JP2006117472A - Silicon carbide tool material for firing and its manufacturing method - Google Patents

Silicon carbide tool material for firing and its manufacturing method Download PDF

Info

Publication number
JP2006117472A
JP2006117472A JP2004307147A JP2004307147A JP2006117472A JP 2006117472 A JP2006117472 A JP 2006117472A JP 2004307147 A JP2004307147 A JP 2004307147A JP 2004307147 A JP2004307147 A JP 2004307147A JP 2006117472 A JP2006117472 A JP 2006117472A
Authority
JP
Japan
Prior art keywords
silicon carbide
tool material
substrate
firing
firing tool
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004307147A
Other languages
Japanese (ja)
Other versions
JP4975246B2 (en
Inventor
Shinji Banya
新二 番屋
Yutaka Okada
裕 岡田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Coorstek KK
Original Assignee
Toshiba Ceramics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Ceramics Co Ltd filed Critical Toshiba Ceramics Co Ltd
Priority to JP2004307147A priority Critical patent/JP4975246B2/en
Publication of JP2006117472A publication Critical patent/JP2006117472A/en
Application granted granted Critical
Publication of JP4975246B2 publication Critical patent/JP4975246B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a low-priced silicon carbide tool material for firing capable of improving energy saving in firing and productivity and uniformly reaction-treating an article to be fired, and its manufacturing method. <P>SOLUTION: The silicon carbide tool material for firing is composed of a silicon carbide substrate having an apparent porosity of ≥20% and an apparent specific gravity of ≤3.20, and a silicon dioxide layer is formed on the surface of the silicon carbide crystal in the surface layer of the silicon carbide substrate. Its manufacturing method is also provided. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は炭化珪素質焼成用道具材に係り、特に炭化珪素質基材表層の炭化珪素結晶表面に二酸化珪素層を形成する炭化珪素質焼成用道具材に関する。   The present invention relates to a silicon carbide-based firing tool material, and more particularly, to a silicon carbide-based firing tool material in which a silicon dioxide layer is formed on a silicon carbide crystal surface of a silicon carbide-based substrate surface layer.

近年、セラミックスは電子材料として多用されており、例えば、チタン酸バリウム等の強誘電体セラミックスはセラミックコンデンサとして、また、ソフトフェライト(Mn−Zn系、Ni−Zn系等)等の圧電セラミックスは、セラミックトランス等として電子部品の構成材料とされている。   In recent years, ceramics are widely used as electronic materials. For example, ferroelectric ceramics such as barium titanate are used as ceramic capacitors, and piezoelectric ceramics such as soft ferrite (Mn-Zn series, Ni-Zn series, etc.) It is used as a constituent material for electronic parts such as ceramic transformers.

このような電子部品用セラミックスは、一般に、1000〜1700℃の温度範囲で熱処理または焼成が行われる。このため、電子部品用セラミックスの熱処理用道具材としては、Al−SiO質、Al−SiO質−MgO質、MgO質−Al−ZrO質、SiC質等の耐熱性に優れたセラミックスが用いられる。この中でも特に、SiC質セラミックスは、耐熱強度および耐クリープ性に優れているため、好適な材料であるとされている。 Such ceramics for electronic parts are generally heat-treated or fired in a temperature range of 1000 to 1700 ° C. For this reason, Al 2 O 3 —SiO 2 quality, Al 2 O 3 —SiO 2 quality—MgO quality, MgO quality—Al 2 O 3 —ZrO 2 quality, SiC quality are used as tool materials for heat treatment of ceramics for electronic parts. Such ceramics having excellent heat resistance are used. Among these, in particular, SiC ceramics are considered to be suitable materials because they are excellent in heat resistance and creep resistance.

SiC質セラミックスの熱処理用道具材に直接、被処理物を載置する等、接触させた場合、その成分によっては、熱処理時、熱処理用道具材の構成材料と反応を生じ、被処理物の特性が変化する場合がある。SiCの酸化反応(SiC+3/2O→SiO+CO↑)でCOガスが生じることにより、このCOガスと被焼成物が反応してしまう。 When a workpiece is placed directly on a SiC ceramics heat treatment tool material, depending on its components, it reacts with the constituent materials of the heat treatment tool material during heat treatment, and the characteristics of the workpiece May change. When CO gas is generated by the oxidation reaction of SiC (SiC + 3 / 2O 2 → SiO 2 + CO ↑), the CO gas and the object to be fired react.

上記のような反応を防止するため、離反応性に優れたZrO等のセラミックスにより道具材表面を構成したものが用いられる。例えば、チタン酸バリウム(BaTiO)の熱処理を行う場合には、ZrOセラミックス材が用いられ、また、ソフトフェライト(Mn−Zn系、Ni−Zn系等)の熱処理を行う場合には、Al3、ZrOもしくは被処理物と同じ組成のセラミックス、あるいは、これらのセラミックスによりSiC質セラミックス基材等を被覆したものが用いられる。 In order to prevent the reaction as described above, a tool material whose surface is composed of ceramics such as ZrO 2 having excellent release reactivity is used. For example, when heat-treating barium titanate (BaTiO 3 ), a ZrO 2 ceramic material is used, and when heat-treating soft ferrite (Mn—Zn, Ni—Zn, etc.), Al Ceramics having the same composition as 2 O 3, ZrO 2 or the object to be processed, or those obtained by coating a SiC ceramic substrate with these ceramics are used.

上記被覆材を得る場合には、例えば、所望のセラミックススラリーを塗布した後、高温で焼き付ける方法、CVD法、溶射法等を用いて形成される。この中でも特に、溶射法は、アンカー効果を利用して物理的な密着を行う方法であり、被膜が剥離し難いことから多用されている。   In the case of obtaining the coating material, for example, a desired ceramic slurry is applied and then formed by using a method of baking at a high temperature, a CVD method, a thermal spraying method, or the like. Among these, the thermal spraying method is a method of performing physical adhesion using the anchor effect, and is frequently used because the coating is difficult to peel off.

このような被覆材としては、例えば、耐熱強度および耐クリープ性に優れたSiC質セラミックス基材に、Al、ムライト、ZrO等を溶射した熱処理用部材が提案されている(特許文献1、2)。 As such a covering material, for example, a heat-treating member in which Al 2 O 3 , mullite, ZrO 2 and the like are thermally sprayed on a SiC ceramic base material having excellent heat resistance and creep resistance has been proposed (Patent Document). 1, 2).

しかしながら、特許文献1、2に記載の焼成用道具材は、気孔率の小さい緻密な基材が用いられるため、反応ガスが基材を介して被焼成物に均一に流れにくくなって、被焼成物の均一反応処理が行われ難く、また、基材に基材とは異なる材質の被膜を溶射あるいは形成するため、製造工程が複雑になり高価になり、改良の余地がある。   However, since the firing tool materials described in Patent Documents 1 and 2 use a dense base material with a low porosity, it becomes difficult for the reaction gas to flow uniformly through the base material through the base material. It is difficult to carry out a uniform reaction treatment of an object, and a coating of a material different from the base material is sprayed or formed on the base material, which makes the manufacturing process complicated and expensive, and there is room for improvement.

また、焼成用道具材には、炉スペースの効率的使用、迅速な昇温による生産効率の向上、省エネルギーの要求があり、この要求に応えるためには、焼成用道具材の薄肉化、低熱容量化が不可欠であり、さらに、これを実現するには基材の薄肉化のためには、曲げ強度を向上させる必要がある。
特開2001−278685号公報 特開2003−306392号公報
In addition, there are demands for firing tool materials that make efficient use of the furnace space, increase production efficiency through rapid heating, and save energy. To meet these demands, the firing tool materials are made thinner and have a lower heat capacity. In order to achieve this, it is necessary to improve the bending strength in order to reduce the thickness of the substrate.
JP 2001-278865A JP 2003-306392 A

本発明は上述した事情を考慮してなされたもので、被焼成物時の省エネルギーの向上、生産性の向上および被焼成物を均一に反応処理することが可能で安価な炭化珪素質焼成用道具材を提供することを目的とする。   The present invention has been made in consideration of the above-described circumstances, and is an inexpensive silicon carbide-based firing tool capable of improving energy saving, improving productivity, and uniformly reacting the material to be fired. The purpose is to provide materials.

また、被焼成物時の省エネルギーの向上、生産性の向上および被焼成物を均一に反応処理することが可能で安価な炭化珪素質焼成用道具材を製造できる炭化珪素質焼成用道具材の製造方法を提供することを目的とする。   Also, manufacture of silicon carbide-based baking tool materials that can improve the energy saving at the time of the baking object, improve the productivity, and can manufacture an inexpensive silicon carbide-based baking tool material that can uniformly react the baking object. It aims to provide a method.

上述した目的を達成するため、本発明に係る炭化珪素質焼成用道具材は、炭化珪素質基材が見掛け気孔率20%以上、かつ見掛け比重3.20以下であり、前記炭化珪素質基材表層の炭化珪素結晶表面に二酸化珪素層が形成されたことを特徴とする。   In order to achieve the above-described object, the silicon carbide-based firing tool material according to the present invention has a silicon carbide-based substrate having an apparent porosity of 20% or more and an apparent specific gravity of 3.20 or less, and the silicon carbide-based substrate. A silicon dioxide layer is formed on the surface of the silicon carbide crystal surface.

好適には、前記二酸化珪素層は酸化処理により形成される。   Preferably, the silicon dioxide layer is formed by an oxidation process.

また、好適には、前記炭化珪素質基材の少なくとも被焼成物が載置される部分に、ZrOおよびAlの少なくとも一方が被覆されている。 Preferably, at least one of ZrO 2 and Al 2 O 3 is coated on at least a portion of the silicon carbide base material on which the object to be fired is placed.

また、好適には、前記ZrOおよびAlの少なくとも一方が溶射により被覆されている。 Preferably, at least one of the ZrO 2 and Al 2 O 3 is coated by thermal spraying.

また、好適には、前記炭化珪素質基材の曲げ強度が60Mpa以上である。   Preferably, the bending strength of the silicon carbide base material is 60 Mpa or more.

また、好適には、前記炭化珪素質基材の見掛け気孔率が30質量%以上であり、かつ曲げ強度が35Mpa以上である。   Preferably, the silicon carbide base material has an apparent porosity of 30% by mass or more and a bending strength of 35 Mpa or more.

本発明に係る炭化珪素質焼成用道具材の製造方法は、SiC粉末等の炭化珪素原料に有機結合剤を、焼結後の残炭率が0〜5.0質量%となるように添加して混合し、この混合物に水を加えて混練し、成形して得られた多孔成形体を1500℃〜2400℃で焼結し、得られた焼結体を酸素濃度が2%以上の酸素雰囲気、1400℃〜1500℃、2〜6時間焼成することを特徴とする。   In the method for producing a silicon carbide based firing tool material according to the present invention, an organic binder is added to a silicon carbide raw material such as SiC powder so that a residual carbon ratio after sintering is 0 to 5.0 mass%. Then, water is added to the mixture and kneaded, and the porous molded body obtained by molding is sintered at 1500 ° C. to 2400 ° C., and the obtained sintered body is subjected to an oxygen atmosphere with an oxygen concentration of 2% or more. Baking is performed at 1400 ° C. to 1500 ° C. for 2 to 6 hours.

本発明に係る炭化珪素質焼成用道具材によれば、使用初期から被焼成物を歩留りよく焼成でき、また、使用回数の向上を図ることができ、さらに、生産効率および省エネルギーの向上を図ることができる炭化珪素質焼成用道具材を提供することができる。   According to the silicon carbide-based firing tool material according to the present invention, the material to be fired can be fired at a high yield from the beginning of use, the number of times of use can be improved, and further, the production efficiency and energy saving can be improved. It is possible to provide a silicon carbide-based firing tool material that can be used.

また、本発明に係る炭化珪素質焼成用道具材の製造方法によれば、被焼成物時の省エネルギーの向上、生産性の向上および被焼成物を均一に反応処理することが可能で安価な炭化珪素質焼成用道具材を製造できる炭化珪素質焼成用道具材の製造方法を提供することができる。   Further, according to the method for manufacturing a silicon carbide-based firing tool material according to the present invention, it is possible to improve the energy saving at the time of the firing object, improve the productivity, and uniformly subject the firing object to a low-cost carbonization. It is possible to provide a method for manufacturing a silicon carbide-based baking tool material capable of manufacturing a silicon-based baking tool material.

以下、本発明に係る炭化珪素質焼成用道具材の一実施形態について添付図面を参照して説明する。   Hereinafter, an embodiment of a silicon carbide-based firing tool material according to the present invention will be described with reference to the accompanying drawings.

図1は本発明に係る炭化珪素質焼成用道具材の縦断面図である。   FIG. 1 is a longitudinal sectional view of a silicon carbide-based firing tool material according to the present invention.

図1に示すように、本発明に係る炭化珪素質焼成用道具材1は、見掛け気孔率が20%以上、かつ見掛け比重3.20以下の炭化珪素質基材2からなり、この炭化珪素質基材1の表層の炭化珪素結晶表面に二酸化珪素層2が形成されている。二酸化珪素層2は酸化処理により形成されるのが好ましい。これにより、容易かつ強固に二酸化珪素層を形成することができる。また、炭化珪素質焼成用道具材は曲げ強度が60Mpa以上であるのが好ましい。これにより、薄肉化しても、十分な強度が得られる。さらに、炭化珪素質基材の見掛け気孔率を30%以上にする場合にも曲げ強度は35Mpa以上にするのが好ましい。これにより、大きな見掛け気孔率を得ながら、実用上支障のない強度が得られる。   As shown in FIG. 1, a silicon carbide-based firing tool material 1 according to the present invention comprises a silicon carbide base material 2 having an apparent porosity of 20% or more and an apparent specific gravity of 3.20 or less. Silicon dioxide layer 2 is formed on the surface of silicon carbide crystal on the surface of substrate 1. The silicon dioxide layer 2 is preferably formed by oxidation treatment. Thereby, a silicon dioxide layer can be formed easily and firmly. Moreover, it is preferable that the silicon carbide-based firing tool material has a bending strength of 60 Mpa or more. Thereby, even if the thickness is reduced, sufficient strength can be obtained. Further, when the apparent porosity of the silicon carbide base material is 30% or more, the bending strength is preferably 35 Mpa or more. Thereby, the intensity | strength which is practically unhindered is obtained, obtaining a large apparent porosity.

本発明に係る炭化珪素質焼成用道具材によれば、繰返し使用による経時変化がない。すなわち、COガスの発生がなく、被焼成物の特性が変化することがない(特に使用初期)。また、SiC基材の表面に被覆をした場合、SiC基材と被覆層との界面におけるSiC基材の酸化による物理特性の変化がなく、被覆層にクラックが生じたり、剥がれたりすることがない。   With the silicon carbide firing tool material according to the present invention, there is no change over time due to repeated use. That is, there is no generation of CO gas, and the properties of the object to be fired do not change (especially in the initial use). In addition, when the surface of the SiC substrate is coated, there is no change in physical properties due to oxidation of the SiC substrate at the interface between the SiC substrate and the coating layer, and the coating layer is not cracked or peeled off. .

さらに、曲げ強度が大きくなる(未酸化:50MPa以下、本発明:60MPa以上)。この理由は十分に解明されていないが、基材表層のSiC結晶表面に非晶質のSiOが存在することにより、曲げ強度が大きくなる現象が確認されている。これにより、基材の気孔率を大きくすることで軽量化が可能となり、さらに、強度を増すことで薄肉化が可能となり、これらにより、基材の熱容量を小さくすることができて、道具材の加熱に大きな熱量を必要とせず、また、道具材の使用初期から被焼成物を焼成できるので、省エネルギーの向上を図ることができ、さらに、被焼成物の焼成の生産性を向上させることができ、また、気孔率を大きくすることにより、基材を介しての反応ガスの流れを向上させて、被焼成物を均一に反応処理することができる。 Furthermore, the bending strength increases (unoxidized: 50 MPa or less, the present invention: 60 MPa or more). Although the reason for this has not been fully elucidated, a phenomenon has been confirmed in which the bending strength is increased due to the presence of amorphous SiO 2 on the SiC crystal surface of the substrate surface layer. This makes it possible to reduce the weight by increasing the porosity of the base material, and further to reduce the thickness by increasing the strength, thereby reducing the heat capacity of the base material. A large amount of heat is not required for heating, and since the object to be fired can be fired from the initial use of the tool material, energy saving can be improved, and further, the productivity of firing the object to be fired can be improved. Further, by increasing the porosity, the flow of the reaction gas through the substrate can be improved, and the object to be fired can be uniformly reacted.

また、炭化珪素質焼成用道具材の少なくとも被焼成物が載置される部分は、Al、ZrOが溶射で被覆されているのが好ましい。これにより、製造工程は従来と同程度になるが、基材表層の非晶質のSiOにAl、ZrOが被覆されることで、焼成用道具材の薄肉化とこれに伴う低熱容量化が可能となるばかりでなく、さらに、離反応性に優れる。また、炭化珪素結晶表面の二酸化珪素層は、溶射その他の膜形成工程によらず、酸化処理により形成できるので、安価な焼成用道具材が得られる。 Moreover, it is preferable that at least a portion of the silicon carbide-based firing tool material on which the material to be fired is placed is coated with Al 2 O 3 or ZrO 2 by thermal spraying. As a result, the manufacturing process becomes the same level as before, but the amorphous SiO 2 on the surface layer of the base material is coated with Al 2 O 3 and ZrO 2 , thereby reducing the thickness of the firing tool material and accompanying this. Not only can the heat capacity be reduced, it also has excellent release reactivity. In addition, since the silicon dioxide layer on the surface of the silicon carbide crystal can be formed by oxidation treatment regardless of thermal spraying or other film forming steps, an inexpensive baking tool material can be obtained.

上記実施形態の炭化珪素質焼成用道具材によれば、被焼成物時の省エネルギーの向上、生産性の向上および被焼成物を均一に反応処理することが可能で安価な炭化珪素質焼成用道具材が実現される。   According to the silicon carbide-based firing tool material of the above-described embodiment, the silicon carbide-based firing tool is inexpensive and capable of improving energy saving, improving productivity, and uniformly reacting the fired product. The material is realized.

次に本発明に係る炭化珪素質焼成用道具材の製造方法について説明する。   Next, a method for producing a silicon carbide-based firing tool material according to the present invention will be described.

本発明に係る炭化珪素質焼成用道具材の製造方法は、SiC粉末等の炭化珪素原料に有機結合剤を、焼結後の残炭率が0〜5.0質量%となるように添加して混合し、この混合物に水を加えて混練し、成形して得られた多孔成形体を1500℃〜2400℃で焼結する。得られた焼結体を酸素濃度が2%以上の酸素雰囲気、1400℃〜1500℃、2〜6時間焼成する。   In the method for producing a silicon carbide based firing tool material according to the present invention, an organic binder is added to a silicon carbide raw material such as SiC powder so that a residual carbon ratio after sintering is 0 to 5.0 mass%. The porous molded body obtained by adding water to the mixture and kneading and molding is sintered at 1500 ° C. to 2400 ° C. The obtained sintered body is fired in an oxygen atmosphere having an oxygen concentration of 2% or more, 1400 ° C. to 1500 ° C., for 2 to 6 hours.

上記炭化珪素原料としては、特に限定されるものでなく、通常この種の炭化珪素系セラミックスの製造において用いられるそれ自体公知の炭化珪素粉末等からなる原料を用いてよい。このような炭化珪素原料粉末として、例えば、純度90%程度以上、平均粒径0.1〜200μm程度の市販品SiC粉末を例示することができるが、純度95%以上のものが好適に使用される。特に、被焼成物との反応防止の観点から、高純度のものを使用することが必要で、通常純度99質量%以上の粉末の使用が好ましい。また、微粒粉末と粗粒粉末を適当な割合で混合した混合粉末を用いても良い。   The silicon carbide raw material is not particularly limited, and a raw material made of silicon carbide powder known per se, which is usually used in the production of this kind of silicon carbide ceramics, may be used. Examples of such silicon carbide raw material powder include commercially available SiC powder having a purity of about 90% or more and an average particle diameter of about 0.1 to 200 μm, and those having a purity of 95% or more are preferably used. The In particular, from the viewpoint of preventing reaction with the object to be fired, it is necessary to use a high-purity one, and it is usually preferable to use powder having a purity of 99% by mass or more. Further, a mixed powder in which fine powder and coarse powder are mixed at an appropriate ratio may be used.

有機結合剤は例えばフェノールレジン等でありその添加量は、焼結後の残炭率が0〜5.0質量%となるようにする。5.0質量%を超えると、酸化量が多くなり酸化処理に時間がかかる。これも特に限定されるものでなく一般に有機バインダーとして用いられる、例えばフェノール・フォルムアルデヒド樹脂、フェノール・フルフラール樹脂、ポリベンズイミダゾール樹脂、ポリプェニレン等の芳香族系樹脂バインダー、ポリビニルアルコール、メチルセルロース、カルボキシルメチルセルロース、ポリ塩化ビニル、ポリ塩化ビニリデン、ポリアクリル系樹脂等の脂肪族系樹脂バインダー、及びシリコーン樹脂、タールピッチ等の各種有機バインダーを使用することができる。   The organic binder is, for example, phenol resin, and the amount of addition is such that the residual carbon ratio after sintering is 0 to 5.0% by mass. When it exceeds 5.0 mass%, the amount of oxidation increases and it takes time for the oxidation treatment. This is not particularly limited and is generally used as an organic binder, for example, an aromatic resin binder such as phenol-formaldehyde resin, phenol-furfural resin, polybenzimidazole resin, polyphenylene, polyvinyl alcohol, methylcellulose, carboxymethylcellulose, Aliphatic resin binders such as polyvinyl chloride, polyvinylidene chloride, and polyacrylic resins, and various organic binders such as silicone resins and tar pitch can be used.

成形方法としては、通常のプレス、ラバープレス、押出、スリップキャストなどを用いることができる。   As a forming method, a normal press, rubber press, extrusion, slip casting, or the like can be used.

酸素雰囲気は酸素濃度が2%以上であるのが好ましく、2%より低いと必要な二酸化珪素層を形成することができない。また、焼成温度は1450℃であり、1400〜1500℃が好ましい。1400℃より低いと、必要な二酸化珪素層を形成するのに多大な時間を要する。さらに、焼成時間は2〜6時間である。2時間より短いと、必要な二酸化珪素層を形成することができず、6時間より長いと経済的に不利である。   The oxygen atmosphere preferably has an oxygen concentration of 2% or more, and if it is lower than 2%, a required silicon dioxide layer cannot be formed. Moreover, a calcination temperature is 1450 degreeC and 1400-1500 degreeC is preferable. When the temperature is lower than 1400 ° C., it takes a long time to form a necessary silicon dioxide layer. Furthermore, the firing time is 2 to 6 hours. If it is shorter than 2 hours, a necessary silicon dioxide layer cannot be formed, and if it is longer than 6 hours, it is economically disadvantageous.

溶射には通常の溶射方法が適応できる。溶射膜は基材の全面に形成してもよいが、被焼成物を載置する部分を含めて基材の一部に形成してもよい。溶射膜の厚さは50〜1000μmとすることが好ましい。溶射材料の原料粒径は70〜130μmが好ましい。また、これらの原料より微細な原料の混合粉末を70〜130μmに造粒して溶射してもよい。   A normal thermal spraying method can be applied to the thermal spraying. The sprayed film may be formed on the entire surface of the base material, but may be formed on a part of the base material including a portion on which the object to be fired is placed. The thickness of the sprayed film is preferably 50 to 1000 μm. The raw material particle size of the thermal spray material is preferably 70 to 130 μm. Further, a mixed powder of raw materials finer than these raw materials may be granulated to 70 to 130 μm and sprayed.

ジルコニアの溶射膜を形成する場合は、ジルコニアの融点から考えてプラズマ溶射、特に水プラズマ溶射が好ましい。溶射はアンカー効果を利用して物理的な密着を行う方法であり、被膜が剥離し難いので好ましい。また、ジルコニアの溶射膜の場合は、未安定化ジルコニアと安定化或いは部分安定化ジルコニアを混在させることが好ましい。混在させる割合は特に限定する必要はない。ZrO被覆層を剥がれ難くするために、安定化または部分安定化ジルコニアが30〜60質量%、未安定化ジルコニアが70〜40質量%とすることが好ましい。 In the case of forming a zirconia sprayed film, plasma spraying, particularly water plasma spraying is preferred in view of the melting point of zirconia. Thermal spraying is a method of performing physical adhesion using the anchor effect, and is preferable because the coating is difficult to peel off. In the case of a zirconia sprayed film, it is preferable to mix unstabilized zirconia and stabilized or partially stabilized zirconia. There is no need to limit the mixing ratio. In order to make it difficult to peel off the ZrO 2 coating layer, it is preferable that the stabilized or partially stabilized zirconia is 30 to 60% by mass and the unstabilized zirconia is 70 to 40% by mass.

安定化剤としては、CaO又はYが好ましい。これにより、焼成道具材として加熱、冷却を繰返しても、特に安定化ジルコニアの残存膨張が吸収されて溶射層の剥離が少なく耐久性が向上する。溶射層における未安定化ジルコニアの割合は、30〜60質量%であることが好ましい。 As the stabilizer, CaO or Y 2 O 3 is preferable. Thereby, even if heating and cooling are repeated as a baking tool material, the residual expansion of the stabilized zirconia is absorbed, and the thermal spray layer is less peeled and durability is improved. The ratio of unstabilized zirconia in the sprayed layer is preferably 30 to 60% by mass.

なお、Al、ZrOの被覆方法は、溶射法のほか、所望のセラミックススラリーを塗布した後に高温で焼き付ける方法、CVD法など一般的な方法を用いてもよい。 As a method for coating Al 2 O 3 and ZrO 2, a general method such as a thermal spraying method, a method of baking at a high temperature after applying a desired ceramic slurry, or a CVD method may be used.

上記実施形態の炭化珪素質焼成用道具材の製造方法によれば、被焼成物時の省エネルギーの向上、生産性の向上および被焼成物を均一に反応処理することが可能で安価な炭化珪素質焼成用道具材を製造することができる。   According to the method for manufacturing a silicon carbide-based firing tool material of the above-described embodiment, the silicon carbide material is inexpensive and can improve the energy saving at the time of firing, improve the productivity, and uniformly treat the firing object. A baking tool material can be manufactured.

試験方法: 本発明の炭化珪素質焼成用道具材の製造方法により試料を作製し、表1に示す試験仕様と試験法により、図2に示すような測定位置1〜8の8点の曲げ強度、見掛け気孔率、見掛け比重、かさ比重を測定した。基板は270×270mm、厚さ4mmを用い、酸化処理前に半分に切断し、測定位置1〜4の基板は酸化処理し、測定位置5〜8の基板は酸化処理しなかった。曲げ強度の測定方法はJIS R2213−1995に、見掛け気孔率、見掛け比重の測定方法はJIS R2205−1992に準拠した。   Test method: A sample was prepared by the method for manufacturing a silicon carbide-based firing tool material of the present invention, and the bending strength at 8 points at measurement positions 1 to 8 as shown in FIG. The apparent porosity, apparent specific gravity, and bulk specific gravity were measured. The substrate used was 270 × 270 mm and had a thickness of 4 mm. The substrate was cut in half before the oxidation treatment, the substrate at measurement positions 1 to 4 was oxidized, and the substrate at measurement positions 5 to 8 was not oxidized. The measuring method of bending strength was based on JIS R2213-1995, and the measuring method of apparent porosity and apparent specific gravity was based on JIS R2205-1992.

結果:表1に示す。各測定値は4点の平均値を示す。

Figure 2006117472
Results: shown in Table 1. Each measured value shows an average value of four points.
Figure 2006117472

表1からもわかるように、実施例1、2、4は、見掛け気孔率を比較的大きな値を維持したまま、平均曲げ強度が65MPa以上と大きな値を得られ、また、見掛け比重が対応する比較例に比べて小さく、軽量が実現されていることがわかる。   As can be seen from Table 1, Examples 1, 2, and 4 can obtain a large value of an average bending strength of 65 MPa or more while maintaining a relatively large apparent porosity, and correspond to an apparent specific gravity. It can be seen that it is smaller and lighter than the comparative example.

さらに、実施例3は平均曲げ強度が39.6MPaと比較的小さいが、各実施例および比較例中最大の見掛け気孔率30.3%が得られる。   Furthermore, although the average bending strength of Example 3 is relatively small at 39.6 MPa, the maximum apparent porosity of 30.3% is obtained in each Example and Comparative Example.

これに対して、各比較例はいずれも、対応する実施例に対して、平均曲げ強度が小さく、また、見掛け比重が大きく、重量の割りには平均曲げ強度が小さいことがわかる。   On the other hand, it can be seen that each comparative example has a lower average bending strength, a larger apparent specific gravity, and a lower average bending strength relative to the weight of the corresponding example.

本発明に係る炭化珪素質焼成用道具材の概念図。The conceptual diagram of the tool material for silicon carbide based baking which concerns on this invention. 本発明の炭化珪素質焼成用道具材を用いた試験の測定点を示す説明図。Explanatory drawing which shows the measurement point of the test using the silicon carbide-like baking tool material of this invention.

符号の説明Explanation of symbols

1 炭化珪素質焼成用道具材
2 炭化珪素質基材
3 二酸化珪素層
DESCRIPTION OF SYMBOLS 1 Tool material for silicon carbide type baking 2 Silicon carbide type base material 3 Silicon dioxide layer

Claims (7)

炭化珪素質基材が見掛け気孔率20%以上、かつ見掛け比重3.20以下であり、前記炭化珪素質基材表層の炭化珪素結晶表面に二酸化珪素層が形成されたことを特徴とする炭化珪素質焼成用道具材。 The silicon carbide substrate has an apparent porosity of 20% or more and an apparent specific gravity of 3.20 or less, and a silicon carbide layer is formed on the silicon carbide crystal surface of the silicon carbide substrate surface layer. Quality firing tool material. 前記二酸化珪素層は酸化処理により形成されたことを特徴とする請求項1に記載の炭化珪素質焼成用道具材。 The silicon carbide-based firing tool material according to claim 1, wherein the silicon dioxide layer is formed by an oxidation treatment. 前記炭化珪素質基材の少なくとも被焼成物が載置される部分に、ZrOおよびAlの少なくとも一方が被覆されていることを特徴とする請求項1または2に記載の炭化珪素質焼成用道具材。 3. The silicon carbide material according to claim 1, wherein at least one of ZrO 2 and Al 2 O 3 is coated on at least a portion of the silicon carbide substrate on which the material to be fired is placed. Tool material for baking. 前記ZrOおよびAlの少なくとも一方が溶射により被覆されていることを特徴とする請求項3に記載の炭化珪素質焼成用道具材。 The silicon carbide based firing tool material according to claim 3 , wherein at least one of the ZrO 2 and Al 2 O 3 is coated by thermal spraying. 前記炭化珪素質基材の曲げ強度は60MPa以上であることを特徴とする請求項1〜4のいずれか1項に記載の炭化珪素質焼成用道具材。 The silicon carbide based firing tool material according to any one of claims 1 to 4, wherein the silicon carbide based substrate has a bending strength of 60 MPa or more. 前記炭化珪素質基材の見掛け気孔率は30%以上であり、かつ曲げ強度は35MPa以上であることを特徴とする請求項1〜4のいずれか1項に記載の炭化珪素質焼成用道具材。 The silicon carbide-based firing tool material according to any one of claims 1 to 4, wherein an apparent porosity of the silicon carbide-based substrate is 30% or more and a bending strength is 35 MPa or more. . SiC粉末等の炭化珪素原料に有機結合剤を、焼結後の残炭率が0〜5.0質量%となるように添加して混合し、この混合物に水を加えて混練し、成形して得られた多孔成形体を1500℃〜2400℃で焼結し、得られた焼結体を酸素濃度が2%以上の酸素雰囲気、1400℃〜1500℃、2〜6時間焼成することを特徴とする炭化珪素質焼成用道具材の製造方法。 An organic binder is added to a silicon carbide raw material such as SiC powder and mixed so that the residual carbon ratio after sintering is 0 to 5.0% by mass, and water is added to the mixture and kneaded and molded. The porous molded body thus obtained is sintered at 1500 ° C. to 2400 ° C., and the obtained sintered body is fired in an oxygen atmosphere having an oxygen concentration of 2% or more, 1400 ° C. to 1500 ° C., for 2 to 6 hours. A method for producing a silicon carbide-based firing tool material.
JP2004307147A 2004-10-21 2004-10-21 Tool material for firing silicon carbide Active JP4975246B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004307147A JP4975246B2 (en) 2004-10-21 2004-10-21 Tool material for firing silicon carbide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004307147A JP4975246B2 (en) 2004-10-21 2004-10-21 Tool material for firing silicon carbide

Publications (2)

Publication Number Publication Date
JP2006117472A true JP2006117472A (en) 2006-05-11
JP4975246B2 JP4975246B2 (en) 2012-07-11

Family

ID=36535724

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004307147A Active JP4975246B2 (en) 2004-10-21 2004-10-21 Tool material for firing silicon carbide

Country Status (1)

Country Link
JP (1) JP4975246B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009029692A (en) * 2007-06-28 2009-02-12 Covalent Materials Corp Tool material for firing and its production method
JP2012076940A (en) * 2010-09-30 2012-04-19 Covalent Materials Corp SiC TOOL MATERIAL FOR FIRING
JP2019011238A (en) * 2017-06-30 2019-01-24 クアーズテック株式会社 Tool material for firing
JP2019014636A (en) * 2017-07-10 2019-01-31 三井金属鉱業株式会社 Silicon carbide sintered body substrate and electronic component sintering tool including the same
KR20230150728A (en) 2022-04-22 2023-10-31 쿠어스택 가부시키가이샤 Materials of tools usale for burning

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6125860B2 (en) * 2013-02-22 2017-05-10 トーカロ株式会社 Ceramic spray coating coated member with excellent coating adhesion

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000109367A (en) * 1998-10-02 2000-04-18 Toshiba Ceramics Co Ltd Heat treatment method for silicon carbide sintered body and heat-treated silicon carbide
JP2002145671A (en) * 2000-11-01 2002-05-22 Toshiba Ceramics Co Ltd Method of regenerating firing vessel
JP2004231493A (en) * 2003-01-31 2004-08-19 Toshiba Ceramics Co Ltd Porous silicon carbide sintered compact and its manufacturing method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000109367A (en) * 1998-10-02 2000-04-18 Toshiba Ceramics Co Ltd Heat treatment method for silicon carbide sintered body and heat-treated silicon carbide
JP2002145671A (en) * 2000-11-01 2002-05-22 Toshiba Ceramics Co Ltd Method of regenerating firing vessel
JP2004231493A (en) * 2003-01-31 2004-08-19 Toshiba Ceramics Co Ltd Porous silicon carbide sintered compact and its manufacturing method

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009029692A (en) * 2007-06-28 2009-02-12 Covalent Materials Corp Tool material for firing and its production method
JP2012076940A (en) * 2010-09-30 2012-04-19 Covalent Materials Corp SiC TOOL MATERIAL FOR FIRING
JP2019011238A (en) * 2017-06-30 2019-01-24 クアーズテック株式会社 Tool material for firing
JP7220527B2 (en) 2017-06-30 2023-02-10 クアーズテック株式会社 baking tools
JP2019014636A (en) * 2017-07-10 2019-01-31 三井金属鉱業株式会社 Silicon carbide sintered body substrate and electronic component sintering tool including the same
KR20230150728A (en) 2022-04-22 2023-10-31 쿠어스택 가부시키가이샤 Materials of tools usale for burning

Also Published As

Publication number Publication date
JP4975246B2 (en) 2012-07-11

Similar Documents

Publication Publication Date Title
KR100756619B1 (en) Aluminum nitride sintered body, semiconductor manufacturing member, and method of manufacturing aluminum nitride sintered body
CN101333113B (en) Material for baking multilayer ceramic capacitor, manufacturing method thereof and regenerating method
KR101334640B1 (en) Composition for high strength siliconoxycarbide bonded silicon carbide ceramics and the producing method of the silicon carbide ceramics
EP1728774B1 (en) Oxide-bonded silicon carbide material
JP5154276B2 (en) Tools for firing electronic components
JP4975246B2 (en) Tool material for firing silicon carbide
EP1767885B1 (en) Kiln furniture for use in a non-oxidizing atmosphere
JP4348429B2 (en) Porous silicon nitride and method for producing the same
JP4171916B2 (en) Heat-resistant covering material
JP2000272968A (en) Silicon nitride sintered compact and its production
JP2002037660A (en) Plasma-resistant alumina ceramic and method for producing the same
JPH08208336A (en) Si-sic sintered compact having oxidation and creep resistance
JP4041879B2 (en) Ceramic porous body and method for producing the same
TWI383965B (en) A ceramic material for a ceramic ceramic container, a method for manufacturing the same, and a method for producing the same
JP2696735B2 (en) Manufacturing method of silicon nitride sintered body
JP2001278685A (en) Silicon carbide material and its manufacturing method
JP2508511B2 (en) Alumina composite
JP2005170729A (en) Container for firing
JPH10253259A (en) Material of roller for roller hearth furnace and manufacture thereof
JP2696734B2 (en) Manufacturing method of silicon nitride sintered body
KR940006428B1 (en) Process for the preparation of firebrick
JP4963157B2 (en) Ceramic composite and method for producing the same
JP4228987B2 (en) Manufacturing method of silicon nitride honeycomb filter
JP3027215B2 (en) Silicon nitride bonded SiC refractories
JPH11157919A (en) Alumina-based sintered compact having high strength and its production

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20070711

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070907

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100630

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100706

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110118

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110322

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110823

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111019

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120410

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120411

R150 Certificate of patent or registration of utility model

Ref document number: 4975246

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150420

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350