JP2008294288A - Thin film thermistor element and its manufacturing method - Google Patents

Thin film thermistor element and its manufacturing method Download PDF

Info

Publication number
JP2008294288A
JP2008294288A JP2007139110A JP2007139110A JP2008294288A JP 2008294288 A JP2008294288 A JP 2008294288A JP 2007139110 A JP2007139110 A JP 2007139110A JP 2007139110 A JP2007139110 A JP 2007139110A JP 2008294288 A JP2008294288 A JP 2008294288A
Authority
JP
Japan
Prior art keywords
thin film
thermistor
electrode layer
electrode
thermistor element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007139110A
Other languages
Japanese (ja)
Other versions
JP5029885B2 (en
Inventor
Yoshinori Adachi
美紀 足立
Kensho Nagatomo
憲昭 長友
Hitoshi Inaba
均 稲場
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2007139110A priority Critical patent/JP5029885B2/en
Publication of JP2008294288A publication Critical patent/JP2008294288A/en
Application granted granted Critical
Publication of JP5029885B2 publication Critical patent/JP5029885B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Thermistors And Varistors (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To improve the adhesion strength of an electrode and a thermistor thin film, to attain a sufficient resistance value as the electrode and to suppress resistance value increase in a heat resistance test as well in a thin film thermistor element, and its manufacturing method. <P>SOLUTION: The thin film thermistor element comprises an Si substrate 2, a first thermistor thin film 5A and a second thermistor thin film 5B formed on the Si substrate 2 and a comb-shaped electrode 3 formed on the first thermistor thin film 5A and the second thermistor thin film 5B. For the combe-shaped electrode 3, at least a part to be in contact with the first thermistor thin film 5A and the second thermistor thin film 5B is an electrode layer composed of platinum or its alloy film-formed in an amorphous state. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、例えば温度センサ、流量センサ等のセンサに用いられる薄膜サーミスタ素子及びその製造方法に関する。   The present invention relates to a thin film thermistor element used for sensors such as a temperature sensor and a flow rate sensor, and a method for manufacturing the same.

例えば、情報機器、通信機器、医療用機器、住宅設備機器、自動車用伝送機器等の温度センサ、流量センサとして、大きな負の温度係数を有する酸化物半導体の焼結体である薄膜サーミスタ素子が用いられている。このような薄膜サーミスタ素子を作製するには、基板に先に電極を形成した後にサーミスタ薄膜を成膜し、1400℃以下の温度で熱処理する場合と、基板にサーミスタ薄膜を形成し、熱処理を行ってから電極を形成する場合がある。   For example, thin film thermistor elements, which are sintered oxide semiconductors with a large negative temperature coefficient, are used as temperature sensors and flow sensors for information equipment, communication equipment, medical equipment, housing equipment, automotive transmission equipment, etc. It has been. In order to manufacture such a thin film thermistor element, a thermistor thin film is formed after first forming an electrode on the substrate and heat-treated at a temperature of 1400 ° C. or lower, and a thermistor thin film is formed on the substrate and heat-treated. In some cases, the electrode is formed later.

例えば、特許文献1では、絶縁性基板上に接着層としてCr(クロム)やTi(チタン)等の下地層を形成し、その上にPt(白金)層を基板温度650℃〜750℃で成膜した薄膜サーミスタが提案されている。
また、特許文献2では、アルミナ基板上に先にサーミスタ薄膜を成膜した後にPt薄膜を形成した薄膜サーミスタ素子が提案されている。
さらに、特許文献3では、セラミックス基板上にサーミスタ材料の感熱膜を設け、その上にCrやTi等の密着性高い金属下地層を形成し、さらにその上に電極膜を形成した薄膜サーミスタが提案されている。
For example, in Patent Document 1, a base layer such as Cr (chromium) or Ti (titanium) is formed on an insulating substrate as an adhesive layer, and a Pt (platinum) layer is formed thereon at a substrate temperature of 650 ° C. to 750 ° C. Filmed thin film thermistors have been proposed.
Patent Document 2 proposes a thin film thermistor element in which a Pt thin film is formed after a thermistor thin film is first formed on an alumina substrate.
Furthermore, Patent Document 3 proposes a thin film thermistor in which a thermosensitive film of thermistor material is provided on a ceramic substrate, a metal underlayer having high adhesion such as Cr or Ti is formed thereon, and an electrode film is further formed thereon. Has been.

特公平3−54841号公報Japanese Patent Publication No. 3-54841 特開2000−348906号公報JP 2000-348906 A 特開平6−61012号公報JP-A-6-61012

上記従来の技術には、以下の課題が残されている。
すなわち、サーミスタ薄膜を成膜する前に先に電極を成膜する場合は、構造的に制限されてしまう不都合がある。また、接着層としてCrやTi等を成膜した後に、白金やその合金などからなる電極層を成膜する場合、接着層の酸化によって耐熱試験後の抵抗値上昇が起こるという不都合があった。さらに、加熱成膜で基板温度を上げて白金やその合金などからなる電極層を成膜する場合には、特殊な成膜装置が必要であると共に、パターニングする際にも腐食性ガスを用いる特殊なエッチング装置が必要になり、設備コストが高くなってしまう不都合がある。また、この場合、CrやTi等の接着層を設けた場合に比較すると、電極層の付着強度が若干弱く、電極剥離の原因になるおそれがあった。
The following problems remain in the conventional technology.
That is, when the electrode is formed first before the thermistor thin film is formed, there is a problem that the structure is limited. In addition, when an electrode layer made of platinum or an alloy thereof is formed after forming Cr, Ti, or the like as the adhesive layer, there is a disadvantage that the resistance value increases after the heat resistance test due to oxidation of the adhesive layer. Furthermore, in the case where an electrode layer made of platinum or an alloy thereof is formed by raising the substrate temperature by heating film formation, a special film forming apparatus is required and a special gas that uses corrosive gas is also used for patterning. This necessitates a simple etching apparatus and increases the equipment cost. In this case, the adhesion strength of the electrode layer is slightly weaker than that in the case where an adhesive layer such as Cr or Ti is provided, which may cause electrode peeling.

本発明は、前述の課題に鑑みてなされたもので、電極とサーミスタ薄膜との付着強度を改善し、電極として十分な抵抗値であると共に耐熱試験においても抵抗値上昇を抑制した薄膜サーミスタ素子及びその製造方法を提供することを目的とする。   The present invention has been made in view of the above-described problems, and improves the adhesion strength between an electrode and a thermistor thin film, has a resistance value sufficient as an electrode, and suppresses an increase in resistance value in a heat resistance test, and a thin film thermistor element It aims at providing the manufacturing method.

本発明は、上記課題を解決するため、以下の手段を採用する。
本発明に係る薄膜サーミスタ素子は、基体と、前記基体上に形成されたサーミスタ薄膜と、前記サーミスタ薄膜上に形成された一対の電極と、を備えた薄膜サーミスタ素子であって、前記一対の電極が、少なくとも前記サーミスタ薄膜と接触する部分が非晶質状態で成膜された白金又はその合金からなる電極層であることを特徴とする。
The present invention employs the following means in order to solve the above problems.
A thin film thermistor element according to the present invention is a thin film thermistor element comprising a base, a thermistor thin film formed on the base, and a pair of electrodes formed on the thermistor thin film, wherein the pair of electrodes However, at least a portion in contact with the thermistor thin film is an electrode layer made of platinum or an alloy thereof formed in an amorphous state.

また、本発明に係る薄膜サーミスタ素子の製造方法は、基体上に形成されたサーミスタ薄膜の膜上に一対の電極をパターン形成する薄膜サーミスタ素子の製造方法であって、前記一対の電極をパターン形成する工程が、少なくとも前記サーミスタ薄膜と接触する部分が非晶質状態とされた白金又はその合金からなる電極層を成膜する工程を有することを特徴とする。   The method of manufacturing a thin film thermistor element according to the present invention is a method of manufacturing a thin film thermistor element in which a pair of electrodes is formed on a film of a thermistor thin film formed on a substrate. The step of performing has a step of forming an electrode layer made of platinum or an alloy thereof in which at least a portion in contact with the thermistor thin film is in an amorphous state.

これらの薄膜サーミスタ素子及びその製造方法では、一対の電極が、少なくともサーミスタ薄膜と接触する部分が非晶質状態で成膜された白金又はその合金からなる電極層とされるので、非晶質状態で成膜された電極層が導電性を十分に維持したままサーミスタ薄膜との十分な付着強度を有すると共に、耐熱試験においても電極剥離が生じず、抵抗値上昇の抑制を図ることができる。   In these thin film thermistor elements and the manufacturing method thereof, the pair of electrodes is an electrode layer made of platinum or an alloy thereof formed in an amorphous state at least at a portion in contact with the thermistor thin film. The electrode layer formed in (1) has sufficient adhesion strength with the thermistor thin film while maintaining sufficient conductivity, and electrode peeling does not occur even in the heat resistance test, thereby suppressing an increase in resistance value.

また、本発明に係る薄膜サーミスタ素子は、前記一対の電極が、酸素及び窒素の少なくとも一方を含んで成膜されていることを特徴とする。
また、本発明に係る薄膜サーミスタ素子の製造方法は、前記電極層を成膜する工程が、酸素及び窒素の少なくとも一方を加えて前記電極層を成膜することを特徴とする。
The thin film thermistor element according to the present invention is characterized in that the pair of electrodes are formed to include at least one of oxygen and nitrogen.
In the method of manufacturing a thin film thermistor element according to the present invention, the step of forming the electrode layer forms the electrode layer by adding at least one of oxygen and nitrogen.

これらの薄膜サーミスタ素子及びその製造方法では、電極層の成膜時に酸素又は窒素の少なくとも一方を含ませることにより、電極層を好適に非晶質化させることができる。   In these thin film thermistor elements and the manufacturing method thereof, the electrode layer can be preferably made amorphous by including at least one of oxygen and nitrogen at the time of forming the electrode layer.

さらに、本発明に係る薄膜サーミスタ素子は、前記一対の電極における酸素及び窒素の少なくとも一方の含有量が、5重量%以上、かつ15重量%以下であることを特徴とする。
また、本発明に係る薄膜サーミスタ素子の製造方法は、前記電極層を成膜する工程が、前記電極層における酸素及び窒素の少なくとも一方の含有量を、5重量%以上、かつ15重量%以下にすることを特徴とする。
Furthermore, in the thin film thermistor element according to the present invention, the content of at least one of oxygen and nitrogen in the pair of electrodes is 5 wt% or more and 15 wt% or less.
Further, in the method for manufacturing a thin film thermistor element according to the present invention, the step of forming the electrode layer may include a content of at least one of oxygen and nitrogen in the electrode layer of 5 wt% or more and 15 wt% or less. It is characterized by doing.

これらの薄膜サーミスタ素子及びその製造方法では、酸素及び窒素の少なくとも一方の含有量を5重量%以上、かつ15重量%以下に設定することで、電極層を十分に非晶質化させることができ、かつ、電極層の抵抗値の大幅な上昇を抑えることができる。   In these thin film thermistor elements and the manufacturing method thereof, the electrode layer can be sufficiently amorphized by setting the content of at least one of oxygen and nitrogen to 5 wt% or more and 15 wt% or less. In addition, a significant increase in the resistance value of the electrode layer can be suppressed.

本発明によれば、以下の効果を奏する。
すなわち、本発明の薄膜サーミスタ素子及びその製造方法によれば、一対の電極が、少なくともサーミスタ薄膜と接触する部分が非晶質状態で成膜された白金又はその合金からなる電極層とされるので、導電性を十分に維持したまま十分な付着強度と耐熱試験での抵抗値上昇の抑制とを実現することができる。非晶質状態で成膜された白金又はその合金からなる電極層は、サーミスタ薄膜の表面形状の影響をほとんど受けず、サーミスタ−電極層界面に隙間が発生することなく成膜可能である。したがって、150℃等の耐熱試験を実施しても変動の少ない安定した抵抗値を有し、好適な電気特性を維持した高い信頼性の薄膜サーミスタ素子を得ることができる。
The present invention has the following effects.
That is, according to the thin film thermistor element and the method of manufacturing the same of the present invention, the pair of electrodes is an electrode layer made of platinum or an alloy thereof formed in an amorphous state at least at a portion in contact with the thermistor thin film. In addition, it is possible to realize sufficient adhesion strength and suppression of increase in resistance value in a heat resistance test while maintaining sufficient conductivity. An electrode layer made of platinum or an alloy thereof formed in an amorphous state is hardly affected by the surface shape of the thermistor thin film, and can be formed without generating a gap at the thermistor-electrode layer interface. Therefore, it is possible to obtain a highly reliable thin film thermistor element having a stable resistance value with little fluctuation even when a heat resistance test of 150 ° C. or the like is performed and maintaining suitable electrical characteristics.

本発明に係る薄膜サーミスタ素子及びその製造方法の一実施形態について、図1から図3を参照して説明する。なお、以下の説明に用いる各図面では、各部材を認識可能な大きさとするために、各部材の縮尺を適宜変更している。   An embodiment of a thin film thermistor element and a method for manufacturing the same according to the present invention will be described with reference to FIGS. In each drawing used for the following description, the scale of each member is appropriately changed in order to make each member a recognizable size.

本実施形態に係る薄膜サーミスタ素子1は、例えば赤外線検出用センサであって、図1及び図2に示すように、表面に下地層としてSiO層2Aが形成されたSi基板(基体)2と、SiO層2A上に成膜された第1サーミスタ薄膜(サーミスタ薄膜)5A及び第2サーミスタ薄膜(サーミスタ薄膜)5Bと、第1サーミスタ薄膜5A及び第2サーミスタ薄膜5B上及びSiO層2A上にパターン形成された二対の櫛形電極(電極)3と、SiO層2A、櫛形電極3及び第1サーミスタ薄膜5A及び第2サーミスタ薄膜5Bを覆うパッシベーション膜6と、を備えている。 A thin film thermistor element 1 according to the present embodiment is, for example, an infrared detection sensor, and as shown in FIGS. 1 and 2, a Si substrate (base body) 2 having a SiO 2 layer 2A formed on its surface as an underlayer, and the first thermistor thin film (thermistor thin film) which is formed on the SiO 2 layer 2A 5A and a second thermistor thin film (thermistor thin film) 5B, the first thermistor thin film 5A and the second thermistor thin film 5B and the SiO 2 layer 2A on And a pair of comb-shaped electrodes (electrodes) 3 patterned on each other, and a passivation film 6 covering the SiO 2 layer 2A, the comb-shaped electrode 3, the first thermistor thin film 5A, and the second thermistor thin film 5B.

上記第1サーミスタ薄膜5A及び上記第2サーミスタ薄膜5Bは、Mn−Co系複合金属酸化物(例えば、Mn−Co系複合金属酸化物)又はMn−Co系複合金属酸化物にNi、Fe、Cuの少なくとも一種類を含む複合金属酸化物(例えば、Mn−Co−Fe系複合金属酸化物)からなる複合金属酸化物膜であって、スピネル型結晶構造を有し、膜厚方向に延在する柱状結晶構造を有している。
第1サーミスタ薄膜5A及び第2サーミスタ薄膜5Bは、それぞれ矩形状に形成され、一方が測定用であり、他方がモニター用として用いられる。
The first thermistor thin film 5A and the second thermistor thin film 5B are made of Mn—Co based composite metal oxide (for example, Mn 3 O 4 —Co 3 O 4 based composite metal oxide) or Mn—Co based composite metal oxide. A composite metal oxide film comprising a composite metal oxide containing at least one of Ni, Fe, and Cu (for example, Mn 3 O 4 —Co 3 O 4 —Fe 2 O 3 composite metal oxide), It has a spinel crystal structure and a columnar crystal structure extending in the film thickness direction.
The first thermistor thin film 5A and the second thermistor thin film 5B are each formed in a rectangular shape, and one is used for measurement and the other is used for monitoring.

上記櫛形電極3は、電気抵抗測定用の金属電極であって、少なくとも第1サーミスタ薄膜5A及び第2サーミスタ薄膜5Bと接触する部分が非晶質状態で成膜された白金(Pt)又はその合金からなる電極層(導電層)である。
これらの櫛形電極3は、何れも櫛歯状に形成され、互いに所定間隔を空けて対向状態に配されている。各櫛形電極3は、それぞれ第1サーミスタ薄膜5A及び第2サーミスタ薄膜5Bの外部に延在された電極端子部7を有している。
The comb-shaped electrode 3 is a metal electrode for measuring electrical resistance, and at least a portion in contact with the first thermistor thin film 5A and the second thermistor thin film 5B is platinum (Pt) or an alloy thereof. An electrode layer (conductive layer) made of
Each of these comb-shaped electrodes 3 is formed in a comb-teeth shape, and is arranged in an opposing state with a predetermined interval therebetween. Each comb-shaped electrode 3 has an electrode terminal portion 7 extending to the outside of the first thermistor thin film 5A and the second thermistor thin film 5B.

櫛形電極3の電極層は、後述する方法によって積層時に酸素(O)及び窒素(N)の少なくとも一方を含んで非晶質化されている。この際、酸素及び窒素の少なくとも一方の含有量が、5重量%以上、かつ15重量%以下となっている。なお、上記酸素及び窒素の少なくとも一方の含有量において、酸素と窒素との両方を含む場合は両方の総含有量をいう。 The electrode layer of the comb-shaped electrode 3 is made amorphous by including at least one of oxygen (O 2 ) and nitrogen (N 2 ) at the time of lamination by a method described later. At this time, the content of at least one of oxygen and nitrogen is 5% by weight or more and 15% by weight or less. In addition, in content of at least one of the said oxygen and nitrogen, when both oxygen and nitrogen are included, the total content of both is said.

パッシベーション膜6は、SiO膜からなる。なお、絶縁性を有して外部雰囲気を遮断可能であれば、SiO膜の代わりにガラス、セラミックス、耐熱樹脂等の絶縁性膜でも構わない。 The passivation film 6 is made of a SiO 2 film. Note that an insulating film made of glass, ceramics, heat-resistant resin, or the like may be used instead of the SiO 2 film as long as it has an insulating property and can block the external atmosphere.

次に、本実施形態に係る薄膜サーミスタ素子1の製造方法について説明する。
本実施形態に係る薄膜サーミスタ素子1の製造方法は、図3に示すように、Si基板2のSiO層2A上に第1サーミスタ薄膜5A及び第2サーミスタ薄膜5Bを成膜する工程(S01)と、第1サーミスタ薄膜5A及び第2サーミスタ薄膜5Bをパターン形成する工程(S02)と、第1サーミスタ薄膜5A及び第2サーミスタ薄膜5Bを熱処理(アニール)する工程(S03)と、櫛形電極3となる電極層を成膜する工程(S04)と、電極層をパターニングして櫛形電極3を形成する工程(S05)と、SiO層2A、櫛形電極3及び第1サーミスタ薄膜5A及び第2サーミスタ薄膜5B上にパッシベーション膜6を成膜する工程(S06)と、パッシベーション膜6をパターニングする工程(S07)とを備えている。
Next, a method for manufacturing the thin film thermistor element 1 according to this embodiment will be described.
In the method of manufacturing the thin film thermistor element 1 according to the present embodiment, as shown in FIG. 3, the first thermistor thin film 5A and the second thermistor thin film 5B are formed on the SiO 2 layer 2A of the Si substrate 2 (S01). A step of patterning the first thermistor thin film 5A and the second thermistor thin film 5B (S02), a step of heat treating (annealing) the first thermistor thin film 5A and the second thermistor thin film 5B (S03), and the comb electrode 3 Forming the electrode layer (S04), patterning the electrode layer to form the comb electrode 3 (S05), the SiO 2 layer 2A, the comb electrode 3, the first thermistor thin film 5A, and the second thermistor thin film A step (S06) of forming a passivation film 6 on 5B and a step (S07) of patterning the passivation film 6;

まず、Si基板2の上面に熱酸化によりSiO層2Aが、例えば膜厚0.5μmで形成されたSiO/Si基板2を用意する。
このSiO/Si基板2上に、第1サーミスタ薄膜5A及び第2サーミスタ薄膜5Bとなる複合金属酸化物膜を、例えば膜厚0.5μmでスパッタリングにより成膜する(S01)。なお、上記複合金属酸化物膜は、体積抵抗率の膜厚依存性が小さくなる膜厚0.3μm以上に設定することが好ましい。
First, a SiO 2 / Si substrate 2 having a SiO 2 layer 2A formed on the upper surface of the Si substrate 2 by thermal oxidation to a thickness of 0.5 μm, for example, is prepared.
On the SiO 2 / Si substrate 2, a composite metal oxide film to be the first thermistor thin film 5A and the second thermistor thin film 5B is formed by sputtering with a film thickness of 0.5 μm, for example (S01). Note that the composite metal oxide film is preferably set to a film thickness of 0.3 μm or more in which the film resistivity dependency of the volume resistivity is reduced.

この際、スパッタ成膜条件は、例えば雰囲気圧力400mPa〜1330mPa、アルゴン(Ar)ガス流量10sccm〜50sccm、及び高周波電力150W〜1000Wの印加に設定する。なお、第1サーミスタ薄膜5A及び第2サーミスタ薄膜5Bを形成するSiO/Si基板2を加熱しながらスパッタリングを行う方法でも構わない。この際の基板温度は、200〜600℃の範囲内に設定することが好ましい。この場合、後述する熱処理時における抵抗値変化を抑制することが可能である。 At this time, the sputtering film forming conditions are set to, for example, an atmospheric pressure of 400 mPa to 1330 mPa, an argon (Ar) gas flow rate of 10 sccm to 50 sccm, and high frequency power of 150 W to 1000 W. A method of performing sputtering while heating the SiO 2 / Si substrate 2 on which the first thermistor thin film 5A and the second thermistor thin film 5B are formed may be used. The substrate temperature at this time is preferably set within a range of 200 to 600 ° C. In this case, it is possible to suppress a change in resistance value during the heat treatment described later.

スパッタリング後に、第1サーミスタ薄膜5A及び第2サーミスタ薄膜5Bを所定形状にパターニングし(S02)、所定の熱処理を行って第1サーミスタ薄膜5A及び第2サーミスタ薄膜5Bをアニール処理する(S03)。この熱処理は、400℃〜1000℃の温度にて大気中で1〜24時間行う。
なお、上記熱処理において、アルゴンガスや窒素ガス等の不活性ガスの雰囲気中で行う他、これらガスにOを例えば0.1体積%〜5体積%添加しても構わない。
After sputtering, the first thermistor thin film 5A and the second thermistor thin film 5B are patterned into a predetermined shape (S02), and a predetermined heat treatment is performed to anneal the first thermistor thin film 5A and the second thermistor thin film 5B (S03). This heat treatment is performed in the atmosphere at a temperature of 400 ° C. to 1000 ° C. for 1 to 24 hours.
The heat treatment is performed in an atmosphere of an inert gas such as argon gas or nitrogen gas, and O 2 may be added to these gases, for example, in an amount of 0.1% by volume to 5% by volume.

次に、SiO層2A、第1サーミスタ薄膜5A及び第2サーミスタ薄膜5B上に、高周波スパッタリング装置などを用いて櫛形電極3をパターン形成する(S04、S05)。すなわち、SiO層2A、第1サーミスタ薄膜5A及び第2サーミスタ薄膜5B上に、白金(Pt)やその合金等からなる非晶質状態の導電層として電極層を成膜する(S04)。
この際、高周波スパッタリング装置などを用いて、雰囲気圧力400mPa〜1330mPa、アルゴンガス流量10sccm〜50sccm、及び高周波電力150W〜1000Wの印加に加え、酸素ガス及び窒素ガスの少なくとも一方を添加した雰囲気ガスを用いて成膜する。
Next, the comb-shaped electrode 3 is patterned on the SiO 2 layer 2A, the first thermistor thin film 5A, and the second thermistor thin film 5B using a high-frequency sputtering device or the like (S04, S05). That is, an electrode layer is formed as an amorphous conductive layer made of platinum (Pt) or an alloy thereof on the SiO 2 layer 2A, the first thermistor thin film 5A, and the second thermistor thin film 5B (S04).
At this time, in addition to the application of an atmospheric pressure of 400 mPa to 1330 mPa, an argon gas flow rate of 10 sccm to 50 sccm, and a high frequency power of 150 W to 1000 W using an RF sputtering apparatus or the like, an atmospheric gas to which at least one of oxygen gas and nitrogen gas is added is used. To form a film.

なお、この際、成膜後における酸素及び窒素の少なくとも一方の含有量が、5重量%以上、かつ15重量%以下となるようなガス濃度とする。なお、酸素ガスや窒素ガスを添加しなくても非晶質化可能であれば、その方法を用いてもよい。
また、上記電極層を非晶質状態の第1電極層と結晶質状態の第2電極層との二層構造としても構わない。この場合、最初に酸素ガス及び窒素ガスの少なくとも一方をアルゴンガスに添加した上記スパッタ条件で非晶質状態の第1電極層を成膜し、この後、アルゴンガスのみで結晶質状態の第2電極層を成膜する。
上記成膜後、電極層を、汎用的なフォトリソグラフィ、エッチングによりパターン形成して櫛形電極3を得る(S05)。
At this time, the gas concentration is set so that the content of at least one of oxygen and nitrogen after film formation is 5 wt% or more and 15 wt% or less. Note that the method may be used as long as it can be made amorphous without adding oxygen gas or nitrogen gas.
The electrode layer may have a two-layer structure including a first electrode layer in an amorphous state and a second electrode layer in a crystalline state. In this case, the first electrode layer in an amorphous state is first formed under the sputtering conditions in which at least one of oxygen gas and nitrogen gas is added to the argon gas, and then the second electrode in the crystalline state is formed only with the argon gas. An electrode layer is formed.
After the film formation, the electrode layer is patterned by general-purpose photolithography and etching to obtain the comb-shaped electrode 3 (S05).

最後に、パッシベーション膜6を成膜する工程(S06)に移行して、第1サーミスタ薄膜5A及び第2サーミスタ薄膜5B上に、保護膜や赤外線吸収膜等としてSiOパッシベーション膜6を積層する。さらに、このパッシベーション膜6を、電極端子部7の上部を除いて所定形状にパターニングする(S07)。
こうして、赤外線検出センサとしての薄膜サーミスタ素子1が作製される。
Finally, the process proceeds to the step of forming the passivation film 6 (S06), and the SiO 2 passivation film 6 is laminated on the first thermistor thin film 5A and the second thermistor thin film 5B as a protective film, an infrared absorption film or the like. Further, the passivation film 6 is patterned into a predetermined shape except for the upper portion of the electrode terminal portion 7 (S07).
Thus, the thin film thermistor element 1 as an infrared detection sensor is produced.

この薄膜サーミスタ素子1及びその製造方法によれば、一対の櫛形電極3が、少なくとも第1サーミスタ薄膜5A及び第2サーミスタ薄膜5Bと接触する部分が非晶質状態で成膜された白金又はその合金からなる電極層とされるので、導電性を十分に維持したまま非晶質状態で成膜された電極層が第1サーミスタ薄膜5A及び第2サーミスタ薄膜5Bとの十分な付着強度を有すると共に、耐熱試験においても電極剥離が生じず、抵抗値上昇の抑制を図ることができる。   According to the thin film thermistor element 1 and the manufacturing method thereof, platinum or an alloy thereof in which the pair of comb-shaped electrodes 3 is formed in an amorphous state at least at a portion in contact with the first thermistor thin film 5A and the second thermistor thin film 5B. The electrode layer formed in an amorphous state while maintaining sufficient conductivity has sufficient adhesion strength with the first thermistor thin film 5A and the second thermistor thin film 5B, In the heat resistance test, electrode peeling does not occur, and an increase in resistance value can be suppressed.

また、櫛形電極3となる電極層の成膜時に酸素又は窒素の少なくとも一方を含ませることにより、電極層を好適に非晶質化させることができる。特に、電極層における酸素及び窒素の少なくとも一方の含有量を、5重量%以上、かつ15重量%以下としているので、電極層を十分に非晶質化させることができ、かつ、電極層の抵抗値の大幅な上昇を抑えることができる。   In addition, by including at least one of oxygen and nitrogen when forming the electrode layer to be the comb-shaped electrode 3, the electrode layer can be suitably amorphized. In particular, since the content of at least one of oxygen and nitrogen in the electrode layer is 5 wt% or more and 15 wt% or less, the electrode layer can be sufficiently amorphized, and the resistance of the electrode layer A significant increase in value can be suppressed.

なお、酸素または窒素元素が5重量%未満の場合では、Ptやその合金等からなる電極層の非晶質部分が少なく、付着強度向上の十分な効果が得にくい。また、酸素または窒素元素が15重量%より多い場合では、電極材料としての抵抗値が大幅に上昇してしまう。したがって、上記含有量の設定範囲内であれば、例えば、150℃の耐熱試験を実施しても、第1サーミスタ薄膜5A及び第2サーミスタ薄膜5Bと櫛形電極3との十分な付着強度を維持しつつ、電気特性も好適に維持することができる。   When the oxygen or nitrogen element is less than 5% by weight, there are few amorphous portions of the electrode layer made of Pt or its alloy, and it is difficult to obtain a sufficient effect of improving the adhesion strength. Moreover, when there is more oxygen or nitrogen element than 15 weight%, the resistance value as an electrode material will raise significantly. Therefore, if the content is within the set range, for example, even if a heat resistance test at 150 ° C. is performed, sufficient adhesion strength between the first and second thermistor thin films 5A and 5B and the comb electrode 3 is maintained. In addition, the electrical characteristics can be suitably maintained.

なお、本発明の技術範囲は上記実施の形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲において種々の変更を加えることが可能である。
例えば、SiO/Si基板2の代わりにアルミナ(Al)基板等を用い、下地層であるSiO層2Aの代わりに窒化ケイ素膜等を用いても構わない。
The technical scope of the present invention is not limited to the above embodiment, and various modifications can be made without departing from the spirit of the present invention.
For example, an alumina (Al 2 O 3 ) substrate or the like may be used instead of the SiO 2 / Si substrate 2, and a silicon nitride film or the like may be used instead of the SiO 2 layer 2 A that is the underlayer.

次に、本発明に係る薄膜サーミスタ素子を上記実施形態の製法により実際に作製し、評価した結果を、具体的に説明する。   Next, the results of actually producing and evaluating the thin film thermistor element according to the present invention by the manufacturing method of the above embodiment will be specifically described.

櫛形電極3となる電極層については、高周波出力、膜厚、含有ガス種類及び圧力、アニール条件(温度)、アニール時間を複数変化させて作製した。また、第1サーミスタ薄膜5A及び第2サーミスタ薄膜5Bについては、高周波出力、膜厚、ガス種及び圧力、基板加熱の有無、基板バイアス電圧の印加の有無を複数変化させ、さらに、アニール温度及び時間を複数変化させて作製した。すなわち、これら複数の条件の組み合わせのもとに、本実施例の薄膜サーミスタ素子を作製した。   The electrode layer to be the comb-shaped electrode 3 was manufactured by changing a plurality of high-frequency outputs, film thicknesses, types and pressures of contained gases, annealing conditions (temperatures), and annealing times. Further, for the first thermistor thin film 5A and the second thermistor thin film 5B, the high frequency output, the film thickness, the gas type and pressure, the presence / absence of substrate heating, the presence / absence of application of the substrate bias voltage are changed, and the annealing temperature and time are further changed. It was made by changing a plurality of. That is, the thin film thermistor element of this example was manufactured based on a combination of these plural conditions.

これら実施例について、150℃に加熱して1000時間の耐熱試験をそれぞれ実施し、櫛形電極3の電気抵抗値を測定した。また、従来の方法として結晶質状態のみの白金からなる電極層によって櫛形電極を作製したものを比較例とした。これら成膜条件及び耐熱試験結果を、以下の表1に示す。   About these Examples, the heat resistance test of 1000 hours was implemented, heating at 150 degreeC, respectively, and the electrical resistance value of the comb-shaped electrode 3 was measured. In addition, as a comparative method, a conventional method was used in which a comb-shaped electrode was formed using an electrode layer made of platinum in a crystalline state only. These film forming conditions and heat test results are shown in Table 1 below.

Figure 2008294288
Figure 2008294288

上記評価結果から分かるように、本実施例の薄膜サーミスタ素子では、耐熱試験後においても電気抵抗値の変化率を従来のものよりも大幅に低く抑えることができた。   As can be seen from the above evaluation results, in the thin film thermistor element of this example, the rate of change in the electrical resistance value could be significantly lower than that of the conventional one even after the heat resistance test.

本発明に係る一実施形態の薄膜サーミスタ素子を示す平面図である。It is a top view which shows the thin film thermistor element of one Embodiment which concerns on this invention. 図1のA−A線矢視断面図である。It is AA arrow sectional drawing of FIG. 本実施形態における薄膜サーミスタ素子の製造方法を示すフロー図である。It is a flowchart which shows the manufacturing method of the thin film thermistor element in this embodiment.

符号の説明Explanation of symbols

1…薄膜サーミスタ素子、2…Si基板(基体)、3…櫛形電極(電極)、5A…第1サーミスタ薄膜(サーミスタ薄膜)、5B…第2サーミスタ薄膜(サーミスタ薄膜)、6…パッシベーション膜   DESCRIPTION OF SYMBOLS 1 ... Thin film thermistor element, 2 ... Si substrate (base | substrate), 3 ... Comb-shaped electrode (electrode), 5A ... 1st thermistor thin film (thermistor thin film), 5B ... 2nd thermistor thin film (thermistor thin film), 6 ... Passivation film

Claims (6)

基体と、
前記基体上に形成されたサーミスタ薄膜と、
前記サーミスタ薄膜上に形成された一対の電極と、を備えた薄膜サーミスタ素子であって、
前記一対の電極が、少なくとも前記サーミスタ薄膜と接触する部分が非晶質状態で成膜された白金又はその合金からなる電極層であることを特徴とする薄膜サーミスタ素子。
A substrate;
A thermistor thin film formed on the substrate;
A thin film thermistor element comprising a pair of electrodes formed on the thermistor thin film,
The thin film thermistor element, wherein the pair of electrodes is an electrode layer made of platinum or an alloy thereof formed in an amorphous state at least at a portion in contact with the thermistor thin film.
請求項1に記載の薄膜サーミスタ素子において、
前記一対の電極が、酸素及び窒素の少なくとも一方を含んで成膜されていることを特徴とする薄膜サーミスタ素子。
The thin film thermistor element according to claim 1,
The thin film thermistor element, wherein the pair of electrodes are formed to contain at least one of oxygen and nitrogen.
請求項2に記載の薄膜サーミスタ素子において、
前記一対の電極における酸素及び窒素の少なくとも一方の含有量が、5重量%以上、かつ15重量%以下であることを特徴とする薄膜サーミスタ素子。
The thin film thermistor element according to claim 2,
The thin film thermistor element, wherein the content of at least one of oxygen and nitrogen in the pair of electrodes is 5% by weight or more and 15% by weight or less.
基体上に形成されたサーミスタ薄膜の膜上に一対の電極をパターン形成する薄膜サーミスタ素子の製造方法であって、
前記一対の電極をパターン形成する工程が、少なくとも前記サーミスタ薄膜と接触する部分が非晶質状態とされた白金又はその合金からなる電極層を成膜する工程を有することを特徴とする薄膜サーミスタ素子の製造方法。
A method for manufacturing a thin film thermistor element, wherein a pair of electrodes is patterned on a film of a thermistor thin film formed on a substrate,
The step of patterning the pair of electrodes includes the step of forming an electrode layer made of platinum or an alloy thereof in which at least a portion in contact with the thermistor thin film is in an amorphous state. Manufacturing method.
請求項4に記載の薄膜サーミスタ素子の製造方法において、
前記電極層を成膜する工程が、酸素及び窒素の少なくとも一方を加えて前記電極層を成膜することを特徴とする薄膜サーミスタ素子の製造方法。
In the manufacturing method of the thin film thermistor element of Claim 4,
The method of manufacturing a thin film thermistor element, wherein the step of forming the electrode layer forms the electrode layer by adding at least one of oxygen and nitrogen.
請求項5に記載の薄膜サーミスタ素子の製造方法において、
前記電極層を成膜する工程が、前記電極層における酸素及び窒素の少なくとも一方の含有量を、5重量%以上、かつ15重量%以下にすることを特徴とする薄膜サーミスタ素子の製造方法。
In the manufacturing method of the thin film thermistor element according to claim 5,
The method for producing a thin film thermistor element, wherein the step of forming the electrode layer comprises setting the content of at least one of oxygen and nitrogen in the electrode layer to 5 wt% or more and 15 wt% or less.
JP2007139110A 2007-05-25 2007-05-25 Thin film thermistor element and manufacturing method thereof Active JP5029885B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007139110A JP5029885B2 (en) 2007-05-25 2007-05-25 Thin film thermistor element and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007139110A JP5029885B2 (en) 2007-05-25 2007-05-25 Thin film thermistor element and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2008294288A true JP2008294288A (en) 2008-12-04
JP5029885B2 JP5029885B2 (en) 2012-09-19

Family

ID=40168686

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007139110A Active JP5029885B2 (en) 2007-05-25 2007-05-25 Thin film thermistor element and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP5029885B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013147282A1 (en) * 2012-03-29 2013-10-03 三菱マテリアル株式会社 Temperature sensor and method for producing same
WO2014010591A1 (en) * 2012-07-13 2014-01-16 Semitec株式会社 Thin-film thermistor element and method for manufacturing same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000348906A (en) * 1999-06-03 2000-12-15 Matsushita Electric Ind Co Ltd Thin-film thermistor element
JP2004296735A (en) * 2003-03-26 2004-10-21 Seiko Epson Corp Ferroelectric capacitor, method for manufacturing the same, storage element, electronic component, memory device, and electronic device
JP2006120504A (en) * 2004-10-22 2006-05-11 Kyocera Corp Photoelectric conversion device and optical power generating device using it
JP2008244344A (en) * 2007-03-28 2008-10-09 Mitsubishi Materials Corp Thin film thermistor element and manufacturing method of thin film thermistor element

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000348906A (en) * 1999-06-03 2000-12-15 Matsushita Electric Ind Co Ltd Thin-film thermistor element
JP2004296735A (en) * 2003-03-26 2004-10-21 Seiko Epson Corp Ferroelectric capacitor, method for manufacturing the same, storage element, electronic component, memory device, and electronic device
JP2006120504A (en) * 2004-10-22 2006-05-11 Kyocera Corp Photoelectric conversion device and optical power generating device using it
JP2008244344A (en) * 2007-03-28 2008-10-09 Mitsubishi Materials Corp Thin film thermistor element and manufacturing method of thin film thermistor element

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013147282A1 (en) * 2012-03-29 2013-10-03 三菱マテリアル株式会社 Temperature sensor and method for producing same
JP2013205319A (en) * 2012-03-29 2013-10-07 Mitsubishi Materials Corp Temperature sensor and method of manufacturing the same
CN104169699A (en) * 2012-03-29 2014-11-26 三菱综合材料株式会社 Temperature sensor and method for producing same
TWI580937B (en) * 2012-03-29 2017-05-01 Mitsubishi Materials Corp Temperature sensor and its manufacturing method
US10113919B2 (en) 2012-03-29 2018-10-30 Mitsubishi Materials Corporation Temperature sensor and method for producing same
WO2014010591A1 (en) * 2012-07-13 2014-01-16 Semitec株式会社 Thin-film thermistor element and method for manufacturing same
CN103688320A (en) * 2012-07-13 2014-03-26 Semitec株式会社 Thin-film thermistor element and method for manufacturing same
JP5509393B1 (en) * 2012-07-13 2014-06-04 Semitec株式会社 Thin film thermistor element and manufacturing method thereof
KR20150035348A (en) 2012-07-13 2015-04-06 세미텍 가부시키가이샤 Thin-film thermistor element and method of manufacturing the same
US9659691B2 (en) 2012-07-13 2017-05-23 Semitec Corporation Thin-film thermistor element and method of manufacturing the same

Also Published As

Publication number Publication date
JP5029885B2 (en) 2012-09-19

Similar Documents

Publication Publication Date Title
JP5509393B1 (en) Thin film thermistor element and manufacturing method thereof
JP5776941B2 (en) Temperature sensor and manufacturing method thereof
JP5884110B2 (en) Strain resistance element and strain detection apparatus using the same
JP5477671B2 (en) Metal nitride material for thermistor, manufacturing method thereof, and film type thermistor sensor
TWI588459B (en) Temperature sensor
JP4811316B2 (en) Thin film thermistor element and method for manufacturing thin film thermistor element
KR20160034891A (en) Metal nitride material for thermistor, production method for same, and film-type thermistor sensor
KR101121399B1 (en) Thermistor thin-film and method of forming the same
JP2008084991A (en) Thermistor thin film and thin film thermistor device
JP5029885B2 (en) Thin film thermistor element and manufacturing method thereof
JP4871548B2 (en) Thin film thermistor
JP2019192740A (en) Strain resistance film, strain sensor, and manufacturing method thereof
JP4802013B2 (en) Temperature sensor and manufacturing method thereof
JP2012156274A (en) Thin film thermistor sensor and method for manufacturing the same
JP6451395B2 (en) Sensor element
JP2001291607A (en) Method of manufacturing platinum thin-film resistor
KR20160048761A (en) Metal nitride material for thermistor, manufacturing method for same, and film-type thermistor sensor
JP2019129188A (en) Thermistor and method for manufacturing the same, and thermistor sensor
JP2018169248A (en) Temperature sensor and manufacturing method thereof
JP5029882B2 (en) Thin film thermistor and thin film thermistor manufacturing method
JP4136755B2 (en) PTC thermistor made of ternary alloy material
JP2011171596A (en) Thin-film thermistor element
JP2018091705A (en) Strain resistance film and strain sensor for high temperature, and manufacturing method of them
JP2019096805A (en) Thermistor, manufacturing method thereof, and thermistor sensor
JP4962087B2 (en) Thin film thermistor and thin film thermistor manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100330

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110916

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111004

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111129

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120531

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120613

R150 Certificate of patent or registration of utility model

Ref document number: 5029885

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150706

Year of fee payment: 3