WO2010029961A1 - Photoelectric converter - Google Patents

Photoelectric converter Download PDF

Info

Publication number
WO2010029961A1
WO2010029961A1 PCT/JP2009/065800 JP2009065800W WO2010029961A1 WO 2010029961 A1 WO2010029961 A1 WO 2010029961A1 JP 2009065800 W JP2009065800 W JP 2009065800W WO 2010029961 A1 WO2010029961 A1 WO 2010029961A1
Authority
WO
WIPO (PCT)
Prior art keywords
photoelectric conversion
dye
conversion device
light
group
Prior art date
Application number
PCT/JP2009/065800
Other languages
French (fr)
Japanese (ja)
Inventor
浩司 瀬川
ジョアン・ディー
城太郎 中崎
浩一 玉木
聡 内田
久 坂井
Original Assignee
京セラ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京セラ株式会社 filed Critical 京セラ株式会社
Priority to JP2010528746A priority Critical patent/JPWO2010029961A1/en
Publication of WO2010029961A1 publication Critical patent/WO2010029961A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B69/00Dyes not provided for by a single group of this subclass
    • C09B69/10Polymeric dyes; Reaction products of dyes with monomers or with macromolecular compounds
    • C09B69/108Polymeric dyes; Reaction products of dyes with monomers or with macromolecular compounds containing a phthalocyanine dye
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • H10K85/361Polynuclear complexes, i.e. complexes comprising two or more metal centers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/20Light-sensitive devices
    • H01G9/2027Light-sensitive devices comprising an oxide semiconductor electrode
    • H01G9/2031Light-sensitive devices comprising an oxide semiconductor electrode comprising titanium oxide, e.g. TiO2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/20Light-sensitive devices
    • H01G9/2059Light-sensitive devices comprising an organic dye as the active light absorbing material, e.g. adsorbed on an electrode or dissolved in solution

Definitions

  • the present invention relates to a photoelectric conversion device.
  • a dye-sensitized solar cell which is one of photoelectric conversion devices, does not require high-temperature treatment or a vacuum device in the manufacturing process. For this reason, it is considered advantageous for cost reduction, and research and development have been promoted rapidly in recent years.
  • a general dye-sensitized solar cell includes a light working electrode and a conductive glass counter electrode.
  • the optical working electrode is provided with a porous titanium oxide layer obtained by sintering fine particles having a particle size of about 20 nm on a conductive glass substrate, and a single molecule of dye is formed on the particle surface of the porous titanium oxide layer. It is constituted by making it adsorb.
  • the conductive glass counter electrode is configured, for example, by depositing platinum on the glass surface by sputtering.
  • the space between the conductive glass counter electrode and the light working electrode is filled with an electrolyte solution having a charge transport function including an iodine / iodide redox pair, and the electrolyte solution is sealed, whereby a dye-sensitized solar cell is obtained. Composed.
  • organic dyes are used as the dyes adsorbed on the light working electrode of such dye-sensitized solar cells.
  • an organic dye one having a porphyrin skeleton has been proposed (see, for example, Patent Document 1).
  • the present invention has been made in view of such circumstances, and an object of the present invention is to provide a photoelectric conversion device in which the long wavelength sensitivity of the dye is increased and the photoelectric conversion efficiency is improved.
  • a photoelectric conversion device includes a dye containing a triple bond-linked porphyrin represented by the following general formula 1, and an oxide semiconductor to which the dye is attached and containing at least one of Ti, Sn, and Zn And a first photoelectric conversion body.
  • R1 to R22 and R27 to R36 are arbitrary substituents
  • M1, M2 and M3 are metal atoms or two hydrogen atoms
  • R23 to R26, R37 and R38 are unsubstituted or at least One has a substituent.
  • FIG. 1 is a cross-sectional view showing a photoelectric conversion device according to the first embodiment of the present invention.
  • a photoelectric conversion device X1 according to the first embodiment of the present invention includes a conductive substrate 11, a first photoelectric conversion body 12 made of a metal oxide 14 to which a dye 13 is attached, an electrolyte 15 as a charge transport material, and The first transparent electrode 16 and the translucent covering 17 are provided.
  • substrate 11 the 1st photoelectric conversion body 12 is formed in the upper surface.
  • the electrolyte 15 is disposed between the first photoelectric conversion body 12 and the first transparent electrode 16 that are disposed so as to face each other.
  • the translucent covering 17 is disposed so as to cover the first transparent electrode 16.
  • the photoelectric conversion action of the photoelectric conversion device X1 when light is incident from the arrow L in FIG. 1, the dye absorbs light, the dye is excited, and the electron is a LUMO (Lowest UnoccupiedccMolecular Orbital) quasi Excited to the order. Then, the electrons excited to the LUMO level move at high speed to the conduction band (conduction band) level of the metal oxide 14 such as titanium oxide. The electrons moved to the conduction band level of the metal oxide 14 efficiently move between the metal oxide particles and reach the conductive substrate 11.
  • the conduction band conduction band
  • the electrons reaching the conductive substrate 11 pass through the first transparent electrode 16 via a load (not shown) electrically connected between the conductive substrate 11 and the first transparent electrode 16.
  • the electrons moved to the first transparent electrode 16 reduce part of the electrolyte 15 in a catalyst (not shown) formed on the first transparent electrode 16.
  • the material of the catalyst include noble metals, carbon, and organic conductive materials.
  • noble metals include platinum, palladium, iridium, osmium, ruthenium, and rhodium.
  • organic conductive material include polyethylene dioxythiophene (PEDOT).
  • the conductive substrate 11 is a support for the first photoelectric converter 12 and has a function of taking out current from the first photoelectric converter 12.
  • Examples of the conductive substrate 11 include a metal substrate, a substrate containing a conductive member, or an insulating substrate 11a having a conductive film 11b formed on the upper surface.
  • Examples of the material of the metal substrate include metals such as titanium, stainless steel, aluminum, silver, copper, and nickel, or alloys of these metals.
  • a conductive member is contained in the base material.
  • the substrate is an insulating material such as an organic resin material or an inorganic material.
  • organic material include PET (polyethylene terephthalate), PEN (polyethylene naphthalate), polyimide, and polycarbonate.
  • inorganic material include blue plate glass, soda glass, borosilicate glass, and ceramics.
  • the conductive member contained in the base material include metal fine particles and fine lines made of the above-described metal substrate material, or carbon (carbon) fine particles and fine lines.
  • the conductive film 11b is formed on the insulating substrate 11a made of the same material as the base material described above, for example, by CVD. Those formed by the method are listed.
  • the conductive film 11b include a metal thin film, a transparent conductive film, a conductive film made of zinc oxide doped with aluminum, or a laminated conductive film in which an ITO layer is sandwiched between a pair of titanium layers.
  • the metal thin film include titanium, stainless steel, aluminum, silver, copper, and nickel.
  • the transparent conductive film include ITO (tin-doped indium oxide) and FTO (fluorine-doped tin oxide).
  • the conductive substrate 11 has a characteristic of reflecting light incident on the photoelectric conversion device X1, light can be incident again on the first photoelectric conversion body 12 that contributes to photoelectric conversion.
  • the photoelectric conversion efficiency can be increased.
  • the conductive substrate 11 having such light reflection characteristics include a silver or aluminum metal substrate.
  • the conductive substrate 11 having the conductive film 11b is preferably a laminated conductive film in which a silver layer is sandwiched between silver or a pair of titanium layers, and such a conductive film 11b can be formed by, for example, vacuum deposition or ion plating. It can be formed by a method, a sputtering method, an electrolytic deposition method, or the like.
  • the thickness of the conductive substrate 11 is 0.01 mm to 5 mm, preferably 0.02 mm to 3 mm.
  • the thickness of the conductive film 11b is 0.001 ⁇ m to 10 ⁇ m, preferably 0.05 ⁇ m to 2 ⁇ m.
  • the conductive substrate 11 when the conductive substrate 11 is made of a light-transmitting material, light that enters from a direction opposite to the direction indicated by the arrow L in FIG. 1 can also enter, and the photoelectric conversion device X1.
  • the light receiving area can be expanded.
  • the conductive substrate 11 when the conductive substrate 11 is made of a light-transmitting material, aluminum, silver or the like having high light reflection characteristics is applied to the back surface of the conductive substrate 11 (the lower surface of the conductive substrate in FIG. 1).
  • the light reflection property is increased by forming a film, light can be re-incident on the first photoelectric conversion body 12 that contributes to photoelectric conversion, so that the photoelectric conversion efficiency can be increased.
  • the first photoelectric converter 12 is formed, for example, by adsorbing the dye 13 on the porous surface of the metal oxide 14 that is an oxide semiconductor.
  • the first photoelectric converter 12 has a function of contributing to photoelectric conversion by moving electrons excited by absorption of light by the dye 13 to the metal oxide 14.
  • the thickness of the first photoelectric converter 12 is preferably 0.1 ⁇ m to 50 ⁇ m, for example. Furthermore, the thickness of the first photoelectric converter 12 is preferably 1 ⁇ m to 20 ⁇ m from the viewpoint of increasing the photoelectric conversion efficiency without excessively reducing the light transmittance.
  • the metal oxide 14 includes titanium oxide (TiO 2 ) that is an oxide of titanium (Ti), tin oxide (SnO 2 ) that is an oxide of tin (Sn), or zinc oxide (ZnO) that is an oxide of zinc. It consists of an n-type semiconductor.
  • An oxide having such a semiconductor property has a conduction band (conduction band) lower than the LUMO energy level of the dye 13 described in detail later, and has relatively few lattice defects. Since electrons are not easily trapped, the photoelectric conversion efficiency of the photoelectric conversion device X1 can be increased.
  • titanium oxide is most preferable from the viewpoint of having fewer lattice defects than other metal oxides (SnO 2 , ZnO).
  • the metal oxide 14 is preferably composed of a porous material from the viewpoint of increasing the surface area on which the dye 13 is adsorbed and adsorbing more dye.
  • a porous body has a porosity of 20% to 80%, more preferably 40% to 60%.
  • the metal oxide 14 is formed of, for example, an aggregate of fine particles, or an aggregate of fine linear bodies such as needle-like bodies, tubular bodies, or columnar bodies, and has an average particle diameter or an average line. The diameter is preferably 5 nm to 500 nm.
  • the metal oxide 14 is preferably 10 nm to 200 nm from the viewpoint of increasing the bonding area between the fine particles or the linear bodies and simplifying the material production. If the metal oxide 14 is composed of such a porous body, the surface becomes uneven, so that the light confinement effect can be enhanced.
  • the metal oxide 14 formed of titanium oxide will be described.
  • acetylacetone is added to an anatase powder of titanium oxide, and then kneaded with deionized water to prepare a titanium oxide paste stabilized with a surfactant.
  • this paste is applied onto the conductive substrate 11 by, for example, a doctor blade method, and is heat-treated in the atmosphere at a temperature of 300 ° C. to 600 ° C. for 10 minutes to 60 minutes, whereby the metal oxide 14 Can be formed.
  • the metal oxide 14 is formed at a relatively low temperature such as an electrodeposition method, an electrophoretic electrodeposition method, or a hydrothermal synthesis method.
  • a possible method is preferably used, and in addition, microwave treatment, CVD / UV treatment, or the like may be performed as post-processing.
  • the dye 13 has a function of absorbing light incident on the photoelectric conversion device X1 to excite electrons located in the HOMO to the LUMO position and moving the electrons from the LUMO to the metal oxide 14.
  • the pigment 13 has a composition represented by the following general formula 1.
  • n is an integer of 0 or more.
  • the dye 13 is a multimer in which monomers having a porphyrin skeleton are linked by a conjugated bridge by a triple bond. Therefore, since the dye 13 can increase the conjugate length by expanding the ⁇ -electron conjugated system, the light absorption wavelength region can be expanded. In particular, the dye 13 has an increased absorption with respect to light having a long wavelength (450 nm or more) due to the expansion of the ⁇ -electron conjugated system, so that the photoelectric conversion efficiency in the visible light region can be increased. In addition, the dye 13 has a large absorption of light on the long wavelength side due to exciton coupling by the porphyrin multimer.
  • the dye 13 including the triple bond-linked porphyrin as represented by the general formula 1 is attached to the oxide semiconductor 14 including at least one of Ti, Sn, and Zn.
  • the conjugate length of the dye 13 is increased, and the LUMO of the dye 13 is higher in energy level than the transmission band (conduction band) of the metal oxide 14. Electrons excited and moved by the LUMO of the dye 13 by absorption of light on the wavelength side can efficiently move to the evangelism band. As a result, in the present invention, the photoelectric conversion efficiency can be improved.
  • the dye 13 that has absorbed the light excites electrons from the HOMO level ( ⁇ 5.9 eV) to the LUMO level ( ⁇ 3.9 eV).
  • the conduction band of the metal oxide 14 is ⁇ 4.2 eV for TiO 2 , ⁇ 4.4 eV for ZnO, and ⁇ 4.8 eV for SnO 2 .
  • the LUMO level of the dye 13 has an energy level higher than that of the above-described conduction band of the metal oxide 14, so that the electrons of the LUMO level easily move to the conduction band of the metal oxide 14. .
  • the HOMO level ( ⁇ 5.9 eV) of the dye 13 is lower than the oxidation-reduction potential of the electrolyte 15, electrons are easily transferred from the electrolyte 15 to the HOMO level of the dye 13.
  • the redox potential of the electrolyte 15 is, for example, ⁇ 5.1 eV in the case of iodine redox obtained by dissolving tetrapropylammonium iodide, lithium iodide, and iodine in methoxypropionitrile.
  • the substituents R1 to R22 and R27 to R36 in the general formula 1 are hydrogen, halogen, di-tert-butylphenyl group, alkyl group, phenyl group, carboxyl group, carboxyphenyl group, carbomethoxyphenyl group, styrylcarboxyl group, thiocyanate Group, cyano group, cyanoacrylate group, sulfonic acid group, sulfonyl group, hydroxamic acid group, hydroxyl group, nitro group, amino group, mercapto group, aryl group, alkoxyl group, aryloxy group, alkylthio group, arylthio group, alkylamino group , Arylamino group, sulfonic acid group ester group, sulfonic acid group amide group, carboxylic acid ester group, carboxylic acid amide group, carbonyl group, silyl group, siloxy group, tertiary butyl group,
  • the dye 13 is preferably an adsorptive substituent in which at least one of the substituents R1 to R38 is a highly adsorptive substituent so as to be efficiently adsorbed to the metal oxide 14.
  • an adsorption substituent include a carboxyl group, a sulfonyl group, a hydroxamic acid group, an alkoxyl group, an aryl group, and a phosphoryl group.
  • the adsorption substituent is substituted at the terminal of the dye 13 in the connecting direction (substituents R9 and R20 in the general formula 1), the adsorption substituent is bonded to the metal oxide 14 at the terminal portion of the dye 13 having a long molecular structure.
  • the adsorption substituent is preferably a carboxyl group from the viewpoint of efficient electron transfer from the dye 13 to the metal oxide 14.
  • the dye 13 is one of the substituents R1, R6, R9, R12, R17, R20, R27, and R32 in the general formula 1 in order to increase the solubility in a solvent and facilitate the adsorption to the metal oxide 14.
  • at least one contains a di-tert-butylphenyl group.
  • the di-tert-butylphenyl group has a bulky structure, has a relatively high solubility in an organic solvent, and has an effect of suppressing association between dyes.
  • the photoelectric conversion efficiency can be increased by the effect of suppressing the association of the di-tert-butylphenyl group.
  • a 3,5-ditertiary butylphenyl group is preferable because association between dyes can be further suppressed.
  • the dye 13 is a multimer in which monomers having a porphyrin skeleton are linked by a conjugated bridge by a triple bond with acetylene.
  • the dye 13 may be a dialkylethynyl porphyrin represented by X having a triple bond, as shown in the general formula 1, since the meso positions of the porphyrin skeleton need only be bonded via a triple bond.
  • M1 to M3 in the general formula 1 are a metal atom or two hydrogen atoms.
  • tris (di-tert-butylphenyl) porphyrin is prepared.
  • the meso position of tris (di-tert-butylphenyl) porphyrin was selectively brominated with N-bromosuccinimide, coupled with trimethylsilylacetylene using palladium (II) catalyst and copper iodide as catalysts, and then tetrabutylammonium fluoride. To obtain an intermediate.
  • this intermediate is coupled with a brominated product of bis (di-tert-butylphenyl) methoxycarbonylphenylporphyrin using palladium (0) catalyst and triphenylarsine as a catalyst, thereby linking the porphyrin monomer with an acetylene triple bond.
  • Multimers (general formula 1) can be obtained.
  • the ester substituent of this multimer can be converted to a carboxyl group by hydrolysis with KOH (potassium hydroxide).
  • X in the general formula 1 is dialkylethynylporphyrin, for example, it is synthesized by the following method. First, trimethylsilyl bromide of zinc tris (di-tert-butylphenyl) porphyrin and bromide of bis (di-tert-butylphenyl) methoxycarbonylphenylporphyrin, using palladium (II) catalyst and copper iodide as catalysts, respectively. Coupling with acetylene.
  • the first photoelectric converter 12 by adsorbing the dye 13 to the metal oxide 14
  • a method for producing the first photoelectric converter 12 for example, a method in which the conductive substrate 11 on which the metal oxide 14 is formed is immersed in a solution in which the dye 13 is dissolved, or a conductive substrate on which the metal oxide 14 is formed. 11 is sealed with a sealant or the like, and then a solution in which the dye 13 is dissolved is injected from an inlet of the sealant, and the solution is circulated in the sealed interior so that the dye 13 is added to the metal oxide 14.
  • suck is mentioned.
  • the temperature of the solution and the atmosphere is not particularly limited.
  • the atmosphere may be at atmospheric pressure, and the temperature may be room temperature.
  • the solvent used to dissolve the dye 13 is 1 aromatic hydrocarbon such as toluene, alcohols such as ethanol, ketones such as acetone, ethers such as diethyl ether and tetrahydrofuran, nitrogen compounds such as acetonitrile, and the like.
  • species or what mixed 2 or more types is mentioned.
  • the concentration of the dye 13 in the solution is preferably about 5 ⁇ 10 ⁇ 5 to 1 ⁇ 10 ⁇ 3 mol / l.
  • this solution may contain, as an additive, tertiary butyl pyridine, which is a weakly basic compound, or deoxycholic acid, which is a weakly acidic compound, in order to suppress aggregation of the dye 13.
  • the charge transport material 15 has a function of transporting charges, and is made of, for example, a conductor, a semiconductor, an electrolyte, or the like.
  • the oxide semiconductor (metal oxide) 14 including at least one of Ti, Sn, and Zn constituting the first photoelectric converter 12 functions as an electron transport material that receives electrons from the dye 13 and transports the electrons.
  • the charge transport material 15 functions as a hole transport material that receives holes from the dye 13 and transports the holes.
  • Examples of the conductor or semiconductor used as the charge transport material 15 include a compound semiconductor containing monovalent copper, GaP, NiO, CoO, FeO, Bi 2 O 3 , MoO 2 , Cr 2 O 3, and the like.
  • a semiconductor containing monovalent copper is preferable.
  • Examples of the compound semiconductor containing monovalent copper include CuI, CuInSe 2 , Cu 2 O, CuSCN, CuS, CuInS 2 , and CuAlSe 2 , and CuI is preferable from the viewpoint of easy manufacture.
  • Examples of the electrolyte used as the charge transport material 15 include a liquid electrolyte, a solid electrolyte, a gel electrolyte, and a molten salt.
  • liquid electrolyte for example, a quaternary ammonium salt, a Li salt or the like dissolved in a solvent such as propylene carbonate or acetonitrile can be used. Further, tetrapropylammonium iodide, lithium iodide, or iodine dissolved in a solvent such as methoxypropionitrile can be used.
  • solid electrolytes include those having a sulfonimidazolium salt, a tetracyanoquinodimethane salt, a dicyanoquinodiimine salt, etc. in a polymer chain such as polyethylene oxide or polyethylene.
  • Gel electrolytes are roughly classified into chemical gels and physical gels.
  • a chemical gel is a gel formed by a chemical bond by a cross-linking reaction or the like, and a physical gel is gelled near room temperature due to a physical interaction.
  • the gel electrolyte is a gel obtained by mixing a host polymer such as polyethylene oxide, polyacrylonitrile, polyvinylidene fluoride, polyvinyl alcohol, polyacrylic acid or polyacrylamide with acetonitrile, ethylene carbonate, propylene carbonate or a mixture thereof. An electrolyte is preferred.
  • a low-viscosity precursor is contained in the nanoparticles, and a two-dimensional or three-dimensional crosslinking reaction is caused by means such as heating, ultraviolet irradiation, or electron beam irradiation. Can be gelled or solidified.
  • a molten salt of iodide for example, a molten salt of iodide can be used.
  • the molten salt of iodide include iodides such as imidazolium salt, quaternary ammonium salt, isoxazolidinium salt, isothiazolidinium salt, pyrazolidium salt, pyrrolidinium salt, pyridinium salt and the like.
  • Specific examples of the above-mentioned molten salt of iodide include, for example, 1,1-dimethylimidazolium iodide, 1-methyl-3-ethylimidazolium iodide, 1-methyl-3-pentylimidazolium iodide.
  • the transparent conductive layer (first transparent conductive layer 16) has conductivity capable of exchanging charges with the electrolyte (charge transport material) 15, and also has translucency capable of transmitting light contributing to photoelectric conversion. ing. That is, this transparent conductive layer functions as a counter electrode that forms a pair with the first photoelectric converter 12.
  • the transparent conductive layer include a tin-doped indium oxide (ITO) film, an impurity-doped indium oxide (In 2 O 3 ) film, an impurity-doped zinc oxide (ZnO) film, a fluorine-doped tin dioxide film, and the like. And a laminated film formed by laminating the layers.
  • the method for forming the transparent conductive layer described above can be variously selected depending on the material to be formed.
  • the sputtering method for low temperature growth the low temperature spray pyrolysis method, the thermal CVD method, the solution growth method, and the vacuum deposition method.
  • Ion plating method dip coating method, sol-gel method and the like.
  • the transparent conductive layer can have a light confinement effect by forming irregularities in the order of the wavelength of incident light on its surface.
  • the first transparent conductive layer 16 may be a thin metal film such as Au, Pd, or Al formed by a vacuum deposition method, a sputtering method, or the like.
  • a catalyst (not shown) is formed on the first transparent electrode 16.
  • the material of the catalyst include noble metals such as platinum, palladium, iridium, osmium, ruthenium, and rhodium, carbon, and organic conductive materials such as polyethylenedioxythiophene (PEDOT).
  • PEDOT polyethylenedioxythiophene
  • the translucent covering 17 has a translucency through which light contributing to photoelectric conversion can be transmitted, and has a function of protecting the first transparent conductive layer 16 and the like from the outside.
  • Examples of such a translucent covering 17 include a fluororesin, a polyester resin, a silicon polyester resin, a polyvinyl chloride resin, a PET (polyethylene terephthalate), PEN (polyethylene naphthalate), a resin sheet such as polyimide and polycarbonate, and a white plate.
  • examples thereof include inorganic sheets such as glass, soda glass, borosilicate glass and ceramics, or hybrid sheets formed by combining organic and inorganic materials.
  • the thickness of the translucent covering 17 is 0.1 ⁇ m to 6 mm, preferably 1 ⁇ m to 4 mm.
  • the photoelectric conversion device X1 may use the first photoelectric conversion body 12 on which a plurality of types of dyes 13 having different wavelengths of light to be absorbed are adsorbed. With such a form, it becomes possible to photoelectrically convert light in a wider wavelength region, and the photoelectric conversion efficiency is improved. Further, even in a form in which a plurality of photoelectric conversion devices X1 having the first photoelectric conversion bodies 12 each adsorbing the dyes 13 having different wavelengths of light to be absorbed are stacked, light in a wider wavelength region is photoelectrically converted. Conversion is possible, and the photoelectric conversion efficiency is improved.
  • Such a photoelectric conversion device X1 can be a photovoltaic device by using the photoelectric conversion device X1 as a power generation means and supplying the generated power from the power generation means to a load.
  • This photovoltaic power generation device uses, for example, one or more photoelectric conversion devices X1 connected in series (in series, parallel, or series-parallel if there are a plurality) as power generation means, and the generated power directly from this power generation means to a DC load. It has a mechanism which supplies.
  • the photovoltaic power generation device converts the direct current power output from the photoelectric conversion device X1 into appropriate alternating current power through power conversion means such as an inverter, and then converts this generated power to a commercial power supply system or various electric devices. You may have the mechanism supplied to alternating current load.
  • such a photovoltaic power generation device can be used as a photovoltaic power generation system of various modes by being installed in a building with good sunlight.
  • FIG. 2 is a sectional view showing a photoelectric conversion device according to the second embodiment of the present invention.
  • the photoelectric conversion device X2 according to the second embodiment of the present invention has a second photoelectric conversion body 18 having a semiconductor layer on the electrolyte 15 disposed on the first photoelectric conversion body 12 in that This is different from the photoelectric conversion device X1 according to the first embodiment of the invention.
  • the second photoelectric conversion body 18 is arranged in a state of being interposed between the first transparent conductive layer 16 and the second transparent conductive layer 19.
  • the second photoelectric conversion body 18 has a photoelectric conversion function of converting incident light after absorbing incident light, and in particular, the light photoelectrically converted by the first photoelectric conversion body 12 What is excellent in the photoelectric conversion effect
  • action in the light of a different wavelength is preferable.
  • the semiconductor layer of the second photoelectric converter 18 include a silicon-based thin film semiconductor layer and a compound semiconductor-based thin film semiconductor layer such as CIGS (CuInGaSe).
  • the silicon system for example, an amorphous silicon system, an amorphous silicon system including a nanosize crystal, a microcrystalline silicon system, and the like are preferable, and an amorphous silicon system is preferable from the viewpoint of having a short wavelength sensitivity and a small light deterioration. .
  • the amorphous silicon system includes alloy systems such as amorphous silicon carbide and amorphous silicon nitride. Further, when these thin film semiconductor layers are composed of a plurality of layers, the junction layer may generate an internal electric field such as a pin junction type, a pn junction type, a Schottky junction type, or a hetero junction type. Good.
  • the amorphous silicon-based thin film semiconductor layer for example, a pin junction hydrogenated amorphous silicon based semiconductor film continuously deposited by plasma CVD is suitable.
  • the semiconductor film may be a pin junction in which a p-type semiconductor film is provided on the first transparent conductive layer 16 side, but may be a reverse junction nip junction.
  • the one-conductivity-type silicon-based semiconductor layer and the reverse-conductivity-type silicon-based semiconductor layer mean a layer composed of a p-type semiconductor and an n-type semiconductor, or an n-type semiconductor and a p-type semiconductor, respectively.
  • a silicon semiconductor layer that is substantially intrinsic means an i-type semiconductor.
  • the i-type semiconductor film is amorphous (amorphous)
  • at least one of the p-type semiconductor film and the n-type semiconductor film has microcrystals, or hydrogenated amorphous silicon (a-Si: H)
  • An alloy film may be used.
  • the thin film semiconductor layer may be formed using a catalytic CVD method as a film forming method other than the plasma CVD method.
  • the plasma CVD method and the catalytic CVD method are combined, light deterioration in the formed semiconductor film can be suppressed, so that reliability can be improved.
  • the p-type hydrogenated amorphous silicon (a-Si: H) film uses SiH 4 + H 2 gas and B 2 H 6 (diluted to 500 ppm with H 2 ) gas as source gases, and the flow rates of these gases are Each film is optimized.
  • This film thickness is preferably in the range of 50 to 200 mm from the viewpoint of reducing light loss while forming a sufficient internal electric field.
  • the i-type hydrogenated amorphous silicon (a-Si: H) film is formed by using SiH 4 + H 2 gas as a source gas and optimizing the flow rate of these gases.
  • the film thickness is preferably 500 to 5000 mm (0.05 ⁇ m to 0.5 ⁇ m) from the viewpoints of obtaining a sufficient photocurrent and transmitting light contributing to power generation by the first photoelectric converter 12.
  • the n-type hydrogenated amorphous silicon (a-Si: H) film uses SiH 4 + H 2 gas and PH 3 (diluted to 1000 ppm with H 2 ) gas as source gases, and the flow rates of these gases Each of these is optimized to form a film.
  • This film thickness is preferably in the range of 50 to 200 mm from the viewpoint of reducing light loss while forming a sufficient internal electric field.
  • the temperature of the translucent covering 17 and the first transparent conductive layer 16 during film formation is preferably in the range of 150 ° C.
  • the second photoelectric conversion body 18 including such a thin film semiconductor layer easily absorbs light having a wavelength of 300 nm to 700 nm, and has a wavelength range of 700 nm to 1100 nm that is easily absorbed by the dye 13. Photoelectric conversion is performed with light on the short wavelength side.
  • the second photoelectric conversion body 18 is disposed on the light incident side, and the dye-sensitized type including the first photoelectric conversion body 12 below the second photoelectric conversion body 18 is provided.
  • the light having the wavelength region on the short wavelength side described above is absorbed by the second photoelectric converter 18 and then transmitted through the second photoelectric converter 18. Absorbs light in the side wavelength region. Therefore, the photoelectric conversion device X2 can perform photoelectric conversion in a wider wavelength range, and thus can improve the photoelectric conversion efficiency.
  • the photoelectric conversion device X2 since the second photoelectric conversion body 18 that absorbs light having a wavelength close to ultraviolet light is disposed on the light incident side, deterioration of the dye 13 due to ultraviolet light can be reduced. .
  • the present invention is not limited to the above-described embodiment, and various modifications may be made without departing from the scope of the present invention.
  • the second photoelectric conversion body 18 having a semiconductor layer is provided on the electrolyte 15 disposed on the first photoelectric conversion body 12, but the electrolyte 15 is made of a conductor, a semiconductor, or the like. Other charge transport materials may be substituted.
  • the second photoelectric converter 18 may be provided directly on the first photoelectric converter 12 without using the electrolyte 15.
  • Example 1 (Preparation of pigment) First, zinc tris (3,5-ditertiarybutylphenyl) porphyrin was brominated with N-bromosuccinimide, coupled with trimethylsilylacetylene using palladium (II) catalyst and copper iodide as catalysts, and then tetrabutylammonium fluoride. Desilylation with Next, the desilylated compound was coupled with a brominated product of bis (3,5-ditertiarybutylphenyl) methoxycarbonylphenylporphyrin using palladium (0) catalyst and triphenylarsine as a catalyst, and finally, ester substitution.
  • a glass substrate with a fluorine-doped tin oxide film having a surface resistance value of 10 ⁇ / ⁇ (square) and a size of 15 mm ⁇ 25 mm was prepared.
  • a porous titanium oxide film that is the metal oxide 14 was formed on the conductive substrate 11.
  • a porous titanium oxide film is manufactured by applying titania paste Ti-Nanoxide T / SP manufactured by SOLARONIXS on a conductive substrate 11 by a screen printing method through a screen of 4 mm ⁇ 4 mm size and 300 mesh, and at 3 ° C. After the operation of drying for 10 minutes was repeated 10 times, the conductive substrate 11 was baked at 500 ° C. for 30 minutes to form a first photoelectric converter.
  • the film thickness of the porous titanium oxide film was 16 ⁇ m as measured with a stylus type film thickness meter.
  • the dye 13 synthesized as described above was dissolved in a solvent in which chloroform and tetrahydrofuran were mixed at a ratio of 4: 1 to prepare 100 ⁇ M.
  • the conductive substrate 11 is washed with ethanol at room temperature, 1 photoelectric conversion body 12 was produced.
  • the counter electrode 16 in which platinum having a film thickness of about 1 nm was formed on a glass substrate with a fluorine-doped tin oxide film having two electrolyte solution injection holes having a diameter of about 0.7 mm was produced.
  • an ionomer resin having a thickness of about 30 ⁇ m was applied around the counter electrode 16, and the first photoelectric conversion body 12 was bonded to the counter electrode 16 through the ionomer resin. This ionomer resin seals the region sandwiched between the first photoelectric converter 12 and the counter electrode 16 from the outside.
  • an electrolyte solution is prepared by dissolving 0.1 M lithium iodide, 0.025 M iodine, and 0.6 M DMPII (dimethylpropylimidazolium iodide) in acetonitrile as an electrolyte.
  • a photoelectric conversion device was manufactured by injecting into the inside through the electrolyte injection hole.
  • Comparative Example 1 a photoelectric conversion device was produced using a dye of the following general formula 2 shown in Patent Document 1. The procedure was the same as Example 1 except that the dye represented by the following general formula 2 was used.
  • this dye 13 zinc tris (3,5-ditertiarybutylphenyl) porphyrin was brominated with N-bromosuccinimide and coupled with trimethylsilylacetylene using a palladium (II) catalyst and copper iodide as catalysts. Desilylation with tetrabutylammonium fluoride. Then, the desilylated compound was coupled with a brominated product of bis (3,5-ditertiarybutylphenyl) methoxycarbonylphenylporphyrin using a palladium (0) catalyst and triphenylarsine as a catalyst, and zinc acetate and React to zinc porphyrin. Finally, the ester substituent was hydrolyzed and converted to a carboxyl group to prepare the dye 13 represented by the general formula 1.
  • Example 2 when the first photoelectric conversion body 12 was manufactured, the procedure of 10 times described in Example 1 was changed to 3 times, so that the thickness of the porous titanium oxide film was 5 ⁇ m.
  • a photoelectric conversion device was produced by the same method as in Example 1 except that the concentration of the dye 13 solution was 3.6 mM.
  • Comparative Example 2 first, a dye using a black die was prepared. And the 1st photoelectric conversion body which adsorb
  • IPCE spectral sensitivity characteristics
  • the photoelectric conversion device of Example 2 has higher conversion efficiency than the photoelectric conversion device of Comparative Example 2 using a black die in the wavelength region on the long wavelength side of 650 nm or more. confirmed.

Abstract

A photoelectric converter is provided with a first photoelectric conversion body which has a pigment containing triple-bond linked porphyrin represented by general formula (1) and an oxide semiconductor to which the pigment adheres and which contains at least one of Ti, Sn, and Zn. [1]

Description

光電変換装置Photoelectric conversion device
 本発明は、光電変換装置に関するものである。 The present invention relates to a photoelectric conversion device.
 光電変換装置の一つである色素増感型太陽電池は、製造過程において高温処理や真空装置を必要としない。そのため、低コスト化に有利であると考えられ、近年急速に研究開発が進められている。 A dye-sensitized solar cell, which is one of photoelectric conversion devices, does not require high-temperature treatment or a vacuum device in the manufacturing process. For this reason, it is considered advantageous for cost reduction, and research and development have been promoted rapidly in recent years.
 一般的な色素増感型太陽電池は、光作用極と導電性ガラス対極とを具備する。光作用極は、例えば、導電性ガラス基板上に、20nm程度の粒径の微粒子を焼結して得られる多孔質酸化チタン層を設け、この多孔質酸化チタン層の粒子表面に色素を単分子吸着させることによって構成される。また、導電性ガラス対極は、例えば、白金をガラス表面にスパッタで被着することにより構成される。そして、導電性ガラス対極と光作用極との間を、ヨウ素/ヨウ化物レドックス対を含む電荷輸送機能を有する電解質溶液で満たし、この電解質溶液を封止することによって、色素増感型太陽電池が構成される。 A general dye-sensitized solar cell includes a light working electrode and a conductive glass counter electrode. For example, the optical working electrode is provided with a porous titanium oxide layer obtained by sintering fine particles having a particle size of about 20 nm on a conductive glass substrate, and a single molecule of dye is formed on the particle surface of the porous titanium oxide layer. It is constituted by making it adsorb. In addition, the conductive glass counter electrode is configured, for example, by depositing platinum on the glass surface by sputtering. Then, the space between the conductive glass counter electrode and the light working electrode is filled with an electrolyte solution having a charge transport function including an iodine / iodide redox pair, and the electrolyte solution is sealed, whereby a dye-sensitized solar cell is obtained. Composed.
 このような色素増感型太陽電池の光作用極に吸着される色素には、例えば有機色素が用いられている。有機色素として、ポルフィリン骨格を有するものが提案されている(例えば特許文献1参照)。 For example, organic dyes are used as the dyes adsorbed on the light working electrode of such dye-sensitized solar cells. As an organic dye, one having a porphyrin skeleton has been proposed (see, for example, Patent Document 1).
 しかしながら、色素増感型太陽電池は、光電変換効率をさらに向上させることが求められている。 However, dye-sensitized solar cells are required to further improve the photoelectric conversion efficiency.
特開2006-100047号公報Japanese Patent Laid-Open No. 2006-100047
 本発明はかかる事情に鑑みてなされたものであり、その目的は、色素の長波長感度を高め、光電変換効率を向上させた光電変換装置を提供することにある。 The present invention has been made in view of such circumstances, and an object of the present invention is to provide a photoelectric conversion device in which the long wavelength sensitivity of the dye is increased and the photoelectric conversion efficiency is improved.
 本発明の一実施形態に係る光電変換装置は、下記一般式1で表される三重結合連結ポルフィリンを含む色素と、前記色素が付着し、Ti、Sn及びZnの少なくとも1つを含む酸化物半導体と、を有する第1の光電変換体、を備える。 A photoelectric conversion device according to an embodiment of the present invention includes a dye containing a triple bond-linked porphyrin represented by the following general formula 1, and an oxide semiconductor to which the dye is attached and containing at least one of Ti, Sn, and Zn And a first photoelectric conversion body.
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000002
 前記一般式1において、R1~R22およびR27~R36は任意の置換基であり、M1、M2およびM3は金属原子または2個の水素原子であり、R23~R26、R37およびR38は無置換あるいは少なくとも1つに置換基が配されている。 In the general formula 1, R1 to R22 and R27 to R36 are arbitrary substituents, M1, M2 and M3 are metal atoms or two hydrogen atoms, and R23 to R26, R37 and R38 are unsubstituted or at least One has a substituent.
本発明の第1の実施形態に係る光電変換装置の断面図である。It is sectional drawing of the photoelectric conversion apparatus which concerns on the 1st Embodiment of this invention. 本発明の第2の実施形態に係る光電変換装置の断面図である。It is sectional drawing of the photoelectric conversion apparatus which concerns on the 2nd Embodiment of this invention. 本発明の実施例および比較例に係る光電変換装置のIPCEスペクトルである。It is an IPCE spectrum of the photoelectric conversion apparatus which concerns on the Example and comparative example of this invention.
 以下、本発明の実施形態について図面を参照しつつ詳細に説明する。なお、図面において同一部材には同一符号を付すものとする。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. In the drawings, the same members are denoted by the same reference numerals.
 ≪第1の実施形態≫
 図1は、本発明の第1の実施形態に係る光電変換装置を示す断面図である。本発明の第1の実施形態に係る光電変換装置X1は、導電性基板11と、色素13が付着した金属酸化物14よりなる第1の光電変換体12と、電荷輸送材料としての電解質15と、第1の透明電極16と、透光性被覆体17と、を備えている。導電性基板11は、その上面に第1の光電変換体12が形成されている。電解質15は、互いに対向するように配設された第1の光電変換体12と第1の透明電極16との間に配されている。透光性被覆体17は、第1の透明電極16上を覆うように配されている。
<< First Embodiment >>
FIG. 1 is a cross-sectional view showing a photoelectric conversion device according to the first embodiment of the present invention. A photoelectric conversion device X1 according to the first embodiment of the present invention includes a conductive substrate 11, a first photoelectric conversion body 12 made of a metal oxide 14 to which a dye 13 is attached, an electrolyte 15 as a charge transport material, and The first transparent electrode 16 and the translucent covering 17 are provided. As for the electroconductive board | substrate 11, the 1st photoelectric conversion body 12 is formed in the upper surface. The electrolyte 15 is disposed between the first photoelectric conversion body 12 and the first transparent electrode 16 that are disposed so as to face each other. The translucent covering 17 is disposed so as to cover the first transparent electrode 16.
 次に、本実施形態に係る光電変換装置X1の光電変換作用について説明する。光電変換装置X1は、図1中、矢印Lより光が入射されると、色素が光を吸収し、色素が励起状態になり、電子が色素のLUMO(Lowest Unoccupied Molecular Orbital:最低空軌道)準位まで励起される。そして、LUMO準位に励起された電子は、酸化チタン等の金属酸化物14の伝導帯(コンダクションバンド)準位に高速に移動する。金属酸化物14の伝導帯準位に移動した電子は、金属酸化物の粒子間を効率よく移動し、導電性基板11に到達する。次に、導電性基板11に到達した電子は、導電性基板11と第1の透明電極16との間に電気的に接続されている負荷(図示なし)を介して、第1の透明電極16に移動する。次いで、第1の透明電極16に移動した電子は、第1の透明電極16上に形成された触媒(図示なし)において電解質15の一部を還元する。触媒の材質としては、例えば、貴金属やカーボン、有機導電材料が挙げられる。このような貴金属としては、例えば、プラチナ、パラジウム、イリジウム、オスミウム、ルテニウム、ロジウム等がある。また、このような有機導電材料としては、ポリエチレンジオキシチオフェン(PEDOT)等がある。そして、還元された電解質15は、色素13近傍まで拡散すると、色素上で酸化反応が起こり、色素のHOMO(Highest Occupied Molecular Orbital:最高被占軌道)準位に電子移動を起こす。上記のような電子の循環により、光電変換が起きる。 Next, the photoelectric conversion action of the photoelectric conversion device X1 according to this embodiment will be described. In the photoelectric conversion device X1, when light is incident from the arrow L in FIG. 1, the dye absorbs light, the dye is excited, and the electron is a LUMO (Lowest UnoccupiedccMolecular Orbital) quasi Excited to the order. Then, the electrons excited to the LUMO level move at high speed to the conduction band (conduction band) level of the metal oxide 14 such as titanium oxide. The electrons moved to the conduction band level of the metal oxide 14 efficiently move between the metal oxide particles and reach the conductive substrate 11. Next, the electrons reaching the conductive substrate 11 pass through the first transparent electrode 16 via a load (not shown) electrically connected between the conductive substrate 11 and the first transparent electrode 16. Move to. Next, the electrons moved to the first transparent electrode 16 reduce part of the electrolyte 15 in a catalyst (not shown) formed on the first transparent electrode 16. Examples of the material of the catalyst include noble metals, carbon, and organic conductive materials. Examples of such noble metals include platinum, palladium, iridium, osmium, ruthenium, and rhodium. Examples of such an organic conductive material include polyethylene dioxythiophene (PEDOT). Then, when the reduced electrolyte 15 diffuses to the vicinity of the dye 13, an oxidation reaction occurs on the dye and causes an electron transfer to the HOMO (Highest Occupied Molecular Orbital) level of the dye. Photoelectric conversion occurs due to the circulation of electrons as described above.
 次に、本実施形態に係る光電変換装置X1の各部材について詳細に説明する。 Next, each member of the photoelectric conversion device X1 according to this embodiment will be described in detail.
 <導電性基板>
 導電性基板11は、第1の光電変換体12の支持体であるとともに、第1の光電変換体12より電流を取り出す機能を有する。導電性基板11としては、例えば、金属基板、導電性部材を含有させた基板、または導電膜11bが上面に形成された絶縁基板11a等が挙げられる。
<Conductive substrate>
The conductive substrate 11 is a support for the first photoelectric converter 12 and has a function of taking out current from the first photoelectric converter 12. Examples of the conductive substrate 11 include a metal substrate, a substrate containing a conductive member, or an insulating substrate 11a having a conductive film 11b formed on the upper surface.
 上記の金属基板の材質としては、例えば、チタン、ステンレス、アルミニウム、銀、銅、ニッケル等の金属、またはこれら金属の合金が挙げられる。 Examples of the material of the metal substrate include metals such as titanium, stainless steel, aluminum, silver, copper, and nickel, or alloys of these metals.
 上記の導電性部材を含有させた基板としては、導電性部材を基材に含有させたものである。基材としては、有機樹脂材料または無機材料等の絶縁材料である。このような有機材料としては、例えば、PET(ポリエチレンテレフタレート)、PEN(ポリエチレンナフタレート)、ポリイミド、ポリカーボネート等がある。また、上記の無機材料としては、青板ガラス、ソーダガラス、硼珪酸ガラス、セラミックス等がある。また、この基材に含有される導電性部材としては、例えば、上記した金属基板の材質からなる金属の微粒子や微細線等、またはカーボン(炭素)の微粒子や微細線等が挙げられる。 As the substrate containing the above conductive member, a conductive member is contained in the base material. The substrate is an insulating material such as an organic resin material or an inorganic material. Examples of such an organic material include PET (polyethylene terephthalate), PEN (polyethylene naphthalate), polyimide, and polycarbonate. Examples of the inorganic material include blue plate glass, soda glass, borosilicate glass, and ceramics. Examples of the conductive member contained in the base material include metal fine particles and fine lines made of the above-described metal substrate material, or carbon (carbon) fine particles and fine lines.
 上記の導電膜11bが上面に貼られた絶縁基板11aにより構成された導電性基板11としては、導電膜11bを上述した基材と同等の材質で構成された絶縁基板11a上に、例えば、CVD法により形成したものが挙げられる。このような導電膜11bとしては、金属薄膜、透明導電膜、アルミニウムがドープされた酸化亜鉛よりなる導電膜、または一対のチタン層間にITO層を挟んでなる積層導電膜等がある。上記の金属薄膜としては、例えば、チタン、ステンレス、アルミニウム、銀、銅、およびニッケル等がある。また、上記の透明導電膜としては、例えば、ITO(錫ドープ酸化インジウム)およびFTO(フッ素ドープ酸化錫)等がある。 As the conductive substrate 11 constituted by the insulating substrate 11a having the conductive film 11b pasted on the upper surface, the conductive film 11b is formed on the insulating substrate 11a made of the same material as the base material described above, for example, by CVD. Those formed by the method are listed. Examples of the conductive film 11b include a metal thin film, a transparent conductive film, a conductive film made of zinc oxide doped with aluminum, or a laminated conductive film in which an ITO layer is sandwiched between a pair of titanium layers. Examples of the metal thin film include titanium, stainless steel, aluminum, silver, copper, and nickel. Examples of the transparent conductive film include ITO (tin-doped indium oxide) and FTO (fluorine-doped tin oxide).
 また、導電性基板11は、光電変換装置X1に入射される光を反射する特性を有する構成とすれば、光電変換に寄与する第1の光電変換体12に光を再入射させることができるため、光電変換効率を高めることができる。このような光の反射特性を有する導電性基板11としては、例えば、銀またはアルミニウムの金属基板が挙げられる。また、導電膜11bを有する導電性基板11では、銀または一対のチタン層間に銀層を挟んでなる積層導電膜等がよく、このような導電膜11bは、例えば、真空蒸着法、イオンプレーティング法、スパッタリング法、または電解析出法等で形成できる。 In addition, if the conductive substrate 11 has a characteristic of reflecting light incident on the photoelectric conversion device X1, light can be incident again on the first photoelectric conversion body 12 that contributes to photoelectric conversion. The photoelectric conversion efficiency can be increased. Examples of the conductive substrate 11 having such light reflection characteristics include a silver or aluminum metal substrate. In addition, the conductive substrate 11 having the conductive film 11b is preferably a laminated conductive film in which a silver layer is sandwiched between silver or a pair of titanium layers, and such a conductive film 11b can be formed by, for example, vacuum deposition or ion plating. It can be formed by a method, a sputtering method, an electrolytic deposition method, or the like.
 導電性基板11の厚みは0.01mm~5mm、好ましくは0.02mm~3mmがよい。また、導電膜11bの厚みは0.001μm~10μm、好ましくは0.05μm~2μmがよい。 The thickness of the conductive substrate 11 is 0.01 mm to 5 mm, preferably 0.02 mm to 3 mm. The thickness of the conductive film 11b is 0.001 μm to 10 μm, preferably 0.05 μm to 2 μm.
 一方、導電性基板11が透光性を有する材質で構成されている場合は、図1中の矢印Lで示した方向とは反対の方向から入射される光も入射可能となり、光電変換装置X1の受光領域を広げることができる。他方、導電性基板11が透光性を有する材質で構成されている場合は、導電性基板11の裏面(図1中の導電性基板の下面)に光の反射特性が高いアルミニウムや銀等を成膜して光の反射特性を高めると、光電変換に寄与する第1の光電変換体12に光を再入射させることができるため、光電変換効率を高めることができる。 On the other hand, when the conductive substrate 11 is made of a light-transmitting material, light that enters from a direction opposite to the direction indicated by the arrow L in FIG. 1 can also enter, and the photoelectric conversion device X1. The light receiving area can be expanded. On the other hand, when the conductive substrate 11 is made of a light-transmitting material, aluminum, silver or the like having high light reflection characteristics is applied to the back surface of the conductive substrate 11 (the lower surface of the conductive substrate in FIG. 1). When the light reflection property is increased by forming a film, light can be re-incident on the first photoelectric conversion body 12 that contributes to photoelectric conversion, so that the photoelectric conversion efficiency can be increased.
 また、導電性基板11の光が入射される上面(第1の光電変換体12が配されている表面)に入射される光の波長オーダーの凹凸を設ければ、光閉じ込め効果を付与することができるため、光電変換効率を高めることができる。 Further, if concavities and convexities in the wavelength order of light incident on the upper surface (surface on which the first photoelectric conversion body 12 is disposed) on which light of the conductive substrate 11 is incident are provided, a light confinement effect is provided. Therefore, the photoelectric conversion efficiency can be increased.
 <第1の光電変換体および酸化物半導体>
 第1の光電変換体12は、例えば、酸化物半導体である金属酸化物14の多孔性表面に色素13が吸着されてなる。第1の光電変換体12は、色素13が光を吸収して励起された電子を金属酸化物14に移動させることにより、光電変換に寄与する機能を有する。また、第1の光電変換体12の厚みは、例えば、0.1μm~50μmがよい。さらに、この第1の光電変換体12の厚みは、光の透過率を過度に低減することなく、光電変換効率を高めるという観点から、1μm~20μmが好適である。
<First photoelectric converter and oxide semiconductor>
The first photoelectric converter 12 is formed, for example, by adsorbing the dye 13 on the porous surface of the metal oxide 14 that is an oxide semiconductor. The first photoelectric converter 12 has a function of contributing to photoelectric conversion by moving electrons excited by absorption of light by the dye 13 to the metal oxide 14. The thickness of the first photoelectric converter 12 is preferably 0.1 μm to 50 μm, for example. Furthermore, the thickness of the first photoelectric converter 12 is preferably 1 μm to 20 μm from the viewpoint of increasing the photoelectric conversion efficiency without excessively reducing the light transmittance.
 金属酸化物14は、チタン(Ti)の酸化物である酸化チタン(TiO)、錫(Sn)の酸化物である酸化錫(SnO)、または亜鉛の酸化物である酸化亜鉛(ZnO)より成るn型半導体で構成されている。このような半導体の性質を有する酸化物は、後に詳述する色素13のLUMOのエネルギー準位より低い伝導帯(コンダクションバンド)を有し、かつ比較的格子欠陥が少ないことから、該欠陥において電子がトラップされにくいため、光電変換装置X1の光電変換効率を高めることができる。とりわけ、酸化チタンは、格子欠陥が他の金属酸化物(SnO、ZnO)に比べ少ないという観点から最も好適である。 The metal oxide 14 includes titanium oxide (TiO 2 ) that is an oxide of titanium (Ti), tin oxide (SnO 2 ) that is an oxide of tin (Sn), or zinc oxide (ZnO) that is an oxide of zinc. It consists of an n-type semiconductor. An oxide having such a semiconductor property has a conduction band (conduction band) lower than the LUMO energy level of the dye 13 described in detail later, and has relatively few lattice defects. Since electrons are not easily trapped, the photoelectric conversion efficiency of the photoelectric conversion device X1 can be increased. In particular, titanium oxide is most preferable from the viewpoint of having fewer lattice defects than other metal oxides (SnO 2 , ZnO).
 金属酸化物14は、色素13が吸着される表面積を広げて、より多くの色素を吸着するという観点から、多孔質体で構成されるのが好ましい。このような多孔質体は、気孔率が20%~80%、より好適には40%~60%がよい。また、金属酸化物14は、例えば、微粒子の集合体、もしくは、針状体、管状体または柱状体のような微細な線状体の集合体で形成されており、その平均粒径もしくは平均線径は5nm~500nmとするのがよい。さらに、金属酸化物14は、微粒子または線状体同士の接合面積の増大および材料作製の簡易化という観点から、10nm~200nmが好適である。金属酸化物14をこのような多孔質体で構成すれば、表面が凹凸形状になるため、光閉じ込め効果を高めることができる。 The metal oxide 14 is preferably composed of a porous material from the viewpoint of increasing the surface area on which the dye 13 is adsorbed and adsorbing more dye. Such a porous body has a porosity of 20% to 80%, more preferably 40% to 60%. Further, the metal oxide 14 is formed of, for example, an aggregate of fine particles, or an aggregate of fine linear bodies such as needle-like bodies, tubular bodies, or columnar bodies, and has an average particle diameter or an average line. The diameter is preferably 5 nm to 500 nm. Further, the metal oxide 14 is preferably 10 nm to 200 nm from the viewpoint of increasing the bonding area between the fine particles or the linear bodies and simplifying the material production. If the metal oxide 14 is composed of such a porous body, the surface becomes uneven, so that the light confinement effect can be enhanced.
 次に、金属酸化物14の形成方法の一例について説明する。なお、以下では、酸化チタンで形成される金属酸化物14について説明する。まず、酸化チタンのアナターゼ粉末にアセチルアセトンを添加した後、脱イオン水とともに混練し、界面活性剤で安定化させた酸化チタンのペーストを作製する。次に、このペーストを、例えば、ドクターブレード法によって、導電性基板11上に塗布し、大気中において300℃~600℃の温度で、10分~60分加熱処理することにより、金属酸化物14を形成することができる。 Next, an example of a method for forming the metal oxide 14 will be described. Hereinafter, the metal oxide 14 formed of titanium oxide will be described. First, acetylacetone is added to an anatase powder of titanium oxide, and then kneaded with deionized water to prepare a titanium oxide paste stabilized with a surfactant. Next, this paste is applied onto the conductive substrate 11 by, for example, a doctor blade method, and is heat-treated in the atmosphere at a temperature of 300 ° C. to 600 ° C. for 10 minutes to 60 minutes, whereby the metal oxide 14 Can be formed.
 また、導電性基板11が耐熱性の低い材質、例えば有機樹脂材料で構成する場合、金属酸化物14は、例えば、電析法、泳動電着法、水熱合成法等の比較的低温で形成可能な方法を用いるのがよく、加えて、後処理としてマイクロ波処理、CVD/UV処理等を行なうとよい。 When the conductive substrate 11 is made of a material having low heat resistance, such as an organic resin material, the metal oxide 14 is formed at a relatively low temperature such as an electrodeposition method, an electrophoretic electrodeposition method, or a hydrothermal synthesis method. A possible method is preferably used, and in addition, microwave treatment, CVD / UV treatment, or the like may be performed as post-processing.
 <色素>
 色素13は、光電変換装置X1に入射される光を吸収することによって、HOMOに位置する電子がLUMOの位置に励起され、該LUMOより金属酸化物14に当該電子を移動させる機能を有する。
<Dye>
The dye 13 has a function of absorbing light incident on the photoelectric conversion device X1 to excite electrons located in the HOMO to the LUMO position and moving the electrons from the LUMO to the metal oxide 14.
 色素13は、下記一般式1のような組成を有している。なお、式中のnは、0以上の整数である。 The pigment 13 has a composition represented by the following general formula 1. In the formula, n is an integer of 0 or more.
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
 色素13は、一般式1に示すように、ポルフィリン骨格を有する単量体が三重結合による共役架橋によって連結され、多量体を成している。それゆえ、色素13は、π電子共役系の拡大によって共役長を大きくすることができるため、光の吸収波長領域を広げることができる。特に、色素13は、π電子共役系の拡大により、長波長(450nm以上)の光に対して吸収が大きくなるため、可視光領域における光電変換効率を高めることができる。加えて、色素13は、ポルフィリン多量体によるエキシトンカップリングにより、長波長側の光の吸収が大きくなる。 As shown in the general formula 1, the dye 13 is a multimer in which monomers having a porphyrin skeleton are linked by a conjugated bridge by a triple bond. Therefore, since the dye 13 can increase the conjugate length by expanding the π-electron conjugated system, the light absorption wavelength region can be expanded. In particular, the dye 13 has an increased absorption with respect to light having a long wavelength (450 nm or more) due to the expansion of the π-electron conjugated system, so that the photoelectric conversion efficiency in the visible light region can be increased. In addition, the dye 13 has a large absorption of light on the long wavelength side due to exciton coupling by the porphyrin multimer.
 本発明の光電変換装置によれば、一般式1に示すような三重結合連結ポルフィリンを含んでなる色素13が、Ti、SnおよびZnの少なくとも1つを含んでなる酸化物半導体14に付着した第1の光電変換体12を有することにより、色素13の共役長を大きくするとともに、当該色素13のLUMOが金属酸化物14の伝道帯(コンダクションバンド)よりも高いエネルギー準位であるため、長波長側の光の吸収によって色素13のLUMOに励起されて移動した電子が当該伝道帯に効率良く移動できる。その結果、本発明では、光電変換効率を向上させることができる。 According to the photoelectric conversion device of the present invention, the dye 13 including the triple bond-linked porphyrin as represented by the general formula 1 is attached to the oxide semiconductor 14 including at least one of Ti, Sn, and Zn. By having one photoelectric converter 12, the conjugate length of the dye 13 is increased, and the LUMO of the dye 13 is higher in energy level than the transmission band (conduction band) of the metal oxide 14. Electrons excited and moved by the LUMO of the dye 13 by absorption of light on the wavelength side can efficiently move to the evangelism band. As a result, in the present invention, the photoelectric conversion efficiency can be improved.
 次に、第1の光電変換体12の色素13と金属酸化物14と電解質15の組み合わせによる光電変換作用について説明する。なお、色素13は、一般式1において、n=0(Xなし)、R1=R6=R12=R17=R20=ジターシャルブチルフェニル基、R2=R3=R4=R5=R7=R8=R10=R11=R13=R14=R15=R16=R18=R19=R21=R22=H、R9=カルボキシフェニル基、R23=R24=R25=R26=無置換、M1=Zn、M2=2Hで説明する。光を吸収した色素13は、電子をHOMO準位(-5.9eV)からLUMO準位(-3.9eV)に励起させる。金属酸化物14の伝導帯(コンダクションバンド)は、TiOが-4.2eV、ZnOが-4.4eV、SnOが-4.8eVである。このように、色素13のLUMO準位は、上述した金属酸化物14の伝導帯よりもエネルギー準位が高いため、上記LUMO準位の電子が上記金属酸化物14の伝導帯に移動しやすくなる。加えて、色素13のHOMO準位(-5.9eV)が、電解質15の酸化還元電位よりも低ければ、電解質15から色素13のHOMO準位に電子移動しやすくなる。なお、電解質15の酸化還元電位は、例えば、ヨウ化テトラプロピルアンモニウム、ヨウ化リチウム、およびヨウ素をメトキシプロピオニトリルに溶解してなるヨウ素レドックスの場合、-5.1eVである。 Next, the photoelectric conversion effect | action by the combination of the pigment | dye 13, the metal oxide 14, and the electrolyte 15 of the 1st photoelectric conversion body 12 is demonstrated. The dye 13 is represented by the following formula (1): n = 0 (no X), R1 = R6 = R12 = R17 = R20 = di-tert-butylphenyl group, R2 = R3 = R4 = R5 = R7 = R8 = R10 = R11 = R13 = R14 = R15 = R16 = R18 = R19 = R21 = R22 = H, R9 = carboxyphenyl group, R23 = R24 = R25 = R26 = unsubstituted, M1 = Zn, M2 = 2H. The dye 13 that has absorbed the light excites electrons from the HOMO level (−5.9 eV) to the LUMO level (−3.9 eV). The conduction band of the metal oxide 14 is −4.2 eV for TiO 2 , −4.4 eV for ZnO, and −4.8 eV for SnO 2 . Thus, the LUMO level of the dye 13 has an energy level higher than that of the above-described conduction band of the metal oxide 14, so that the electrons of the LUMO level easily move to the conduction band of the metal oxide 14. . In addition, if the HOMO level (−5.9 eV) of the dye 13 is lower than the oxidation-reduction potential of the electrolyte 15, electrons are easily transferred from the electrolyte 15 to the HOMO level of the dye 13. The redox potential of the electrolyte 15 is, for example, −5.1 eV in the case of iodine redox obtained by dissolving tetrapropylammonium iodide, lithium iodide, and iodine in methoxypropionitrile.
 また、一般式1における置換基R1~R22およびR27~R36は、水素、ハロゲン、ジターシャルブチルフェニル基、アルキル基、フェニル基、カルボキシル基、カルボキシフェニル基、カルボメトキシフェニル基、スチリルカルボキシル基、チオシアナート基、シアノ基、シアノアクリレート基、スルホン酸基、スルホニル基、ヒドロキサム酸基、水酸基、ニトロ基、アミノ基、メルカプト基、アリール基、アルコキシル基、アリールオキシ基、アルキルチオ基、アリールチオ基、アルキルアミノ基、アリールアミノ基、スルホン酸基エステル基、スルホン酸基アミド基、カルボン酸エステル基、カルボン酸アミド基、カルボニル基、シリル基、シロキシ基、ターシャルブチル基、ホスホリル基等の任意の置換基である。また、一般式1において、ポルフィリン骨格内に配位しているM1~M3と化学結合しているR23~R26、R37、およびR38は、上記した置換基であってもよいが、置換基がなくてもよい。 The substituents R1 to R22 and R27 to R36 in the general formula 1 are hydrogen, halogen, di-tert-butylphenyl group, alkyl group, phenyl group, carboxyl group, carboxyphenyl group, carbomethoxyphenyl group, styrylcarboxyl group, thiocyanate Group, cyano group, cyanoacrylate group, sulfonic acid group, sulfonyl group, hydroxamic acid group, hydroxyl group, nitro group, amino group, mercapto group, aryl group, alkoxyl group, aryloxy group, alkylthio group, arylthio group, alkylamino group , Arylamino group, sulfonic acid group ester group, sulfonic acid group amide group, carboxylic acid ester group, carboxylic acid amide group, carbonyl group, silyl group, siloxy group, tertiary butyl group, phosphoryl group, etc. is there. In the general formula 1, R23 to R26, R37, and R38 chemically bonded to M1 to M3 coordinated in the porphyrin skeleton may be the above-described substituents, but there is no substituent. May be.
 また、色素13は、金属酸化物14に効率良く吸着されるように、置換基R1~R38の少なくとも1つが吸着性の高い置換基である吸着置換基であることが好ましい。このような吸着置換基としては、例えば、カルボキシル基、スルホニル基、ヒドロキサム酸基、アルコキシル基、アリール基、ホスホリル基等が挙げられる。また、吸着置換基は、色素13の連結方向の末端(一般式1では、置換基R9、R20)に置換すれば、長尺状の分子構造を有する色素13の末端部位で金属酸化物14と化学吸着するため、より多くの色素13を金属酸化物14に化学吸着させることができ、光電変換効率を高めることができる。また、吸着置換基は、色素13から金属酸化物14への電子移動が効率良く進むという観点から、カルボキシル基が好適である。 Further, the dye 13 is preferably an adsorptive substituent in which at least one of the substituents R1 to R38 is a highly adsorptive substituent so as to be efficiently adsorbed to the metal oxide 14. Examples of such an adsorption substituent include a carboxyl group, a sulfonyl group, a hydroxamic acid group, an alkoxyl group, an aryl group, and a phosphoryl group. In addition, if the adsorption substituent is substituted at the terminal of the dye 13 in the connecting direction (substituents R9 and R20 in the general formula 1), the adsorption substituent is bonded to the metal oxide 14 at the terminal portion of the dye 13 having a long molecular structure. Since it is chemically adsorbed, more dye 13 can be chemically adsorbed to the metal oxide 14 and the photoelectric conversion efficiency can be increased. The adsorption substituent is preferably a carboxyl group from the viewpoint of efficient electron transfer from the dye 13 to the metal oxide 14.
 また、色素13は、溶媒への溶解性を高めて金属酸化物14への吸着を容易にすべく、一般式1における置換基R1、R6、R9、R12、R17、R20、R27、R32のうち、少なくとも1つがジターシャルブチルフェニル基を含むことが好ましい。このジターシャルブチルフェニル基は、かさ高い構造を有しており、有機溶媒への溶解性が比較的高く、色素間の会合を抑制する効果を有している。色素が会合すると励起状態の失活を引き起こし、光電変換効率の低下を招くことから、ジターシャルブチルフェニル基の会合を抑制する効果により光電変換効率を高めることができる。特に3,5-ジターシャルブチルフェニル基とすると、色素間の会合をより抑制することができ好ましい。 Further, the dye 13 is one of the substituents R1, R6, R9, R12, R17, R20, R27, and R32 in the general formula 1 in order to increase the solubility in a solvent and facilitate the adsorption to the metal oxide 14. , Preferably at least one contains a di-tert-butylphenyl group. The di-tert-butylphenyl group has a bulky structure, has a relatively high solubility in an organic solvent, and has an effect of suppressing association between dyes. When the dye is associated, the excited state is deactivated and the photoelectric conversion efficiency is lowered. Therefore, the photoelectric conversion efficiency can be increased by the effect of suppressing the association of the di-tert-butylphenyl group. In particular, a 3,5-ditertiary butylphenyl group is preferable because association between dyes can be further suppressed.
 色素13は、上述した一般式1に示すように、ポルフィリン骨格を有する単量体がアセチレンによる三重結合による共役架橋によって連結され、多量体を成している。このように、色素13は、ポルフィリン骨格のメゾ位同士が三重結合を介して結合していればよいため、一般式1に示すように、三重結合を有するXで示したジアルキルエチニルポルフィリンでもよい。 As shown in the general formula 1, the dye 13 is a multimer in which monomers having a porphyrin skeleton are linked by a conjugated bridge by a triple bond with acetylene. Thus, the dye 13 may be a dialkylethynyl porphyrin represented by X having a triple bond, as shown in the general formula 1, since the meso positions of the porphyrin skeleton need only be bonded via a triple bond.
 一般式1におけるM1~M3は、金属原子または2個の水素原子であり、例えば、H、Mg、Ca、Sr、Ba、Sc、Y、La、Ce、Pr、Nd、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb、Lu、Ti、Zr、Hf、Th、V、Nb、Ta、Cr、Mo、W、U、Mn、Tc、Re、Fe、Ru、Os、Co、Rh、Ir、Ni、Pd、Pt、Cu、Ag、Au、Zn、Cd、Hg、B、Al、Ga、In、Tl、Si、Ge、Sn、Pb、P、As、Sb、Bi、S、Se、またはTeが挙げられる。 M1 to M3 in the general formula 1 are a metal atom or two hydrogen atoms. For example, H, Mg, Ca, Sr, Ba, Sc, Y, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, Ti, Zr, Hf, Th, V, Nb, Ta, Cr, Mo, W, U, Mn, Tc, Re, Fe, Ru, Os, Co, Rh, Ir, Ni, Pd, Pt, Cu, Ag, Au, Zn, Cd, Hg, B, Al, Ga, In, Tl, Si, Ge, Sn, Pb, P, As, Sb, Bi, S, Se or Te is mentioned.
 次に、一般式1で示される色素13の合成方法の一例について説明する。まず、トリス(ジターシャルブチルフェニル)ポルフィリンを準備する。次いで、トリス(ジターシャルブチルフェニル)ポルフィリンのメソ位をN-ブロモスクシンイミドで選択的にブロモ化し、パラジウム(II)触媒とヨウ化銅を触媒としてトリメチルシリルアセチレンとカップリングさせた後、テトラブチルアンモニウムフルオリドで脱シリル化することによって、中間体を得る。次いで、この中間体をパラジウム(0)触媒とトリフェニルアルシンを触媒としてビス(ジターシャルブチルフェニル)メトキシカルボニルフェニルポルフィリンのブロモ化体とカップリングさせることによって、ポルフィリン単量体をアセチレン三重結合で連結した多量体(一般式1)を得ることができる。さらに、この多量体のエステル置換基をKOH(水酸化カリウム)によって加水分解すれば、カルボキシル基に変換することができる。 Next, an example of a method for synthesizing the dye 13 represented by the general formula 1 will be described. First, tris (di-tert-butylphenyl) porphyrin is prepared. Next, the meso position of tris (di-tert-butylphenyl) porphyrin was selectively brominated with N-bromosuccinimide, coupled with trimethylsilylacetylene using palladium (II) catalyst and copper iodide as catalysts, and then tetrabutylammonium fluoride. To obtain an intermediate. Next, this intermediate is coupled with a brominated product of bis (di-tert-butylphenyl) methoxycarbonylphenylporphyrin using palladium (0) catalyst and triphenylarsine as a catalyst, thereby linking the porphyrin monomer with an acetylene triple bond. Multimers (general formula 1) can be obtained. Furthermore, the ester substituent of this multimer can be converted to a carboxyl group by hydrolysis with KOH (potassium hydroxide).
 また、色素13において、一般式1のXがジアルキルエチニルポルフィリンの場合は、例えば、以下に示す方法で合成される。まず、亜鉛トリス(ジターシャルブチルフェニル)ポルフィリンのブロモ化体と、ビス(ジターシャルブチルフェニル)メトキシカルボニルフェニルポルフィリンのブロモ化体とを、それぞれパラジウム(II)触媒とヨウ化銅を触媒として、トリメチルシリルアセチレンとカップリングさせる。次いで、得られた化合物をそれぞれテトラブチルアンモニウムフルオリドで脱シリル化して得たトリス(ジターシャルブチルフェニル)エチニルポルフィリンおよびビス(ジターシャルブチルフェニル)エチニル(メトキシカルボニルフェニル)ポルフィリンを、パラジウム(0)触媒とトリフェニルアルシンを触媒として、ジアルキルジブロモポルフィリンとカップリングさせ、対称型化合物を除去することによって得ることができる。さらに、エステル置換基をKOHによって加水分解すれば、カルボキシル基に変換することができる。この色素13を用いた光電変換装置の分光感度特性(IPCE)について検証した結果、850nm以上の長波長側の波長領域において、ブラックダイよりも変換効率が高まることが確認された。 In the dye 13, when X in the general formula 1 is dialkylethynylporphyrin, for example, it is synthesized by the following method. First, trimethylsilyl bromide of zinc tris (di-tert-butylphenyl) porphyrin and bromide of bis (di-tert-butylphenyl) methoxycarbonylphenylporphyrin, using palladium (II) catalyst and copper iodide as catalysts, respectively. Coupling with acetylene. Next, tris (di-tert-butylphenyl) ethynylporphyrin and bis (di-tert-butylphenyl) ethynyl (methoxycarbonylphenyl) porphyrin obtained by desilylation of each of the obtained compounds with tetrabutylammonium fluoride, palladium (0) It can be obtained by coupling a catalyst and triphenylarsine as a catalyst with dialkyldibromoporphyrin and removing the symmetrical compound. Furthermore, the ester substituent can be converted to a carboxyl group by hydrolysis with KOH. As a result of verifying the spectral sensitivity characteristic (IPCE) of the photoelectric conversion device using this dye 13, it was confirmed that the conversion efficiency is higher than that of the black die in the wavelength region on the long wavelength side of 850 nm or more.
 次に、色素13を金属酸化物14に吸着させて第1の光電変換体12を作製する方法を説明する。第1の光電変換体12の作製方法としては、例えば、金属酸化物14を形成した導電性基板11を色素13が溶解された溶液に浸漬する方法、あるいは金属酸化物14を形成した導電性基板11を封止剤等により周囲を封止した後、封止剤の注入口より色素13を溶解した溶液を注入して該溶液を封止された内部で循環させ金属酸化物14に色素13を吸着させる方法が挙げられる。また、前者において、色素13を溶解した溶液に浸漬する際は、溶液および雰囲気の温度は特に限定されるものではなく、例えば、雰囲気は大気圧下とし、温度は室温とすればよく、浸漬時間は色素13の種類、溶媒の種類、溶液の濃度、温度等により適宜調整することができる。なお、色素13を溶解させるために用いる溶媒は、トルエン等の芳香族炭化水素、エタノールなどのアルコール類、アセトン等のケトン類、ジエチルエーテル、テトラヒドロフラン等のエーテル類、アセトニトリル等の窒素化合物等を1種または2種以上混合したものが挙げられる。このとき、溶液中の色素13の濃度は5×10-5~1×10-3mol/l程度が好ましい。また、この溶液は、色素13の凝集を抑制すべく、添加剤として弱塩基性化合物であるターシャルブチルピリジン、あるいは弱酸性化合物であるデオキシコール酸を含んでいてもよい。 Next, a method for manufacturing the first photoelectric converter 12 by adsorbing the dye 13 to the metal oxide 14 will be described. As a method for producing the first photoelectric converter 12, for example, a method in which the conductive substrate 11 on which the metal oxide 14 is formed is immersed in a solution in which the dye 13 is dissolved, or a conductive substrate on which the metal oxide 14 is formed. 11 is sealed with a sealant or the like, and then a solution in which the dye 13 is dissolved is injected from an inlet of the sealant, and the solution is circulated in the sealed interior so that the dye 13 is added to the metal oxide 14. The method of making it adsorb | suck is mentioned. Further, when the former is immersed in a solution in which the dye 13 is dissolved, the temperature of the solution and the atmosphere is not particularly limited. For example, the atmosphere may be at atmospheric pressure, and the temperature may be room temperature. Can be appropriately adjusted depending on the type of the dye 13, the type of the solvent, the concentration of the solution, the temperature, and the like. The solvent used to dissolve the dye 13 is 1 aromatic hydrocarbon such as toluene, alcohols such as ethanol, ketones such as acetone, ethers such as diethyl ether and tetrahydrofuran, nitrogen compounds such as acetonitrile, and the like. The seed | species or what mixed 2 or more types is mentioned. At this time, the concentration of the dye 13 in the solution is preferably about 5 × 10 −5 to 1 × 10 −3 mol / l. Further, this solution may contain, as an additive, tertiary butyl pyridine, which is a weakly basic compound, or deoxycholic acid, which is a weakly acidic compound, in order to suppress aggregation of the dye 13.
 <電荷輸送材料>
 電荷輸送材料15は、電荷を輸送する機能を有し、例えば、導電体、半導体、電解質等で構成される。第1の光電変換体12を構成するTi、SnおよびZnの少なくとも1つを含んでなる酸化物半導体(金属酸化物)14が、色素13から電子を受け取って電子を輸送する電子輸送材料として機能する場合、電荷輸送材料15は色素13から正孔を受け取って正孔を輸送する正孔輸送材料として機能する。
<Charge transport material>
The charge transport material 15 has a function of transporting charges, and is made of, for example, a conductor, a semiconductor, an electrolyte, or the like. The oxide semiconductor (metal oxide) 14 including at least one of Ti, Sn, and Zn constituting the first photoelectric converter 12 functions as an electron transport material that receives electrons from the dye 13 and transports the electrons. In this case, the charge transport material 15 functions as a hole transport material that receives holes from the dye 13 and transports the holes.
 電荷輸送材料15として用いられる導電体や半導体としては、例えば、一価の銅を含む化合物半導体、GaP、NiO、CoO、FeO、Bi、MoO、Cr等が挙げられ、とりわけ、一価の銅を含む半導体がよい。一価の銅を含む化合物半導体としては、例えば、CuI、CuInSe、CuO、CuSCN、CuS、CuInS、CuAlSeが挙げられ、製造が簡便という観点から、CuIが好適である。 Examples of the conductor or semiconductor used as the charge transport material 15 include a compound semiconductor containing monovalent copper, GaP, NiO, CoO, FeO, Bi 2 O 3 , MoO 2 , Cr 2 O 3, and the like. In particular, a semiconductor containing monovalent copper is preferable. Examples of the compound semiconductor containing monovalent copper include CuI, CuInSe 2 , Cu 2 O, CuSCN, CuS, CuInS 2 , and CuAlSe 2 , and CuI is preferable from the viewpoint of easy manufacture.
 電荷輸送材料15として用いられる電解質としては、例えば、液体電解質、固体電解質、ゲル電解質、溶融塩等が挙げられる。 Examples of the electrolyte used as the charge transport material 15 include a liquid electrolyte, a solid electrolyte, a gel electrolyte, and a molten salt.
 液体電解質としては、例えば、第四級アンモニウム塩およびLi塩等を炭酸プロピレン、アセトニトリル等の溶媒に溶解させたものを用いることができる。また、ヨウ化テトラプロピルアンモニウム、ヨウ化リチウム、ヨウ素をメトキシプロピオニトリル等の溶媒に溶解させたものを用いることができる。 As the liquid electrolyte, for example, a quaternary ammonium salt, a Li salt or the like dissolved in a solvent such as propylene carbonate or acetonitrile can be used. Further, tetrapropylammonium iodide, lithium iodide, or iodine dissolved in a solvent such as methoxypropionitrile can be used.
 固体電解質としては、例えば、ポリエチレンオキサイドもしくはポリエチレン等の高分子鎖に、スルホンイミダゾリウム塩、テトラシアノキノジメタン塩、ジシアノキノジイミン塩等を有するものが挙げられる。 Examples of solid electrolytes include those having a sulfonimidazolium salt, a tetracyanoquinodimethane salt, a dicyanoquinodiimine salt, etc. in a polymer chain such as polyethylene oxide or polyethylene.
 ゲル電解質は、大別して化学ゲルと物理ゲルとに分けられる。化学ゲルは架橋反応等により化学結合でゲルを形成しているものであり、物理ゲルは、物理的な相互作用により室温付近でゲル化しているものである。ゲル電解質としては、アセトニトリル、エチレンカーボネート、プロピレンカーボネートまたはそれらの混合物に対し、ポリエチレンオキサイド、ポリアクリロニトリル、ポリフッ化ビニリデン、ポリビニルアルコール、ポリアクリル酸、ポリアクリルアミド等のホストポリマーを混入して重合させたゲル電解質が好ましい。なお、ゲル電解質や固体電解質を使用する場合には、低粘度の前駆体をナノ粒子に含有させ、加熱、紫外線照射、電子線照射等の手段で二次元、三次元の架橋反応を起こさせることによってゲル化または固体化させることができる。 Gel electrolytes are roughly classified into chemical gels and physical gels. A chemical gel is a gel formed by a chemical bond by a cross-linking reaction or the like, and a physical gel is gelled near room temperature due to a physical interaction. The gel electrolyte is a gel obtained by mixing a host polymer such as polyethylene oxide, polyacrylonitrile, polyvinylidene fluoride, polyvinyl alcohol, polyacrylic acid or polyacrylamide with acetonitrile, ethylene carbonate, propylene carbonate or a mixture thereof. An electrolyte is preferred. When using a gel electrolyte or solid electrolyte, a low-viscosity precursor is contained in the nanoparticles, and a two-dimensional or three-dimensional crosslinking reaction is caused by means such as heating, ultraviolet irradiation, or electron beam irradiation. Can be gelled or solidified.
 溶融塩としては、例えば、ヨウ化物の溶融塩を用いることができる。ヨウ化物の溶融塩としては、イミダゾリウム塩、第4級アンモニウム塩、イソオキサゾリジニウム塩、イソチアゾリジニウム塩、ピラゾリジウム塩、ピロリジニウム塩、ピリジニウム塩等のヨウ化物が挙げられる。また、上述のヨウ化物の溶融塩の具体例としては、例えば、1,1-ジメチルイミダゾリウムアイオダイド、1-メチル-3-エチルイミダゾリウムアイオダイド、1-メチル-3-ペンチルイミダゾリウムアイオダイド、1-メチル-3-イソペンチルイミダゾリウムアイオダイド、1-メチル-3-ヘキシルイミダゾリウムアイオダイド、1-メチル-3-エチルイミダゾリウムアイオダイド、1,2-ジメチル-3-プロピルイミダゾールアイオダイド、1-エチル-3-イソプロピルイミダゾリウムアイオダイド、ピロリジニウムアイオダイド等を挙げることができる。 As the molten salt, for example, a molten salt of iodide can be used. Examples of the molten salt of iodide include iodides such as imidazolium salt, quaternary ammonium salt, isoxazolidinium salt, isothiazolidinium salt, pyrazolidium salt, pyrrolidinium salt, pyridinium salt and the like. Specific examples of the above-mentioned molten salt of iodide include, for example, 1,1-dimethylimidazolium iodide, 1-methyl-3-ethylimidazolium iodide, 1-methyl-3-pentylimidazolium iodide. 1-methyl-3-isopentylimidazolium iodide, 1-methyl-3-hexylimidazolium iodide, 1-methyl-3-ethylimidazolium iodide, 1,2-dimethyl-3-propylimidazole iodide 1-ethyl-3-isopropylimidazolium iodide, pyrrolidinium iodide and the like.
 <透明導電層>
 透明導電層(第1の透明導電層16)は、電解質(電荷輸送材料)15と電荷のやりとりが可能な導電性を有するとともに、光電変換に寄与する光が透過可能な透光性を有している。即ち、この透明導電層は、第1の光電変換体12と対を成す、対向電極として機能する。透明導電層としては、例えば、錫ドープ酸化インジウム(ITO)膜、不純物ドープの酸化インジウム(In)膜、不純物ドープの酸化亜鉛(ZnO)膜、フッ素ドープの二酸化錫膜等、あるいはこれらを積層してなる積層膜が挙げられる。上述した透明導電層の成膜方法は、成膜する材料に応じて種々選択できるものであり、例えば、低温成長のスパッタリング法、低温スプレー熱分解法、熱CVD法、溶液成長法、真空蒸着法、イオンプレーティング法、ディップコート法、ゾル・ゲル法等がある。なお、透明導電層は、その表面に入射光の波長オーダーの凹凸を形成すると、光閉じ込め効果を持たせることができる。また、第1の透明導電層16では、真空蒸着法やスパッタリング法等で形成したAu、Pd、Al等の薄い金属膜でもよい。電解質15と電荷のやりとりを効率良く行うために、第1の透明電極16上に触媒(図示なし)を形成する。触媒の材質としては、例えば、プラチナ、パラジウム、イリジウム、オスミウム、ルテニウム、ロジウム等の貴金属やカーボン、ポリエチレンジオキシチオフェン(PEDOT)等の有機導電材料が挙げられる。
<Transparent conductive layer>
The transparent conductive layer (first transparent conductive layer 16) has conductivity capable of exchanging charges with the electrolyte (charge transport material) 15, and also has translucency capable of transmitting light contributing to photoelectric conversion. ing. That is, this transparent conductive layer functions as a counter electrode that forms a pair with the first photoelectric converter 12. Examples of the transparent conductive layer include a tin-doped indium oxide (ITO) film, an impurity-doped indium oxide (In 2 O 3 ) film, an impurity-doped zinc oxide (ZnO) film, a fluorine-doped tin dioxide film, and the like. And a laminated film formed by laminating the layers. The method for forming the transparent conductive layer described above can be variously selected depending on the material to be formed. For example, the sputtering method for low temperature growth, the low temperature spray pyrolysis method, the thermal CVD method, the solution growth method, and the vacuum deposition method. , Ion plating method, dip coating method, sol-gel method and the like. The transparent conductive layer can have a light confinement effect by forming irregularities in the order of the wavelength of incident light on its surface. Further, the first transparent conductive layer 16 may be a thin metal film such as Au, Pd, or Al formed by a vacuum deposition method, a sputtering method, or the like. In order to exchange charges with the electrolyte 15 efficiently, a catalyst (not shown) is formed on the first transparent electrode 16. Examples of the material of the catalyst include noble metals such as platinum, palladium, iridium, osmium, ruthenium, and rhodium, carbon, and organic conductive materials such as polyethylenedioxythiophene (PEDOT).
 <透光性被覆体>
 透光性被覆体17は、光電変換に寄与する光が透過可能な透光性を有して成り、第1の透明導電層16等を外部から保護する機能を有する。このような透光性被覆体17としては、例えば、フッ素樹脂、ポリエステル樹脂シリコンポリエステル樹脂、ポリ塩化ビニル樹脂、PET(ポリエチレンテレフタレート)、PEN(ポリエチレンナフタレート)、ポリイミド、ポリカーボネート等の樹脂シート、白板ガラス、ソーダガラス、硼珪酸ガラス、セラミックス等の無機質シート、または有機および無機素材を組み合わせてなるハイブリッドシート等が挙げられる。この透光性被覆体17の厚みは0.1μm~6mm、好ましくは1μm~4mmがよい。
<Translucent covering>
The translucent covering 17 has a translucency through which light contributing to photoelectric conversion can be transmitted, and has a function of protecting the first transparent conductive layer 16 and the like from the outside. Examples of such a translucent covering 17 include a fluororesin, a polyester resin, a silicon polyester resin, a polyvinyl chloride resin, a PET (polyethylene terephthalate), PEN (polyethylene naphthalate), a resin sheet such as polyimide and polycarbonate, and a white plate. Examples thereof include inorganic sheets such as glass, soda glass, borosilicate glass and ceramics, or hybrid sheets formed by combining organic and inorganic materials. The thickness of the translucent covering 17 is 0.1 μm to 6 mm, preferably 1 μm to 4 mm.
 なお、光電変換装置X1は、吸収する光の波長が異なる複数種の色素13を吸着させた第1の光電変換体12を用いてよい。このような形態であれば、より広範囲な波長領域における光を光電変換することが可能となり、光電変換効率が向上する。また、吸収する光の波長が異なる色素13をそれぞれ吸着させた第1の光電変換体12を有する複数の光電変換装置X1を積層させた形態であっても、より広範囲な波長領域における光を光電変換することが可能となり、光電変換効率が向上する。 Note that the photoelectric conversion device X1 may use the first photoelectric conversion body 12 on which a plurality of types of dyes 13 having different wavelengths of light to be absorbed are adsorbed. With such a form, it becomes possible to photoelectrically convert light in a wider wavelength region, and the photoelectric conversion efficiency is improved. Further, even in a form in which a plurality of photoelectric conversion devices X1 having the first photoelectric conversion bodies 12 each adsorbing the dyes 13 having different wavelengths of light to be absorbed are stacked, light in a wider wavelength region is photoelectrically converted. Conversion is possible, and the photoelectric conversion efficiency is improved.
 このような光電変換装置X1は、該光電変換装置X1を発電手段として用い、この発電手段からの発電電力を負荷へ供給するように成すことによって、光発電装置とすることができる。この光発電装置は、例えば、光電変換装置X1を1つ以上(複数であれば、直列、並列または直並列に)接続したものを発電手段として用い、この発電手段から直接に直流負荷へ発電電力を供給する機構を有するものである。また、光発電装置は、光電変換装置X1から出力された直流電力をインバータ等の電力変換手段を介して適当な交流電力に変換した後、この発電電力を商用電源系統や各種の電気機器等の交流負荷に供給する機構を有していてもよい。さらに、このような光発電装置は、日当たりのよい建物に設置することにより、各種態様の太陽光発電システムとして利用することも可能である。 Such a photoelectric conversion device X1 can be a photovoltaic device by using the photoelectric conversion device X1 as a power generation means and supplying the generated power from the power generation means to a load. This photovoltaic power generation device uses, for example, one or more photoelectric conversion devices X1 connected in series (in series, parallel, or series-parallel if there are a plurality) as power generation means, and the generated power directly from this power generation means to a DC load. It has a mechanism which supplies. In addition, the photovoltaic power generation device converts the direct current power output from the photoelectric conversion device X1 into appropriate alternating current power through power conversion means such as an inverter, and then converts this generated power to a commercial power supply system or various electric devices. You may have the mechanism supplied to alternating current load. Furthermore, such a photovoltaic power generation device can be used as a photovoltaic power generation system of various modes by being installed in a building with good sunlight.
 ≪第2の実施形態≫
 図2は、本発明の第2の実施形態に係る光電変換装置を示す断面図である。本発明の第2の実施形態に係る光電変換装置X2は、第1の光電変換体12上に配置された電解質15上に、半導体層を有する第2の光電変換体18を有する点で、本発明の第1の実施形態に係る光電変換装置X1と相違する。また、この第2の光電変換体18は、第1の透明導電層16と第2の透明導電層19との間に介在した状態で配されている。図2の第2の実施形態において、図1の第1の実施形態と同じ構成要素には同じ符号を付している。
<< Second Embodiment >>
FIG. 2 is a sectional view showing a photoelectric conversion device according to the second embodiment of the present invention. The photoelectric conversion device X2 according to the second embodiment of the present invention has a second photoelectric conversion body 18 having a semiconductor layer on the electrolyte 15 disposed on the first photoelectric conversion body 12 in that This is different from the photoelectric conversion device X1 according to the first embodiment of the invention. In addition, the second photoelectric conversion body 18 is arranged in a state of being interposed between the first transparent conductive layer 16 and the second transparent conductive layer 19. In the second embodiment of FIG. 2, the same components as those of the first embodiment of FIG.
 第2の光電変換体18は、入射される光を吸収した後、当該光を電気に変換する光電変換機能を有しており、特に、第1の光電変換体12で光電変換される光と異なる波長の光における光電変換作用に優れているものが好ましい。第2の光電変換体18の半導体層としては、例えば、シリコン系の薄膜半導体層、CIGS(CuInGaSe)等の化合物半導体系の薄膜半導体層等が挙げられる。シリコン系としては、例えば、アモルファスシリコン系、ナノサイズ結晶を含むアモルファスシリコン系、微結晶シリコン系などがよく、特に短波長感度を有し、かつ光劣化が小さいという観点から、アモルファスシリコン系が好ましい。なお、アモルファスシリコン系とは、アモルファスシリコンカーバイト、アモルファスシリコンナイトライド等の合金系も含む。また、これら薄膜半導体層を複数層で構成した場合、その接合層は、例えば、pin接合型、pn接合型、ショットキー接合型、ヘテロ接合型等で構成されるような内部電界を生じるものがよい。 The second photoelectric conversion body 18 has a photoelectric conversion function of converting incident light after absorbing incident light, and in particular, the light photoelectrically converted by the first photoelectric conversion body 12 What is excellent in the photoelectric conversion effect | action in the light of a different wavelength is preferable. Examples of the semiconductor layer of the second photoelectric converter 18 include a silicon-based thin film semiconductor layer and a compound semiconductor-based thin film semiconductor layer such as CIGS (CuInGaSe). As the silicon system, for example, an amorphous silicon system, an amorphous silicon system including a nanosize crystal, a microcrystalline silicon system, and the like are preferable, and an amorphous silicon system is preferable from the viewpoint of having a short wavelength sensitivity and a small light deterioration. . The amorphous silicon system includes alloy systems such as amorphous silicon carbide and amorphous silicon nitride. Further, when these thin film semiconductor layers are composed of a plurality of layers, the junction layer may generate an internal electric field such as a pin junction type, a pn junction type, a Schottky junction type, or a hetero junction type. Good.
 次に、アモルファスシリコン系の薄膜半導体層について詳述する。薄膜半導体層は、例えば、プラズマCVD法によって連続堆積したpin接合の水素化アモルファスシリコン系半導体膜が好適である。この半導体膜は、第1の透明導電層16側にp型半導体膜を設けたpin接合とするとよいが、逆接合のnip接合でも構わない。なお、一導電型シリコン系半導体層と逆導電型シリコン系半導体層とは、それぞれp型半導体とn型半導体と、もしくはn型半導体とp型半導体とからなるものを意味する。また実質的に真性であるシリコン系半導体層はi型半導体を意味する。ここで、i型半導体膜がアモルファス(非晶質)であれば、p型半導体膜およびn型半導体膜は少なくともいずれかが微結晶を有するもの、または水素化アモルファスシリコン(a-Si:H)合金系の膜を用いるとよい。また、薄膜半導体層は、光入射側のp型半導体膜に水素化アモルファスシリコンカーバイドを用いると、透光性を高めて光の侵入ロスが少なくなるので、より好ましい。また、薄膜半導体層は、プラズマCVD法以外の他の成膜法として触媒CVD法を用いて成膜してもよい。また、プラズマCVD法と触媒CVD法とを組み合わせると、成膜した半導体膜における光劣化が抑制できるため、信頼性を高めることができる。 Next, the amorphous silicon-based thin film semiconductor layer will be described in detail. As the thin film semiconductor layer, for example, a pin junction hydrogenated amorphous silicon based semiconductor film continuously deposited by plasma CVD is suitable. The semiconductor film may be a pin junction in which a p-type semiconductor film is provided on the first transparent conductive layer 16 side, but may be a reverse junction nip junction. Note that the one-conductivity-type silicon-based semiconductor layer and the reverse-conductivity-type silicon-based semiconductor layer mean a layer composed of a p-type semiconductor and an n-type semiconductor, or an n-type semiconductor and a p-type semiconductor, respectively. Further, a silicon semiconductor layer that is substantially intrinsic means an i-type semiconductor. Here, if the i-type semiconductor film is amorphous (amorphous), at least one of the p-type semiconductor film and the n-type semiconductor film has microcrystals, or hydrogenated amorphous silicon (a-Si: H) An alloy film may be used. In addition, it is more preferable for the thin-film semiconductor layer to use hydrogenated amorphous silicon carbide for the p-type semiconductor film on the light incident side, because it increases translucency and reduces light penetration loss. Further, the thin film semiconductor layer may be formed using a catalytic CVD method as a film forming method other than the plasma CVD method. In addition, when the plasma CVD method and the catalytic CVD method are combined, light deterioration in the formed semiconductor film can be suppressed, so that reliability can be improved.
 次に、第2の光電変換体18の製造方法の一例について説明する。p型の水素化アモルファスシリコン(a-Si:H)膜は、原料ガスとしてSiH+HガスおよびB(Hで500ppmに希釈したもの)ガスを用い、これらのガスの流量をそれぞれ最適化して成膜する。この膜厚は、十分な内部電界を形成しつつ、光の損失を低減するという観点から50Å~200Åの範囲がよい。i型の水素化アモルファスシリコン(a-Si:H)膜は、原料ガスとしてSiH+Hガスを用い、これらのガスの流量を最適化して成膜する。この膜厚は、十分な光電流を得るとともに、第1の光電変換体12で発電に寄与する光を透過させるという観点から、500Å~5000Å(0.05μm~0.5μm)が好適である。続いて、n型の水素化アモルファスシリコン(a-Si:H)膜は、原料ガスとしてSiH+HガスおよびPH(Hで1000ppmに希釈したもの)ガスを用い、これらのガスの流量をそれぞれ最適化して成膜する。この膜厚は、十分な内部電界を形成しつつ、光の損失を低減するという観点から50Å~200Åの範囲がよい。なお、成膜時の透光性被覆体17および第1の透明導電層16の温度は、p型、i型、およびn型膜のいずれも150℃~300℃の範囲がよい。また、このような薄膜半導体層を含んでなる第2の光電変換体18は、300nm~700nmの波長の光を吸収しやすく、色素13が吸収しやすい光の波長領域700nm~1100nmに比べて、短波長側の光でもって光電変換を行う。 Next, an example of the manufacturing method of the 2nd photoelectric conversion body 18 is demonstrated. The p-type hydrogenated amorphous silicon (a-Si: H) film uses SiH 4 + H 2 gas and B 2 H 6 (diluted to 500 ppm with H 2 ) gas as source gases, and the flow rates of these gases are Each film is optimized. This film thickness is preferably in the range of 50 to 200 mm from the viewpoint of reducing light loss while forming a sufficient internal electric field. The i-type hydrogenated amorphous silicon (a-Si: H) film is formed by using SiH 4 + H 2 gas as a source gas and optimizing the flow rate of these gases. The film thickness is preferably 500 to 5000 mm (0.05 μm to 0.5 μm) from the viewpoints of obtaining a sufficient photocurrent and transmitting light contributing to power generation by the first photoelectric converter 12. Subsequently, the n-type hydrogenated amorphous silicon (a-Si: H) film uses SiH 4 + H 2 gas and PH 3 (diluted to 1000 ppm with H 2 ) gas as source gases, and the flow rates of these gases Each of these is optimized to form a film. This film thickness is preferably in the range of 50 to 200 mm from the viewpoint of reducing light loss while forming a sufficient internal electric field. Note that the temperature of the translucent covering 17 and the first transparent conductive layer 16 during film formation is preferably in the range of 150 ° C. to 300 ° C. for any of the p-type, i-type, and n-type films. In addition, the second photoelectric conversion body 18 including such a thin film semiconductor layer easily absorbs light having a wavelength of 300 nm to 700 nm, and has a wavelength range of 700 nm to 1100 nm that is easily absorbed by the dye 13. Photoelectric conversion is performed with light on the short wavelength side.
 このように、光電変換装置X2では、光の入射側に第2の光電変換体18が配置され、該第2の光電変換体18の下方に第1の光電変換体12を含む色素増感型の光電変換部位を有した構造であるため、まず、上述した短波長側の波長領域の光を第2の光電変換体18で吸収した後に、該第2の光電変換体18を透過する長波長側の波長領域の光を吸収する。それゆえ、光電変換装置X2では、より広範囲な波長領域における光電変換が可能となるため、光電変換効率を高めることができる。加えて、光電変換装置X2では、紫外に近い波長の光を吸収する第2の光電変換体18を光の入射側に配置しているため、紫外光による色素13の劣化を低減することができる。 As described above, in the photoelectric conversion device X2, the second photoelectric conversion body 18 is disposed on the light incident side, and the dye-sensitized type including the first photoelectric conversion body 12 below the second photoelectric conversion body 18 is provided. First, the light having the wavelength region on the short wavelength side described above is absorbed by the second photoelectric converter 18 and then transmitted through the second photoelectric converter 18. Absorbs light in the side wavelength region. Therefore, the photoelectric conversion device X2 can perform photoelectric conversion in a wider wavelength range, and thus can improve the photoelectric conversion efficiency. In addition, in the photoelectric conversion device X2, since the second photoelectric conversion body 18 that absorbs light having a wavelength close to ultraviolet light is disposed on the light incident side, deterioration of the dye 13 due to ultraviolet light can be reduced. .
 なお、本発明は上述の実施形態に限定されるものではなく、本発明の要旨を逸脱しない範囲内で種々の変更を施すことは何等差し支えない。例えば、光電変換装置X2では第1の光電変換体12上に配置された電解質15上に、半導体層を有する第2の光電変換体18を設けているが、電解質15を導電体、半導体などの他の電荷輸送材料に代えてもよい。また、電解質15を介さず、第1の光電変換体12上に直接、第2の光電変換体18を設けてもよい。 It should be noted that the present invention is not limited to the above-described embodiment, and various modifications may be made without departing from the scope of the present invention. For example, in the photoelectric conversion device X2, the second photoelectric conversion body 18 having a semiconductor layer is provided on the electrolyte 15 disposed on the first photoelectric conversion body 12, but the electrolyte 15 is made of a conductor, a semiconductor, or the like. Other charge transport materials may be substituted. Further, the second photoelectric converter 18 may be provided directly on the first photoelectric converter 12 without using the electrolyte 15.
 以下、本発明の実施例について説明する。 Hereinafter, examples of the present invention will be described.
 <実施例1>
 (色素の作製)
 まず、亜鉛トリス(3,5-ジターシャルブチルフェニル)ポルフィリンをN-ブロモスクシンイミドでブロモ化し、パラジウム(II)触媒とヨウ化銅を触媒として、トリメチルシリルアセチレンとカップリングさせた後、テトラブチルアンモニウムフルオリドで脱シリル化する。次いで、脱シリル化した化合物をパラジウム(0)触媒とトリフェニルアルシンを触媒として、ビス(3,5-ジターシャルブチルフェニル)メトキシカルボニルフェニルポルフィリンのブロモ化体とカップリングさせ、最後に、エステル置換基を加水分解し、カルボキシル基に変換することにより一般式1で示された色素13を作製した。なお、本実施例においては、一般式1において、n=0(Xなし)、R1=R6=R12=R17=R20=ジターシャルブチルフェニル基、R2=R3=R4=R5=R7=R8=R10=R11=R13=R14=R15=R16=R18=R19=R21=R22=H、R9=カルボキシフェニル基、R23=R24=R25=R26=無置換、M1=Zn、M2=2Hの構造を有している。
<Example 1>
(Preparation of pigment)
First, zinc tris (3,5-ditertiarybutylphenyl) porphyrin was brominated with N-bromosuccinimide, coupled with trimethylsilylacetylene using palladium (II) catalyst and copper iodide as catalysts, and then tetrabutylammonium fluoride. Desilylation with Next, the desilylated compound was coupled with a brominated product of bis (3,5-ditertiarybutylphenyl) methoxycarbonylphenylporphyrin using palladium (0) catalyst and triphenylarsine as a catalyst, and finally, ester substitution. The group 13 was hydrolyzed and converted to a carboxyl group to prepare the dye 13 represented by the general formula 1. In this example, in general formula 1, n = 0 (no X), R1 = R6 = R12 = R17 = R20 = di-tert-butylphenyl group, R2 = R3 = R4 = R5 = R7 = R8 = R10 = R11 = R13 = R14 = R15 = R16 = R18 = R19 = R21 = R22 = H, R9 = carboxyphenyl group, R23 = R24 = R25 = R26 = unsubstituted, M1 = Zn, M2 = 2H ing.
 (第1の光電変換体の作製)
 まず、導電性基板11として、表面抵抗値が10Ω/□(スクエア)の15mm×25mmサイズのフッ素ドープ酸化錫膜付ガラス基板を準備した。次いで、この導電性基板11上に金属酸化物14である多孔質酸化チタン膜を形成した。多孔質酸化チタン膜の製造方法は、SOLARONIXS社製チタニアペーストTi-NanoxideT/SPを、4mm×4mmサイズかつ300メッシュのスクリーンを通すスクリーン印刷法で導電性基板11上に塗布し、120℃で3分間乾燥させる操作を10回繰り返した後、導電性基板11を500℃で30分間焼成し、第1の光電変換体を形成した。なお、多孔質酸化チタン膜の膜厚は、触針式膜厚計で計測したところ16μmであった。
(Production of first photoelectric conversion body)
First, as the conductive substrate 11, a glass substrate with a fluorine-doped tin oxide film having a surface resistance value of 10Ω / □ (square) and a size of 15 mm × 25 mm was prepared. Next, a porous titanium oxide film that is the metal oxide 14 was formed on the conductive substrate 11. A porous titanium oxide film is manufactured by applying titania paste Ti-Nanoxide T / SP manufactured by SOLARONIXS on a conductive substrate 11 by a screen printing method through a screen of 4 mm × 4 mm size and 300 mesh, and at 3 ° C. After the operation of drying for 10 minutes was repeated 10 times, the conductive substrate 11 was baked at 500 ° C. for 30 minutes to form a first photoelectric converter. The film thickness of the porous titanium oxide film was 16 μm as measured with a stylus type film thickness meter.
 次に、上述したように合成した色素13を、クロロホルムとテトラヒドロフランが4:1の比率で混合された溶媒に溶解させて、100μMに調製した。次いで、この色素13を含有する溶液に、多孔質酸化チタン膜を形成した導電性基板11を50℃で60分間浸漬した後、該導電性基板11を室温でエタノールにて洗浄することで、第1の光電変換体12を作製した。 Next, the dye 13 synthesized as described above was dissolved in a solvent in which chloroform and tetrahydrofuran were mixed at a ratio of 4: 1 to prepare 100 μM. Next, after immersing the conductive substrate 11 on which the porous titanium oxide film is formed in the solution containing the dye 13 at 50 ° C. for 60 minutes, the conductive substrate 11 is washed with ethanol at room temperature, 1 photoelectric conversion body 12 was produced.
 (光電変換装置の作製)
 まず、直径が約0.7mmの電解液注入孔を2つ有するフッ素ドープ酸化錫膜付きガラス基板上に膜厚が約1nmの白金を成膜した対向電極16を作製した。次いで、この対向電極16の周囲に厚みが約30μmのアイオノマー樹脂を塗布し、該アイオノマー樹脂を介して対向電極16に第1の光電変換体12を接着した。このアイオノマー樹脂は、第1の光電変換体12と対向電極16とで挟まれた領域を外部から封止するものである。次いで、電解質として、0.1Mのヨウ化リチウム、0.025Mのヨウ素、および0.6MのDMPII(ジメチルプロピルイミダゾリウムアイオダイド)をアセトニトリルに溶解してなる電解質溶液を作製し、該電解質溶液を上記電解液注入孔より内部に注入することによって、光電変換装置を作製した。
(Production of photoelectric conversion device)
First, the counter electrode 16 in which platinum having a film thickness of about 1 nm was formed on a glass substrate with a fluorine-doped tin oxide film having two electrolyte solution injection holes having a diameter of about 0.7 mm was produced. Next, an ionomer resin having a thickness of about 30 μm was applied around the counter electrode 16, and the first photoelectric conversion body 12 was bonded to the counter electrode 16 through the ionomer resin. This ionomer resin seals the region sandwiched between the first photoelectric converter 12 and the counter electrode 16 from the outside. Next, an electrolyte solution is prepared by dissolving 0.1 M lithium iodide, 0.025 M iodine, and 0.6 M DMPII (dimethylpropylimidazolium iodide) in acetonitrile as an electrolyte. A photoelectric conversion device was manufactured by injecting into the inside through the electrolyte injection hole.
 また、比較例1として、特許文献1に示された下記一般式2の色素を用いて、光電変換装置を作製した。下記一般式2の色素を用いた以外は実施例1と同じとした。 Further, as Comparative Example 1, a photoelectric conversion device was produced using a dye of the following general formula 2 shown in Patent Document 1. The procedure was the same as Example 1 except that the dye represented by the following general formula 2 was used.
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
 (光電変換装置の特性評価)
 実施例1および比較例1の光電変換装置に対し、セル作製3時間後、山下電装社製ソーラーシミュレーターを用いて、擬似太陽光源(AM1.5、 100mW/cm)を照射し、光電変換装置の電流電圧特性を測定し、得られた特性評価の結果を表1に示した。
(Characteristic evaluation of photoelectric conversion device)
The photoelectric conversion device of Example 1 and Comparative Example 1 was irradiated with a pseudo solar light source (AM1.5, 100 mW / cm 2 ) using a solar simulator manufactured by Yamashita Denso Co., Ltd. 3 hours after the cell was prepared. The current-voltage characteristics were measured, and the obtained characteristic evaluation results are shown in Table 1.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
 表1に示す結果から、実施例1の光電変換装置は、比較例1の光電変換装置に比べて、光電変換効率が向上した。 From the results shown in Table 1, the photoelectric conversion efficiency of the photoelectric conversion device of Example 1 was improved as compared with the photoelectric conversion device of Comparative Example 1.
 <実施例2>
 実施例2では、実施例1とは組成の異なる色素13を用いた。具体的に、色素13は、一般式1において、n=0(Xなし)、R1=R6=R12=R17=R20=ジターシャルブチルフェニル基、R2=R3=R4=R5=R7=R8=R10=R11=R13=R14=R15=R16=R18=R19=R21=R22=H、R9=カルボキシフェニル基、R23=R24=R25=R26=無置換、M1=M2=Znの構造を有している。この色素13は、まず、亜鉛トリス(3,5-ジターシャルブチルフェニル)ポルフィリンをN-ブロモスクシンイミドでブロモ化し、パラジウム(II)触媒とヨウ化銅を触媒として、トリメチルシリルアセチレンとカップリングさせた後、テトラブチルアンモニウムフルオリドで脱シリル化する。次いで、脱シリル化した化合物をパラジウム(0)触媒とトリフェニルアルシンを触媒として、ビス(3,5-ジターシャルブチルフェニル)メトキシカルボニルフェニルポルフィリンのブロモ化体とカップリングさせたものを酢酸亜鉛と反応させ亜鉛ポルフィリン化する。最後に、エステル置換基を加水分解し、カルボキシル基に変換することにより一般式1で示された色素13を作製した。
<Example 2>
In Example 2, a dye 13 having a composition different from that of Example 1 was used. Specifically, the dye 13 is represented by the following formula (1): n = 0 (no X), R1 = R6 = R12 = R17 = R20 = di-tert-butylphenyl group, R2 = R3 = R4 = R5 = R7 = R8 = R10 = R11 = R13 = R14 = R15 = R16 = R18 = R19 = R21 = R22 = H, R9 = carboxyphenyl group, R23 = R24 = R25 = R26 = unsubstituted, M1 = M2 = Zn . In this dye 13, first, zinc tris (3,5-ditertiarybutylphenyl) porphyrin was brominated with N-bromosuccinimide and coupled with trimethylsilylacetylene using a palladium (II) catalyst and copper iodide as catalysts. Desilylation with tetrabutylammonium fluoride. Then, the desilylated compound was coupled with a brominated product of bis (3,5-ditertiarybutylphenyl) methoxycarbonylphenylporphyrin using a palladium (0) catalyst and triphenylarsine as a catalyst, and zinc acetate and React to zinc porphyrin. Finally, the ester substituent was hydrolyzed and converted to a carboxyl group to prepare the dye 13 represented by the general formula 1.
 また、実施例2では、第1の光電変換体12を作製する際、実施例1において述べた10回の手順を3回に変更したため、多孔質酸化チタン膜の膜厚が5μmであった点と、色素13溶液の濃度が3.6mMであった点とを除き、実施例1と同様の方法でもって、光電変換装置を作製した。 Further, in Example 2, when the first photoelectric conversion body 12 was manufactured, the procedure of 10 times described in Example 1 was changed to 3 times, so that the thickness of the porous titanium oxide film was 5 μm. A photoelectric conversion device was produced by the same method as in Example 1 except that the concentration of the dye 13 solution was 3.6 mM.
 また、比較例2として、まず、色素にブラックダイを用いたものを準備した。そして、ブラックダイを吸着した第1の光電変換体は、以下のように作製した。ターシャルブチルアルコールとアセトニトリルが1:1の比率で混合された溶媒に、ブラックダイを200μMの濃度で溶解させ、膜厚5μmの多孔質酸化チタン膜を形成した導電性基板を30℃で20時間浸漬した後、この導電性基板を室温でエタノールにて洗浄することによって、ブラックダイを吸着させた第1の光電変換体を作製した。その後、この第1の光電変換体を用いて、上述した本発明の実施例2と同様の方法でもって、光電変換装置を作製した。 Further, as Comparative Example 2, first, a dye using a black die was prepared. And the 1st photoelectric conversion body which adsorb | sucked the black die | dye was produced as follows. A conductive substrate in which a black die was dissolved at a concentration of 200 μM in a solvent in which tertiary butyl alcohol and acetonitrile were mixed at a ratio of 1: 1 to form a porous titanium oxide film having a thickness of 5 μm was formed at 30 ° C. for 20 hours. After the immersion, the conductive substrate was washed with ethanol at room temperature to produce a first photoelectric converter on which a black die was adsorbed. Thereafter, using the first photoelectric conversion body, a photoelectric conversion device was manufactured by the same method as in Example 2 of the present invention described above.
 (光電変換装置の特性評価)
 実施例2および比較例2の光電変換装置の分光感度特性(IPCE)について検証した。本検証では、分光計器社製の分光感度測定装置を用い、波長300~1100nmの波長範囲でIPCEを計測した。その結果を図3に示した。
(Characteristic evaluation of photoelectric conversion device)
The spectral sensitivity characteristics (IPCE) of the photoelectric conversion devices of Example 2 and Comparative Example 2 were verified. In this verification, IPCE was measured in a wavelength range of 300 to 1100 nm using a spectral sensitivity measuring device manufactured by Spectrometer Co., Ltd. The results are shown in FIG.
 図3のIPCEスペクトルからわかるように、実施例2の光電変換装置では、650nm以上の長波長側の波長領域において、ブラックダイを用いた比較例2の光電変換装置よりも変換効率が高まることが確認された。 As can be seen from the IPCE spectrum in FIG. 3, the photoelectric conversion device of Example 2 has higher conversion efficiency than the photoelectric conversion device of Comparative Example 2 using a black die in the wavelength region on the long wavelength side of 650 nm or more. confirmed.

Claims (6)

  1.  下記一般式1で表される三重結合連結ポルフィリンを含む色素と、前記色素が付着し、Ti、Sn及びZnの少なくとも1つを含む酸化物半導体と、を有する第1の光電変換体、
    を備える光電変換装置。
    Figure JPOXMLDOC01-appb-C000001
    (式中、R1~R22およびR27~R36は任意の置換基であり、M1、M2およびM3は金属原子または2個の水素原子であり、R23~R26、R37およびR38は無置換あるいは少なくとも1つが置換基である。)
    A first photoelectric converter having a dye containing a triple bond-linked porphyrin represented by the following general formula 1 and an oxide semiconductor to which the dye is attached and containing at least one of Ti, Sn, and Zn;
    A photoelectric conversion device comprising:
    Figure JPOXMLDOC01-appb-C000001
    (Wherein R1 to R22 and R27 to R36 are arbitrary substituents, M1, M2 and M3 are metal atoms or two hydrogen atoms, and R23 to R26, R37 and R38 are unsubstituted or at least one is It is a substituent.)
  2.  前記酸化物半導体はTiOである、請求項1に記載の光電変換装置。 The photoelectric conversion device according to claim 1, wherein the oxide semiconductor is TiO 2 .
  3.  前記一般式1のR1~R22およびR27~R36の少なくとも1つがカルボキシル基を有する、請求項1に記載の光電変換装置。 2. The photoelectric conversion device according to claim 1, wherein at least one of R1 to R22 and R27 to R36 of the general formula 1 has a carboxyl group.
  4.  前記一般式1のR1、R6、R9、R12、R17、R20、R27およびR32の少なくとも1つがジターシャルブチルフェニル基を有する、請求項1に記載の光電変換装置。 The photoelectric conversion device according to claim 1, wherein at least one of R1, R6, R9, R12, R17, R20, R27 and R32 in the general formula 1 has a di-tert-butylphenyl group.
  5.  前記第1の光電変換体上に位置する電荷輸送材料と、
     前記電荷輸送材料上に位置し、半導体層を有する第2の光電変換体と、
    をさらに備える請求項1に記載の光電変換装置。
    A charge transport material positioned on the first photoelectric converter;
    A second photoelectric converter located on the charge transport material and having a semiconductor layer;
    The photoelectric conversion device according to claim 1, further comprising:
  6.  前記半導体層はアモルファスシリコン層を有する、請求項5に記載の光電変換装置。 The photoelectric conversion device according to claim 5, wherein the semiconductor layer has an amorphous silicon layer.
PCT/JP2009/065800 2008-09-10 2009-09-10 Photoelectric converter WO2010029961A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010528746A JPWO2010029961A1 (en) 2008-09-10 2009-09-10 Photoelectric conversion device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008232417 2008-09-10
JP2008-232417 2008-09-10

Publications (1)

Publication Number Publication Date
WO2010029961A1 true WO2010029961A1 (en) 2010-03-18

Family

ID=42005212

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/065800 WO2010029961A1 (en) 2008-09-10 2009-09-10 Photoelectric converter

Country Status (2)

Country Link
JP (1) JPWO2010029961A1 (en)
WO (1) WO2010029961A1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011238426A (en) * 2010-05-10 2011-11-24 Niigata Univ Dye-sensitized solar cell
JP2012018924A (en) * 2010-07-07 2012-01-26 Toyota Motor Engineering & Manufacturing North America Inc Solar cell assembly equipped with diffraction grating
WO2012121236A1 (en) 2011-03-07 2012-09-13 国立大学法人 東京大学 Pigment for photoelectric converter, and photoelectric conversion film, electrode, and solar cell using same
JP2013150972A (en) * 2011-12-28 2013-08-08 Toyota Central R&D Labs Inc Semiconductor hetero particle and method for producing the same
JP2016032086A (en) * 2014-07-30 2016-03-07 アイシン精機株式会社 Sensitizing dye for dye-sensitized solar cell, and dye-sensitized solar cell including sensitizing dye
JP2016134468A (en) * 2015-01-19 2016-07-25 株式会社豊田中央研究所 Dye-sensitized solar cell and dye-sensitized solar cell module
JP2016134467A (en) * 2015-01-19 2016-07-25 株式会社豊田中央研究所 Dye-sensitized solar cell and dye-sensitized solar cell module

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003123863A (en) * 2001-07-05 2003-04-25 Mitsui Chemicals Inc Material used for photoelectric conversion element, photoelectric conversion element, and phthalocyanine compound
JP2004266100A (en) * 2003-02-28 2004-09-24 Nara Institute Of Science & Technology Optical functional molecular device with porphyrin multimer immobilized by covalent bond laminated on substrate and method for manufacturing the same
JP2005085659A (en) * 2003-09-10 2005-03-31 Sony Corp Photoelectric conversion element, its manufacturing method, electronic equipment and its manufacturing method, semiconductor electrode and its manufacturing method, as well as ring fusion porphyrin complex and compound photoelectric conversion device
JP2006100047A (en) * 2004-09-28 2006-04-13 Kyocera Corp Photoelectric conversion device and optical power generation device using it
JP2008010100A (en) * 2006-06-30 2008-01-17 Nara Institute Of Science & Technology Pigment aggregation-forming pigment, composition containing pigment aggregation, and information recording/reproducing system by using structural conversion of pigment aggregation

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000353553A (en) * 1999-06-10 2000-12-19 Fuji Photo Film Co Ltd Photoelectric transducing element and photocell

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003123863A (en) * 2001-07-05 2003-04-25 Mitsui Chemicals Inc Material used for photoelectric conversion element, photoelectric conversion element, and phthalocyanine compound
JP2004266100A (en) * 2003-02-28 2004-09-24 Nara Institute Of Science & Technology Optical functional molecular device with porphyrin multimer immobilized by covalent bond laminated on substrate and method for manufacturing the same
JP2005085659A (en) * 2003-09-10 2005-03-31 Sony Corp Photoelectric conversion element, its manufacturing method, electronic equipment and its manufacturing method, semiconductor electrode and its manufacturing method, as well as ring fusion porphyrin complex and compound photoelectric conversion device
JP2006100047A (en) * 2004-09-28 2006-04-13 Kyocera Corp Photoelectric conversion device and optical power generation device using it
JP2008010100A (en) * 2006-06-30 2008-01-17 Nara Institute Of Science & Technology Pigment aggregation-forming pigment, composition containing pigment aggregation, and information recording/reproducing system by using structural conversion of pigment aggregation

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011238426A (en) * 2010-05-10 2011-11-24 Niigata Univ Dye-sensitized solar cell
JP2012018924A (en) * 2010-07-07 2012-01-26 Toyota Motor Engineering & Manufacturing North America Inc Solar cell assembly equipped with diffraction grating
WO2012121236A1 (en) 2011-03-07 2012-09-13 国立大学法人 東京大学 Pigment for photoelectric converter, and photoelectric conversion film, electrode, and solar cell using same
JP2013150972A (en) * 2011-12-28 2013-08-08 Toyota Central R&D Labs Inc Semiconductor hetero particle and method for producing the same
JP2016032086A (en) * 2014-07-30 2016-03-07 アイシン精機株式会社 Sensitizing dye for dye-sensitized solar cell, and dye-sensitized solar cell including sensitizing dye
JP2016134468A (en) * 2015-01-19 2016-07-25 株式会社豊田中央研究所 Dye-sensitized solar cell and dye-sensitized solar cell module
JP2016134467A (en) * 2015-01-19 2016-07-25 株式会社豊田中央研究所 Dye-sensitized solar cell and dye-sensitized solar cell module

Also Published As

Publication number Publication date
JPWO2010029961A1 (en) 2012-02-02

Similar Documents

Publication Publication Date Title
JP4637523B2 (en) Photoelectric conversion device and photovoltaic device using the same
US20160343517A1 (en) Dye-sensitized solar cell and method for manufacturing thereof
JP4360569B2 (en) Photoelectric conversion element and photoelectrochemical cell
WO2010029961A1 (en) Photoelectric converter
Nwanya et al. Dyed sensitized solar cells: A technically and economically alternative concept to pn junction photovoltaic devices.
KR20070117561A (en) Dye-sensitized photoelectric transducer and process for producing the same, eletronic apparatus and process for producing the same, and electronic equipment
EP1667275B1 (en) Dye-sensitized solar cell and dye-sensitized solar cell module
CN103620791A (en) Photoelectric conversion element and photoelectric conversion element module
JP4925605B2 (en) Photoelectric conversion device and photovoltaic device using the same
JP4969046B2 (en) Photoelectric conversion device and photovoltaic device using the same
JP2004241378A (en) Dye sensitized solar cell
Stathatos Dye sensitized solar cells as an alternative approach to the conventional photovoltaic technology based on silicon-recent developments in the field and large scale applications
JP2001230434A (en) Photoelectric conversion element and solar battery
JP4841128B2 (en) Photoelectric conversion device and photovoltaic device using the same
JP5153215B2 (en) Photoelectric conversion device
JP6029982B2 (en) Photoelectric conversion element
JP4637473B2 (en) Stacked photoelectric conversion device
JP2008277422A (en) Laminated photoelectric converter
JP2005191137A (en) Stacked photoelectric converter
JP4578090B2 (en) Stacked photoelectric conversion device
JP4637543B2 (en) Photoelectric conversion device and photovoltaic device using the same
JP2014186995A (en) Transparent dye-sensitized solar cell and dye-sensitized solar cell module
JP5566681B2 (en) Electrolyte composition for photoelectric conversion element and photoelectric conversion element
JP5332114B2 (en) Photoelectric conversion element and solar cell
JP5240740B2 (en) Photoelectric conversion device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09813107

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010528746

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09813107

Country of ref document: EP

Kind code of ref document: A1