is 0.01 mm to 5 mm, preferably 0.02 mm to 3 mm. The thickness of the transparent conductive film 11b is 0.001 μm to 10 μm, preferably 0.05 μm to 2 μm. In addition, when the conductive substrate 11 is translucent (SnO 2 : blue plate glass with F film, etc.), a light-reflective sheet or film such as light-reflective aluminum or silver is used on the back surface of the substrate to provide light reflectivity. You may make it have.

また、図1〜図3に示した例の場合には、導電性基板11に透光性を持たせれば、光入射を電子輸送体(酸化物半導体電極)12側からとすることもできる。この場合、絶縁基板11aの材料としては、PET(ポリエチレンテレフタレート),PEN(ポリエチレンナフタレート),ポリイミド,ポリカーボネート等の樹脂シートや白板ガラス,ソーダガラス,硼珪酸ガラス,セラミックス等の無機質シート,有機無機ハイブリッドシート等がよい。また同様に、透明導電膜11bとしては、低温成長のスパッタリング法や低温スプレー熱分解法で作製したスズドープ酸化インジウム膜(ITO膜)や不純物ドープの酸化インジウム膜(In膜)等がよい。他に、溶液成長法で作製した不純物ドープの酸化亜鉛膜(ZnO膜)等がよく、これらを積層して用いてもよい。また熱CVD法で形成したフッ素ドープの二酸化スズ膜(SnO:F膜)等を用いてもよい。他に、不純物ドープの酸化インジウム膜(In膜)等が使える。他の成膜法として、真空蒸着法,イオンプレーティング法,ディップコート法,ゾル・ゲル法等がある。これらの膜成長によって入射光の波長オーダーの表面凹凸を形成すると、光閉じ込め効果を持たせることができて、なおよいものとなる。また、第1の透明導電層17としては、真空蒸着法やスパッタリング法等で形成したAu,Pd,Al等の薄い金属膜でもよい。 In the case of the example shown in FIGS. 1 to 3, if the conductive substrate 11 has translucency, light can be incident from the electron transporter (oxide semiconductor electrode) 12 side. In this case, as the material of the insulating substrate 11a, resin sheets such as PET (polyethylene terephthalate), PEN (polyethylene naphthalate), polyimide, polycarbonate, etc., white sheets, soda glass, borosilicate glass, inorganic sheets such as ceramics, organic inorganic Hybrid seats are good. Similarly, the transparent conductive film 11b, an indium oxide film (In 2 O 3 film) of indium tin oxide film (ITO film) and impurity-doped prepared by the sputtering method or the low-temperature spray pyrolysis method a low temperature growth such as good . In addition, an impurity-doped zinc oxide film (ZnO film) or the like manufactured by a solution growth method may be used, and these may be stacked and used. Alternatively, a fluorine-doped tin dioxide film (SnO 2 : F film) formed by a thermal CVD method may be used. In addition, an impurity-doped indium oxide film (In 2 O 3 film) or the like can be used. Other film forming methods include vacuum deposition, ion plating, dip coating, and sol / gel. If surface irregularities in the order of the wavelength of incident light are formed by these film growths, a light confinement effect can be provided, which is even better. The first transparent conductive layer 17 may be a thin metal film such as Au, Pd, or Al formed by vacuum deposition or sputtering.

導電性基板11の光入射側の表面は、両面が平坦なものでよいが、入射光の波長オーダーの凹凸を有する表面とすると、光閉じ込め効果を持たせることができて、なおよいものとなる。   The surface on the light incident side of the conductive substrate 11 may be flat on both sides. However, if the surface has irregularities in the order of the wavelength of incident light, the light confinement effect can be obtained, which is even better. .

<電子輸送体(酸化物半導体電極)>
多孔質の一導電型輸送体である電子輸送体(酸化物半導体電極)12としては、多孔質の二酸化チタン等の電子輸送体(n型金属酸化物半導体)が特に好ましい。図1〜図3に示す光電変換装置1の場合は、導電性基板11上にこの多孔質の一導電型輸送体12を形成する。
<Electron transporter (oxide semiconductor electrode)>
As the electron transporter (oxide semiconductor electrode) 12 which is a porous one-conductive transporter, an electron transporter (n-type metal oxide semiconductor) such as porous titanium dioxide is particularly preferable. In the case of the photoelectric conversion device 1 shown in FIGS. 1 to 3, the porous one-conductive transporter 12 is formed on the conductive substrate 11.

電子輸送体12は、n型の金属酸化物半導体からなる酸化物半導体電極であり、粒状体または線状体(針状体,チューブ状体,柱状体等)の複数が集合してなるものが最適である。   The electron transporter 12 is an oxide semiconductor electrode made of an n-type metal oxide semiconductor, and is formed by aggregating a plurality of granular bodies or linear bodies (needle bodies, tube bodies, columnar bodies, etc.). Is optimal.

電子輸送体12を多孔質体等とすることにより、粒状体間または線状体間の接合面積が拡がり、色素13を担持する表面積が増えて、光電変換効率を高めることができる。   By making the electron transporter 12 a porous body or the like, the bonding area between the granular bodies or the linear bodies is expanded, the surface area for supporting the dye 13 is increased, and the photoelectric conversion efficiency can be increased.

また、電子輸送体12を多孔質体等とすることにより、色素増感型光電変換体の表面が凹凸形状となり、薄膜光電変換体や色素増感型光電変換体に光閉じ込め効果をもたらして、光電変換効率をより高めることができる。   In addition, by making the electron transporter 12 a porous body or the like, the surface of the dye-sensitized photoelectric conversion body becomes uneven, bringing a light confinement effect to the thin film photoelectric conversion body or the dye-sensitized photoelectric conversion body, Photoelectric conversion efficiency can be further increased.

酸化物半導体電極12の材料や組成としては、酸化チタン(TiO)が最適であり、他の材料や組成としては、チタン(Ti),亜鉛(Zn),スズ(Sn),ニオブ(Nb),インジウム(In),イットリウム(Y),ランタン(La),ジルコニウム(Zr),タンタル(Ta),ハフニウム(Hf),ストロンチウム(Sr),バリウム(Ba),カルシウム(Ca),バナジウム(V)等の金属元素の少なくとも1種以上からなる酸化物半導体がよく、また窒素(N),炭素(C),弗素(F),硫黄(S),塩素(Cl),リン(P)等の非金属元素の1種以上を含有させてもよい。これらはいずれも電子エネルギーバンドギャップが可視光のエネルギーより大きい2eV〜5eVの範囲にあり、かつ電子エネルギー準位において酸化物半導体の伝導帯が色素13の伝導帯より低いn型の酸化物半導体からなるものがよい。 The material and composition of the oxide semiconductor electrode 12 is optimally titanium oxide (TiO 2 ), and other materials and compositions are titanium (Ti), zinc (Zn), tin (Sn), and niobium (Nb). , Indium (In), yttrium (Y), lanthanum (La), zirconium (Zr), tantalum (Ta), hafnium (Hf), strontium (Sr), barium (Ba), calcium (Ca), vanadium (V) An oxide semiconductor composed of at least one metal element such as nitrogen (N), carbon (C), fluorine (F), sulfur (S), chlorine (Cl), phosphorus (P), etc. is preferable. One or more metal elements may be contained. These are all from an n-type oxide semiconductor whose electron energy band gap is in the range of 2 eV to 5 eV, which is larger than the energy of visible light, and whose conduction band of the oxide semiconductor is lower than that of the dye 13 at the electron energy level. What is better.

この酸化物半導体電極12は、空孔率が20%〜80%、より好適には40%〜60%の多孔質体状がよい。この理由は、この程度の空孔率の多孔質化により光作用極の表面積を1000倍以上に高めることができて、光吸収と発電と電子伝導とを効率よく行なうことができるからである。多孔質体の形状は、その表面積が大きくなり、かつ電気抵抗が小さい形状がよく、通常は、微細粒子もしくは微細線状からなるのがよい。その平均粒径もしくは平均線径は5nm〜500nmとするのがよく、より好適には10nm〜200nmとするのがよい。ここで、平均線径の5nm〜500nmにおける下限値は、これ以下になると材料の微細化が困難になるからであり、上限値は、これ以上になると接合面積が小さくなり光電流が著しく小さくなるからである。   The oxide semiconductor electrode 12 is preferably a porous body having a porosity of 20% to 80%, more preferably 40% to 60%. This is because the surface area of the light working electrode can be increased 1000 times or more by making the porosity of this degree of porosity, and light absorption, power generation and electron conduction can be performed efficiently. The shape of the porous body is preferably a shape having a large surface area and low electrical resistance, and is usually preferably composed of fine particles or fine lines. The average particle diameter or average line diameter is preferably 5 nm to 500 nm, and more preferably 10 nm to 200 nm. Here, if the lower limit of the average wire diameter of 5 nm to 500 nm is less than this, it is difficult to make the material finer, and if the upper limit is greater than this, the junction area is reduced and the photocurrent is significantly reduced. Because.

また、酸化物半導体電極12の膜厚は0.1μm〜50μmがよく、より好適には1μm〜20μmとするのがよい。ここで、0.1μm〜50μmにおける下限値は、これより膜厚が小さくなると光電変換作用が著しく小さくなって実使用が困難となるからであり、上限値は、これ以上膜厚が厚くなると光が透過しなくなって光が入射しなくなるからである。   The thickness of the oxide semiconductor electrode 12 is preferably 0.1 μm to 50 μm, more preferably 1 μm to 20 μm. Here, the lower limit value in the range of 0.1 μm to 50 μm is because if the film thickness becomes smaller than this, the photoelectric conversion action becomes remarkably small and practical use becomes difficult. This is because light is not transmitted and no light enters.

チタン酸化物半導体の製造方法は、まず、TiOのアナターゼ粉末にアセチルアセトンを添加した後、脱イオン水とともに混練し、界面活性剤で安定化させた酸化チタンのペーストを作製する。作製したペーストをドクターブレード法によって、透明導電膜11bが形成されている面上に、一定の速度で塗布し、大気中において300℃〜600℃、好適には400℃〜500℃で、10分〜60分、好適には20分〜40分処理することにより、多孔質体の酸化物半導体電極12を作製する。この手法は簡便であり、図1に示す例のように、耐熱性の導電性基板11上に予め形成できる場合に有効である。 The titanium oxide semiconductor is manufactured by first adding acetylacetone to TiO 2 anatase powder and then kneading with deionized water to produce a titanium oxide paste stabilized with a surfactant. The prepared paste is applied at a constant speed onto the surface on which the transparent conductive film 11b is formed by the doctor blade method, and is 300 ° C to 600 ° C in air, preferably 400 ° C to 500 ° C, preferably 10 minutes. The porous oxide semiconductor electrode 12 is produced by treating for -60 minutes, preferably 20 minutes to 40 minutes. This technique is simple and effective when it can be formed in advance on a heat-resistant conductive substrate 11 as in the example shown in FIG.

このような酸化物半導体の低温成長法として、電析法,泳動電着法,水熱合成法等がよく、後処理としてマイクロ波処理,CVD/UV処理等を行なうのがよい。酸化物半導体の材料としては、電析法による多孔質ZnO,泳動電着法による多孔質TiO等がよい。 As a low temperature growth method of such an oxide semiconductor, an electrodeposition method, an electrophoretic electrodeposition method, a hydrothermal synthesis method, or the like is preferable, and microwave processing, CVD / UV processing, or the like is preferably performed as post-processing. As a material of the oxide semiconductor, porous ZnO by an electrodeposition method, porous TiO 2 by an electrophoretic electrodeposition method, or the like is preferable.

<色素>
色素13としては、太陽光の照射スペクトルの波長領域に光吸収を示し、光励起反応によって電子輸送体(酸化物半導体電極)12に電子を注入できるものでよい。さらに多孔質体の酸化物半導体電極12に色素13を吸着させるためには、色素13に少なくとも1個以上のカルボキシル基,スルホニル基,ヒドロキサム酸基,アルコキシ基,アリール基,ホスホリル基を置換基として有することが有効である。ここで、置換基は、酸化物半導体電極12に強固に化学吸着することができ、励起状態の色素13から酸化物半導体電極12へ容易に電荷移動できるものであればよい。
<Dye>
The dye 13 may be capable of absorbing light in the wavelength region of the irradiation spectrum of sunlight and injecting electrons into the electron transporter (oxide semiconductor electrode) 12 by a photoexcitation reaction. Further, in order to adsorb the dye 13 to the porous oxide semiconductor electrode 12, the dye 13 has at least one carboxyl group, sulfonyl group, hydroxamic acid group, alkoxy group, aryl group, phosphoryl group as a substituent. It is effective to have. Here, the substituent is not particularly limited as long as it can strongly chemisorb to the oxide semiconductor electrode 12 and can easily transfer charges from the excited dye 13 to the oxide semiconductor electrode 12.

多孔質体の酸化物半導体電極(電子輸送体)12に色素13を吸着させる方法としては、酸化物半導体電極(電子輸送体)12を形成した導電性基板11を、色素13を溶解した溶液に浸漬する方法が挙げられる。多孔質体の酸化物半導体電極(電子輸送体)12を形成した導電性基板11を、色素13を溶解した溶液に浸漬する際は、溶液および雰囲気の温度は特に限定されるものではなく、例えば、雰囲気は大気圧下とし、温度は室温とすればよく、浸漬時間は色素13の種類,溶媒の種類,溶液の濃度,温度等により適宜調整することができる。これにより色素13を多孔質体の酸化物半導体電極(電子輸送体)12に吸着させることができる。   As a method for adsorbing the dye 13 to the porous oxide semiconductor electrode (electron transporter) 12, the conductive substrate 11 on which the oxide semiconductor electrode (electron transporter) 12 is formed is placed in a solution in which the dye 13 is dissolved. The method of immersing is mentioned. When the conductive substrate 11 on which the porous oxide semiconductor electrode (electron transporter) 12 is formed is immersed in a solution in which the dye 13 is dissolved, the temperature of the solution and the atmosphere is not particularly limited. The atmosphere may be under atmospheric pressure, the temperature may be room temperature, and the immersion time can be appropriately adjusted depending on the type of dye 13, the type of solvent, the concentration of the solution, the temperature, and the like. As a result, the dye 13 can be adsorbed to the porous oxide semiconductor electrode (electron transporter) 12.

色素13を溶解させるために用いる溶媒は、エタノール等のアルコール類,アセトン等のケトン類,ジエチルエーテル等のエーテル類,アセトニトリル等の窒素化合物等を1種または2種以上混合したものが挙げられる。   Examples of the solvent used for dissolving the dye 13 include a mixture of one or more alcohols such as ethanol, ketones such as acetone, ethers such as diethyl ether, nitrogen compounds such as acetonitrile, and the like.

また、溶液中の色素13の濃度は5×10−5〜2×10−3mol/l程度が好ましい。 The concentration of the dye 13 in the solution is preferably about 5 × 10 −5 to 2 × 10 −3 mol / l.

<電解質>
逆多孔質で他方導電型輸送体である電解質14としては、ゲル電解質等の正孔輸送体(p型半導体、液体電解質、固体電解質、電解塩等)が特によい。ここで、逆多孔質体とは前記多孔質体を埋めるように形成するものであり、電解液が最もよいキャリア移動を示すが、液体の場合には液漏れ等の問題があるのでゲル化や固体化したものを用いることが好ましい。
<Electrolyte>
The electrolyte 14 which is a reverse porous and other conductive type transporter is particularly preferably a hole transporter such as a gel electrolyte (p-type semiconductor, liquid electrolyte, solid electrolyte, electrolytic salt, etc.). Here, the reverse porous body is formed so as to fill the porous body, and the electrolytic solution shows the best carrier movement, but in the case of a liquid, there is a problem such as liquid leakage, It is preferable to use a solidified product.

電解質14の材料としては、透明導電性酸化物,電解質溶液,ゲル電解質や固体電解質等の電解質、有機正孔輸送剤、極薄膜金属等が挙げられる。透明導電性酸化物としては、一価の銅を含む化合物半導体やGaP,NiO,CoO,FeO,Bi,MoO,Cr等がよく、中でも一価の銅を含む半導体がよい。好適な化合物半導体としては、CuI,CuInSe,CuO,CuSCN,CuS,CuInS,CuAlSe等がよく、この中ではCuIおよびCuSCNがよく、CuIが製造しやすく最も望ましい。 Examples of the material of the electrolyte 14 include transparent conductive oxides, electrolyte solutions, electrolytes such as gel electrolytes and solid electrolytes, organic hole transport agents, and ultrathin metal films. As the transparent conductive oxide, a compound semiconductor containing monovalent copper, GaP, NiO, CoO, FeO, Bi 2 O 3 , MoO 2 , Cr 2 O 3, etc. are preferable. Among them, a semiconductor containing monovalent copper is used. Good. Suitable compound semiconductors include CuI, CuInSe 2 , Cu 2 O, CuSCN, CuS, CuInS 2 , and CuAlSe 2 , and among these, CuI and CuSCN are preferred, and CuI is most preferable because it is easy to manufacture.

電解質溶液としては第4級アンモニウム塩やLi塩等を用いる。電解質溶液の組成としては例えば、炭酸エチレン、アセトニトリル、またはメトキシプロピオニトリル等に、ヨウ化テトラプロピルアンモニウム,ヨウ化リチウム,ヨウ素等を混合し調製したものを用いることができる。   As the electrolyte solution, quaternary ammonium salt, Li salt or the like is used. As the composition of the electrolyte solution, for example, one prepared by mixing ethylene carbonate, acetonitrile, methoxypropionitrile, or the like with tetrapropylammonium iodide, lithium iodide, iodine, or the like can be used.

ゲル電解質は、大別して化学ゲルと物理ゲルとに分けられる。化学ゲルは架橋反応等により化学結合でゲルを形成しているものであり、物理ゲルは、物理的な相互作用により室温付近でゲル化しているものである。ゲル電解質としては、アセトニトリル、エチレンカーボネート、プロピレンカーボネートまたはそれらの混合物に対し、ポリエチレンオキサイド,ポリアクリロニトリル,ポリフッ化ビニリデン,ポリビニルアルコール,ポリアクリル酸,ポリアクリルアミド等のホストポリマーを混入して重合させたゲル電解質が好ましい。なお、ゲル電解質や固体電解質を使用する場合には、低粘度の前駆体を酸化物半導体層に含有させ、加熱,紫外線照射,電子線照射等の手段で二次元,三次元の架橋反応を起こさせることによってゲル化または固体化させることができる。   Gel electrolytes are roughly classified into chemical gels and physical gels. A chemical gel is a gel formed by a chemical bond by a cross-linking reaction or the like, and a physical gel is gelled near room temperature due to a physical interaction. The gel electrolyte is a gel that is polymerized by mixing a host polymer such as polyethylene oxide, polyacrylonitrile, polyvinylidene fluoride, polyvinyl alcohol, polyacrylic acid, or polyacrylamide into acetonitrile, ethylene carbonate, propylene carbonate, or a mixture thereof. An electrolyte is preferred. When a gel electrolyte or solid electrolyte is used, a low-viscosity precursor is included in the oxide semiconductor layer, and a two-dimensional or three-dimensional crosslinking reaction is caused by means such as heating, ultraviolet irradiation, or electron beam irradiation. Can be gelled or solidified.

イオン伝導性の固体電解質としては、ポリエチレンオキサイド、ポリエチレンオキサイドもしくはポリエチレン等の高分子鎖に、スルホンイミダゾリウム塩,テトラシアノキノジメタン塩,ジシアノキノジイミン塩等の塩を持つ固体電解質が好ましい。ヨウ化物の溶融塩としてはイミダゾリウム塩,第4級アンモニウム塩,イソオキサゾリジニウム塩,イソチアゾリジニウム塩,ピラゾリジウム塩,ピロリジニウム塩,ピリジニウム塩等のヨウ化物を用いることができる。   As the ion conductive solid electrolyte, a solid electrolyte having a polymer chain such as polyethylene oxide, polyethylene oxide, or polyethylene and having a salt such as sulfonimidazolium salt, tetracyanoquinodimethane salt, or dicyanoquinodiimine salt is preferable. As the molten salt of iodide, an iodide such as an imidazolium salt, a quaternary ammonium salt, an isoxazolidinium salt, an isothiazolidinium salt, a pyrazolidium salt, a pyrrolidinium salt, or a pyridinium salt can be used.

上述のヨウ化物の溶融塩としては、例えば、1,1−ジメチルイミダゾリウムアイオダイド、1,メチル−3−エチルイミダゾリウムアイオダイド、1−メチル−3−ペンチルイミダゾリウムアイオダイド、1−メチル−3−イソペンチルイミダゾリウムアイオダイド、1−メチル−3−ヘキシルイミダゾリウムアイオダイド、1−メチル−3−エチルイミダゾリウムアイオダイド、1,2−ジメチル−3−プロピルイミダゾールアイオダイド、1−エチル−3−イソプロピルイミダゾリウムアイオダイド、ピロリジニウムアイオダイド等を挙げることができる。   Examples of the molten salt of iodide include 1,1-dimethylimidazolium iodide, 1, methyl-3-ethylimidazolium iodide, 1-methyl-3-pentylimidazolium iodide, 1-methyl- 3-isopentylimidazolium iodide, 1-methyl-3-hexylimidazolium iodide, 1-methyl-3-ethylimidazolium iodide, 1,2-dimethyl-3-propylimidazole iodide, 1-ethyl- Examples thereof include 3-isopropylimidazolium iodide and pyrrolidinium iodide.

有機正孔輸送剤として機能する電解質14には、トリフェニルジアミン(TPD1,TPD2,TPD3)やOMeTAD等が挙げられる。   Examples of the electrolyte 14 that functions as an organic hole transporting agent include triphenyldiamine (TPD1, TPD2, TPD3), OMeTAD, and the like.

<透明導電層>
透明導電層(第1の透明導電層)17および第2の透明導電層15としては、低温成長のスパッタリング法や低温スプレー熱分解法,熱CVD法等で作製したスズ添加酸化インジウム膜(ITO膜)や不純物ドープの酸化インジウム膜(In膜)等がよい。他には、溶液成長法で作製した不純物ドープの酸化亜鉛膜(ZnO膜)等がよく、これらを積層して用いてもよい。またスパッタリング法,低温スプレー熱分解法,熱CVD法で形成したフッ素ドープの二酸化スズ膜(SnO:F膜)等を用いてもよい。他の成膜法としては、真空蒸着法,イオンプレーティング法,ディップコート法,ゾル・ゲル法等がある。これらの膜成長によって表面に入射光の波長オーダーの凹凸を形成すると、光閉じ込め効果を持たせることができて、なおよいものとなる。また、第1の透明導電層17としては、真空蒸着法やスパッタリング法等で形成したAu,Pd,Al等の薄い金属膜でもよい。
<Transparent conductive layer>
As the transparent conductive layer (first transparent conductive layer) 17 and the second transparent conductive layer 15, a tin-added indium oxide film (ITO film) produced by a low temperature growth sputtering method, a low temperature spray pyrolysis method, a thermal CVD method, or the like Or an impurity-doped indium oxide film (In 2 O 3 film). In addition, an impurity-doped zinc oxide film (ZnO film) or the like manufactured by a solution growth method may be used, and these may be stacked and used. Alternatively, a fluorine-doped tin dioxide film (SnO 2 : F film) formed by sputtering, low-temperature spray pyrolysis, or thermal CVD may be used. As other film forming methods, there are a vacuum deposition method, an ion plating method, a dip coating method, a sol-gel method, and the like. By forming irregularities in the order of the wavelength of incident light on the surface by these film growths, a light confinement effect can be provided, which is even better. The first transparent conductive layer 17 may be a thin metal film such as Au, Pd, or Al formed by vacuum deposition or sputtering.

<薄膜光電変換層>
薄膜光電変換層16としては、プラズマCVD法によって連続堆積したpin接合の水素化アモルファスシリコン系半導体膜がよい。第1の透明導電層17側にp型半導体膜を設けたpin接合とするとよいが、逆接合のnip接合でも構わない。ここで、一導電型シリコン系半導体層と逆導電型シリコン系半導体層とは、それぞれp型半導体とn型半導体と、もしくはn型半導体とp型半導体とからなるものを意味する。また、実質的に真性であるシリコン系半導体層はi型半導体を意味する。
<Thin film photoelectric conversion layer>
The thin film photoelectric conversion layer 16 is preferably a pin junction hydrogenated amorphous silicon semiconductor film continuously deposited by plasma CVD. A pin junction having a p-type semiconductor film provided on the first transparent conductive layer 17 side may be used, but a reverse junction nip junction may also be used. Here, the one-conductivity-type silicon-based semiconductor layer and the reverse-conductivity-type silicon-based semiconductor layer mean a p-type semiconductor and an n-type semiconductor, or an n-type semiconductor and a p-type semiconductor, respectively. Further, a silicon semiconductor layer that is substantially intrinsic means an i-type semiconductor.

ここで、i型半導体膜がアモルファス(非晶質)であれば、p型半導体膜およびn型半導体膜は少なくともいずれかが微結晶を有するもの、または水素化アモルファスシリコン(a−Si:H)合金系の膜を用いるとよい。また、光入射側のp型半導体膜には水素化アモルファスシリコンカーバイドを用いると、透光性を高めて光の侵入ロスが少なくなるので、より好ましい。他の成膜法として触媒CVD法を用いて成膜してもよい。プラズマCVD法と触媒CVD法とを組み合わせると、成膜した半導体膜における光劣化が抑制できて、信頼性を高めることができる。これらのシリコン系半導体層は、化学気相成長法によりそれぞれの成膜条件で連続して成膜することができるので具合がよい。   Here, if the i-type semiconductor film is amorphous (amorphous), at least one of the p-type semiconductor film and the n-type semiconductor film has microcrystals, or hydrogenated amorphous silicon (a-Si: H) An alloy film may be used. In addition, it is more preferable to use hydrogenated amorphous silicon carbide for the p-type semiconductor film on the light incident side, because it increases translucency and reduces light penetration loss. As another film forming method, a film may be formed using a catalytic CVD method. When the plasma CVD method and the catalytic CVD method are combined, photodegradation in the formed semiconductor film can be suppressed and reliability can be improved. These silicon-based semiconductor layers are favorable because they can be continuously formed under the respective film forming conditions by chemical vapor deposition.

より詳しく説明すると、例えば、p型a−Si:H膜の場合は、原料ガスとしてSiH+HガスおよびB(Hで500ppmに希釈したもの)ガスを用い、これらのガスの流量をそれぞれ最適化して成膜する。膜厚は50Å〜200Åの範囲がよく、好適には80Å〜120Åがよい。薄過ぎると十分な内部電界が形成できず、厚過ぎると光量損失が増えることとなる。続いて、i型a−Si:Hの原料ガスとしてSiH+Hガスを用い、これらのガスの流量を最適化して成膜する。膜厚は500Å〜5000Å(0.05μm〜0.5μm)の範囲がよく、好適には1500Å〜2500Å(0.15μm〜0.25μm)がよい。薄過ぎると十分な光電流が得られず、厚過ぎると色素増感型光電変換装置に光を十分に透過できないこととなる。続いて、n型a−Si:H膜の場合は、原料ガスとしてSiH+HガスおよびPH(Hで1000ppmに希釈したもの)ガスを用い、これらのガスの流量をそれぞれ最適化して成膜する。膜厚は50Å〜200Åの範囲がよく、好適には80Å〜120Åがよい。薄過ぎると十分な内部電界が形成できず、厚過ぎると光量損失が増えることとなる。成膜時の基板温度は、pin膜の何れも150℃〜300℃の範囲がよく、好適には180℃〜240℃がよい。低過ぎても高過ぎてもよい光半導体が得られないこととなる。 More specifically, for example, in the case of a p-type a-Si: H film, SiH 4 + H 2 gas and B 2 H 6 (diluted to 500 ppm with H 2 ) gas are used as source gases. Film formation is performed with each flow rate optimized. The film thickness is in the range of 50 to 200 mm, preferably 80 to 120 mm. If it is too thin, a sufficient internal electric field cannot be formed, and if it is too thick, the light amount loss increases. Subsequently, SiH 4 + H 2 gas is used as the i-type a-Si: H source gas, and the flow rate of these gases is optimized to form a film. The film thickness is preferably in the range of 500 mm to 5000 mm (0.05 μm to 0.5 μm), preferably 1500 mm to 2500 mm (0.15 μm to 0.25 μm). If it is too thin, sufficient photocurrent cannot be obtained, and if it is too thick, light cannot be sufficiently transmitted to the dye-sensitized photoelectric conversion device. Subsequently, in the case of an n-type a-Si: H film, SiH 4 + H 2 gas and PH 3 (diluted to 1000 ppm with H 2 ) gas are used as source gases, and the flow rates of these gases are optimized respectively. Form a film. The film thickness is in the range of 50 to 200 mm, preferably 80 to 120 mm. If it is too thin, a sufficient internal electric field cannot be formed, and if it is too thick, the light amount loss increases. The substrate temperature during film formation is preferably in the range of 150 ° C. to 300 ° C., preferably 180 ° C. to 240 ° C. for any pin film. An optical semiconductor that may be too low or too high cannot be obtained.

<透光性基板>
透光性基板18としては、フッ素樹脂,シリコン樹脂,ポリエステル樹脂,高耐候性ポリエステル樹脂,ポリ塩化ビニル樹脂や金属屋根に利用される塗布樹脂等が耐候性に優れている点でよい。この透光性基板18の厚みは0.1μm〜6mm、好ましくは1μm〜4mmがよい。また、防眩性,遮熱性,耐熱性,低汚染性,抗菌性,防かび性,意匠性,高加工性,耐疵付き性,耐摩耗性,滑雪性,帯電防止性,遠赤外線放射性,耐酸性,耐食性,環境対応性,等を透光性基板18に付与することにより、光電変換装置1の信頼性や商品性をより高めることができる。
<Translucent substrate>
As the translucent substrate 18, a fluororesin, a silicon resin, a polyester resin, a high weather resistance polyester resin, a polyvinyl chloride resin, a coating resin used for a metal roof, or the like may be excellent in weather resistance. The translucent substrate 18 has a thickness of 0.1 μm to 6 mm, preferably 1 μm to 4 mm. In addition, antiglare, heat shield, heat resistance, low contamination, antibacterial, antifungal, design, high workability, scratch resistance, wear resistance, snow sliding, antistatic, far infrared radiation, By imparting acid resistance, corrosion resistance, environmental compatibility, and the like to the translucent substrate 18, the reliability and merchantability of the photoelectric conversion device 1 can be further improved.

また、図2に示す例の場合には、透光性基板18として、十分な機械的強度を有する厚みがあり支持体として使用できるものであれば、これに予め薄膜光電変換体を形成しても構わない。この場合は、透光性基板18の厚みは0.05mm〜2mm、好ましくは0.1mm〜1mmがよく、上記材料の他に、PET(ポリエチレンテレフタレート),PEN(ポリエチレンナフタレート),ポリイミド,ポリカーボネート等の樹脂シートや白板ガラス,ソーダガラス,硼珪酸ガラス,セラミックス等の無機質シート,有機無機ハイブリッドシート等がよい。   In the case of the example shown in FIG. 2, if the transparent substrate 18 has a thickness having sufficient mechanical strength and can be used as a support, a thin film photoelectric conversion body is previously formed thereon. It doesn't matter. In this case, the thickness of the translucent substrate 18 is 0.05 mm to 2 mm, preferably 0.1 mm to 1 mm. Besides the above materials, PET (polyethylene terephthalate), PEN (polyethylene naphthalate), polyimide, polycarbonate, etc. Resin sheets, white sheet glass, soda glass, borosilicate glass, ceramics and other inorganic sheets, and organic-inorganic hybrid sheets are preferred.

また、透光性基板18の光入射側の表面は両面が平坦なものでよいが、入射光の波長オーダーの凹凸を有する表面としておく方が、光閉じ込め効果を持たせることができて、なおよいものとなる。   Further, the light incident side surface of the translucent substrate 18 may be flat on both sides, but the surface having irregularities in the order of the wavelength of incident light can provide a light confinement effect. It will be good.

<下地層>
下地層は図示していないが、図1に示す例の構成では、導電性基板11と多孔質体で一導電型の電子輸送体(酸化物半導体電極)12との間に、多孔質の一導電型輸送体の薄い緻密層を挿入すると、逆電流が流れなくなるのでよい。
<Underlayer>
Although the underlying layer is not shown, in the configuration of the example shown in FIG. 1, a porous single layer is provided between the conductive substrate 11 and the porous single-electron-type electron transporter (oxide semiconductor electrode) 12. If a thin dense layer of a conductive transporter is inserted, the reverse current may not flow.

また、図2に示す例の構成では、第1の透明導電層17と多孔質体で一導電型の電子輸送体(酸化物半導体電極)12との間に、多孔質の一導電型輸送体の薄い緻密層を挿入すると、同様に逆電流が流れなくなるのでよい。   Further, in the configuration of the example shown in FIG. 2, a porous one-conductive transporter is provided between the first transparent conductive layer 17 and a porous and one-conductive electron transporter (oxide semiconductor electrode) 12. If a thin dense layer is inserted, the reverse current does not flow in the same manner.

<触媒層(酸素を含んだ白金族金属からなる層)>
図1〜図3に示す例の構成では、透明導電層(第1の透明導電層)17と逆多孔質で逆導電型の輸送体である電解質14との間に、酸素を含んだ白金族金属である白金,パラジウム,ルテニウム,オスミニウム,ロジウム,イリジウム等の薄膜あるいは粒子からなる触媒層20が第1の透明導電層17に被着されて挿入されている。この触媒層20が挿入されていることによって、電解質14の再還元の効率がよくなり、正孔の移動がよくなるので具合がよく、その結果、光電変換効率を向上させることができる。
<Catalyst layer (layer made of platinum group metal containing oxygen)>
1 to 3, the platinum group containing oxygen between the transparent conductive layer (first transparent conductive layer) 17 and the electrolyte 14 which is a reverse porous and reverse conductive type transporter. A catalyst layer 20 composed of a thin film or particles of platinum, palladium, ruthenium, osmium, rhodium, iridium, or the like, which is a metal, is deposited on the first transparent conductive layer 17 and inserted. By inserting the catalyst layer 20, the efficiency of re-reduction of the electrolyte 14 is improved, and the movement of holes is improved, so that the condition is good. As a result, the photoelectric conversion efficiency can be improved.

なお、この白金族金属に酸素が含まれる形態は、例えば、白金では、X線光電子分光分析法(XPS)による白金の4f7/2軌道電子の結合エネルギーが72eV〜75eVであることが好ましい。これは、酸素が白金族金属に物理吸着あるいは化学吸着しているのではなく、酸素と白金族金属とが化学結合し、白金の酸化状態が+1〜+6の状態である。また、白金は酸素原子だけでなくOH分子等の酸素分子と化学結合してもよい。   In addition, the form in which oxygen is contained in the platinum group metal is preferably, for example, platinum, in which the binding energy of 4f7 / 2 orbital electrons of platinum by X-ray photoelectron spectroscopy (XPS) is 72 eV to 75 eV. This is because oxygen is not physically or chemically adsorbed to the platinum group metal, but oxygen and the platinum group metal are chemically bonded, and the oxidation state of platinum is in a state of +1 to +6. Platinum may be chemically bonded not only to oxygen atoms but also to oxygen molecules such as OH molecules.

また、酸素を含んだ白金族金属は、対極である例えば透明導電層(第1の透明導電層)17に対して、薄膜状,多孔質体状あるいは粒状の形態で、アモルファス相を含み、膜厚が10nm〜10μm程度で被着して、電解質14である例えば三ヨウ化物イオンI をヨウ化物イオンIに還元できる機能を有しているものである。酸素を含んだ白金族金属が以上のように対極に被着していることにより、電解質14である例えば三ヨウ化物イオンI をヨウ化物イオンIに効率よく還元できる触媒として機能し、それによって、対極から電解質14へ電子を効率よく供給できるので、太陽電池等の光電変換装置1の変換効率を向上させることができるものとなる。 In addition, the platinum group metal containing oxygen contains an amorphous phase in the form of a thin film, a porous body, or particles, for example, with respect to the transparent conductive layer (first transparent conductive layer) 17 that is the counter electrode, It has a function of being deposited with a thickness of about 10 nm to 10 μm and capable of reducing, for example, triiodide ions I 3 as the electrolyte 14 to iodide ions I . Since the platinum group metal containing oxygen is deposited on the counter electrode as described above, it functions as a catalyst that can efficiently reduce, for example, triiodide ion I 3 as electrolyte 14 to iodide ion I . As a result, electrons can be efficiently supplied from the counter electrode to the electrolyte 14, so that the conversion efficiency of the photoelectric conversion device 1 such as a solar cell can be improved.

特に、白金族金属がこの白金族金属の酸化物もしくは水酸化物を含むものであることが、対極から電解質14へ電子を効率よく供給するサイトである触媒活性点を増加させることになるので、好ましい。例えば、白金(Pt)の場合であれば、白金酸化物PtOや白金水酸化物PtOがよい。特に、アダムス触媒であり、触媒活性点で重要な役割を担うPt−O結合が多いことから、PtO2.52やPtO3.892.76がよい。 In particular, it is preferable that the platinum group metal contains an oxide or hydroxide of the platinum group metal because the catalytic active point that is a site for efficiently supplying electrons from the counter electrode to the electrolyte 14 is increased. For example, in the case of platinum (Pt), platinum oxide PtO x and platinum hydroxide PtO x H y are preferable. In particular, PtO 2.52 and PtO 3.89 H 2.76 are preferable because they are Adams catalysts and have many Pt-O bonds that play an important role in the catalytic activity point.

さらに、この酸素を含む白金族金属は、結晶質や多結晶質であってもよいが、特にPtの安定価数は+2および+4の状態であり、各々の酸化物PtOおよびPtOであるが、触媒活性点は不安定な構造点あるいは結合点が重要な役割を担うため、価数が整数値でないPtO2.52やPtO3.892.76のような化合物は結合も不安定であり、構造も不安定な状態であって、結晶性が低いので光透過率が高い状態となっていて非晶質であることが好ましい。そのような非晶質であるものとするには、例えば、雰囲気ガスに酸素を含んだガスを導入したスパッタリング法により形成すればよい。なお、この酸素を含む白金族金属が非晶質であるかどうかの確認は、X線回折装置(XRD)を用いて、対極上に形成された酸素を含む白金族金属のXRDパターンを測定することや、紫外可視分光光度計を用いて、対極上に形成された酸素を含む白金族金属の紫外可視吸収スペクトルを測定して行なえばよい。 Further, the platinum group metal containing oxygen may be crystalline or polycrystalline. In particular, the stable valence of Pt is +2 and +4, which are the respective oxides PtO and PtO 2. In addition, since an unstable structural point or bonding point plays an important role as a catalytic active site, compounds such as PtO 2.52 and PtO 3.89 H 2.76 whose valence is not an integer have unstable bonding. In addition, the structure is also unstable, and the crystallinity is low, so that the light transmittance is high and it is preferably amorphous. In order to make such an amorphous material, for example, it may be formed by a sputtering method in which a gas containing oxygen is introduced into an atmospheric gas. In order to confirm whether or not the platinum group metal containing oxygen is amorphous, an XRD pattern of the platinum group metal containing oxygen formed on the counter electrode is measured using an X-ray diffractometer (XRD). In addition, an ultraviolet-visible absorption spectrum of a platinum group metal containing oxygen formed on the counter electrode may be measured using an ultraviolet-visible spectrophotometer.

また、これら白金族金属(触媒層20)を対極に被着する方法としては、陽極酸化法,塩化白金酸処理法,メッキ法,真空蒸着法,電子ビーム蒸着法,イオンビームスパッタリング法,スパッタリング法,化学蒸着法等がよい。特に、酸素の分圧(組成)制御が容易であり、膜厚制御が容易なことから、スパッタリング法がよい。   The platinum group metal (catalyst layer 20) can be deposited on the counter electrode by anodizing, chloroplatinic acid, plating, vacuum deposition, electron beam deposition, ion beam sputtering, sputtering. Chemical vapor deposition is good. In particular, the sputtering method is preferable because the partial pressure (composition) of oxygen can be easily controlled and the film thickness can be easily controlled.

本発明の光電変換装置における対極は、図1〜図3に示す例のように、酸素を含んだ白金族金属からなる触媒層20が被着された透明導電層17が形成されて少なくとも表面が導電性となっている透光性基板18によって構成するとよい。これにより、触媒層20の電解質14に対する還元の能力が高く、光透過性も高いので、対極から電解質14に効率よく電子を供給することができ、光の減光も少なく、光を十分に色素13に供給できるため、光電変換効率を高くすることができるものとなる。また、触媒層20の電解質14に対する還元の能力が高いので、光を透光性の導電性基板11側から入射してもよい。   The counter electrode in the photoelectric conversion device of the present invention has at least a surface having a transparent conductive layer 17 on which a catalyst layer 20 made of platinum group metal containing oxygen is deposited, as in the example shown in FIGS. It is preferable that the light-transmitting substrate 18 is conductive. As a result, the ability of the catalyst layer 20 to reduce the electrolyte 14 is high, and the light transmittance is also high, so that electrons can be efficiently supplied from the counter electrode to the electrolyte 14, light is not dimmed, and light is sufficiently dyed. Therefore, the photoelectric conversion efficiency can be increased. Further, since the ability of the catalyst layer 20 to reduce the electrolyte 14 is high, light may be incident from the translucent conductive substrate 11 side.

なお、透明導電層(第1の透明導電層)17および第2の透明導電層15には、例えばフィンガー電極およびバスバー電極等からなる集電極を設けて、電力取り出しの経路における電気抵抗を小さくするとよい。   The transparent conductive layer (first transparent conductive layer) 17 and the second transparent conductive layer 15 are provided with collector electrodes made of, for example, finger electrodes and bus bar electrodes to reduce the electrical resistance in the power extraction path. Good.

かくして、本発明の光電変換装置によれば、対極に酸素を含んだ白金族金属が被着されていることにより、また好ましくは、白金族金属がこの白金族金属の酸化物もしくは水酸化物を含むことにより、また白金族金属が非晶質であることにより、電解質の再還元を向上させることができ、また、対極の光透過性を向上させることができるので、光電変換効率を向上させることができる。   Thus, according to the photoelectric conversion device of the present invention, the platinum group metal containing oxygen is deposited on the counter electrode, and preferably, the platinum group metal contains an oxide or hydroxide of the platinum group metal. Inclusion of the platinum group metal can improve the re-reduction of the electrolyte, and improve the light transmittance of the counter electrode, thereby improving the photoelectric conversion efficiency. Can do.

また、本発明の積層型光電変換装置は、主面側から光を入射させる導電性基板の主面上に、色素を有しこの色素の増感作用により光電変換を行なう色素増感型光電変換体と、光電変換を行なう半導体層を有する薄膜光電変換体とが、この順で積層され、この薄膜光電変換体で短波長光がよく光電変換され、薄膜光電変換体を透過した光を、その光を吸収し色素の増感作用により光電変換を行なう色素増感型光電変換体が吸収するので、両光電変換体の変換効率を合わせた高い変換効率が得られるものとなる。   In addition, the stacked photoelectric conversion device of the present invention includes a dye-sensitized photoelectric conversion that has a dye on the main surface of a conductive substrate on which light is incident from the main surface side and performs photoelectric conversion by a sensitizing action of the dye. And a thin film photoelectric conversion body having a semiconductor layer that performs photoelectric conversion are stacked in this order, and the short wavelength light is often photoelectrically converted by this thin film photoelectric conversion body, and the light transmitted through the thin film photoelectric conversion body is Since the dye-sensitized photoelectric converter that absorbs light and performs photoelectric conversion by the sensitizing action of the dye absorbs, high conversion efficiency combining the conversion efficiencies of both photoelectric converters can be obtained.

また、薄膜光電変換体も色素増感型光電変換体もそれぞれが低温プロセスで作製できるので、積層構成をとっても従来の太陽電池より簡便容易にかつ低コストで製造可能である。さらに、光の入射側に薄膜光電変換体を配し、その後側に色素増感型光電変換体を配したことにより、後側の色素増感型光電変換体が太陽光等の強い光を直接受けることがない。しかも、光入射側の薄膜光電変換体では、よりよく短波長光を吸収し、長波長光をほとんど透過する。よって、後側に配置された色素増感型光電変換体は、太陽光等の強い光を直接受けることがなく、紫外線が無く短波長光が激減するので色素の光劣化が大幅に軽減して解消させることができる。また、強い光を直接受けることがなく、背面側の導電性基板の他の主面側(裏面側)より容易に色素増感型光電変換体を冷却することができ、これにより温度上昇が抑制できて、色素の熱劣化を抑制することができる。   In addition, since each of the thin-film photoelectric conversion body and the dye-sensitized photoelectric conversion body can be produced by a low-temperature process, it can be easily and easily manufactured at a lower cost than a conventional solar cell even if it has a laminated structure. Furthermore, by arranging a thin film photoelectric converter on the light incident side and a dye-sensitized photoelectric converter on the rear side, the rear dye-sensitized photoelectric converter directly emits strong light such as sunlight. I will not receive it. Moreover, the thin film photoelectric conversion body on the light incident side better absorbs short wavelength light and transmits almost all long wavelength light. Therefore, the dye-sensitized photoelectric converter arranged on the back side does not receive direct light such as sunlight, and there is no ultraviolet light, and short wavelength light is drastically reduced. It can be eliminated. In addition, the dye-sensitized photoelectric converter can be easily cooled from the other main surface side (back side) of the conductive substrate on the back side without receiving strong light directly, thereby suppressing the temperature rise. And thermal deterioration of the pigment can be suppressed.

なお、以上の実施の形態の例においては、本発明の光電変換装置として、酸化物半導体電極を形成した導電性基板と、酸化物半導体電極に付着した光電変換を行なう色素と、電解質と、酸素を含んだ白金族金属からなる触媒層が被着された対極とを、この順で配設した例について説明したが、本発明の光電変換装置はこれに限定されるものではない。例えば、酸化物半導体電極を形成した導電性基板と、酸化物半導体電極に付着した光電変換を行なう色素と、電解質と、酸素を含んだ白金族金属からなる触媒層が被着された対極と、結晶系シリコン太陽電池と、電極とをこの順で配設してもよく、この場合には、酸化物半導体電極側から太陽光を入射させた場合に、光透過率の高い触媒層が被着した対極により、色素に吸収されなかった光を下段の結晶系シリコン太陽電池にも供給することができ、光電変換効率を向上することができるものとなる。   Note that in the example of the above embodiment, as the photoelectric conversion device of the present invention, a conductive substrate on which an oxide semiconductor electrode is formed, a dye that performs photoelectric conversion attached to the oxide semiconductor electrode, an electrolyte, and oxygen Although the example which arrange | positioned in this order the counter electrode with which the catalyst layer which consists of platinum group metal containing was attached was demonstrated, the photoelectric conversion apparatus of this invention is not limited to this. For example, a conductive substrate on which an oxide semiconductor electrode is formed, a dye that performs photoelectric conversion attached to the oxide semiconductor electrode, an electrolyte, and a counter electrode on which a catalyst layer made of a platinum group metal containing oxygen is deposited, The crystalline silicon solar cell and the electrode may be arranged in this order. In this case, when sunlight is incident from the oxide semiconductor electrode side, a catalyst layer having a high light transmittance is deposited. By using the counter electrode, light that has not been absorbed by the dye can be supplied to the lower crystalline silicon solar cell, and the photoelectric conversion efficiency can be improved.

また、(直列セルにおいて、)酸化物半導体電極と酸素を含んだ白金族金属からなる触媒層との対が電気的に独立して同一面内に多数形成された導電性基板と、酸化物半導体電極に付着した光電変換を行なう色素と、電解質と、酸化物半導体電極と酸素を含んだ白金族金属からなる触媒層との対が電気的に独立して同一面内に多数被着された対極(導電性基板の酸化物半導体電極および触媒層と対極の触媒層および酸化物半導体電極とが各々対向した構成)とを、この順で配設してもよい。この場合には、各対向したセルを直列接続でき、セル内の配線が不要となり、配線の面積および抵抗を削減できるともに光透過率の高い触媒層を形成できるため、光電変換効率をさらに向上させることができるものとなる。   In addition, a conductive substrate in which a plurality of pairs of oxide semiconductor electrodes and a catalyst layer made of a platinum group metal containing oxygen (in series cells) are electrically independently formed in the same plane, and an oxide semiconductor A counter electrode in which a large number of pairs of a dye that performs photoelectric conversion attached to an electrode, an electrolyte, an oxide semiconductor electrode, and a catalyst layer made of a platinum group metal containing oxygen are deposited independently in the same plane (A configuration in which the oxide semiconductor electrode and the catalyst layer of the conductive substrate and the catalyst layer and the oxide semiconductor electrode of the counter electrode face each other) may be arranged in this order. In this case, the cells facing each other can be connected in series, wiring in the cell is not necessary, the area and resistance of the wiring can be reduced, and a catalyst layer with high light transmittance can be formed, further improving the photoelectric conversion efficiency. Will be able to.

さらにまた、いわゆる面内直列セルにおいて、酸化物半導体電極と酸素を含んだ白金族金属からなる触媒層とが電気的に独立して同一面内に多数形成された導電性基板と、その酸化物半導体電極に付着した光電変換を行なう色素と、電解質と、対極とをこの順で配設した色素増感型光電変換体を光入射側に配置し、後段に結晶性シリコン太陽電池を配設してもよい。この場合には、導電性基板と対極との間の配線が不要となり、配線の面積および抵抗を削減できるともに光透過率の高い触媒層を形成できるため、光電変換効率をさらに向上させることができるものとなる。   Furthermore, in a so-called in-plane series cell, a conductive substrate in which a large number of oxide semiconductor electrodes and a catalyst layer made of a platinum group metal containing oxygen are electrically independently formed in the same plane, and the oxide A dye-sensitized photoelectric conversion body in which a dye for photoelectric conversion attached to a semiconductor electrode, an electrolyte, and a counter electrode are arranged in this order is arranged on the light incident side, and a crystalline silicon solar cell is arranged in the subsequent stage. May be. In this case, the wiring between the conductive substrate and the counter electrode is not necessary, and the area and resistance of the wiring can be reduced and a catalyst layer having a high light transmittance can be formed, so that the photoelectric conversion efficiency can be further improved. It will be a thing.

そして、上述した本発明の光電変換装置を発電手段として用い、この発電手段からの発電電力を負荷へ供給するように成すことによって、本発明の光発電装置とすることができる。   And it can be set as the photovoltaic device of this invention by using the photoelectric conversion apparatus of this invention mentioned above as a power generation means, and being comprised so that the electric power generated from this power generation means may be supplied to a load.

すなわち、上述した光電変換装置を1つ以上(複数であれば、直列,並列または直並列に)接続したものを発電手段として用い、この発電手段から直接に直流負荷へ発電電力を供給するようにすればよい。また、上述した光電変換装置から出力された直流電力をインバータ等の電力変換手段を介して適当な交流電力に変換した後で、この発電電力を商用電源系統や各種の電気機器等の交流負荷に供給することが可能な光発電装置としてもよい。さらに、このような光発電装置を日当たりのよい建物に設置する等して、各種態様の太陽光発電システム等の光発電装置として利用することも可能であり、これにより、高効率で耐久性のある光発電装置を提供することができる。   That is, one or more of the photoelectric conversion devices described above (in the case of multiple photoelectric conversion devices connected in series, parallel or series-parallel) is used as the power generation means, and the generated power is supplied directly to the DC load from this power generation means. do it. In addition, after the DC power output from the above-described photoelectric conversion device is converted into appropriate AC power via power conversion means such as an inverter, this generated power is applied to an AC load such as a commercial power supply system or various electric devices. It is good also as a photovoltaic device which can be supplied. Furthermore, such a photovoltaic power generation device can be used as a photovoltaic power generation device such as a photovoltaic power generation system in various aspects by installing it in a building with good sunlight. A photovoltaic device can be provided.

以下、本発明をより具体化した実施例について説明する。   Examples of the present invention will be described below.

まず導電性基板として、フッ素ドープ酸化スズの透明導電層付ガラス基板を用い、その上に多孔質の酸化物半導体電極として二酸化チタンを形成した。電子輸送体としての酸化物半導体電極である二酸化チタンの製造方法は、まず、TiOのアナターゼ粉末にアセチルアセトンを添加した後、脱イオン水とともに混練し、界面活性剤で安定化させた酸化チタンのペーストを作製した。作製したペーストをドクターブレード法でチタニウム基板上に一定の速度で塗布し、大気中において450℃で30分間焼成した。 First, a fluorine-doped tin oxide glass substrate with a transparent conductive layer was used as a conductive substrate, and titanium dioxide was formed thereon as a porous oxide semiconductor electrode. The manufacturing method of titanium dioxide which is an oxide semiconductor electrode as an electron transporter is as follows. First, acetylacetone is added to TiO 2 anatase powder, then kneaded with deionized water, and stabilized with a surfactant. A paste was prepared. The prepared paste was applied onto a titanium substrate at a constant speed by a doctor blade method, and baked at 450 ° C. for 30 minutes in the atmosphere.

色素としては、シス−ビス(イソチオシアナート)−N,N−ビス(2,2’−ジピリジル−4,4’−ジカルボン酸)−ルテニウム(II)二水和物を用い、色素を溶解させるために用いる溶媒としては、エタノールを用い、多孔質酸化チタン層(酸化物半導体電極)を形成した導電性基板を、色素を溶解した溶液(0.3mM)に12時間浸漬して、色素を多孔質酸化チタン層に担持した。   As the dye, cis-bis (isothiocyanate) -N, N-bis (2,2′-dipyridyl-4,4′-dicarboxylic acid) -ruthenium (II) dihydrate is used to dissolve the dye. As a solvent to be used, ethanol is used, and a conductive substrate on which a porous titanium oxide layer (oxide semiconductor electrode) is formed is immersed in a solution (0.3 mM) in which a dye is dissolved for 12 hours to make the dye porous. Supported on a titanium oxide layer.

その後、上記基板をエタノールにて洗浄してから乾燥させた。   Thereafter, the substrate was washed with ethanol and dried.

次に、正孔輸送体(電解質)として、0.1Mのヨウ化リチウム,0.05Mのヨウ素,0.3Mのジメチルプロピルイミダゾリルヨウ素および0.5Mのターシャルブチルピリジンをメトキシアセトニトリル溶媒に入れ、電解質が溶解するまで攪拌して溶液を調製した。   Next, as a hole transporter (electrolyte), 0.1M lithium iodide, 0.05M iodine, 0.3M dimethylpropylimidazolyl iodine and 0.5M tertiary butylpyridine are put into a methoxyacetonitrile solvent, and the electrolyte is dissolved. To prepare a solution.

また、対極として、酸素を含んだ白金を膜厚50nmでスパッタリング法によって形成した触媒層を被着した、フッ素ドープ酸化スズの透明導電層付ガラス基板を用いた。酸素を含んだ白金は、白金ターゲットを用い、2極対向電極放電方式のDCコーティングモードで蒸着した。高圧電圧1.4kV、イオン電流30mAとなるように空気を導入し、蒸着した。この白金には、後述する図5に示すように、酸素がX線光電子分光分析法(XPS)による白金の4f7/2軌道電子の結合エネルギーが73eVになるように含まれていた。以上のようにして、本発明の実施例の光電変換装置を作製した。   Further, as a counter electrode, a glass substrate with a transparent conductive layer of fluorine-doped tin oxide on which a catalyst layer formed by sputtering of platinum containing oxygen with a film thickness of 50 nm was used. Platinum containing oxygen was vapor-deposited in a DC coating mode of a two-pole counter electrode discharge method using a platinum target. Air was introduced and evaporated so as to obtain a high voltage of 1.4 kV and an ion current of 30 mA. As shown in FIG. 5 to be described later, this platinum contained oxygen so that the binding energy of 4f7 / 2 orbital electrons of platinum was 73 eV by X-ray photoelectron spectroscopy (XPS). As described above, the photoelectric conversion device of the example of the present invention was manufactured.

また、比較例の光電変換装置として、以上と同様にして、対極に被着する触媒層を空気を導入せずアルゴン(Ar)を導入して酸素を含まない白金として蒸着したものを作製した。   Further, as the photoelectric conversion device of the comparative example, a catalyst layer deposited on the counter electrode was vapor-deposited as platinum not containing oxygen by introducing argon (Ar) without introducing air.

ここで、フッ素ドープ酸化スズの透明導電層付ガラス基板に白金を蒸着する際に空気を導入したもの(実施例)、およびアルゴンを導入したもの(比較例)のそれぞれの白金について、X線回折パターン(XRD)を測定した結果を図4に、X線光電子分光分析法(XPS)で測定した結果を図5に、および光吸収スペクトル(UV)を測定した結果を図6に、それぞれ特性図で示す。   Here, X-ray diffraction was performed for each of platinum in which air was introduced (Example) when argon was deposited on a glass substrate with a transparent conductive layer of fluorine-doped tin oxide and in which argon was introduced (Comparative Example). FIG. 4 shows the result of measurement of the pattern (XRD), FIG. 5 shows the result of measurement by X-ray photoelectron spectroscopy (XPS), and FIG. 6 shows the result of measurement of the light absorption spectrum (UV). It shows with.

図4は、X線回折パターン(XRD)を測定した結果を示す特性図であり、上段が白金を蒸着する際に空気を導入したもの(実施例:Pt/空気)の結果を、下段が白金を蒸着する際にアルゴン(Ar)を導入したもの(比較例:Pt/アルゴン)の結果を示している。なお、それぞれ横軸は2θ角度(θ)(単位:°)を、縦軸は回折強度(任意単位)を表わしている。図4に示す結果より、比較例のArを導入して蒸着した白金では、下地基板のフッ素ドープ酸化スズおよび白金の回折ピークが見られ、白金の2θ=40°付近の(111)回折ピークが少し強く、弱い(111)配向結晶であった。一方、実施例の空気を導入して蒸着した白金では、下地基板のフッ素ドープ酸化スズの回折ピークしか見られず、2θ=30°付近にブロードで弱いハローが見られ、白金は非晶質であった。   FIG. 4 is a characteristic diagram showing the results of measuring an X-ray diffraction pattern (XRD). The upper part shows the result of introducing air when depositing platinum (Example: Pt / air), and the lower part shows platinum. The result of what introduce | transduced argon (Ar) when vapor-depositing (comparative example: Pt / argon) is shown. The horizontal axis represents 2θ angle (θ) (unit: °), and the vertical axis represents diffraction intensity (arbitrary unit). From the results shown in FIG. 4, in the platinum deposited by introducing Ar in the comparative example, the fluorine-doped tin oxide and platinum diffraction peaks of the base substrate are observed, and the (111) diffraction peak in the vicinity of 2θ = 40 ° of platinum is observed. It was a slightly strong and weak (111) oriented crystal. On the other hand, in the platinum deposited by introducing air in the example, only the diffraction peak of fluorine-doped tin oxide of the base substrate is seen, and a broad and weak halo is seen around 2θ = 30 °, and the platinum is amorphous. there were.

次に、図5はX線光電子分光分析法(XPS)で測定した結果を示す特性図であり、横軸は結合エネルギー(Binding Energy)(単位:eV)を、縦軸はc/s(単位:カウント/秒)を表わし、実線の特性曲線が実施例(Pt/空気)の結果を、破線の特性曲線が比較例(Pt/アルゴン)の結果を示している。図5に示す結果より、Ptの結合エネルギーピーク(Pt4f 7/2軌道の電子)を比較すると、比較例では、金属(metal)に帰属される結合エネルギーにピークが見られ、この白金層は金属であった。この結果は、XRDの結果と一致する。一方、実施例では、その結合エネルギーピークはPt(OH)とPtOとの間にあり、この非晶質の白金層はPtOの組成で酸素を含んでおり、アダムス触媒であった。 Next, FIG. 5 is a characteristic diagram showing the results of measurement by X-ray photoelectron spectroscopy (XPS), where the horizontal axis represents binding energy (unit: eV), and the vertical axis represents c / s (unit). : Count / second), the solid characteristic curve shows the result of the example (Pt / air), and the broken characteristic curve shows the result of the comparative example (Pt / argon). From the results shown in FIG. 5, when the Pt binding energy peak (Pt4f 7/2 orbital electron) is compared, in the comparative example, a peak is observed in the binding energy attributed to the metal, and this platinum layer is a metal layer. Met. This result is consistent with the XRD result. On the other hand, in the example, the binding energy peak was between Pt (OH) 2 and PtO, and this amorphous platinum layer contained oxygen with a composition of PtO x H y and was an Adams catalyst. .

ここで、比較例では、白金層の蒸着速度は0.13nm/秒であった。一方、実施例では、白金層の蒸着速度は0.27nm/秒であり、実施例における白金蒸着の方が2倍程度高速の白金蒸着が可能であり、光電変換装置を効率よく作製することができることも確認できた。   Here, in the comparative example, the deposition rate of the platinum layer was 0.13 nm / second. On the other hand, in the examples, the deposition rate of the platinum layer is 0.27 nm / second, and the platinum deposition in the examples can perform platinum deposition about twice as fast, and the photoelectric conversion device can be efficiently manufactured. Was also confirmed.

次に、図6は光吸収スペクトル(UV)を測定した結果を示す特性図であり、上段が蒸着を4分間行なったもの(4min成膜)の結果を、下段が蒸着を。12分間行なったもの(12min成膜)の結果を示しており、それぞれ横軸は波長(単位:nm)を、縦軸は吸光度(任意単位)を表わし、実線の特性曲線が実施例(Pt/空気)の結果を、破線の特性曲線が比較例(Pt/アルゴン)の結果を示している。図6に示す結果より、同じ成膜時間で、比較例の白金層は、層厚が実施例の2分の1程度であるにもかかわらず、実施例の白金層に比べて吸光度は3倍以上大きく、比較例の白金層の吸光係数(単位膜厚当りの吸光度)は6倍以上大きいことから、光入射を対極電極側から行なう場合には、実施例の対極の方が光透過率が高いので、光電変換効率を高くできることが分かった。さらに、長波長側ほど吸光度は小さいので、長波長感度が大きい色素ほど、変換効率の向上ができることが分かる。   Next, FIG. 6 is a characteristic diagram showing the result of measuring the light absorption spectrum (UV). The upper part shows the result of vapor deposition for 4 minutes (film formation for 4 minutes), and the lower part shows vapor deposition. The results for 12 minutes (film formation for 12 min) are shown. The horizontal axis represents the wavelength (unit: nm), the vertical axis represents the absorbance (arbitrary unit), and the solid characteristic curve represents the example (Pt / The result of the comparative example (Pt / argon) is shown by the broken characteristic curve. From the results shown in FIG. 6, in the same film formation time, the platinum layer of the comparative example has an absorbance three times that of the platinum layer of the example although the layer thickness is about one-half that of the example. Since the extinction coefficient (absorbance per unit film thickness) of the platinum layer of the comparative example is more than 6 times larger, when the light incidence is performed from the counter electrode side, the counter electrode of the example has higher light transmittance. Since it is high, it turned out that a photoelectric conversion efficiency can be made high. Furthermore, since the absorbance is smaller at the longer wavelength side, it can be understood that the conversion efficiency can be improved as the dye has a longer wavelength sensitivity.

上記のように色素を吸着させた酸化物半導体電極が形成された導電性基板と、白金からなる触媒層を被着した対極基板とを、ハイミラン等の熱可塑性樹脂をスペーサとして用いて対向させ、開口部より電解質液を注入し、熱可塑性樹脂あるいは反応性樹脂を用いて封止し、実施例および比較例の光電変換装置を作製した。   The conductive substrate on which the oxide semiconductor electrode on which the dye is adsorbed as described above is formed, and the counter electrode substrate on which the catalyst layer made of platinum is applied are opposed to each other using a thermoplastic resin such as high Milan as a spacer, An electrolyte solution was injected from the opening and sealed with a thermoplastic resin or a reactive resin, and photoelectric conversion devices of Examples and Comparative Examples were produced.

そして、これら実施例および比較例の光電変換装置について、図1に矢印Lで示すように光を入射させ、JIS C8912 CLASS Aに対応した太陽電池セル評価用ソーラシミュレータ(AM1.5G)を用いて光電変換効率の評価をしたところ、比較例では変換効率が2.5%であったのに対して、実施例では5.0%であり、比較例に比べ、実施例の方が変換効率を約2倍に向上させることができた。   And about the photoelectric conversion apparatus of these Examples and Comparative Examples, light is incident as shown by an arrow L in FIG. 1, and a solar cell evaluation solar simulator (AM1.5G) corresponding to JIS C8912 CLASS A is used. When the photoelectric conversion efficiency was evaluated, the conversion efficiency in the comparative example was 2.5%, whereas the conversion efficiency in the example was 5.0%. The conversion efficiency in the example was about twice that in the comparative example. I was able to improve.

以上のように、本発明の光電変換装置は、簡便容易に作製でき、しかも高い光電変換効率を実現することができるものであって、以上の結果から、実施例の光電変換装置において光電変換効率を高くできたことが、酸素を含んだ白金を被着した対極を用いたことによるものであることが確認できた。   As described above, the photoelectric conversion device of the present invention can be easily and easily manufactured and can achieve high photoelectric conversion efficiency. From the above results, the photoelectric conversion efficiency of the photoelectric conversion device of the example is It has been confirmed that the increase in the resistance was due to the use of a counter electrode coated with platinum containing oxygen.

本発明の光電変換装置の実施の形態の一例を模式的に示す断面図である。It is sectional drawing which shows typically an example of embodiment of the photoelectric conversion apparatus of this invention. 本発明の光電変換装置の実施の形態の他の例を模式的に示す断面図である。It is sectional drawing which shows typically the other example of embodiment of the photoelectric conversion apparatus of this invention. 本発明の光電変換装置の実施の形態のさらに他の例を模式的に示す断面図である。It is sectional drawing which shows typically the further another example of embodiment of the photoelectric conversion apparatus of this invention. X線回折パターンの測定結果を説明する特性図である。It is a characteristic view explaining the measurement result of a X-ray diffraction pattern. X線光電子分光分析法による測定結果を説明する特性図である。It is a characteristic view explaining the measurement result by X-ray photoelectron spectroscopy. 光吸収スペクトルの測定結果を説明する特性図である。It is a characteristic view explaining the measurement result of a light absorption spectrum.

符号の説明Explanation of symbols

1:光電変換装置
11:導電性基板
12:酸化物半導体電極(電子輸送体)
13:色素
14:電解質
15:第2の透明導電層
16:非単結晶光電変換層
17:透明導電層(第1の透明導電層)
18:透光性基板
19:第2の色素
20:触媒層(白金族金属)
1: Photoelectric conversion device
11: Conductive substrate
12: Oxide semiconductor electrode (electron transporter)
13: Dye
14: Electrolyte
15: Second transparent conductive layer
16: Non-single crystal photoelectric conversion layer
17: Transparent conductive layer (first transparent conductive layer)
18: Translucent substrate
19: Second dye
20: Catalyst layer (platinum group metal)

Claims (5)

酸化物半導体電極を形成した導電性基板と、前記酸化物半導体電極に付着した色素と、電解質と、酸素を含んだ白金族金属が被着された対極とを具備することを特徴とする光電変換装置。 A photoelectric conversion comprising: a conductive substrate on which an oxide semiconductor electrode is formed; a dye attached to the oxide semiconductor electrode; an electrolyte; and a counter electrode coated with a platinum group metal containing oxygen. apparatus. 前記対極の外側に光電変換層が積層されていることを特徴とする請求項1記載の光電変換装置。 The photoelectric conversion device according to claim 1, wherein a photoelectric conversion layer is laminated outside the counter electrode. 前記白金族金属が該白金族金属の酸化物もしくは水酸化物を含むことを特徴とする請求項1または請求項2記載の光電変換装置。 The photoelectric conversion device according to claim 1, wherein the platinum group metal contains an oxide or hydroxide of the platinum group metal. 前記白金族金属が非晶質であることを特徴とする請求項1または請求項2の光電変換装置。 The photoelectric conversion device according to claim 1, wherein the platinum group metal is amorphous. 請求項1乃至請求項4のいずれかに記載の光電変換装置を発電手段として用い、該発電手段の発電電力を負荷へ供給するように成したことを特徴とする光発電装置。 5. A photovoltaic power generation apparatus using the photoelectric conversion apparatus according to claim 1 as a power generation means, and supplying the generated power of the power generation means to a load.
JP2004308078A 2004-10-22 2004-10-22 Photoelectric conversion device and photovoltaic device using the same Expired - Fee Related JP4637543B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004308078A JP4637543B2 (en) 2004-10-22 2004-10-22 Photoelectric conversion device and photovoltaic device using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004308078A JP4637543B2 (en) 2004-10-22 2004-10-22 Photoelectric conversion device and photovoltaic device using the same

Publications (2)

Publication Number Publication Date
JP2006120504A true JP2006120504A (en) 2006-05-11
JP4637543B2 JP4637543B2 (en) 2011-02-23

Family

ID=36538195

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004308078A Expired - Fee Related JP4637543B2 (en) 2004-10-22 2004-10-22 Photoelectric conversion device and photovoltaic device using the same

Country Status (1)

Country Link
JP (1) JP4637543B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007179822A (en) * 2005-12-27 2007-07-12 Toyota Central Res & Dev Lab Inc Electrode and dye-sensitized solar cell using it for counter electrode
JP2008294288A (en) * 2007-05-25 2008-12-04 Mitsubishi Materials Corp Thin film thermistor element and its manufacturing method
JP2008305716A (en) * 2007-06-08 2008-12-18 Kyocera Corp Photoelectric conversion device
JP2009193702A (en) * 2008-02-12 2009-08-27 Seiko Instruments Inc Solar cell and method of manufacturing the same
JP2011060595A (en) * 2009-09-10 2011-03-24 Dainippon Printing Co Ltd Counter electrode substrate for dye-sensitized solar cell, dye-sensitized solar cell element, and dye-sensitized solar cell module
JP2012124163A (en) * 2010-12-06 2012-06-28 Samsung Corning Precision Materials Co Ltd Solar cell module

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002231324A (en) * 2001-01-30 2002-08-16 Sumitomo Metal Mining Co Ltd Compound solar battery
JP2003308891A (en) * 2002-04-17 2003-10-31 Catalysts & Chem Ind Co Ltd Photoelectric cell
JP2005228594A (en) * 2004-02-13 2005-08-25 Sumitomo Osaka Cement Co Ltd Dye-sensitized solar cell and manufacturing method of dye-sensitized solar cell

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002231324A (en) * 2001-01-30 2002-08-16 Sumitomo Metal Mining Co Ltd Compound solar battery
JP2003308891A (en) * 2002-04-17 2003-10-31 Catalysts & Chem Ind Co Ltd Photoelectric cell
JP2005228594A (en) * 2004-02-13 2005-08-25 Sumitomo Osaka Cement Co Ltd Dye-sensitized solar cell and manufacturing method of dye-sensitized solar cell

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007179822A (en) * 2005-12-27 2007-07-12 Toyota Central Res & Dev Lab Inc Electrode and dye-sensitized solar cell using it for counter electrode
JP2008294288A (en) * 2007-05-25 2008-12-04 Mitsubishi Materials Corp Thin film thermistor element and its manufacturing method
JP2008305716A (en) * 2007-06-08 2008-12-18 Kyocera Corp Photoelectric conversion device
JP2009193702A (en) * 2008-02-12 2009-08-27 Seiko Instruments Inc Solar cell and method of manufacturing the same
JP2011060595A (en) * 2009-09-10 2011-03-24 Dainippon Printing Co Ltd Counter electrode substrate for dye-sensitized solar cell, dye-sensitized solar cell element, and dye-sensitized solar cell module
JP2012124163A (en) * 2010-12-06 2012-06-28 Samsung Corning Precision Materials Co Ltd Solar cell module

Also Published As

Publication number Publication date
JP4637543B2 (en) 2011-02-23

Similar Documents

Publication Publication Date Title
JP4637523B2 (en) Photoelectric conversion device and photovoltaic device using the same
JP5159877B2 (en) Photoelectric conversion device and photovoltaic power generation device
JP5275346B2 (en) Dye-sensitized solar cell
JP2006324090A (en) Photoelectric conversion module and photovoltaic generator using it
JP2007280761A (en) Photoelectric conversion device, its manufacturing method, and photovoltaic power generation device
JP4925605B2 (en) Photoelectric conversion device and photovoltaic device using the same
JP4969046B2 (en) Photoelectric conversion device and photovoltaic device using the same
WO2010029961A1 (en) Photoelectric converter
JP2004241378A (en) Dye sensitized solar cell
JP4836473B2 (en) PHOTOELECTRIC CONVERSION DEVICE, ITS MANUFACTURING METHOD, AND PHOTOVOLTAIC POWER
JP2009009936A (en) Photoelectric conversion device
JP5153215B2 (en) Photoelectric conversion device
JP4637543B2 (en) Photoelectric conversion device and photovoltaic device using the same
JP2005064493A (en) Photoelectric converter and photovoltaic device using the same
JP4841128B2 (en) Photoelectric conversion device and photovoltaic device using the same
JP4637473B2 (en) Stacked photoelectric conversion device
JP2005191137A (en) Stacked photoelectric converter
JP2008277422A (en) Laminated photoelectric converter
JP4578090B2 (en) Stacked photoelectric conversion device
JP2008244258A (en) Photoelectric conversion device and photovoltaic generator
JP2009135395A (en) Photoelectric conversion device, photovoltaic generator, and photoelectric conversion module
JP5153248B2 (en) Photoelectric conversion device and photovoltaic power generation device
KR101623585B1 (en) Dye-Sensitized Solar Cells And Manufacturing Method For Thereof
JP2009009851A (en) Photoelectric conversion device
JP2007172915A (en) Photoelectric conversion device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070907

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100622

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100811

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101026

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101124

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131203

Year of fee payment: 3

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees