JP2006118799A - 冷凍サイクル - Google Patents

冷凍サイクル Download PDF

Info

Publication number
JP2006118799A
JP2006118799A JP2004306920A JP2004306920A JP2006118799A JP 2006118799 A JP2006118799 A JP 2006118799A JP 2004306920 A JP2004306920 A JP 2004306920A JP 2004306920 A JP2004306920 A JP 2004306920A JP 2006118799 A JP2006118799 A JP 2006118799A
Authority
JP
Japan
Prior art keywords
refrigerant
evaporator
gas
refrigeration cycle
liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004306920A
Other languages
English (en)
Inventor
Makoto Ikegami
真 池上
Hirotsugu Takeuchi
裕嗣 武内
Haruyuki Nishijima
春幸 西嶋
Yasushi Yamanaka
康司 山中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2004306920A priority Critical patent/JP2006118799A/ja
Publication of JP2006118799A publication Critical patent/JP2006118799A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/23Separators

Abstract

【課題】発明は、減圧手段による凝縮冷媒の膨張エネルギが小さい冷凍サイクル条件においても、冷凍能力を低させることなく高いシステム性能を維持できる冷凍サイクルを提供することを課題とする。
【解決手段】本発明の冷凍サイクル1は、圧縮機10、凝縮器20、減圧手段30、及び蒸発器40を順次接続してなる冷凍サイクルにおいて、減圧手段30の下流側に気液分離器50を設け、この気液分離器50の液冷媒側50bを液冷媒回路R2を介して蒸発器40の入口側に接続し、気液分離器50のガス冷媒側50aをガス冷媒回路R1を介して蒸発器40の出口側に接続するとともに、蒸発器40の入口側における冷媒圧力よりも出口側における冷媒圧力を低くする差圧手段(32)を備えることを特徴とする。
【選択図】図1

Description

本発明は冷凍サイクルに関する。詳しくは凝縮後の冷媒の減圧過程における膨張エネルギが小さい場合の冷凍サイクルに関する。
従来より蒸気圧縮式冷凍サイクルで適用されてきた代表的なシステムとして、図5に示す冷凍サイクル100が知られている。この冷凍サイクル100は、減圧手段として膨張弁130を備えた膨張弁サイクルであり、この膨張弁サイクルでは凝縮された冷媒の膨張過程において発生するエネルギが渦として損失してしまうので、減圧膨張過程の変化は等エンタルピ変化となり(図5の点B→点C)、蒸発器140に流入する冷媒の乾き度が大きく蒸発器140に流入する液冷媒量が減少する。このため、蒸発器140の冷凍能力が低下し、冷凍サイクルのシステム効率が低下するという問題があった。このような膨張過程での問題点を解決するために、図6に示すように、流体ポンプであるエジェクタ230を用いたエジェクタサイクル200が提案されている。(特許文献1参照)。
このエジェクタサイクル200は、減圧手段として膨張弁の代わりにエジェクタ230と気液分離器250とを構成し、エジェクタ230の構成部品であるノズル232により減圧膨張過程のエネルギを冷媒の運動エネルギに変換し、蒸発器240の出口の冷媒を吸引しつつ混合部234及びディフューザ部236にて混合、減速することで冷媒の圧力エネルギに再変換するものである。この時、気液分離器250で分離されたガス冷媒が圧縮機210に流入することから、蒸発器240出口からディフューザ236出口までの昇圧分が圧縮機210の入口圧力の上昇に寄与する。この効果により、圧縮機210が行う圧縮仕事が低減でき、その消費動力を低減することができる。また、気液分離器250で分離された液冷媒のみが蒸発器240に流入するため、蒸発器240の圧損低減による冷凍能力の向上効果と、圧縮機210での圧縮比低減による圧縮機210単体の効率の向上との相乗効果で冷凍サイクル200のシステム性能を大幅に向上できる。
ところが、このエジェクタサイクル200は、エジェクタ230で回収可能なエネルギ量が低下するような負荷条件、あるいは冷媒物性の場合には、エジェクタ230のポンプ機能が低下して蒸発器240に流入する液冷媒の吸引流量が低下し、この結果、蒸発器240の冷凍能力が低下してシステム性能を向上する効果が得られないという問題がある。極端な場合には、吸引流量不足、あるいは、コンプレッサオイルの滞留による冷凍能力の低下を引き起こすこともある。
このようなエジェクタ230で回収可能なエネルギ量が低下するような負荷条件としては、外気温度が低い、車室内温度が高い、圧縮機の回転数が低い、あるいは圧縮機の容量が小さい、等を例示することができる。また、冷却対象の容量が小さかったり、冷媒の蒸発温度が低い場合にも回収エネルギ量は低下する。さらに、減圧域における等エントロピ線と等エンタルピ線の傾きの差が小さい冷媒、例えば、R404AやR600A(イソブタン)などではその膨張エネルギを回収しにくい。
特許第322263号
本発明は上記のような問題を解消するためになされたもので、減圧手段による凝縮冷媒の膨張エネルギが小さい冷凍サイクル条件においても、冷凍能力を低させることなく高いシステム性能を維持できる冷凍サイクルを提供することを課題とする。
本発明の冷凍サイクルは、圧縮機、凝縮器、減圧手段、及び蒸発器を順次接続してなる冷凍サイクルにおいて、減圧手段の下流側に気液分離器を設け、この気液分離器の液冷媒側を液冷媒回路を介して蒸発器の入口側に接続し、気液分離器のガス冷媒側をガス冷媒回路を介して蒸発器の出口側に接続するとともに、蒸発器の入口側における冷媒圧力よりも出口側における冷媒圧力を低くする差圧手段を備えることを特徴とする。
本発明の冷凍サイクルは、上記のように蒸発器の入口側における冷媒圧力よりも出口側における冷媒圧力を低くする差圧手段を備えることにより、減圧手段における膨張エネルギが小さい場合であっても、蒸発器に液冷媒を安定して供給することができ、蒸発器の冷凍能力の向上効果を確保できるとともに、冷凍サイクルシステム全体の成績係数を向上することができる。
以上の構成からなる本発明の冷凍サイクルにおいて、差圧手段はガス冷媒回路に介挿する減圧装置であることが望ましい。ガス冷媒回路中にガス冷媒を減圧する減圧装置を介挿することにより、蒸発器の入口側と出口側との間に差圧を生じさせることができる。従って、蒸発器に液冷媒を安定して供給することができ、蒸発器の冷凍能力の向上効果を確保できるとともに、冷凍サイクルシステム全体の成績係数を向上することができる。
また、本発明の冷凍サイクルにおいて、差圧手段は液冷媒回路に介挿する加圧装置であることが望ましい。液冷媒回路中に液冷媒を加圧する加圧装置を介挿することにより、蒸発器の入口側と出口側との間に差圧を生じさせることができる。従って、蒸発器に液冷媒を安定して供給することができ、蒸発器の冷凍能力の向上効果を確保できるとともに、冷凍サイクルシステム全体の成績係数を向上することができる。
上述の構成からなる本発明の冷凍サイクルは、複数の蒸発器を有することができる。複数の蒸発器を有することで、一の冷凍サイクルで、複数箇所の冷却(空調)を行うことができる。ここで、複数の蒸発器は直列又は並列に配置することが望ましい。複数の蒸発器を直列に配置することで複数の蒸発器を同時に運転することができる。また、複数の蒸発器を並列に配置することで、後部座席用独立空調(以後、デュアルエアコンという。)を搭載する車両等の場合には、複数の蒸発器を同時に運転したり、必要に応じて切替運転することができるので好適である。
本発明の好適な実施の形態について図を参照しながら説明する。
(第1の実施形態)
図1(a)は、本発明の第1の実施形態を示す冷媒回路図である。図1(a)において、冷凍サイクル1は、図示しないエンジン又はモータなどの駆動源から駆動力を得て冷媒を吸入圧縮する圧縮機10と、圧縮機10で圧縮された冷媒を凝縮させる凝縮器20と、凝縮器20で凝縮された冷媒を減圧膨張する減圧手段30と、減圧された冷媒を気液に分離する気液分離器50と、この気液分離器50の液冷媒側50bから液冷媒回路R2を介して液冷媒を流入させこの流入した液冷媒を蒸発する蒸発器40と、気液分離器50のガス冷媒側50aと蒸発器40の出口側とを接続するガス冷媒回路R1中に介挿される減圧装置32とからなり、蒸発器40の出口側は圧縮機10の吸入側に吸入回路R3を介して接続されている。つまり、気液分離器50で分離された気相冷媒は、気液分離器50からガス冷媒回路R1と減圧装置32を介して圧縮機10の吸入側に流入する。
ここで、凝縮器20の下流側に構成する減圧手段としては特に制約はなく、オリフィスなどの固定絞り、電気駆動式膨張弁や温度式膨張弁などの可変絞り、あるいは配管径縮小や配管曲げ等のような圧損をつけるシステム構成や、機能品の上下方向のレイアウトなどいかなる減圧手段を用いてもよい。
また、凝縮器20の出口側における冷媒の状態が気液二相域の場合には、凝縮器20の下流の減圧手段30を省略して冷媒が気液分離器50に直接流入する構成としてもよい。
さらに、気液分離器50の構造に関しても特に制約はなく、衝突分離式、旋回分離式など周知のものを使用することができる。
減圧装置32についても特に制約はなく、前記の減圧手段30と同様に、例えばオリフィスなどの固定絞り、電気駆動式膨張弁や温度式膨張弁などの可変絞り、あるいは配管径縮小や配管曲げ等のような圧損をつけるシステム構成や、機能品の上下方向のレイアウトなどを挙げることができる。
次に、上記の第1の実施形態について、その作動を説明する。圧縮機10から吐出された高温・高圧の冷媒は、凝縮器20で液化した後、減圧装置30で断熱膨張し、気液二相状態の中間圧力状態で気液分離器50へ流入する。気液分離器50では、液冷媒とガス冷媒とが分離され、エンタルピの小さい液冷媒のみが蒸発器40へ流れる。蒸発器40で蒸発したガス冷媒は、吸入回路R3を介して圧縮機10の吸入側へ吸入される。また、気液分離器50のガス冷媒は、ガス冷媒回路R1に介挿されている減圧装置32で減圧された後、蒸発器40の出口側で吸入回路R3に合流して圧縮機10に吸入される。
つまり、減圧手段30における冷媒の膨張エネルギが小さい本システムでは、気液分離器50のガス冷媒が減圧装置32で減圧されることで蒸発器40の入口側(液冷媒回路R2側)と出口側とで冷媒に差圧が生じるので、液冷媒を安定的に蒸発器40へ流入させることができる。従って、本実施の形態によれば、減圧手段30による凝縮冷媒の膨張エネルギが小さい冷凍サイクル条件においても、蒸発器40の冷凍能力の向上効果を確保できるとともに、冷凍サイクルシステム全体の成績係数を向上することができる。
次に、本実施形態の冷凍サイクル1について、図1(b)に示すモリエル線図で説明する。
圧縮機10で圧縮された冷媒(図の点A)は、凝縮器20で凝縮液化され(図の点A→点B)、減圧手段30で断熱膨張する(図の点B→点C)。減圧手段30より気液分離器50に入った冷媒は、気液に分離されて液冷媒(図の点D)のみが、蒸発器40に流入して周囲より熱を奪って蒸発(図の点D→点E)するので、冷凍能力の高い冷却が行われる。
一方、気液分離器50で分離されたガス冷媒(図の点E)は、減圧装置32で減圧され(図の点E→点F)、吸入回路R3で蒸発器で蒸発したガス冷媒と合流する。合流した冷媒(図の点F)は、吸入回路R3を通って圧縮機10の吸入側へ導かれる。ここで、EFは蒸発器の入口側と出口側の差圧ΔPである。
以上のように、蒸発器40の出口側の冷媒圧力が入口側の圧力よりもΔPだけ低くなるので液冷媒を安定して蒸発器40へ供給することができる。
(第2の実施形態)
図2(a)は、本発明の第2の実施形態を示す冷媒回路図である。なお、第1の実施形態と同様の部分には、同一の符号を付して説明を省略する。
前記の第1の実施形態では、気液分離器50で分離されたガス冷媒をガス冷媒回路R1に介挿した減圧装置32で減圧して蒸発器40の入口側と出口側との間に差圧ΔPを生じるように構成したが、第2の実施形態では、液冷媒を加圧して蒸発器40の入口側と出口側との間に差圧ΔPを得るように構成したものである。
すなわち、本実施形態の冷凍サイクル2は、圧縮機10から吐出され、凝縮器20、減圧手段30を介して気液分離器50に貯留された冷媒について、気液分離器50のガス冷媒側50aをガス冷媒回路R2を介して蒸発器40の出口側に接続する吸引回路R3に合流させ、液冷媒側50bの液冷媒回路R2中に加圧手段60を介挿して蒸発器40の入口側に接続する構成となっている。ここで、加圧手段には特に限定はないが、液ポンプなどを好適に用いることができる。
次に、上記の第2の実施形態について、その作動を説明する。圧縮機10から吐出された高温・高圧の冷媒は、凝縮器20で液化した後、減圧装置30で断熱膨張し、気液二相状態で気液分離器50へ流入する。気液分離器50では、液冷媒とガス冷媒とが分離され、エンタルピの小さい液冷媒のみが加圧手段で加圧されて蒸発器40へ流入する。蒸発器40で蒸発したガス冷媒は、吸入回路R3を介して圧縮機10の吸入側へ吸入される。また、気液分離器50のガス冷媒は、ガス冷媒回路R2を介して蒸発器40の出口側で吸入回路R3に合流して圧縮機10に吸入される。
つまり、本システムでは、気液分離器50の液冷媒が加圧手段60で加圧されることで蒸発器40の入口側と出口側との冷媒圧力に差圧が生じるので、液冷媒を安定的に蒸発器40へ流入させることができる。従って、本実施の形態によれば、減圧手段30による凝縮冷媒の膨張エネルギが小さい冷凍サイクル条件においても、蒸発器40の冷凍能力の向上効果を確保できるとともに、冷凍サイクルシステム全体の成績係数を向上することができる。
次に、本実施形態の冷凍サイクル2について、図2(b)に示すモリエル線図で説明する。
圧縮機10で圧縮された冷媒(図の点A)は、凝縮器20で凝縮液化され(図の点A→点B)、減圧装置30で断熱膨張する(図の点B→点C)。減圧装置30より気液分離器50に入った冷媒は、気液に分離されて液冷媒(図の点D)のみが加圧手段60によって加圧されて(図の点D→点H)、蒸発器40に流入して周囲より熱を奪って蒸発(図の点H→点I)するので、冷凍能力の高い冷却が行われる。
一方、気液分離器50で分離されたガス冷媒は、ガス冷媒回路R1を介して吸入回路R3で蒸発器で蒸発したガス冷媒と合流する(図の点I)。合流した冷媒は、吸入回路R3を通って圧縮機10の吸入側へ導かれる。ここで、DHは蒸発器の入口側と出口側の差圧ΔPである。
以上のように、蒸発器40の入口側の冷媒圧力が出口側の圧力よりもΔPだけ高くなる(言い換えると、出口側の冷媒圧力が入口側の圧力よりもΔPだけ低くなる)ので液冷媒を安定して蒸発器40へ供給することができる。
次に、図3は前述の第1の実施形態を、図4は前述の第2の実施形態をベースとした別の実施形態を示す冷媒回路図である。
前述の第1の実施形態及び第2の実施形態では、液冷媒を一の蒸発器40で蒸発する構成としたが、図3及び図4の(a)〜(d)の形態では、複数の蒸発器を備えることにより、複数箇所の冷却を可能としたものである。
(a)の冷凍サイクル1a及び2aは、第1の蒸発器42と第2の蒸発器44とを直列に配置した冷凍サイクルであり、第1の蒸発器42と第2の蒸発器44とを連結する連結回路R4に第2の減圧装置34を介挿してなるものである。第2の減圧装置34を介挿することで、第1の蒸発器42と第2の蒸発器44とへの冷媒の流入と流出とを安定化することができる。なお、図3(a)に示す冷凍サイクル1aでは、第1の減圧装置32により発生する差圧ΔP1が第2の減圧装置34で発生する差圧ΔP2よりも大きいくなるように、減圧装置32又は34を選択することが望ましい。また、図4(a)に示す冷凍サイクル2aでは、減圧装置34は第1の蒸発器42で蒸発したガス冷媒を減圧するものであり、冷凍サイクル1aと同様に第1の蒸発器42と第2の蒸発器44とへの冷媒の流入と流出とを安定化することができる。このような、構成の冷凍サイクル1a又は2aは車両用冷蔵庫を有するワンボックスタイプの車両等の冷凍サイクルに適用して好適である。
(b)の冷凍サイクル1b及び2bは、気液分離器50の下流側に流路切替弁70を設け第1の蒸発器42と第2の蒸発器44とを並列に配置した冷凍サイクルである。ここで、第1の蒸発器42の出口側と第2の蒸発器44の出口側との間に第3の減圧装置36を介挿してもよい。第3の減圧装置を介挿することで第1の蒸発器42と第2の蒸発器44の温度を後別に制御することが可能となる。このような、構成の冷凍サイクル1b又は2bはデュアルエアコンを有する乗用車およびワンボックスタイプの車両等の冷凍サイクルに用いて好適である。
(c)の冷凍サイクル1c及び2cは、冷凍サイクル1aまたは2aにさらに第3の蒸発器46を設けて3箇所の冷却を可能としたものである。第3の蒸発器46は、凝縮器20の出口側に減圧手段30と並列に設けた減圧装置38の下流側に配置され、減圧装置38で減圧された気液二相冷媒を蒸発することで冷却能力を発揮する。第3の蒸発器46で蒸発されたガス冷媒は前記の第1の蒸発器42と第2の蒸発器44とで蒸発されたガス冷媒と吸入回路R3で合流して圧縮機10の吸入側に吸入される。このような、構成の冷凍サイクル1c又は2cはデュアルエアコンを有する乗用車およびワンボックスタイプの車両等の冷凍サイクルに用いて好適である。
(d)の冷凍サイクル1d及び2dは、(c)と同様に3箇所の冷却を可能としたものであり、冷凍サイクル1bまたは2bにさらに第3の蒸発器46を設けたものである。冷媒の動作は上述の(c)と同様であるので説明を省略する。このような、構成の冷凍サイクル1d又は2dはデュアルエアコンを有する乗用車およびワンボックスタイプの車両等の冷凍サイクルに用いて好適である。
なお、本発明の冷凍サイクルは、上記の実施形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲で変更してもよい。例えば、上記の実施形態は、各々単独の冷凍サイクルとして説明したが、第1の実施形態と第2の実施形態とを併用してもよい。また、第1の実施形態や第2の実施形態の冷媒回路を図5や図6に示す従来技術になる冷凍サイクルに電磁弁などを介して併設し、運転条件の変化に対応して切り替え制御することもできる。すなわち、通常運転時(膨張エネルギが所定値以上である運転条件下)には、エジェクタサイクル200で運転し、圧縮機の回転が低下する低負荷時には、電磁弁などで例えば、第1の実施形態である冷凍サイクル1aに切り替えて運転を継続する。このようなモード変更によって、常に一定値以上の成績係数(COP)を呈する冷凍システムとすることができる。
本発明の冷凍サイクルは、圧縮機の回転数が低い、あるいは冷媒流量が低い冷却容量が小さい場合などの低負荷時でも、蒸発器の冷却能力を低下することなく高いシステム性能を維持することができる。従って、負荷変動の大きい車両用空調システム、あるいは、膨張エネルギの少ないR404A、R600Aなどの冷媒を用いた車載用冷凍機、定置型業務用冷蔵庫、定置型冷凍・冷蔵ショーケース、家庭用冷蔵庫などの冷凍システムに用いて好適である。
本発明の第1の実施形態を示す図で、(a)はその冷媒回路図であり、(b)は(a)のモリエル線図である。 本発明の第2の実施形態を示す図で、(a)はその冷媒回路図であり、(b)は(a)のモリエル線図である。 本発明の第1の実施形態に対して、複数の蒸発器を有するシステム構成の例を示したものである。(a)は直列に配置した二個の蒸発器を備える冷凍サイクル1a、(b)は並列に配置した二個の蒸発器を備える冷凍サイクル1b、(c)は、冷凍サイクル1aにさらに第3の蒸発器を配置した冷凍サイクル1c、(d)は、冷凍サイクル1bにさらに第3の蒸発器を配置した冷凍サイクル1dを示す冷媒回路図である。 本発明の第2の実施形態に対して、複数の蒸発器を有するシステム構成の例を示したものである。(a)は直列に配置した二個の蒸発器を備える冷凍サイクル2a、(b)は並列に配置した二個の蒸発器を備える冷凍サイクル2b、(c)は、冷凍サイクル2aにさらに第3の蒸発器を配置した冷凍サイクル2c、(d)は、冷凍サイクル2bにさらに第3の蒸発器を配置した冷凍サイクル2dを示す冷媒回路図である。 従来技術になる冷凍サイクル100の冷媒回路と、対応するモリエル線図との一例を示す図である。 従来技術になるエジェクタサイクル200の冷媒回路と、対応するモリエル線図との一例を示す図である。
符号の説明
10:圧縮機 20:凝縮器 30:減圧手段 32:減圧装置 40:蒸発器50:気液分離器 60:加圧装置
R1:ガス冷媒回路 R2:液冷媒回路 R3:吸入回路

Claims (6)

  1. 圧縮機、凝縮器、減圧手段、及び蒸発器を順次接続してなる冷凍サイクルにおいて、
    前記減圧手段の下流側に気液分離器を設け、該気液分離器の液冷媒側を液冷媒回路を介して前記蒸発器の入口側に接続し、該気液分離器のガス冷媒側をガス冷媒回路を介して前記蒸発器の出口側に接続するとともに、該蒸発器の入口側における冷媒圧力よりも出口側における冷媒圧力を低くする差圧手段を備えることを特徴とする冷凍サイクル。
  2. 前記差圧手段は前記ガス冷媒回路に介挿する減圧装置である請求項1に記載の冷凍サイクル。
  3. 前記差圧手段は前記液冷媒回路に介挿する加圧装置である請求項1に記載の冷凍サイクル。
  4. 複数の蒸発器を有する請求項1〜3のいずれかに記載の冷凍サイクル。
  5. 前記複数の蒸発器は直列に配置されている請求項4に記載の冷凍サイクル。
  6. 前記複数の蒸発器は並列に配置されている請求項4に記載の冷凍サイクル。
JP2004306920A 2004-10-21 2004-10-21 冷凍サイクル Pending JP2006118799A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004306920A JP2006118799A (ja) 2004-10-21 2004-10-21 冷凍サイクル

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004306920A JP2006118799A (ja) 2004-10-21 2004-10-21 冷凍サイクル

Publications (1)

Publication Number Publication Date
JP2006118799A true JP2006118799A (ja) 2006-05-11

Family

ID=36536846

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004306920A Pending JP2006118799A (ja) 2004-10-21 2004-10-21 冷凍サイクル

Country Status (1)

Country Link
JP (1) JP2006118799A (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007125916A1 (ja) 2006-04-24 2007-11-08 Stemcell Institute Inc. 移植用臓器の調製方法
CN100483047C (zh) * 2007-01-26 2009-04-29 清华大学 气液分离蒸发器
WO2009078233A1 (ja) * 2007-12-19 2009-06-25 Mitsubishi Heavy Industries, Ltd. 冷凍装置
JP2012233676A (ja) * 2011-04-21 2012-11-29 Denso Corp ヒートポンプサイクル
FR3089604A1 (fr) * 2018-12-05 2020-06-12 Valeo Systemes Thermiques Systeme de conditionnement thermique d’un vehicule
WO2020115444A3 (fr) * 2018-12-05 2020-10-01 Valeo Systemes Thermiques Systeme de conditionnement thermique d'un vehicule

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007125916A1 (ja) 2006-04-24 2007-11-08 Stemcell Institute Inc. 移植用臓器の調製方法
CN100483047C (zh) * 2007-01-26 2009-04-29 清华大学 气液分离蒸发器
WO2009078233A1 (ja) * 2007-12-19 2009-06-25 Mitsubishi Heavy Industries, Ltd. 冷凍装置
JP2009150594A (ja) * 2007-12-19 2009-07-09 Mitsubishi Heavy Ind Ltd 冷凍装置
JP2012233676A (ja) * 2011-04-21 2012-11-29 Denso Corp ヒートポンプサイクル
US8671707B2 (en) 2011-04-21 2014-03-18 Denso Corporation Heat pump cycle
FR3089604A1 (fr) * 2018-12-05 2020-06-12 Valeo Systemes Thermiques Systeme de conditionnement thermique d’un vehicule
WO2020115444A3 (fr) * 2018-12-05 2020-10-01 Valeo Systemes Thermiques Systeme de conditionnement thermique d'un vehicule

Similar Documents

Publication Publication Date Title
KR100525153B1 (ko) 이젝터 사이클 시스템
US7779647B2 (en) Ejector and ejector cycle device
JP4779928B2 (ja) エジェクタ式冷凍サイクル
JP4595607B2 (ja) エジェクタを使用した冷凍サイクル
JP4581720B2 (ja) エジェクタを用いたサイクル
US7367202B2 (en) Refrigerant cycle device with ejector
JP4254217B2 (ja) エジェクタサイクル
JP3931899B2 (ja) エジェクタサイクル
US20120247146A1 (en) Refrigerant distributor and refrigeration cycle device
JP2000046420A (ja) 冷凍サイクル
US8424338B2 (en) Vapor compression refrigerating cycle apparatus with an ejector and distributor
US20120234026A1 (en) High efficiency refrigeration system and cycle
JP2002327967A (ja) エジェクタサイクル
JP2006118849A (ja) エジェクタ式冷凍サイクル
JP2004044906A (ja) エジェクタサイクル
JP2007040690A (ja) エジェクタ式冷凍サイクル
JP5018724B2 (ja) エジェクタ式冷凍サイクル
JP2007051811A (ja) エジェクタ式冷凍サイクルおよびエジェクタ式冷凍サイクルの分岐部
JP2007078340A (ja) エジェクタ式冷凍サイクル
JP4400522B2 (ja) エジェクタ式冷凍サイクル
JP2003114063A (ja) エジェクタサイクル
JP2005076914A (ja) 冷凍サイクル
JP2007057156A (ja) 冷凍サイクル
JP2002022295A (ja) エジェクタサイクル
JP4971877B2 (ja) 冷凍サイクル

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20061218

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Effective date: 20081010

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081016

A02 Decision of refusal

Effective date: 20090224

Free format text: JAPANESE INTERMEDIATE CODE: A02