JP2004231493A - Porous silicon carbide sintered compact and its manufacturing method - Google Patents

Porous silicon carbide sintered compact and its manufacturing method Download PDF

Info

Publication number
JP2004231493A
JP2004231493A JP2003024291A JP2003024291A JP2004231493A JP 2004231493 A JP2004231493 A JP 2004231493A JP 2003024291 A JP2003024291 A JP 2003024291A JP 2003024291 A JP2003024291 A JP 2003024291A JP 2004231493 A JP2004231493 A JP 2004231493A
Authority
JP
Japan
Prior art keywords
silicon carbide
sintered body
porous
porous silicon
carbide sintered
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003024291A
Other languages
Japanese (ja)
Other versions
JP4383062B2 (en
Inventor
Kenki Ri
剣輝 李
Shigeaki Kuroi
茂明 黒井
Yushi Horiuchi
雄史 堀内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Coorstek KK
Original Assignee
Toshiba Ceramics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Ceramics Co Ltd filed Critical Toshiba Ceramics Co Ltd
Priority to JP2003024291A priority Critical patent/JP4383062B2/en
Publication of JP2004231493A publication Critical patent/JP2004231493A/en
Application granted granted Critical
Publication of JP4383062B2 publication Critical patent/JP4383062B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a porous silicon carbide sintered compact with high purity and high strength, which is sufficiently usable as a material for semiconductor manufacturing, and its manufacturing method. <P>SOLUTION: The porous silicon carbide sintered compact has a porosity of 30-50% and a pore diameter of 0.2-20 μm, and the silicon carbide particles forming the framework of the porous sintered compact have a ratio of neck diameter/particle diameter of ≥0.6. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、多孔質炭化珪素焼結体及びこの多孔質炭化珪素焼結体の製造方法に関し、より詳細には、高純度・高強度の多孔質炭化珪素焼結体および、冷間等方静水圧(CIP)成形体の特定条件下での反応焼結、並びに、スリップキャスト成形体の特定条件下での再結晶化に夫々特徴を有する多孔質炭化珪素焼結体の製造方法に関する。
【0002】
【従来の技術】
セラミックスの一種である炭化珪素焼結体は、耐熱性、熱伝導性、耐食性、強度、耐摩耗性等の数多くの物性に優れているため、幅広い用途に使用され、半導体製造工業分野においても半導体ウエハ熱処理装置用の熱遮蔽板、炉心管、支持台等に使用され、半導体工業を支える重要な材料となっている。
この炭化珪素焼結体は、耐熱性と機械的強度の観点から、気孔率の小さい緻密な炭化珪素焼結体が望ましい。しかしながら、気孔率の小さい緻密な炭化珪素焼結体を得ようとすると、焼成前の成形体中に焼結助剤を配合する必要があり、焼結後に炭化珪素焼結体中に残存し、これらが不純物としてウエハに悪影響を及ぼすことが知られている。
【0003】
これを解決する方法として、焼結助剤を配合することなく製造した多孔質の炭化珪素焼結体に、金属シリコンを含浸させて、気孔を塞ぐことにより機械的強度を補う方法も知られている。
しかしながら、金属シリコンを含浸させた炭化珪素焼結体にあっては、シリコンウエハと化学的に同質であるため、該炭化珪素焼結体を半導体製造用治具として利用した場合、高温処理において該治具とウエハとが接着するという弊害が生じる。
【0004】
更に、これらを解決する方法として、多孔質の炭化珪素焼結体に炭化珪素膜を形成し、炭化珪素焼結体中の不純物あるいは、前記した金属シリコンを外部と遮蔽する方法も知られている。
しかしながら、多孔質の炭化珪素焼結体に炭化珪素膜を形成したものにあっては、急速な昇降温により、該炭化珪素膜が剥離し、パーティクルになるという弊害があった。即ち、耐熱衝撃性が弱いという弊害があった。
【0005】
そして、かかる弊害を改善するために、特許文献1に示すような平均粒子径10μm以下の粉末が少なくとも70重量%含まれる炭化珪素粉末原料を焼結して得た焼結体が有する気孔を、気相法で得られた炭化珪素の被膜で被覆することが提案されている。
【0006】
【特許文献1】
特開平3−23267号公報(特許請求の範囲、第2頁右下欄第9行乃至第3頁左欄第15行)
【0007】
【発明が解決しようとする課題】
ところが、上記従来の方法で製造された多孔質炭化珪素焼結体は必ずしも機械的強度が充分でないという問題があった。従来の多孔質の炭化珪素焼結体の場合、一般的に曲げ強度は10MPa以下であり、前記した特開平3−23267号公報(特許文献1)記載のものであっても、多孔質の炭化珪素焼結体の曲げ強度は21.5MPa以下であり、炭化珪素膜で被覆したものであっても、78MPa以下であった。
【0008】
本発明は、上記技術的課題を解決するためになされたものであり、半導体製造工業分野で使用される部材として十分高純度で、かつ高強度の多孔質炭化珪素焼結体及び多孔質炭化珪素焼結体の製造方法を提供することを目的とする。
【0009】
また、本発明の他の目的は、多孔質炭化珪素焼結体を基材とし、この表面に炭化珪素膜が形成された、耐熱衝撃性と強度特性を向上させた多孔質炭化珪素焼結体及び炭化珪素多孔質焼結体の製造方法を提供することにある。
【0010】
【課題を解決するための手段】
本発明は上記技術的課題を解決するためになされたものであり、本発明によれば、気孔率が30%以上50%以下、気孔径が0.2μm以上20μm以下の多孔質炭化珪素焼結体であって、前記多孔質焼結体の骨格を構成する炭化珪素粒子のネック径/粒子径比が0.6以上であることを特徴とする多孔質炭化珪素焼結体が提供される。
【0011】
本発明の多孔質炭化珪素焼結体は、焼結体中の炭化珪素粒子が結合するネック部の径と炭化珪素粒子径との関係をネック径/粒子径比で、従来の多孔質炭化珪素焼結体では得られていなかった0.6以上とする構造にすることを大きな特徴とするものである。
【0012】
ネック径/粒子径比を0.6以上であっても、多孔質炭化珪素焼結体の気孔率が50%を超え、また気孔径が20μmを超えると、ネック部の数が少なくなる傾向があり十分な強度が得られず、また多孔質炭化珪素焼結体の表面の凹凸が大きくなり、例えば半導体ウエハ熱処理装置用のボート等に用いた場合に、半導体ウエハへのスリップ発生の要因となるため好ましくない。また気孔率が30%未満であると、ネック部数が多くなり強度は高いものの熱衝撃に耐する緩衝性が不十分となり好ましくない。
さらに、多孔質炭化珪素焼結体の気孔径を0.2μm未満とするためには、比較的低温にて焼結する必要があり、このようにすると十分な強度が得られないため好ましくない。
【0013】
本発明は、多孔質炭化珪素焼結体の上記ネック径/粒子径比、気孔率及び気孔径を特定範囲にすることで、従来にない高強度(曲げ強度40Mpa以上)と耐熱衝撃性(ΔTcが1200℃以上)を有する多孔質炭化珪素焼結体を提供することができる。
【0014】
本発明の多孔質炭化珪素焼結体においては、焼結体中のアルミニウム濃度が0.1〜3ppmであって、この濃度中の80%以上が炭化珪素粒子が結合するネック部に存在させることが好ましい。このような構成とすることによって、多孔質炭化珪素焼結体のネック部強度をより高めることができる。
【0015】
ここで、前記多孔質炭化珪素焼結体を基材とし、CVD法により炭化珪素膜を前記基材の開気孔内部にまで堆積被覆させることが望ましい。
このように、炭化珪素膜が前記基材の開気孔内部にまで堆積被覆するため、より高純度で、ウエハに対する汚染が抑制される。また、機械的強度を増加させることができる。更に、炭化珪素膜が剥離し難く、耐熱衝撃性が強いという特徴を有する。
【0016】
特に、前記基材の少なくとも表層の気孔が、前記炭化珪素膜により、閉気孔として形成されていることが望ましい。このような状態におかれた炭化珪素膜は基材と密着し、より剥離し難くなる。
そして、このようにして形成された炭化珪素膜が形成された多孔質炭化珪素焼結体は、曲げ強度が180MPa以上、耐熱衝撃性(ΔTc)が1200℃以上であることが望ましい。
【0017】
また、本発明は上記技術的課題を解決するためになされたものであり、本発明によれば、平均粒径が1〜100μmの炭化珪素原料粉末に、炭素源となるレジンと、平均粒径が1〜20μmの珪素粉末を添加して冷間等方静水圧成形した後、前記成形体を温度1800〜2300℃、減圧度0.01〜10Torrで反応焼結することを特徴とする多孔質炭化珪素焼結体の製造方法が提供される。
【0018】
上記炭化珪素原料粉末の平均粒径が1μm未満では、1μm未満の微細な粉末が多量に含まれるため焼結体の気孔径を調整することが困難となり、また焼成後の変型量が多くなり、製品の寸法制御が困難となるため好ましくない。100μmを超えると焼結体のネック径/粒子径比を0.6以上とすることが難しく十分な強度を有する多孔質炭化珪素焼結体が得られないため好ましくない。また、気孔率及び気孔径が大きくなり、焼結体の表面の凹凸が大きくなり、特にボート等の半導体ウエハ熱処理装置用部材として好ましくない。
また、上記珪素粉末の平均粒径が1μm未満では珪素粉末の分散が悪く、局部的に強度が低い部分を形成するため好ましくない。20μmを超えると仮焼段階でこの表面のみがバインダー分のカーボンと反応し、中央部が珪素のまま残在し、これを焼結すると残在した珪素が揮発し、20μmを超える気孔径を形成するため好ましくない。
【0019】
上記成形体の反応焼結過度が1800℃未満では、ネック径/粒子径比を0.6以上とすることが困難であり、また各原料中の金属不純物を焼結中に揮発することができず、焼結体を高純度とすることができず好ましくない。2300℃を超える高温であると焼結中に炭化珪素自身の揮発が生じ易く、特にネック部の強度を低下せしめるため好ましくない。
また、上記減圧度が0.01Torr未満では過剰な設備が必要となり、工業生産性が適さず、10Torrを超えるとネック径/粒子径比を0.6以上とすることが困難であり、かつ、十分な純度の焼結体を得ることが困難となるため好ましくない。
【0020】
この製造方法は、炭化珪素粉末、レジン、珪素粉末から成る原料混合物をCIP成形した後、高温、真空下に焼成して反応焼結する点が構成上の顕著な特徴である。
即ち、ラバープレス等を用いた均一な押圧によって、成形体を均質に圧縮し、緻密化する。またその後の高温焼結における珪素粉末とレジン由来の炭素との反応で生成したSiCが、粒子間融着を促進しネック部を強化する。
その結果、前記製造方法で得られた多孔質焼結体は、30%以上50%以下とかなり高い気孔率を有しているにもかかわらず、ネック径/粒径比(l/r)が0.6以上と大きく、曲げ強度等の強度特性に優れている。また、平均気孔径も0.2〜20μmと比較的揃った孔径の開気孔を有する。更に、高温で減圧下にて焼成されるため、部分溶解により表面に出た金属成分が蒸発揮散し易く、従来法で製造された多孔質炭化珪素焼結体のように粒界に金属不純物成分が蓄積されることが少ない。このため得られる多孔質炭化珪素焼結体は高純度で、ウエハの汚染を抑制することができる。
【0021】
ここで、前記成形体を、前記減圧下で反応焼結する前に、温度1400〜1600℃、減圧度1〜50Torrで、仮焼成することが望ましい。
前記したように、減圧下で反応焼結する前に、成形体を該反応焼結温度より低い温度で減圧下に仮焼成することが、本焼成時の予期せぬ収縮変形の防止、強度特性の向上、高純度化等の観点から好ましい。
上記仮焼成温度が1400℃未満では、珪素粉末とバインダー分のカーボンとが十分反応せずネック径/粒子径比を0.6以上の焼結体を得ることが困難となり、また、仮焼成後に加工を行なった後の焼結時の熱収縮が大きいため製品の寸法管理が困難となり好ましくない。1600℃を超えると仮焼成後の強度が高くなりすぎ、均一性が劣るため好ましくない。また、バインダーの揮発分を適度に揮発させた上で、減圧度を1〜50Torrとすることが好ましい。
珪素粉末100重量部に対してアルミニウム1〜3重量部を、固溶させもしくは別体として加えることが望ましい。これにより、多孔質炭化珪素焼結体中のアルミニウム濃度が0.1〜3ppmであって、この濃度中の80%以上が炭化珪素粒子が結合するネック部に存在する多孔質炭化珪素焼結体を得ることができる。
【0022】
また、前記多孔質炭化珪素焼結体を基材とし、CVD法により炭化珪素膜を前記基材の気孔内部にまで堆積被覆させることが望ましい。
このように、CVD法により炭化珪素膜を前記基材の気孔内部にまで容易に堆積被覆させることができ、炭化珪素膜が前記基材の開気孔内部にまで堆積被覆するため、より高純度で、かつ機械的強度を増加させることができる。また前記炭化珪素膜が剥離し難く、耐熱衝撃性が強く、ウエハに対する汚染をより抑制することができる。
【0023】
更に、本発明は上記技術的課題を解決するためになされたものであり、本発明によれば、平均粒径1.5μm以下の炭化珪素粉末原料と残炭の少ないバインダーと分散剤とからなるスラリーをスリップキャスト成形した後、成形体を、1500℃以上〜2200℃以下の温度で焼結して、炭化珪素多結晶粒を再結晶化させることを特徴とする多孔質炭化珪素焼結体の製造方法が提供される。
上記炭化珪素粉末原料の平均粒径が1.5μmを超えると、炭化珪素粉末どうしの再結晶化による結合が十分に行なわれず、結果、高い強度を得ることができないため好ましくない。
上記焼結温度が1500℃未満では、ネック径/粒子径比を0.6以上とすることができず好ましくなく、2300℃を超える高温であると焼結中に炭化珪素自身の揮発が生じ易く、特にネック部の強度を低下せしめるため好ましくない。
なお、この製造方法によると平均気孔径が0.2から5μmの開気孔を有する。
【0024】
ここで、前記成形体を焼結する前に、1100〜1500℃で、仮焼成することが望ましい。前記したように、減圧下で反応焼結する前に、成形体を該反応焼結温度より低い温度で減圧下に仮焼成することが、本焼成時の予期せぬ収縮変形の防止、強度特性の向上、高純度化等の観点から好ましい。
また、この製造方法においても、CVD法により炭化珪素膜を基材の気孔内部にまで堆積被覆させることが、より高純度で、かつ機械的強度を増加させることができる点から好ましい。また炭化珪素膜は剥離し難く、耐熱衝撃性が高く、ウエハに対する汚染をより抑制できる。
【0025】
【発明の実施の形態】
本発明にかかる多孔質炭化珪素焼結体およびこの多孔質炭化珪素焼結体の製造方法について、まず、多孔質炭化珪素焼結体の製造方法から説明する。この多孔質炭化珪素焼結体の製造方法として、二つの製造方法を例示し、夫々を順次説明する。
【0026】
まず、第一の多孔質炭化珪素焼結体の製造方法は、炭化珪素原料粉末に炭素源となるレジンと珪素粉末を添加して冷間等方静水圧(CIP)成形した後、1800℃以上2300℃以下で減圧下で反応焼結することを特徴とする。
原料として使用する炭化珪素粉末は、平均粒径が、1〜100μm、より好ましくは10〜80μmのものを使用することが好ましい。
また、平均粒径50〜100μm程度の粗粒粉末と平均粒径1〜10μm程度の細粒粉末を30:70〜70:30程度の配合比で混合したものを使用することもできる。
炭化珪素粉末には、αーSiCとβーSiCがあり、何れも用いることができるが、金属不純物が少なく、高純度で粒度分布が比較的良く管理されて、粗大粒の混入のないものが好ましく、この点からαーSiCがより好ましい。
【0027】
また、炭素源として用いるレジンとしてはレゾール形、ノボラック形等のフェノール樹脂、エポキシ樹脂、アクリル樹脂等を用いることができる。
また、前記炭化珪素粉末と炭素源となるレジンと共に用いる珪素微粉末としては、通常平均粒径1〜20μm、好ましくは5〜10μmの高純度品Si粉末を使用する。
上記方法では、通常、炭化珪素粉末100重量部に対し、炭素源としてのレジンを5〜30重量部、好ましくは5〜15重量部、珪素粉末を5〜40重量部、好ましくは5〜20重量部の割合で配合する。珪素粉末の量はレジンの種類により調整することが好ましい。
【0028】
次いで、上記配合割合の混合物を顆粒化し、これを、例えば、ラバープレス(ゴム型)等の型に入れて通常、常温〜40℃程度の温度で、80〜150MPaの加圧下に冷間等方静水圧(CIP)成形し、成形体とする。
この成形体を、1800℃以上、好ましくは2000〜2200℃の温度で、減圧0.01〜10Torr、好ましくは0.01〜1Torrの真空下に焼成し、反応焼結する。
【0029】
この第一の製造方法においては、この反応焼結の前に、成形体を前記反応焼結温度よりも低温で減圧下にプレ焼成(仮焼成)することが特に好ましい。
これにより、前記成形体を予め収縮させて本焼成(反応焼結)時の予期せぬ収縮変形を防止できる。また、その後の加工をし易くすると共に基材の強度を増加、均質化することができる。更に、この減圧焼成により金属成分等の不純物が表面から蒸発・揮散し、得られる多孔質焼結体の純度を向上させることができる。
【0030】
仮焼成は、温度1400〜1600℃、減圧度1〜50Torrで実施されることが好ましい。
もちろん、この製造方法の場合、前記不純物金属成分の揮散は、本焼成(反応焼結)時にも行われ、従って、この製造方法で得られた多孔質炭化珪素焼結体は、後に述べるように、不純物金属の代表としてのFe濃度が1ppm以下(通常0.01ppm程度)と極めて高純度のものとなる。
【0031】
この第一の製造方法では、前記仮焼成した、あるいは未焼成の成形体を、減圧下で高温反応焼結する工程が極めて重要で、この工程中において成形体中のレジン由来の炭素と微粒珪素が反応し、図1に示すように、これが焼結により半融状態にある炭化珪素粒子7間の接合を促進し、自らも該接合粒界部に付着してネック部Nを拡大強化する作用を奏する。
このため、得られた多孔質焼結体は、その気孔率が30〜50%と比較的大きいにもかかわらず、l/r(l:ネック径、r:粒子径)が大きく、高強度である。また、気孔径分布も0.2〜20μmと比較的揃った孔径の開気孔を有し、このこともこの多孔質焼結体が高強度を示す理由の一つと考えられる。
【0032】
次に、多孔質炭化珪素焼結体の第二の製造方法について説明する。
この第二の製造方法は、平均粒径1.5μm以下の炭化珪素粉末原料とバインダーと分散剤とのスラリーをスリップキャスト成形した後、1500℃以上2200℃以下の温度で焼結して結晶粒を再結晶化させることを特徴とする。
前記原料炭化珪素粉末は、平均粒径が、1.5μm以下、より好ましくは0.8〜1.5μm程度のものを使用することが好ましい。原料炭化珪素の粒径が上記1.5μmよりも大きい場合には、得られる多孔質焼結体の気孔率が50%を超えると共に曲げ強度が低下し、本発明の目的を達成することができない。
【0033】
この第二の製造方法において、原料炭化珪素粒子と共に用いるバインダーとしては、この方法での焼成条件で通常残炭率が、0.5%未満となる、例えば、ポリビニルアルコール、メチルセルローズ、カルボキシメチルセルロース、ヒドロキシエチルセルロース、フラン樹脂等を用いる。
また、分散剤としては、アクリル系共重合体樹脂、イミン系樹脂、スチレン・マレイン酸共重合体樹脂、それらのオリゴマー、ナフタレンスルフォン酸・ホルマリン縮合物、界面活性剤等を挙げることができる。
【0034】
また、上記製造方法では、通常、炭化珪素粉末100重量部に対し、バインダーを1〜10重量部、好ましくは2〜5重量部、分散剤を0.2〜2重量部、好ましくは0.5〜1重量部の割合で配合する。
更に、スラリー濃度は、固形分換算重量分率として、50〜80%、特に60〜70%が好ましい。
また、分散媒としては、ナフサ、シクロヘキサン、ベンゼン等の炭化水素系溶媒やアルコール、ケトン、エステル、エーテル等の含酸素有機溶媒等の有機系溶媒も使用できるが、分散質との比重差、分散性、安全性、経済性等の理由から、水、水性アルコール等の水性分散媒の使用が好ましい。
【0035】
上記配合割合のスラリーを石膏型あるいは他の多孔質材鋳型を用いて、常圧または加圧下に、常温〜30℃程度の温度下に鋳込み成形(スリップキャスト成形)する。そして、得られた成形体を乾燥した後、1500℃以上の温度、特に好ましくは1800〜2200℃で焼結して結晶粒を再結晶化させる。
【0036】
この第二の製造方法においても、この本焼成の前に、成形体を該焼成温度よりも低温で減圧下にプレ焼成(仮焼成)することが特に好ましい。これにより、前記成形体を予め収縮させて本焼成(反応焼結)時の予期せぬ収縮変形の防止ができ、また、この減圧焼成により金属成分等の不純物が表面から蒸発・揮散し、得られる多孔質焼結体の純度が向上する。
この仮焼成は、温度1100〜1500℃、減圧度1〜50Torrで実施されることが好ましい。この製造方法で得られた多孔質焼成体も、Fe濃度が1ppm以下(通常0.1ppm程度)と極めて高純度のものとなる。
【0037】
この第二の製造方法では、微粒で、粒径分布の比較的狭い炭化珪素粒子をスリップキャスト法で成形した後、再結晶焼結させている。
これにより、得られた多孔質焼結体も、前記第1の製造方法の多孔質焼結体と同様に、気孔率がかなり高いにもかかわらず、ネック径/粒子径比(l/r)が大きく、気孔径も比較的揃い、曲げ強度等の強度特性に優れ、高純度なものとなる。また、原料炭化珪素粉末が微粒であるため、得られる多孔質焼成体の気孔径は、前記第一の製造方法で製造された多孔質焼結体に比べ小さく、強度はより強いものとなる。
【0038】
次に、本発明にかかる多孔質炭化珪素焼結体について詳述する。
この多孔質炭化珪素焼結体は、気孔率が30〜50%、好ましくは35〜45%、気孔径が0.2〜20μm、特に、前記第1の製造方法で得られた多孔質炭化珪素焼結体では5〜20μm程度、第2の製造方法で得られた多孔質炭化珪素焼結体では0.2〜5μm程度の各範囲にある。
また、気孔径分布が狭く比較的揃った開気孔を有している。
更に、図1に示すように、該多孔質焼結体の骨格を構成する炭化珪素結晶粒子7のネック径/粒子径比(l/r)が0.6以上、好ましくは0.7〜1.0の範囲にある。
【0039】
ここで、ネック径/粒子径比(l/r)とは、多孔質焼結体を構成する炭化珪素結晶粒子を球形近似したときの該粒子半径rと、それらが焼結により融着したネック部Nの断面径lとの比を平均したもので、焼結の進行度合いを表すと共に曲げ強度等の間接的指標となる。
また、本発明にかかる多孔質炭化珪素焼結体は、曲げ強度(3点曲げ強度)が40MPa以上、好ましくは50〜150MPaであり、更に、Feをはじめ、K、Na、Ca、Ni、Cr、Al、Cu等の金属不純物濃度がいずれも夫々1ppm以下で、全金属不純物の合計濃度が10ppm以下である。
【0040】
次に、上記多孔質炭化珪素焼結体を基材とし、これにCVD法により炭化珪素膜を該多孔質焼結体の気孔内部にまで堆積被覆させた多孔質炭化珪素焼結体について説明する。
この多孔質焼結体のCVD法による炭化珪素膜の堆積は、例えば、トリクロルメチルシランガス等のカーボンを含むシランガスをキャリアガスとしての水素ガス等と共に導入し、好ましくは40Torr程度の減圧下で、1100〜1300℃程度の温度で多孔質焼結体にSiCを堆積させる。
通常、一回の処理で50〜60μmの膜厚に形成し、好ましくは、この処理を数回繰り返して120〜240μm程度の表面厚さの膜を形成させる。
【0041】
上記CVD処理された多孔質炭化珪素焼結体は、CVD処理により形成された炭化珪素膜が、その開気孔の内部にまで浸透し、表面から相当の深さの気孔内壁にまで堆積していることが顕著な特徴である。
図2に模式的に示すように、多孔質炭化珪素焼結体の基材1にCVD処理により炭化珪素膜2が形成された多孔質炭化珪素焼結体3の表面部分は、緻密な炭化珪素膜2となり、該緻密な炭化珪素膜2と基材(多孔質炭化珪素焼結体)1との界面4から基材(多孔質炭化珪素焼結体)1内部に向かって、炭化珪素膜2aの堆積により閉気孔5が形成され、更に内部に向かうと多孔質炭化珪素焼結体自体の開気孔6が存在する。
【0042】
具体的に図4に基づいて説明すると、第1の製造方法で製造された多孔質炭化珪素焼結体(R素材)を基材としたものにあっては、炭化珪素膜(120μm)と基材との界面から800μmの深さにある基材の気孔の内壁(炭化珪素結晶粒面)にも、0.5μm程度の炭化珪素膜の堆積が確認されている。
【0043】
前記CVD処理により、炭化珪素膜が被覆された多孔質炭化珪素焼結体は、曲げ強度が180MPa以上、好ましくは200〜300MPa以上、耐熱衝撃性(ΔTc)が1200℃以上である。
即ち、従来の炭化珪素膜で被覆した炭化珪素焼結体(特許文献1)の場合、78MPa以下であるのに対し、曲げ強度が180MPa以上となすことができる。また、従来の炭化珪素膜で被覆した炭化珪素焼結体(特許文献1)の耐熱衝撃性(ΔTc)は500℃まで異常が認められないの対して、1200℃まで異常が認められない。
しかも、全表面が高純度のCVDー炭化珪素膜で被覆されているため焼結体中の金属不純物を完全に閉じこめることができ、汚染を防止する作用も奏する。
【0044】
これら第一の製造方法、第二の製造方法で製造された多孔質炭化珪素焼結体、またこれら多孔質炭化珪素焼結体に炭化珪素膜を被覆した多孔質炭化珪素焼結体は、いずれも高純度、高強度であり、かつ緻密体に比べて軽量である。そのため、炭化珪素の本来の高温耐性を生かして、例えば、半導体ウエハ製造用のシリコン溶融ルツボ等の高温溶融容器で用いる部材や、熱遮蔽板、発熱体、抵抗体、炉芯管等の高温熱処理部材、更には、ウエハ熱処理用カセットボート、サセプタ等の半導体部材に好適に用いることができる。
【0045】
特に、第二の製造方法で製造された多孔質炭化珪素焼結体を炭化珪素で被覆したものは、高強度であるだけでなく、耐熱衝撃性に優れているため、高温でしかも温度昇降が激く、かつより完全な汚染の防止が求められるウエハ熱処理装置や治具用の部材、例えば、SIMOX(Silicon Implanted Oxide)法によるSOI(Silicon On Insulator)ウエハを製造するための部材として極めて好適である。
【0046】
【実施例】
「実施例1」
原料炭化珪素(SiC)粉末として平均粒径10μmと70μmで重量比が30:70である高純度αーSiC粉末100重量部と炭素源としても用いるレジンとしてレゾール形フェノール樹脂15重量部及びアルミニウム0.18重量部(Si粉末100重量部に対してアルミニウム1重量部)固溶させた平均粒径5μmの高純度Si粉末18重量部を混合・混練し、顆粒化した後、ゴム型に入れ、室温で、100MPaの加圧下にCIP成形し、硬化成形体とした。
【0047】
この成形体を、1550℃、20Torrの減圧下に仮焼成した後、2200℃、10Torrの真空下に本焼成し、反応焼結した。
得られた多孔質焼結体は、嵩密度が1.88g/cm、気孔率が39%、気孔径14μm、l/rが0.7、3点曲げ強度48MPaであった。また、不純物金属の含有濃度は、Feが0.01ppmであり、その他の不純物金属としては、K:0.01ppm未満、Na:0.01ppm未満、Ca:0.04ppm、Ni:0.01ppm、Cr:0.01ppm未満、Al:0.10ppm、Cu:0.01ppm未満、Mg:0.01ppm未満、Zn:0.01ppm未満、Mn:0.01ppm未満であった。また、多孔質焼結体の断面をTEM観察したところ、観察画面での面積比でAl存在部の85%以上がネック部であることが確認された。
また、この多孔質焼結体を基材として、前記したCVD処理(2回)を行った。この炭化珪素膜を被覆した多孔質炭化珪素焼結体(膜厚120μm)の強度は185MPaであった。
【0048】
「比較例1」
実施例1において、Si微粉末を配合せず、本焼成温度を2000℃とした以外は、実施例1と同様にして、多孔質焼結体を得た。
この多孔質焼結体の気孔率は30%、平均気孔径7μm、l/rは0.3、曲げ強度28MPa、不純物金属としてFe濃度0.16ppmであった。
Si微粉末の配合が無い比較例1の多孔質燒結体は、l/rが小さく、強度的に劣ることがわかった。
【0049】
「比較例2」
実施例1において、仮焼成温度を1400℃、本焼成温度を1550℃とした以外は、実施例1と同様にして、多孔質焼結体を得た。
この多孔質焼結体の気孔率は39%、気孔径12μm、l/rは0.3、曲げ強度11MPa、不純物金属としてFe濃度11ppmであった。
焼成温度が低い比較例2の多孔質焼結体は、l/rが小さく、強度が低く、純度レベルも劣ることがわかった。
【0050】
「比較例3」
実施例1において、レジンを添加せず、極少量(約3重量部)のメチルセルローズをバインダーとして添加した以外は、実施例1と同様にして、多孔質焼結体を得た。
この多孔質焼結体の気孔率は34%、気孔径5μm、l/rは0.5、強度36MPaであった。
炭素源レジンの配合が無い比較例3の多孔質焼結体は、l/rがやや小さく、強度的にもやや劣る。
【0051】
「比較例4」
実施例1において、実施例の原料にSi微粉を添加せず、1800℃本焼成した後に、Si含有雰囲気で、レジン由来のC源を珪化して多孔質焼結体を得た。
この多孔質焼結体の気孔率は27%、気孔径は0.4μm、l/rは0.4、強度は28MPaであった。
出発原料ではなく、後工程でSi源を供給して、更に焼成温度を低くしたため、多孔質焼結体のl/rが小さく、強度的にも劣る。
また、この多孔質焼結体を基材として、炭化珪素膜を被覆した多孔質炭化珪素焼結体は基材の気孔径が0.4μmと小さく基材内部にまでCVD堆積せず、このため強度も55MPaと低かった。
【0052】
「実施例2」
平均粒径0.9μmの炭化珪素微粉末100重量部、メチルセルローズをバインダーとして3重量部、非イオン系界面活性剤を分散剤として1重量部、純水55重量部を夫々配合した水性スラリーを石膏型に注入してスリップキャスト成形し、乾燥した後、1200℃、減圧度10Torrで仮焼成し、その後2200℃で焼結して結晶粒を再結晶化させ、多孔質焼結体を得た。
この多孔質焼結体を、実施例1と同様に物性評価したところ、気孔率は42%、平均気孔径3μm、l/r1.0、曲げ強度94MPa、不純物金属としてのFe濃度は0.08ppmであった。
また、この多孔質焼結体を基材としてCVD処理(2回)したCVDSiC被覆多孔質炭化珪素焼結体(膜厚120μm)の強度は246MPaであった。
【0053】
「比較例5」
実施例2において、仮焼成をせず、本焼成温度を1200℃とした以外は実施例2と同様にして多孔質焼結体を得た。
この多孔質焼結体の気孔率は42%、平均気孔径は0.2μm、l/rは0.4、曲げ強度20MPa、Fe濃度は17ppmであった。
焼成温度が低い比較例5の多孔質焼結体は、l/rが小さく、強度が低く、純度レベルも劣ることがわかった。
【0054】
「比較例6」
実施例2において、原料SiCに平均粒径10μmのαーSiC粉末を用いた以外は、実施例2と同様にして、多孔質焼結体を得た。
この多孔質焼結体の気孔率は52%、気孔径は12μm、l/rは0.55、強度は19MPaであった。
炭化珪素の平均粒径が大き過ぎるため、気孔率が52%と大きくなり、強度も顕著に低下している。
【0055】
「実施例3」
実施例1、2において種々本焼結温度を変え、CVD処理前の試料を作成し、3点曲げ強度測定用を行った。尚、試料の大きさを6×8×40mmとした。
その結果を図3に示す。
図3のRは第一の製造方法によるもので(実施例1)、40MPaを超える曲げ強度を得るには2000℃以上の温度での焼結(本焼成)が必要であることがわかった。また、図3のSは、第二の製造方法によるもので(実施例2)、40MPaを超える曲げ強度を得るには1500℃以上の温度での焼結が必要であることがわかった。
【0056】
「実施例4」
実施例1、2において炭化珪素膜の膜厚を変えて試料を作成し、3点曲げ強度測定用を行った。尚、試料の大きさを3×4×40mmとし、成膜条件:SiCl:C10:H=5:1:10、1200℃、40Torrとした。
その結果を図5に示す。
図5のRは第一の製造方法によるもので(実施例1)、CVD4回処理で表層膜厚220μmの場合、強度は197MPa、CVD2回処理で表層膜厚120μmの場合、強度は183MPaであり、180MPaを超える高強度のCVD被覆処理多孔質焼結体を得るためには、膜厚120μm以上が好ましいことがわかった。
また、図5のSは、第二の製造方法によるもので(実施例2)、CVD4回処理で表層膜厚220μmの場合、強度は298MPa、CVD2回処理で表層膜厚120μmの場合、強度は264MPaであることがわかった。
【0057】
「実施例5」
実施例1、2と同様にして作成された試料(CVD2回コート後の多孔質焼結体(CVDSiC表層膜厚120μm))について、気孔内部のSiC粒子上に堆積したCVD膜の厚さと、該気孔の基材界面からの深さ方向位置との関係を調べた。その結果を図4に示す。
図4のRは第一の製造方法によるもので(実施例1)、図から基材界面ではCVDSiCは粒子間の気孔を完全に埋め込んでいることがわかった。界面から数十μmのところでは閉気孔がみられ、更に中心方向に行くとCVD炭化珪素膜の付いている開気孔になり、内部粒子上の膜厚は次第に薄くなる。しかし、図より深さ800μmでも約0.5μmのCVD膜が堆積していることがわかった。
また、図4のSは、第二の製造方法によるもので(実施例2)、このCVDコート多孔質焼結体(S素材)の場合も、基材界面ではCVDSiCは粒子間の気孔を完全に埋め込んでいる。界面から数μmのところで閉気孔がみられ、更に中心方向に行くとCVD炭化珪素膜の付いている開気孔になり、内部粒子上の膜厚が次第に薄くなる。図より深さ100μmで約0.2μmのCVD膜が堆積していることがわかった。
【0058】
「実施例6」
SIMOX法SOIウエハの製造工程ではウエハを約600℃で酸素イオン注入した後に、600〜1000℃から1340〜1350℃に急加熱する。従って、これに使用するボートは、上記高温での急昇温のような過酷な条件に曝されても、膜剥離やチッピング、極端な強度低下等の不都合を招来することが無い優れた耐熱衝撃特性を有することが要求される。
【0059】
このため、次の夫々評価試験を実施した。
(耐熱衝撃性(ΔTc))
水中急冷法により測定した、実施例1,2により作成された多孔質焼結体試料(試料の基材サイズ2.5×3.5×40、膜厚220μm)のΔTcと3点曲げ強度との関係を図6に示す。
図6のRは第一の製造方法によるもので、この試料(R材)の曲げ強度は測定可能な最大(急冷)温度差である1200℃でも低下が無く、従ってΔTc値は1200℃以上であることがわかった。また、水中急冷後の試料には膜の剥がれ、クラック、水中に浸漬した後の重量増は認められなかった。
また、図6のSは、第二の製造方法によるもので(実施例2)、この試料の曲げ強度は測定可能な最大温度差1200℃迄低下が無く、従ってΔTc値は1200℃以上であることがわかった。また、水中急冷後の試料には膜の剥がれ、クラック、水中に浸漬した後の重量増は認められなかった。
【0060】
(熱サイクルによる加速検証試験)
実施例1,2によって作成された試料を、1200℃の炉内に一気に入れ、20分間加熱し、一気に炉外に搬出し、再び、炉内に搬入することを4回行い、その後16時間フッ硝酸洗浄を行う。これを繰り返し、爆裂、膜剥離、チッピング、層間剥離、クラック発生の有無等を確認した。
実施例1,2によって作成された試料にあっては、50回熱サイクルまでは爆裂、チッピング、層間剥離、洗浄後の重量変化は認められなかった。
【0061】
(高温強度測定)
実施例1,2によって作成された3×4×40mmサイズの試料について、Ar雰囲気中1400℃までの強度を測定した。なお、炭化珪素膜の膜厚は、CVD処理を4回行い、膜厚220μmとした。その結果を図7に示す。
実施例1,2によって作成された試料にあっては、1400℃までの強度低下は見られなかった。
【0062】
【発明の効果】
本発明によれば、半導体製造工業分野で使用される部材として十分高純度で、かつ高強度の炭化珪素多孔質焼結体及び炭化珪素多孔質焼結体の製造方法を得ることができる。
また、前記多孔質炭化珪素焼結体を基材とし、この表面に炭化珪素膜が形成された、耐熱衝撃性と強度特性を向上させた多孔質炭化珪素焼結体及び炭化珪素多孔質焼結体の製造方法を得ることができる。
【図面の簡単な説明】
【図1】SiC粒子の結合状態を示す模式図である。
【図2】多孔質炭化珪素焼結体に炭化珪素膜を形成した状態を示す模式図である。
【図3】本発明にかかる多孔質焼結体素材(R素材、S素材)の焼成温度と3点曲げ強度と関係を示すグラフである。
【図4】本発明にかかるSiC被覆の多孔質炭化珪素焼結体における堆積膜・基材界面からの深さ距離と気孔内のSiC堆積厚さとの関係を示すグラフである。
【図5】本発明にかかるSiC被覆の多孔質炭化珪素焼結体の膜厚と3点曲げ強度と関係を示すグラフである。
【図6】本発明にかかるSiC被覆の多孔質炭化珪素焼結体の曲げ強度と耐熱衝撃性(ΔTc)との関係を示すグラフである。
【図7】本発明にかかるSiC被覆の多孔質炭化珪素焼結体における、温度と3点曲げ強度の測定結果を示すグラフである。
【符号の説明】
1 (多孔質炭化珪素焼結体)基材
2 炭化珪素膜
2a 炭化珪素結晶粒子に形成された炭化珪素膜膜
3 (炭化珪素膜が形成された)多孔質炭化珪素焼結体
4 界面
5 閉気孔
6 開気孔
7 炭化珪素結晶粒子
l ネック径
r 粒子径
N ネック部
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a porous silicon carbide sintered body and a method for producing the porous silicon carbide sintered body, and more particularly, to a porous silicon carbide sintered body having high purity and high strength, and a cold isostatic pressing method. The present invention relates to a method for producing a porous silicon carbide sintered body, which is characterized by reaction sintering of a hydraulic (CIP) molded body under specific conditions and recrystallization of a slip cast molded body under specific conditions.
[0002]
[Prior art]
Silicon carbide sintered bodies, which are a type of ceramics, have excellent physical properties such as heat resistance, thermal conductivity, corrosion resistance, strength, and abrasion resistance. It is used as a heat shield plate, a furnace tube, and a support base for a wafer heat treatment apparatus, and is an important material supporting the semiconductor industry.
The silicon carbide sintered body is preferably a dense silicon carbide sintered body having a small porosity from the viewpoint of heat resistance and mechanical strength. However, in order to obtain a dense silicon carbide sintered body having a small porosity, it is necessary to incorporate a sintering aid into the molded body before firing, which remains in the silicon carbide sintered body after sintering, It is known that these adversely affect the wafer as impurities.
[0003]
As a method of solving this, there is also known a method of impregnating a porous silicon carbide sintered body manufactured without blending a sintering aid with metallic silicon and closing the pores to supplement the mechanical strength. I have.
However, since the silicon carbide sintered body impregnated with metallic silicon is chemically the same as the silicon wafer, when the silicon carbide sintered body is used as a jig for manufacturing a semiconductor, the silicon carbide sintered body is subjected to high-temperature treatment. There is an adverse effect that the jig and the wafer adhere to each other.
[0004]
Further, as a method for solving these problems, a method of forming a silicon carbide film on a porous silicon carbide sintered body and shielding impurities in the silicon carbide sintered body or the above-described metal silicon from the outside is also known. .
However, in the case where a silicon carbide film is formed on a porous silicon carbide sintered body, there is a problem that the silicon carbide film peels off due to rapid temperature rise and fall and becomes particles. That is, there is a problem that the thermal shock resistance is weak.
[0005]
Then, in order to improve such adverse effects, pores of a sintered body obtained by sintering a silicon carbide powder raw material containing at least 70% by weight of a powder having an average particle diameter of 10 μm or less as shown in Patent Document 1, It has been proposed to coat with a film of silicon carbide obtained by a gas phase method.
[0006]
[Patent Document 1]
JP-A-3-23267 (Claims, page 9, lower right column, line 9 to page 3, left column, line 15)
[0007]
[Problems to be solved by the invention]
However, there is a problem that the porous silicon carbide sintered body manufactured by the above-mentioned conventional method does not always have sufficient mechanical strength. In the case of a conventional porous silicon carbide sintered body, the bending strength is generally 10 MPa or less, and even in the case of the above-mentioned Japanese Patent Application Laid-Open No. H3-23267 (Patent Document 1), the porous carbonized The bending strength of the silicon sintered body was 21.5 MPa or less, and even when covered with a silicon carbide film, it was 78 MPa or less.
[0008]
The present invention has been made in order to solve the above technical problems, and has a sufficiently high purity as a member used in the semiconductor manufacturing industry, and a high-strength porous silicon carbide sintered body and porous silicon carbide. An object of the present invention is to provide a method for manufacturing a sintered body.
[0009]
Another object of the present invention is to provide a porous silicon carbide sintered body having a porous silicon carbide sintered body as a base material and having a silicon carbide film formed on the surface thereof and having improved thermal shock resistance and strength characteristics. And a method for producing a porous silicon carbide sintered body.
[0010]
[Means for Solving the Problems]
The present invention has been made to solve the above technical problems, and according to the present invention, a porous silicon carbide sintered body having a porosity of 30% to 50% and a pore diameter of 0.2 μm to 20 μm. A porous silicon carbide sintered body characterized in that the ratio of neck diameter / particle diameter of silicon carbide particles constituting the skeleton of the porous sintered body is 0.6 or more.
[0011]
The porous silicon carbide sintered body of the present invention uses a conventional porous silicon carbide in which the relationship between the diameter of the neck portion to which the silicon carbide particles in the sintered body are bonded and the silicon carbide particle diameter is determined by the neck diameter / particle diameter ratio. A major feature is that the structure is set to 0.6 or more, which has not been obtained with a sintered body.
[0012]
Even when the neck diameter / particle diameter ratio is 0.6 or more, when the porosity of the porous silicon carbide sintered body exceeds 50%, and when the pore diameter exceeds 20 μm, the number of neck portions tends to decrease. In some cases, sufficient strength cannot be obtained, and irregularities on the surface of the porous silicon carbide sintered body become large. For example, when the porous silicon carbide sintered body is used in a boat for a semiconductor wafer heat treatment apparatus, it causes slip of a semiconductor wafer. Therefore, it is not preferable. On the other hand, if the porosity is less than 30%, the number of necks increases and the strength is high, but the cushioning resistance against thermal shock is insufficient, which is not preferable.
Further, in order to reduce the pore diameter of the porous silicon carbide sintered body to less than 0.2 μm, it is necessary to perform sintering at a relatively low temperature, which is not preferable because sufficient strength cannot be obtained.
[0013]
The present invention provides an unprecedented high strength (bending strength of 40 MPa or more) and thermal shock resistance (ΔTc) by setting the neck diameter / particle diameter ratio, porosity, and pore diameter of the porous silicon carbide sintered body to specific ranges. Is 1200 ° C. or higher).
[0014]
In the porous silicon carbide sintered body of the present invention, the aluminum concentration in the sintered body is 0.1 to 3 ppm, and 80% or more of the aluminum concentration is present in the neck portion to which the silicon carbide particles are bonded. Is preferred. With such a configuration, the neck strength of the porous silicon carbide sintered body can be further increased.
[0015]
Here, it is desirable that the porous silicon carbide sintered body is used as a base material, and a silicon carbide film is deposited and coated even inside the open pores of the base material by a CVD method.
As described above, since the silicon carbide film is deposited and covered even to the inside of the open pores of the base material, the contamination to the wafer is suppressed with higher purity. Also, the mechanical strength can be increased. Further, the silicon carbide film is characterized in that it is difficult to peel off and has a high thermal shock resistance.
[0016]
In particular, it is preferable that at least the pores in the surface layer of the base material are formed as closed pores by the silicon carbide film. The silicon carbide film placed in such a state adheres tightly to the base material and is more difficult to peel off.
The porous silicon carbide sintered body on which the silicon carbide film thus formed is formed preferably has a bending strength of 180 MPa or more and a thermal shock resistance (ΔTc) of 1200 ° C. or more.
[0017]
Further, the present invention has been made to solve the above technical problems, and according to the present invention, a resin serving as a carbon source, a silicon carbide raw material powder having an average particle size of 1 to 100 μm, Is formed by cold isostatic pressing with addition of 1 to 20 μm of silicon powder, followed by reaction sintering of the compact at a temperature of 1800 to 2300 ° C. and a reduced pressure of 0.01 to 10 Torr. A method for manufacturing a silicon carbide sintered body is provided.
[0018]
When the average particle diameter of the silicon carbide raw material powder is less than 1 μm, it is difficult to adjust the pore diameter of the sintered body because a large amount of fine powder of less than 1 μm is contained, and the deformation after firing becomes large, It is not preferable because dimensional control of the product becomes difficult. If it exceeds 100 μm, it is difficult to make the ratio of neck diameter / particle diameter of the sintered body 0.6 or more, and it is not preferable because a porous silicon carbide sintered body having sufficient strength cannot be obtained. In addition, the porosity and the pore diameter increase, and the irregularities on the surface of the sintered body increase, which is not preferable as a member for a semiconductor wafer heat treatment apparatus such as a boat.
On the other hand, if the average particle diameter of the silicon powder is less than 1 μm, the dispersion of the silicon powder is poor, and a locally low strength portion is formed, which is not preferable. If it exceeds 20 μm, only this surface reacts with carbon in the binder in the calcination stage, the silicon remains in the center, and when this is sintered, the remaining silicon volatilizes to form a pore diameter exceeding 20 μm. Is not preferred.
[0019]
When the excessive reaction sintering of the molded body is less than 1800 ° C., it is difficult to make the neck diameter / particle diameter ratio 0.6 or more, and metal impurities in each raw material can be volatilized during sintering. Therefore, the sintered body cannot be made high purity, which is not preferable. If the temperature is higher than 2300 ° C., the silicon carbide itself is liable to volatilize during sintering, and the strength of the neck portion is particularly lowered, which is not preferable.
Further, if the degree of pressure reduction is less than 0.01 Torr, excessive equipment is required, industrial productivity is not suitable, and if it exceeds 10 Torr, it is difficult to make the neck diameter / particle diameter ratio 0.6 or more, and It is not preferable because it becomes difficult to obtain a sintered body having a sufficient purity.
[0020]
This manufacturing method is a remarkable feature in that the raw material mixture including the silicon carbide powder, the resin, and the silicon powder is subjected to CIP molding, and then fired under a high temperature and a vacuum to perform reaction sintering.
That is, the molded body is uniformly compressed and densified by uniform pressing using a rubber press or the like. In addition, SiC generated by a reaction between silicon powder and resin-derived carbon in the subsequent high-temperature sintering promotes interparticle fusion and strengthens the neck.
As a result, the porous sintered body obtained by the above manufacturing method has a neck diameter / particle size ratio (l / r) despite having a considerably high porosity of 30% or more and 50% or less. It is as large as 0.6 or more, and has excellent strength characteristics such as bending strength. In addition, it has open pores having an average pore diameter of relatively uniform 0.2 to 20 μm. Furthermore, since it is fired under reduced pressure at a high temperature, the metal component that has come out on the surface due to partial melting is apt to evaporate and evaporate. Is less likely to accumulate. Therefore, the obtained porous silicon carbide sintered body has high purity and can suppress wafer contamination.
[0021]
Here, it is preferable that the molded body be pre-fired at a temperature of 1400 to 1600 ° C. and a degree of reduced pressure of 1 to 50 Torr before being subjected to the reaction sintering under the reduced pressure.
As described above, before the reaction sintering under reduced pressure, the molded body may be pre-fired under reduced pressure at a temperature lower than the reaction sintering temperature, to prevent unexpected shrinkage deformation at the time of main firing, strength properties. It is preferable from the viewpoints of improvement of the purity, high purification and the like.
If the calcination temperature is lower than 1400 ° C., the silicon powder and the carbon for the binder do not sufficiently react with each other, making it difficult to obtain a sintered body having a neck diameter / particle diameter ratio of 0.6 or more. Since heat shrinkage during sintering after processing is large, dimensional control of the product becomes difficult, which is not preferable. If the temperature exceeds 1600 ° C., the strength after pre-baking becomes too high, and the uniformity is poor. Further, it is preferable that the degree of reduced pressure is 1 to 50 Torr after the volatile matter of the binder is appropriately volatilized.
It is desirable to add 1 to 3 parts by weight of aluminum to 100 parts by weight of silicon powder as a solid solution or as a separate solution. Thereby, the porous silicon carbide sintered body has an aluminum concentration of 0.1 to 3 ppm in the porous silicon carbide sintered body, and 80% or more of the aluminum concentration is present in the neck portion to which the silicon carbide particles are bonded. Can be obtained.
[0022]
In addition, it is preferable that the porous silicon carbide sintered body is used as a base material, and a silicon carbide film is deposited and covered to the inside of the pores of the base material by a CVD method.
As described above, the silicon carbide film can be easily deposited and covered inside the pores of the base material by the CVD method, and the silicon carbide film can be deposited and covered even inside the open pores of the base material, so that a higher purity can be obtained. And the mechanical strength can be increased. Further, the silicon carbide film is hardly peeled off, has a high thermal shock resistance, and can further suppress the contamination of the wafer.
[0023]
Furthermore, the present invention has been made in order to solve the above technical problem, and according to the present invention, comprises a silicon carbide powder raw material having an average particle diameter of 1.5 μm or less, a binder having a small amount of residual carbon, and a dispersant. After the slurry is subjected to slip cast molding, the compact is sintered at a temperature of 1500 ° C. or more and 2200 ° C. or less to recrystallize silicon carbide polycrystal grains. A manufacturing method is provided.
If the average particle size of the silicon carbide powder raw material exceeds 1.5 μm, bonding by recrystallization of silicon carbide powders is not sufficiently performed, and as a result, high strength cannot be obtained, which is not preferable.
If the sintering temperature is lower than 1500 ° C., the neck diameter / particle diameter ratio cannot be 0.6 or more, which is not preferable. If the temperature is higher than 2300 ° C., silicon carbide itself tends to volatilize during sintering. In particular, the strength of the neck portion is undesirably reduced.
In addition, according to this manufacturing method, it has open pores having an average pore diameter of 0.2 to 5 μm.
[0024]
Here, before sintering the molded body, it is preferable to perform preliminary firing at 1100 to 1500 ° C. As described above, before the reaction sintering under reduced pressure, the molded body may be pre-fired under reduced pressure at a temperature lower than the reaction sintering temperature, to prevent unexpected shrinkage deformation at the time of main firing, strength properties. It is preferable from the viewpoints of improvement of the purity, high purification and the like.
Also in this manufacturing method, it is preferable to deposit and coat the silicon carbide film to the inside of the pores of the base material by the CVD method, since the purity is higher and the mechanical strength can be increased. Further, the silicon carbide film is hard to peel off, has high thermal shock resistance, and can further suppress contamination on the wafer.
[0025]
BEST MODE FOR CARRYING OUT THE INVENTION
First, the porous silicon carbide sintered body and the method for producing the porous silicon carbide sintered body according to the present invention will be described from the method for producing the porous silicon carbide sintered body. As a method of manufacturing the porous silicon carbide sintered body, two manufacturing methods are exemplified, and each will be sequentially described.
[0026]
First, the first method for producing a porous silicon carbide sintered body is as follows: a resin and a silicon powder serving as a carbon source are added to a silicon carbide raw material powder, and subjected to cold isostatic pressing (CIP) molding; It is characterized by reaction sintering under a reduced pressure at 2300 ° C. or less.
The silicon carbide powder used as a raw material preferably has an average particle diameter of 1 to 100 μm, more preferably 10 to 80 μm.
Further, a mixture of coarse powder having an average particle diameter of about 50 to 100 μm and fine powder having an average particle diameter of about 1 to 10 μm at a mixing ratio of about 30:70 to 70:30 can also be used.
Silicon carbide powder includes α-SiC and β-SiC, both of which can be used. However, those having a small amount of metal impurities, high purity, relatively well-controlled particle size distribution, and no inclusion of coarse particles are used. Preferably, α-SiC is more preferable from this point.
[0027]
As the resin used as the carbon source, a phenol resin such as a resol type or a novolak type, an epoxy resin, an acrylic resin, or the like can be used.
As the silicon fine powder used together with the silicon carbide powder and the resin serving as a carbon source, a high-purity Si powder having an average particle diameter of usually 1 to 20 μm, preferably 5 to 10 μm is used.
In the above method, the resin as a carbon source is usually 5 to 30 parts by weight, preferably 5 to 15 parts by weight, and the silicon powder is 5 to 40 parts by weight, preferably 5 to 20 parts by weight, based on 100 parts by weight of silicon carbide powder. Parts. The amount of the silicon powder is preferably adjusted according to the type of the resin.
[0028]
Next, the mixture having the above mixing ratio is granulated, and the granulated mixture is placed in a mold such as a rubber press (rubber mold), and is usually subjected to cold isostatic pressing under a pressure of 80 to 150 MPa at a normal temperature to about 40 ° C. A hydrostatic pressure (CIP) molding is performed to obtain a molded body.
The molded body is fired at a temperature of 1800 ° C. or higher, preferably 2000 to 2200 ° C., under a reduced pressure of 0.01 to 10 Torr, preferably 0.01 to 1 Torr, and reaction-sintered.
[0029]
In the first production method, it is particularly preferable that before the reaction sintering, the molded body is pre-fired (temporarily fired) under reduced pressure at a temperature lower than the reaction sintering temperature.
Thereby, the compact can be shrunk in advance to prevent unexpected shrinkage deformation at the time of main firing (reaction sintering). Further, it is possible to facilitate the subsequent processing, and to increase and homogenize the strength of the base material. Further, impurities such as metal components evaporate and volatilize from the surface by the firing under reduced pressure, and the purity of the obtained porous sintered body can be improved.
[0030]
The calcination is preferably performed at a temperature of 1400 to 1600 ° C. and a degree of reduced pressure of 1 to 50 Torr.
Needless to say, in the case of this manufacturing method, the volatilization of the impurity metal component is also performed at the time of main firing (reaction sintering). Therefore, the porous silicon carbide sintered body obtained by this manufacturing method will be described later. In this case, the concentration of Fe as a representative of the impurity metal is 1 ppm or less (generally about 0.01 ppm), resulting in extremely high purity.
[0031]
In this first production method, the step of subjecting the pre-fired or unfired compact to high-temperature reaction sintering under reduced pressure is extremely important. In this step, carbon and fine silicon particles derived from resin in the compact are included. As shown in FIG. 1, this promotes the bonding between silicon carbide particles 7 in a semi-molten state by sintering, and adheres itself to the bonding grain boundary to expand and strengthen neck N. To play.
For this reason, although the obtained porous sintered body has a relatively large porosity of 30 to 50%, it has a large l / r (l: neck diameter, r: particle diameter) and high strength. is there. Further, the pore size distribution has open pores having a relatively uniform pore size of 0.2 to 20 μm, which is also considered to be one of the reasons why this porous sintered body exhibits high strength.
[0032]
Next, a second method for manufacturing a porous silicon carbide sintered body will be described.
In this second production method, a slurry of a silicon carbide powder raw material having an average particle size of 1.5 μm or less, a binder and a dispersant is slip-cast molded, and then sintered at a temperature of 1500 to 2200 ° C. Is recrystallized.
It is preferable that the raw material silicon carbide powder has an average particle diameter of 1.5 μm or less, more preferably about 0.8 to 1.5 μm. When the particle size of the raw material silicon carbide is larger than 1.5 μm, the porosity of the obtained porous sintered body exceeds 50% and the bending strength is reduced, so that the object of the present invention cannot be achieved. .
[0033]
In the second production method, as a binder used together with the raw material silicon carbide particles, the residual carbon ratio is usually less than 0.5% under the firing conditions in this method. For example, polyvinyl alcohol, methyl cellulose, carboxymethyl cellulose, Use hydroxyethyl cellulose, furan resin, or the like.
Examples of the dispersant include an acrylic copolymer resin, an imine resin, a styrene / maleic acid copolymer resin, an oligomer thereof, a naphthalene sulfonic acid / formalin condensate, and a surfactant.
[0034]
In the above production method, the binder is usually 1 to 10 parts by weight, preferably 2 to 5 parts by weight, and the dispersant is 0.2 to 2 parts by weight, preferably 0.5 to 100 parts by weight of silicon carbide powder. 11 part by weight.
Further, the slurry concentration is preferably from 50 to 80%, particularly preferably from 60 to 70%, as a weight fraction in terms of solid content.
As the dispersion medium, hydrocarbon solvents such as naphtha, cyclohexane, and benzene, and organic solvents such as oxygen-containing organic solvents such as alcohols, ketones, esters, and ethers can also be used. From the viewpoints of safety, safety, economy and the like, it is preferable to use an aqueous dispersion medium such as water or aqueous alcohol.
[0035]
The slurry having the above mixing ratio is cast (slip cast) under a normal pressure or under a pressure at a temperature of normal temperature to about 30 ° C. using a gypsum mold or another porous material mold. Then, after drying the obtained compact, sintering is performed at a temperature of 1500 ° C. or more, particularly preferably 1800 to 2200 ° C., to recrystallize crystal grains.
[0036]
Also in the second production method, it is particularly preferable that before the main firing, the molded body is pre-fired (temporarily fired) under a reduced pressure at a temperature lower than the firing temperature. Thereby, the compact can be shrunk in advance to prevent an unexpected shrinkage deformation at the time of main firing (reaction sintering). Further, impurities such as metal components evaporate and volatilize from the surface by the reduced pressure firing to obtain The purity of the resulting porous sintered body is improved.
This calcination is preferably performed at a temperature of 1100 to 1500 ° C. and a degree of reduced pressure of 1 to 50 Torr. The porous fired body obtained by this manufacturing method also has an extremely high purity with an Fe concentration of 1 ppm or less (generally about 0.1 ppm).
[0037]
In this second production method, fine silicon carbide particles having a relatively narrow particle size distribution are formed by slip casting, and then recrystallized and sintered.
As a result, the obtained porous sintered body has a neck diameter / particle diameter ratio (l / r) in spite of considerably high porosity, similarly to the porous sintered body of the first manufacturing method. , Pore diameters are relatively uniform, strength characteristics such as bending strength are excellent, and high purity is obtained. In addition, since the raw silicon carbide powder is fine, the pore size of the obtained porous fired body is smaller than that of the porous sintered body manufactured by the first manufacturing method, and the strength becomes stronger.
[0038]
Next, the porous silicon carbide sintered body according to the present invention will be described in detail.
The porous silicon carbide sintered body has a porosity of 30 to 50%, preferably 35 to 45%, and a pore diameter of 0.2 to 20 μm, and particularly the porous silicon carbide obtained by the first production method. The range is about 5 to 20 μm for the sintered body, and about 0.2 to 5 μm for the porous silicon carbide sintered body obtained by the second manufacturing method.
In addition, it has relatively uniform open pores with a narrow pore diameter distribution.
Further, as shown in FIG. 1, the neck diameter / particle diameter ratio (l / r) of silicon carbide crystal particles 7 constituting the skeleton of the porous sintered body is 0.6 or more, preferably 0.7 to 1 .0.
[0039]
Here, the neck diameter / particle diameter ratio (l / r) refers to the particle radius r when the silicon carbide crystal particles constituting the porous sintered body are approximated to a sphere, and the neck where these are fused by sintering. The average of the ratio of the section N to the cross-sectional diameter 1 indicates the degree of progress of sintering and serves as an indirect index such as bending strength.
Further, the porous silicon carbide sintered body according to the present invention has a bending strength (three-point bending strength) of 40 MPa or more, preferably 50 to 150 MPa, and further includes Fe, K, Na, Ca, Ni, and Cr. , Al, Cu, etc., each have a concentration of 1 ppm or less, and the total concentration of all metal impurities is 10 ppm or less.
[0040]
Next, a description will be given of a porous silicon carbide sintered body in which the above-described porous silicon carbide sintered body is used as a base material, and a silicon carbide film is deposited and coated on the inside of the pores of the porous sintered body by a CVD method. .
The silicon carbide film is deposited on the porous sintered body by the CVD method, for example, by introducing a silane gas containing carbon such as trichloromethylsilane gas together with a hydrogen gas or the like as a carrier gas, preferably under a reduced pressure of about 40 Torr, for 1100 hours. SiC is deposited on the porous sintered body at a temperature of about 1300 ° C.
Usually, the film is formed to a thickness of 50 to 60 μm by one treatment, and preferably, this treatment is repeated several times to form a film having a surface thickness of about 120 to 240 μm.
[0041]
In the porous silicon carbide sintered body subjected to the CVD process, the silicon carbide film formed by the CVD process penetrates to the inside of the open pores, and is deposited on the pore inner wall at a considerable depth from the surface. That is a remarkable feature.
As schematically shown in FIG. 2, the surface portion of the porous silicon carbide sintered body 3 in which the silicon carbide film 2 is formed on the base material 1 of the porous silicon carbide sintered body by the CVD process is dense silicon carbide. A silicon carbide film 2a from the interface 4 between the dense silicon carbide film 2 and the base material (porous silicon carbide sintered body) 1 toward the inside of the base material (porous silicon carbide sintered body) 1 The closed pores 5 are formed by the deposition of the silicon carbide, and further toward the inside, the open pores 6 of the porous silicon carbide sintered body itself are present.
[0042]
More specifically, referring to FIG. 4, in the case where the porous silicon carbide sintered body (R material) manufactured by the first manufacturing method is used as a base material, a silicon carbide film (120 μm) It has been confirmed that a silicon carbide film of about 0.5 μm is deposited also on the inner wall of the pores of the base material (silicon carbide crystal grain surface) at a depth of 800 μm from the interface with the material.
[0043]
The porous silicon carbide sintered body coated with the silicon carbide film by the CVD treatment has a bending strength of 180 MPa or more, preferably 200 to 300 MPa or more, and a thermal shock resistance (ΔTc) of 1200 ° C. or more.
That is, in the case of a conventional silicon carbide sintered body covered with a silicon carbide film (Patent Document 1), the bending strength can be 180 MPa or more, while it is 78 MPa or less. Further, the thermal shock resistance (ΔTc) of the silicon carbide sintered body (Patent Document 1) coated with the conventional silicon carbide film does not show any abnormality up to 500 ° C., but does not show any abnormality up to 1200 ° C.
In addition, since the entire surface is covered with a high-purity CVD-silicon carbide film, metal impurities in the sintered body can be completely trapped, and an effect of preventing contamination can be obtained.
[0044]
The porous silicon carbide sintered bodies produced by the first production method and the second production method, and the porous silicon carbide sintered bodies obtained by coating these porous silicon carbide sintered bodies with a silicon carbide film, Also has high purity, high strength, and is lighter than a dense body. Therefore, taking advantage of the inherent high-temperature resistance of silicon carbide, for example, high-temperature heat treatment of a member used in a high-temperature melting vessel such as a silicon melting crucible for manufacturing semiconductor wafers, a heat shielding plate, a heating element, a resistor, and a furnace core tube. It can be suitably used for a member, and further, a semiconductor member such as a cassette boat for wafer heat treatment and a susceptor.
[0045]
In particular, the porous silicon carbide sintered body produced by the second production method coated with silicon carbide has not only high strength but also excellent thermal shock resistance, so that the temperature can be raised and lowered at a high temperature. It is extremely suitable as a member for a wafer heat treatment apparatus and a jig which requires severe and more complete prevention of contamination, for example, a member for manufacturing an SOI (Silicon On Insulator) wafer by a SIMOX (Silicon Implanted Oxide) method. is there.
[0046]
【Example】
"Example 1"
100 parts by weight of high-purity α-SiC powder having an average particle diameter of 10 μm and 70 μm and a weight ratio of 30:70 as raw material silicon carbide (SiC) powder, and 15 parts by weight of a resol-type phenol resin and aluminum 0 as a resin also used as a carbon source .18 parts by weight (1 part by weight of aluminum with respect to 100 parts by weight of Si powder) of 18 parts by weight of a high-purity Si powder having an average particle size of 5 μm dissolved and kneaded, granulated, and put into a rubber mold; CIP molding was performed at room temperature under a pressure of 100 MPa to obtain a cured molded body.
[0047]
The molded body was preliminarily fired at 1550 ° C. and a reduced pressure of 20 Torr, and then main fired at 2200 ° C. and a vacuum of 10 Torr, followed by reaction sintering.
The obtained porous sintered body had a bulk density of 1.88 g / cm, a porosity of 39%, a pore diameter of 14 μm, an l / r of 0.7, and a three-point bending strength of 48 MPa. The content of the impurity metal is as follows: Fe is 0.01 ppm, and as other impurity metals, K: less than 0.01 ppm, Na: less than 0.01 ppm, Ca: 0.04 ppm, Ni: 0.01 ppm, Cr: less than 0.01 ppm, Al: 0.10 ppm, Cu: less than 0.01 ppm, Mg: less than 0.01 ppm, Zn: less than 0.01 ppm, Mn: less than 0.01 ppm. When the cross section of the porous sintered body was observed with a TEM, it was confirmed that 85% or more of the Al-existing portion was the neck portion in terms of the area ratio on the observation screen.
Further, the above-described CVD treatment (twice) was performed using the porous sintered body as a base material. The strength of the porous silicon carbide sintered body (film thickness 120 μm) coated with the silicon carbide film was 185 MPa.
[0048]
"Comparative Example 1"
A porous sintered body was obtained in the same manner as in Example 1 except that the Si firing powder was not used and the main firing temperature was set at 2000 ° C.
The porosity of this porous sintered body was 30%, the average pore diameter was 7 μm, the l / r was 0.3, the bending strength was 28 MPa, and the Fe concentration as an impurity metal was 0.16 ppm.
It was found that the porous sintered body of Comparative Example 1 in which no Si fine powder was blended had a small l / r and was inferior in strength.
[0049]
"Comparative Example 2"
A porous sintered body was obtained in the same manner as in Example 1, except that the calcination temperature was 1400 ° C and the main calcination temperature was 1550 ° C.
The porosity of this porous sintered body was 39%, the pore diameter was 12 μm, the l / r was 0.3, the bending strength was 11 MPa, and the Fe concentration as an impurity metal was 11 ppm.
It was found that the porous sintered body of Comparative Example 2 having a low firing temperature had a small l / r, a low strength, and an inferior purity level.
[0050]
"Comparative Example 3"
A porous sintered body was obtained in the same manner as in Example 1, except that the resin was not added and a very small amount (about 3 parts by weight) of methylcellulose was added as a binder.
The porosity of this porous sintered body was 34%, the pore diameter was 5 μm, the l / r was 0.5, and the strength was 36 MPa.
The porous sintered body of Comparative Example 3 in which the carbon source resin was not blended had a slightly smaller l / r and was slightly inferior in strength.
[0051]
"Comparative Example 4"
In Example 1, after sintering at 1800 ° C. without adding Si fine powder to the raw materials of the example, the C source derived from the resin was silicified in a Si-containing atmosphere to obtain a porous sintered body.
The porous sintered body had a porosity of 27%, a pore diameter of 0.4 μm, an l / r of 0.4, and a strength of 28 MPa.
Since the Si source was supplied in a later step instead of the starting material and the firing temperature was further lowered, the l / r of the porous sintered body was small and the strength was poor.
Further, a porous silicon carbide sintered body coated with a silicon carbide film using the porous sintered body as a base material has a small pore diameter of 0.4 μm and is not deposited on the inside of the base material by CVD. The strength was as low as 55 MPa.
[0052]
"Example 2"
An aqueous slurry prepared by mixing 100 parts by weight of silicon carbide fine powder having an average particle size of 0.9 μm, 3 parts by weight of methyl cellulose as a binder, 1 part by weight of a nonionic surfactant as a dispersant, and 55 parts by weight of pure water. It was poured into a gypsum mold, slip cast molded, dried, calcined at 1200 ° C. and a reduced pressure of 10 Torr, and then sintered at 2200 ° C. to recrystallize crystal grains to obtain a porous sintered body. .
When the physical properties of this porous sintered body were evaluated in the same manner as in Example 1, the porosity was 42%, the average pore diameter was 3 μm, the l / r was 1.0, the bending strength was 94 MPa, and the Fe concentration as an impurity metal was 0.08 ppm. Met.
The strength of the CVD SiC-coated porous silicon carbide sintered body (film thickness: 120 μm) which was subjected to the CVD treatment (twice) using this porous sintered body as a base material was 246 MPa.
[0053]
"Comparative Example 5"
A porous sintered body was obtained in the same manner as in Example 2 except that the preliminary firing was not performed and the main firing temperature was set to 1200 ° C.
The porosity of this porous sintered body was 42%, the average pore diameter was 0.2 μm, the l / r was 0.4, the bending strength was 20 MPa, and the Fe concentration was 17 ppm.
It was found that the porous sintered body of Comparative Example 5 having a low firing temperature had a small l / r, a low strength, and a low purity level.
[0054]
"Comparative Example 6"
A porous sintered body was obtained in the same manner as in Example 2, except that α-SiC powder having an average particle size of 10 μm was used as the raw material SiC.
The porosity of this porous sintered body was 52%, the pore diameter was 12 μm, l / r was 0.55, and the strength was 19 MPa.
Since the average particle size of silicon carbide is too large, the porosity is as large as 52%, and the strength is significantly reduced.
[0055]
"Example 3"
In Examples 1 and 2, the main sintering temperature was changed, samples before the CVD treatment were prepared, and three-point bending strength measurement was performed. In addition, the size of the sample was set to 6 × 8 × 40 mm.
The result is shown in FIG.
R in FIG. 3 is based on the first manufacturing method (Example 1), and it has been found that sintering (main firing) at a temperature of 2000 ° C. or more is required to obtain a bending strength exceeding 40 MPa. In addition, S in FIG. 3 was obtained by the second manufacturing method (Example 2), and it was found that sintering at a temperature of 1500 ° C. or more was necessary to obtain a bending strength exceeding 40 MPa.
[0056]
"Example 4"
In Examples 1 and 2, samples were prepared by changing the thickness of the silicon carbide film, and three-point bending strength measurement was performed. The size of the sample was set to 3 × 4 × 40 mm, and the film formation conditions were: SiCl 4 : C 4 H 10 : H 2 = 5: 1: 10, 1200 ° C., 40 Torr.
The result is shown in FIG.
R in FIG. 5 is based on the first manufacturing method (Example 1), and the strength is 197 MPa when the surface layer thickness is 220 μm after four CVD processes, and the strength is 183 MPa when the surface layer thickness is 120 μm after the two CVD processes. In order to obtain a high-strength CVD-coated porous sintered body having a strength exceeding 180 MPa, a film thickness of 120 μm or more was found to be preferable.
Further, S in FIG. 5 is based on the second manufacturing method (Example 2), and the strength is 298 MPa when the surface layer thickness is 220 μm by four CVD processes, and the strength is when the surface layer thickness is 120 μm by the two CVD processes. It was found to be 264 MPa.
[0057]
"Example 5"
The thickness of the CVD film deposited on the SiC particles inside the pores was determined for the sample (porous sintered body after the second CVD coating (CVD SiC surface layer thickness: 120 μm)) prepared in the same manner as in Examples 1 and 2. The relationship between the pores and the position in the depth direction from the substrate interface was examined. The result is shown in FIG.
R in FIG. 4 is based on the first manufacturing method (Example 1). From the figure, it was found that CVDSiC completely filled pores between particles at the interface of the base material. Closed pores are observed at several tens μm from the interface, and further toward the center, open pores with a CVD silicon carbide film are formed, and the film thickness on the internal particles gradually decreases. However, it was found from the figure that a CVD film of about 0.5 μm was deposited even at a depth of 800 μm.
Further, S in FIG. 4 is based on the second manufacturing method (Example 2). Also in the case of this CVD-coated porous sintered body (S material), CVDSiC completes pores between particles at the interface of the base material. Embedded in Closed pores are observed at a distance of several μm from the interface, and further toward the center, open pores with a CVD silicon carbide film are formed, and the film thickness on the internal particles gradually decreases. From the figure, it was found that a CVD film having a depth of 100 μm and a thickness of about 0.2 μm was deposited.
[0058]
"Example 6"
In the process of manufacturing a SIMOX SOI wafer, oxygen ions are implanted into the wafer at about 600 ° C., and then the wafer is rapidly heated from 600 to 1000 ° C. to 1340 to 1350 ° C. Therefore, even when the boat used for the above is exposed to severe conditions such as the above-mentioned rapid rise in temperature, excellent heat shock that does not cause inconveniences such as film peeling, chipping, and extremely low strength. It is required to have characteristics.
[0059]
Therefore, the following evaluation tests were respectively performed.
(Heat shock resistance (ΔTc))
ΔTc, three-point bending strength and ΔTc of the porous sintered body sample (base material size of 2.5 × 3.5 × 40, film thickness of 220 μm) prepared according to Examples 1 and 2 measured by an underwater quenching method 6 is shown in FIG.
R in FIG. 6 is based on the first manufacturing method, and the bending strength of this sample (R material) does not decrease even at the maximum measurable (quenching) temperature difference of 1200 ° C., and therefore the ΔTc value is higher than 1200 ° C. I found it. Further, in the sample after quenching in water, no peeling of the film, no crack, and no increase in weight after immersion in water were observed.
S in FIG. 6 is based on the second manufacturing method (Example 2), and the bending strength of this sample does not decrease to the maximum measurable temperature difference of 1200 ° C., and therefore the ΔTc value is 1200 ° C. or more. I understand. Further, in the sample after quenching in water, no peeling of the film, no crack, and no increase in weight after immersion in water were observed.
[0060]
(Accelerated verification test by thermal cycle)
The samples prepared according to Examples 1 and 2 were placed in a furnace at 1200 ° C. at a stretch, heated for 20 minutes, carried out of the furnace at a stretch, and again carried into the furnace four times, and then for 16 hours. Perform nitric acid cleaning. This was repeated, and the presence or absence of explosion, film peeling, chipping, delamination, occurrence of cracks, and the like were confirmed.
In the samples prepared in Examples 1 and 2, no explosion, chipping, delamination, or change in weight after washing was observed up to 50 heat cycles.
[0061]
(High temperature strength measurement)
The 3 × 4 × 40 mm size samples prepared in Examples 1 and 2 were measured for strength up to 1400 ° C. in an Ar atmosphere. The thickness of the silicon carbide film was set to 220 μm by performing the CVD process four times. FIG. 7 shows the result.
In the samples prepared according to Examples 1 and 2, there was no decrease in strength up to 1400 ° C.
[0062]
【The invention's effect】
According to the present invention, it is possible to obtain a silicon carbide porous sintered body and a method for producing a silicon carbide porous sintered body having sufficiently high purity and high strength as members used in the semiconductor manufacturing industry.
Further, a porous silicon carbide sintered body and a silicon carbide porous sintered body having the above-described porous silicon carbide sintered body as a base material, and having a silicon carbide film formed on the surface thereof, having improved thermal shock resistance and strength characteristics. A method for producing the body can be obtained.
[Brief description of the drawings]
FIG. 1 is a schematic diagram showing a bonding state of SiC particles.
FIG. 2 is a schematic diagram showing a state in which a silicon carbide film is formed on a porous silicon carbide sintered body.
FIG. 3 is a graph showing the relationship between the firing temperature and the three-point bending strength of the porous sintered material (R material, S material) according to the present invention.
FIG. 4 is a graph showing a relationship between a depth distance from an interface between a deposited film and a substrate and a deposited thickness of SiC in pores in a SiC-coated porous silicon carbide sintered body according to the present invention.
FIG. 5 is a graph showing the relationship between the film thickness and the three-point bending strength of the SiC-coated porous silicon carbide sintered body according to the present invention.
FIG. 6 is a graph showing the relationship between the bending strength and the thermal shock resistance (ΔTc) of the SiC-coated porous silicon carbide sintered body according to the present invention.
FIG. 7 is a graph showing measurement results of temperature and three-point bending strength of a porous silicon carbide sintered body coated with SiC according to the present invention.
[Explanation of symbols]
1 (porous silicon carbide sintered body) substrate
2 Silicon carbide film
2a Silicon Carbide Film Formed on Silicon Carbide Crystal Particles
3 Porous silicon carbide sintered body (with silicon carbide film formed)
4 Interface
5 closed pores
6 open pores
7 Silicon carbide crystal particles
l Neck diameter
r particle size
N neck

Claims (11)

気孔率が30%以上50%以下、気孔径が0.2μm以上20μm以下の多孔質炭化珪素焼結体であって、前記多孔質焼結体の骨格を構成する炭化珪素粒子のネック径/粒子径比が0.6以上であることを特徴とする多孔質炭化珪素焼結体。A porous silicon carbide sintered body having a porosity of 30% or more and 50% or less and a pore diameter of 0.2 μm or more and 20 μm or less, wherein neck diameter / particles of silicon carbide particles constituting a skeleton of the porous sintered body A porous silicon carbide sintered body having a diameter ratio of 0.6 or more. 前記多孔質炭化珪素焼結体中のアルミニウム濃度が0.1〜3ppmであって、この濃度中の80%以上が炭化珪素粒子が結合するネック部に存在することを特徴とする請求項1記載の多孔質炭化珪素焼結体。The aluminum concentration in the porous silicon carbide sintered body is 0.1 to 3 ppm, and 80% or more of the aluminum concentration is present in a neck portion to which silicon carbide particles are bonded. Porous silicon carbide sintered body. 前記多孔質炭化珪素焼結体を基材とし、CVD法により炭化珪素膜を前記基材の開気孔内部にまで堆積被覆させたことを特徴とする請求項1に記載された多孔質炭化珪素焼結体。2. The porous silicon carbide sintered body according to claim 1, wherein the porous silicon carbide sintered body is used as a base material, and a silicon carbide film is deposited and coated on the inside of the open pores of the base material by a CVD method. Union. 前記基材の少なくとも表層の気孔が、前記炭化珪素膜により、閉気孔として形成されていることを特徴とする請求項3に記載された多孔質炭化珪素焼結体。4. The porous silicon carbide sintered body according to claim 3, wherein pores of at least a surface layer of the base material are formed as closed pores by the silicon carbide film. 5. 平均粒径が1〜100μmの炭化珪素原料粉末に、炭素源となるレジンと、平均粒径が1〜20μmの珪素粉末を添加して冷間等方静水圧成形した後、前記成形体を温度1800〜2300℃、減圧下0.01〜10Torrで反応焼結することを特徴とする多孔質炭化珪素焼結体の製造方法。After adding a resin serving as a carbon source and silicon powder having an average particle diameter of 1 to 20 μm to silicon carbide raw material powder having an average particle diameter of 1 to 100 μm and cold isostatic pressing, the molded body is heated A method for producing a porous silicon carbide sintered body, comprising performing reaction sintering at 1800 to 2300 ° C. under reduced pressure at 0.01 to 10 Torr. 前記成形体を、前記減圧下で反応焼結する前に、温度1400〜1600℃、減圧度1〜50Torrで、仮焼成することを特徴とする請求項5に記載された多孔質炭化珪素焼結体の製造方法。The porous silicon carbide sinter according to claim 5, wherein the molded body is pre-fired at a temperature of 1400 to 1600C and a degree of reduced pressure of 1 to 50 Torr before being subjected to the reaction sintering under the reduced pressure. How to make the body. 前記珪素粉末に固溶させもしくは別体として加えることでアルミニウムを1〜3重量部添加することを特徴とする請求項5または請求項6に記載された多孔質炭化珪素焼結体の製造方法。The method for producing a porous silicon carbide sintered body according to claim 5, wherein 1 to 3 parts by weight of aluminum is added by being dissolved in the silicon powder or added separately. 前記多孔質炭化珪素焼結体を基材とし、CVD法により炭化珪素膜を前記基材の気孔内部にまで堆積被覆させることを特徴とする請求項5乃至請求項7のいずれかに記載された多孔質炭化珪素焼結体の製造方法。The method according to any one of claims 5 to 7, wherein the porous silicon carbide sintered body is used as a base material, and a silicon carbide film is deposited and coated on pores of the base material by a CVD method. A method for producing a porous silicon carbide sintered body. 平均粒径1.5μm以下の炭化珪素粉末原料とバインダーと分散剤とからなるスラリーをスリップキャスト成形した後、成形体を、1500℃以上〜2200℃以下の温度で焼結して、炭化珪素多結晶粒を再結晶化させることを特徴とする多孔質炭化珪素焼結体の製造方法。After a slurry comprising a silicon carbide powder raw material having an average particle size of 1.5 μm or less, a binder and a dispersant is slip-cast molded, the molded body is sintered at a temperature of 1500 ° C. to 2200 ° C. A method for producing a porous silicon carbide sintered body, characterized by recrystallizing crystal grains. 前記成形体を焼結する前に、1100〜1500℃で、仮焼成することを特徴とする請求項9に記載された多孔質炭化珪素焼結体の製造方法。The method for producing a porous silicon carbide sintered body according to claim 9, wherein the molded body is preliminarily fired at 1100 to 1500C before sintering. 前記多孔質炭化珪素焼結体を基材とし、CVD法により炭化珪素膜を前記基材の気孔内部にまで堆積被覆させることを特徴とする請求項9または請求項10に記載された多孔質炭化珪素焼結体の製造方法。The porous carbonized material according to claim 9, wherein the porous silicon carbide sintered body is used as a base material, and a silicon carbide film is deposited and coated to the inside of the pores of the base material by a CVD method. A method for producing a silicon sintered body.
JP2003024291A 2003-01-31 2003-01-31 Method for producing porous silicon carbide sintered body Expired - Fee Related JP4383062B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003024291A JP4383062B2 (en) 2003-01-31 2003-01-31 Method for producing porous silicon carbide sintered body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003024291A JP4383062B2 (en) 2003-01-31 2003-01-31 Method for producing porous silicon carbide sintered body

Publications (2)

Publication Number Publication Date
JP2004231493A true JP2004231493A (en) 2004-08-19
JP4383062B2 JP4383062B2 (en) 2009-12-16

Family

ID=32952859

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003024291A Expired - Fee Related JP4383062B2 (en) 2003-01-31 2003-01-31 Method for producing porous silicon carbide sintered body

Country Status (1)

Country Link
JP (1) JP4383062B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006117472A (en) * 2004-10-21 2006-05-11 Toshiba Ceramics Co Ltd Silicon carbide tool material for firing and its manufacturing method
JP2009253247A (en) * 2008-04-11 2009-10-29 Ariake Materials Co Ltd Suction body for vacuum suction apparatus, and vacuum suction apparatus
JP2010235417A (en) * 2009-03-31 2010-10-21 Taiheiyo Cement Corp Porous body, metal-ceramic composite material and method of manufacturing them
JP2014081285A (en) * 2012-10-17 2014-05-08 Aisin Seiki Co Ltd Method of measuring film thickness of multilayer ceramic
WO2014028104A3 (en) * 2012-08-13 2014-07-03 Intel Corporation Energy storage devices with at least one porous polycrystalline substrate
KR20190005792A (en) * 2017-07-06 2019-01-16 주식회사 엘지화학 Preparation method for metal foam
KR20190005793A (en) * 2017-07-06 2019-01-16 주식회사 엘지화학 Preparation method for metal foam
JP2019156685A (en) * 2018-03-14 2019-09-19 クアーズテック株式会社 Silicon carbide porous body and its production method, and brake filter with the silicon carbide porous body
CN115745618A (en) * 2022-11-21 2023-03-07 南京工业大学 Method for improving mechanical strength of porous silicon carbide film

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6143019B2 (en) * 2014-02-28 2017-06-07 信越半導体株式会社 Wafer mounting susceptor manufacturing method and wafer mounting susceptor

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006117472A (en) * 2004-10-21 2006-05-11 Toshiba Ceramics Co Ltd Silicon carbide tool material for firing and its manufacturing method
JP2009253247A (en) * 2008-04-11 2009-10-29 Ariake Materials Co Ltd Suction body for vacuum suction apparatus, and vacuum suction apparatus
JP2010235417A (en) * 2009-03-31 2010-10-21 Taiheiyo Cement Corp Porous body, metal-ceramic composite material and method of manufacturing them
US9406450B2 (en) 2012-08-13 2016-08-02 Intel Corporation Energy storage devices with at least one porous polycrystalline substrate
WO2014028104A3 (en) * 2012-08-13 2014-07-03 Intel Corporation Energy storage devices with at least one porous polycrystalline substrate
US9025313B2 (en) 2012-08-13 2015-05-05 Intel Corporation Energy storage devices with at least one porous polycrystalline substrate
JP2014081285A (en) * 2012-10-17 2014-05-08 Aisin Seiki Co Ltd Method of measuring film thickness of multilayer ceramic
KR20190005792A (en) * 2017-07-06 2019-01-16 주식회사 엘지화학 Preparation method for metal foam
KR20190005793A (en) * 2017-07-06 2019-01-16 주식회사 엘지화학 Preparation method for metal foam
KR102183682B1 (en) 2017-07-06 2020-11-27 주식회사 엘지화학 Preparation method for metal foam
KR102191608B1 (en) 2017-07-06 2020-12-15 주식회사 엘지화학 Preparation method for metal foam
JP2019156685A (en) * 2018-03-14 2019-09-19 クアーズテック株式会社 Silicon carbide porous body and its production method, and brake filter with the silicon carbide porous body
JP7014647B2 (en) 2018-03-14 2022-02-01 クアーズテック株式会社 A break filter and a method for producing a silicon carbide porous body used in the break filter.
CN115745618A (en) * 2022-11-21 2023-03-07 南京工业大学 Method for improving mechanical strength of porous silicon carbide film

Also Published As

Publication number Publication date
JP4383062B2 (en) 2009-12-16

Similar Documents

Publication Publication Date Title
CN107814591B (en) Preparation method of boride modified silicon-based antioxidant coating on surface of carbon material
US5770324A (en) Method of using a hot pressed silicon carbide dummy wafer
JP5466831B2 (en) Yttria sintered body and member for plasma process equipment
KR100756619B1 (en) Aluminum nitride sintered body, semiconductor manufacturing member, and method of manufacturing aluminum nitride sintered body
JP6651628B2 (en) High thermal conductivity silicon nitride sintered body and method for producing the same
KR101593922B1 (en) Polycrystal silicon carbide bulky part for a semiconductor process by chemical vapor deposition and preparation method thereof
JP4383062B2 (en) Method for producing porous silicon carbide sintered body
JP2000513689A (en) New silicon carbide dummy wafer
JP2002068838A (en) Plasma resistant member and method for manufacturing the same
JPH0784351B2 (en) Semiconductor heat treatment apparatus, high-purity silicon carbide member for semiconductor heat treatment apparatus, and method for manufacturing the same
WO2015025951A1 (en) Porous ceramic and method for producing same
JP4382919B2 (en) Method for producing silicon-impregnated silicon carbide ceramic member
JP2002220282A (en) Aluminum nitride sintered compact and method of manufacture
JP4355375B2 (en) High electrical resistance and high thermal conductivity recrystallized SiC sintered body and method for producing the same
JP3480499B2 (en) Method for producing high-density polycrystalline silicon carbide molded article
JP2005139554A (en) Heat-resistant coated member
JP3378608B2 (en) Method for producing silicon carbide substrate for jig for semiconductor production
JP2005298304A (en) Highly dense silicon carbide ceramic and its producing method
Schwetz et al. Toughness and Hardness of Lps‐Sic and Lps‐Sic Based Composites
JP7178400B2 (en) Metal carbide sintered body and heat-resistant member for silicon carbide semiconductor manufacturing equipment provided with the same
JP3688138B2 (en) Silicon impregnated silicon carbide material for semiconductor heat treatment and wafer boat using the same
JPH08151268A (en) Production of silicon carbide sintered compact
JP2003071555A (en) MANUFACTURING METHOD FOR Si-SiC COMPOSITE MATERIAL
JP2002201070A (en) Silicon carbide sintered compact and its manufacturing method
JPH03177372A (en) Sic-based vesicular sintered compact and its production

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050908

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20070711

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080331

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080924

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081125

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090406

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090601

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090623

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090824

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090917

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090918

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121002

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4383062

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121002

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131002

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees