JPH0784351B2 - Semiconductor heat treatment apparatus, high-purity silicon carbide member for semiconductor heat treatment apparatus, and method for manufacturing the same - Google Patents

Semiconductor heat treatment apparatus, high-purity silicon carbide member for semiconductor heat treatment apparatus, and method for manufacturing the same

Info

Publication number
JPH0784351B2
JPH0784351B2 JP3325213A JP32521391A JPH0784351B2 JP H0784351 B2 JPH0784351 B2 JP H0784351B2 JP 3325213 A JP3325213 A JP 3325213A JP 32521391 A JP32521391 A JP 32521391A JP H0784351 B2 JPH0784351 B2 JP H0784351B2
Authority
JP
Japan
Prior art keywords
silicon carbide
heat treatment
treatment apparatus
semiconductor heat
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP3325213A
Other languages
Japanese (ja)
Other versions
JPH0532458A (en
Inventor
秀二 沼田
拓郎 小野
信夫 蔭山
耕二 古川
隆平 牧村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP3325213A priority Critical patent/JPH0784351B2/en
Publication of JPH0532458A publication Critical patent/JPH0532458A/en
Publication of JPH0784351B2 publication Critical patent/JPH0784351B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は半導体素子製造工程の中
で、シリコンウエハーの酸化、ドーピング元素の拡散、
薄膜形成等の工程に用いられる、拡散炉、CVD炉をは
じめとする半導体熱処理装置の均熱管、反応管、ボー
ト、カンチレバー、サセプタ等の高純度炭化珪素質部材
とその製造方法に関する。
BACKGROUND OF THE INVENTION The present invention relates to the oxidation of silicon wafers, diffusion of doping elements,
The present invention relates to a high-purity silicon carbide member such as a soaking tube, a reaction tube, a boat, a cantilever, a susceptor of a semiconductor heat treatment apparatus such as a diffusion furnace or a CVD furnace, which is used in a process such as thin film formation, and a manufacturing method thereof.

【0002】[0002]

【従来の技術】半導体素子製造工程で用いられる熱処理
装置用部材では、部材中に含まれている不純物元素が、
処理されるシリコンウエハーや半導体素子を汚染して欠
陥を生ぜしめ、製品歩留りが低下する原因となる。不純
物の汚染を防いで製品の歩留りを向上させるため、半導
体熱処理装置には高純度の石英ガラス質部材または高純
度の炭化珪素質部材が用いられている。
2. Description of the Related Art In a heat treatment apparatus member used in a semiconductor element manufacturing process, an impurity element contained in the member is
It contaminates silicon wafers and semiconductor devices to be processed and causes defects, which causes a reduction in product yield. In order to prevent contamination of impurities and improve the yield of products, a high-purity quartz glass member or a high-purity silicon carbide member is used in a semiconductor heat treatment apparatus.

【0003】熱処理装置用部材の材質として、石英ガラ
スは純度の高いものが容易に製造できるので、従来から
多用されているが、熱処理温度を1100℃以上に上げると
軟化して変形したり、失透(結晶化)して亀裂が生じる
ことがある他、曲げ強度が約6kg/mm2 と小さいため破損
し易く、耐用が短いという欠点を有している。
Quartz glass has been widely used as a material for a member for a heat treatment apparatus because it can be easily manufactured. However, when the heat treatment temperature is raised to 1100 ° C. or higher, it is softened and deformed or lost. In addition to being permeable (crystallized) and causing cracks, it has a drawback that it is easily damaged due to its small bending strength of about 6 kg / mm 2 and its service life is short.

【0004】一方、炭化珪素質部材では、石英ガラス質
部材のように高純度のものが得られていないが、1200℃
以上の高温下で安定であり、室温および高温における曲
げ強度が20kg/mm2以上と大きいものが得られ、変形する
心配がなく、破損しにくく、かつ耐用も良いという長所
を有している。拡散炉用部材などとして使用されてい
る、主としてα型炭化珪素(以下α-SiCと略称する)と
シリコンからなる従来の炭化珪素質焼結体の製造方法
は、例えば特公昭54-10825号公報に開示されている。
On the other hand, with respect to the silicon carbide material, although high-purity material such as quartz glass material is not obtained, it is 1200 ° C.
It has the advantages of being stable under the above high temperatures, having a large bending strength of 20 kg / mm 2 or more at room temperature and high temperature, having no fear of deformation, less likely to be damaged, and having good durability. A conventional method for producing a silicon carbide-based sintered body, which is mainly used as α-type silicon carbide (hereinafter abbreviated as α-SiC) and silicon and is used as a member for a diffusion furnace, is disclosed in, for example, Japanese Patent Publication No. 54-10825. Is disclosed in.

【0005】α-SiCの粉体は研磨材として広く使用され
ているので、狭い粒度範囲に分級された粉体が市販され
ており、炭化珪素質焼結体の原料には、これらの粉体の
うち緑色をした純度の高いものを選んで使用する。
Since powders of α-SiC are widely used as abrasives, powders classified into a narrow particle size range are commercially available, and these powders are used as raw materials for a silicon carbide sintered body. Select the green one with high purity and use it.

【0006】α-SiCは酸などの腐食性物質に対する耐食
性が特に優れた物質であって、フッ酸、塩酸、硝酸はも
ちろん、これらの混酸に対しても十分な耐食性がある。
α-SiC粉末の精製にはこの性質を利用し、特開昭55−15
8622に記載されているようにα-SiC原料粉末をフッ酸と
硝酸の混酸および純水で洗浄して高純度化する。この方
法によれば 15ppmレベルの不純物を含むα-SiC原料粉末
を得ることができる。そうして、このレベルに精製され
たα-SiCが拡散炉用の炭化珪素質部材の製造に使用され
ている。
[0006] α-SiC is a substance having particularly excellent corrosion resistance to corrosive substances such as acids, and has sufficient corrosion resistance not only to hydrofluoric acid, hydrochloric acid and nitric acid but also to mixed acids thereof.
This property is used for refining α-SiC powder, and it is disclosed in
As described in 8622, the α-SiC raw material powder is highly purified by washing with a mixed acid of hydrofluoric acid and nitric acid and pure water. According to this method, α-SiC raw material powder containing impurities of 15 ppm level can be obtained. Then, α-SiC refined to this level is used for manufacturing silicon carbide based components for diffusion furnaces.

【0007】しかしLSIや超LSI等、製造する半導
体素子の集積度が増大するにつれて、不純物元素による
被処理素子の汚染は、製品の歩留りに大きく影響するた
め、不純物元素による汚染の心配のない、更に高純度の
熱処理装置用部材を使いたいという強い要望がある。
However, as the degree of integration of semiconductor elements to be manufactured such as LSI and VLSI increases, contamination of the element to be processed due to the impurity element greatly affects the yield of the product, so that there is no fear of contamination due to the impurity element. There is a strong desire to use high-purity heat treatment equipment members.

【0008】このための一つの対策として、特開昭63-2
57218 号公報や特開平1-282152号公報には、炭化珪素質
部材の表面にCVD法により高純度で緻密な膜を形成
し、この皮膜を不純物拡散を阻止するバリヤとして利用
し、不純物元素による製品の汚染を防ぐ方法が開示され
ている。この方法は有効な方法ではあるが、ピンホール
のない皮膜を形成することは容易でなく、皮膜の剥離が
生じることもあって炭化珪素質部材中に含まれている不
純物の拡散を完全に阻止することは困難である。
As one countermeasure for this, Japanese Patent Laid-Open No. 63-2
In JP 57218 and JP-A 1-282152, a high-purity and dense film is formed on the surface of a silicon carbide member by a CVD method, and this film is used as a barrier for preventing impurity diffusion, and A method of preventing product contamination is disclosed. Although this method is an effective method, it is not easy to form a film without pinholes, and peeling of the film may occur, which completely prevents diffusion of impurities contained in the silicon carbide material. Is difficult to do.

【0009】また、CVD装置の内部に存在する不純物
元素をCVD皮膜中に取り込むこともあり、高集積度の
LSIの製造においては依然として不純物元素の汚染に
よる歩留り低下の問題が切実である。
Further, since the impurity element existing inside the CVD apparatus is sometimes taken into the CVD film, the problem of yield reduction due to contamination of the impurity element is still urgent in the manufacture of highly integrated LSI.

【0010】[0010]

【発明が解決しようとする課題】本発明は拡散炉等の半
導体熱処理装置用炭化珪素質部材に起因するウエハーや
半導体素子の不純物元素による汚染を防ぎ、製品歩留り
を更に向上し得る半導体熱処理装置および半導体熱処理
装置用高純度炭化珪素質部材とその製造方法を提供しよ
うとするものである。
DISCLOSURE OF THE INVENTION The present invention is directed to a semiconductor heat treatment apparatus which can prevent contamination of wafers and semiconductor elements due to impurity elements caused by a silicon carbide member for semiconductor heat treatment apparatus such as a diffusion furnace and further improve the product yield. It is intended to provide a high-purity silicon carbide material for a semiconductor heat treatment apparatus and a method for manufacturing the same.

【0011】[0011]

【課題を解決するための手段】本発明の半導体熱処理装
置用高純度炭化珪素質部材は、主としてα−SiCとシ
リコンからなる半導体熱処理装置用炭化珪素質部材であ
って、部材を構成するα−SiCの結晶粒子径が44μ
m以下で、その重量平均結晶粒子径が2〜25μmの範
囲にあり、シリコンがα−SiCの結晶粒子間を充たし
ており、かつ部材中に含まれる不純物である鉄の加圧分
解分析法による含有量2.5ppm以下であることを
特徴とする。
The high-purity silicon carbide-based member for a semiconductor heat treatment apparatus of the present invention is a silicon carbide-based member for a semiconductor heat treatment apparatus, which is mainly composed of α-SiC and silicon, and which constitutes α-SiC. The crystal grain size of SiC is 44μ
m or less, the weight average crystal particle diameter is in the range of 2 to 25 μm, silicon fills the space between the crystal particles of α-SiC, and the pressurized portion of iron that is an impurity contained in the member.
The solution analysis method is characterized in that the content is 2.5 ppm or less.

【0012】[0012]

【0013】炭化珪素の結晶にはα-SiCとβ型炭化珪素
(以下β-SiCという)の2つの結晶相が知られている。
これらのうち、気相合成やシリカとカーボンの反応など
により合成されるβ-SiCでは、比較的純度の高い微粉末
が得られ、焼結体の原料に純度の高い粉末を使用すれ
ば、焼結された部材の結晶粒子の内部に不純物を取り込
むことがほとんどなく、洗浄して高純度化することも比
較的容易である。しかし、β-SiC粉末は粒子が細か過ぎ
るため成形が困難である他、成形しても気孔率が大きい
成形体しか得られず、焼結助剤を使用しない高純度炭化
珪素質部材の焼成では焼成収縮をほとんど伴わないの
で、強度の大きい焼結体が得られない。
Two crystal phases of α-SiC and β-type silicon carbide (hereinafter referred to as β-SiC) are known as crystals of silicon carbide.
Among these, β-SiC synthesized by vapor phase synthesis or reaction of silica and carbon produces fine powder of relatively high purity, and if high-purity powder is used as the raw material for the sintered body, it will be burned. Impurities are hardly taken into the inside of the crystal grains of the bonded member, and it is relatively easy to wash and highly purify. However, the β-SiC powder is difficult to form because the particles are too fine, and only a compact having a high porosity can be obtained even when compacted, and it is not possible to sinter a high-purity silicon carbide member that does not use a sintering additive. Since there is almost no firing shrinkage, a sintered body with high strength cannot be obtained.

【0014】さらに、微細な結晶粒子からなる細かい気
孔を有する焼結体の場合には、溶融シリコンの含浸が困
難であるという問題点も抱えている。また、β-SiCは、
α-SiCと比べて酸に対する耐食性に劣り、繰り返し酸洗
浄を行う必要がある拡散炉用部材においては耐久性が劣
るという欠点がある。これらの理由からβ-SiCよりα-S
iCの方が半導体熱処理装置用部材にはより適した材料で
ある。
Further, in the case of a sintered body having fine pores composed of fine crystal grains, there is a problem that impregnation with molten silicon is difficult. In addition, β-SiC is
The corrosion resistance to acids is inferior to that of α-SiC, and the durability is inferior to members for diffusion furnaces that require repeated acid cleaning. For these reasons α-S rather than β-SiC
iC is a more suitable material for semiconductor heat treatment equipment members.

【0015】不純物である鉄の含有量が僅かである炭化
珪素質部材では他の不純物の含有量も同時に僅かであ
り、半導体熱処理装置に高純度炭化珪素質部材を使用す
ることによって、半導体熱処理装置中で処理されるウエ
ハーや半導体素子の製品の歩留りを更に向上せしめるこ
とが可能であるとともに、熱処理装置の耐用も石英ガラ
ス質部材と比べてはるかに良好である。
A silicon carbide material having a small content of iron as an impurity also has a small content of other impurities at the same time. Therefore, by using a high-purity silicon carbide material for a semiconductor heat treatment apparatus, a semiconductor heat treatment apparatus can be used. It is possible to further improve the yield of products such as wafers and semiconductor devices to be processed therein, and the durability of the heat treatment apparatus is far better than that of the silica glass material.

【0016】本発明の半導体熱処理装置用高純度炭化珪
素質部材の製造方法は、主としてα−SiC結晶粒子と
シリコンからなる半導体熱処理装置用炭化珪素質部材の
製造方法であって、α−SiC原料を粉砕して分級し、
粒子径が44μm以下で、重量平均粒子径が2〜25μ
mの範囲にある粉末を、フッ酸と硝酸の混酸および純水
で洗浄して粉末中の不純物である鉄の加圧分解分析によ
る含有量を5ppm以下にし、この粉末に有機結合剤を
加えて成形し、1500〜2300℃において焼成した
後、高純度のシリコンを溶融含浸することを特徴とす
る。
The method for producing a high-purity silicon carbide-based member for a semiconductor heat treatment apparatus of the present invention is a method for producing a silicon carbide-based member for a semiconductor heat treatment apparatus, which is mainly composed of α-SiC crystal grains and silicon. Crush and classify
The particle size is 44 μm or less, and the weight average particle size is 2 to 25 μm.
The powder in the range of m was washed with a mixed acid of hydrofluoric acid and nitric acid and pure water, and was subjected to pressure decomposition analysis of iron as an impurity in the powder .
Content of 5 ppm or less, an organic binder is added to this powder, and the mixture is molded and fired at 1500 to 2300 ° C., and then high-purity silicon is melt-impregnated.

【0017】アチソン法で合成されたα-SiCを粉砕して
分級された原料粉末の粒子は、ほとんどα-SiCの単結晶
粒からなっている。本発明の半導体熱処理装置用高純度
炭化珪素質部材の製造方法においては、α-SiC粉末の粒
子径を44μm 以下と従来より細かくすることにより、α
-SiC粉末粒子中の不純物がフッ酸と硝酸の混酸などによ
る洗浄で溶かし出し易い状態になることを見つけ、さら
に高純度の粉末とすることを可能にした。純水としては
通常イオン交換水、あるいは蒸留水が使用される。
Particles of the raw material powder obtained by pulverizing and classifying α-SiC synthesized by the Acheson method are mostly single crystal grains of α-SiC. In the method for producing a high-purity silicon carbide-based member for a semiconductor heat treatment apparatus of the present invention, α-SiC powder has a particle size of 44 μm or less, which is finer than that of conventional ones.
-We found that impurities in the SiC powder particles could be easily dissolved by washing with a mixed acid of hydrofluoric acid and nitric acid, and made it possible to make powder of higher purity. Ion exchange water or distilled water is usually used as pure water.

【0018】本発明にいうところの半導体熱処理装置用
部材を具体的に例示すると、ウエハ−処理工程の中で用
いられる酸化炉、拡散炉、CVD炉等に用いられる均熱
管、反応管、ボート等のウエハー治具、カンチレバー、
サセプタ等である。特公昭54-10825号公報に記載されて
いる半導体拡散炉用炭化珪素質部材の従来の製造方法で
は、たとえば実施例に記載されているように、平均粒径
が 0.1〜8μm のα-SiC粉末50重量%と平均粒径が30〜1
70 μm のα-SiC粉末50重量%を出発原料として用い、
これを成形して焼結したものに高純度のシリコンを溶融
含浸、あるいは含浸と同時に焼結体中に残留しているカ
ーボンをシリコンと反応させ炭化珪素化(この焼結プロ
セスは反応焼結と呼ばれる)して製造される。
To specifically exemplify the member for a semiconductor heat treatment apparatus according to the present invention, a soaking tube, a reaction tube, a boat, etc. used in an oxidation furnace, a diffusion furnace, a CVD furnace, etc. used in a wafer processing step. Wafer jig, cantilever,
Such as a susceptor. In the conventional method for producing a silicon carbide-based member for a semiconductor diffusion furnace described in Japanese Patent Publication No. 54-10825, α-SiC powder having an average particle size of 0.1 to 8 μm, as described in Examples, for example. 50% by weight and average particle size 30 to 1
70 μm α-SiC powder 50% by weight was used as a starting material,
High-purity silicon is melt-impregnated into what is molded and sintered, or carbon remaining in the sintered body is reacted with silicon at the same time as impregnation to form silicon carbide (this sintering process is called reactive sintering). Called) is manufactured.

【0019】しかしこのような従来の粒度構成のα-SiC
粉末原料を用いる場合には、十分にα-SiCの原料粉末や
焼結体の洗浄処理を行っても最終的に得られる炭化珪素
質焼結体の純度に限度があることが判明した。出発原料
であるα-SiCの結晶は、通常アチソン法と呼ばれる方法
により合成されている。アチソン法では、通常珪砂と石
油コークスを原料とし、混合した原料を間接式電気抵抗
炉で2200〜2500℃に加熱することにより、 SiO2+3C→SiC +2CO 等の反応によって炭化珪素が合成される。この反応温度
が2100℃より高いことにより炭化珪素の結晶はすべてこ
の温度領域で安定なα-SiCになる。
However, α-SiC having such a conventional grain structure is used.
It has been found that when the powder raw material is used, the purity of the finally obtained silicon carbide sintered body is limited even if the α-SiC raw material powder and the sintered body are sufficiently washed. Crystals of α-SiC as a starting material are usually synthesized by a method called the Acheson method. In the Acheson method, silica sand and petroleum coke are usually used as raw materials, and the mixed raw materials are heated to 2200 to 2500 ° C. in an indirect electric resistance furnace to synthesize silicon carbide by a reaction such as SiO 2 + 3C → SiC + 2CO. Since the reaction temperature is higher than 2100 ° C, all the silicon carbide crystals become stable α-SiC in this temperature range.

【0020】得られるα-SiCは多数の粗い結晶が固まっ
た塊状のものとして得られる。これを半導体熱処理装置
用部材を製造する原料として使用する場合には、粉砕し
て分級し、更にフッ酸と硝酸の混酸などを用いて鉄をは
じめとする不純物元素を溶かし出し、次いで純水で洗浄
することにより精製する。本発明者らが調べたところ、
粉砕工程で導入された粒子の表面に付着している不純物
元素は比較的容易に除去できるが、結晶粒界や結晶粒子
の内部に取り込まれた不純物は混酸と純水で洗浄しても
除去することがほとんどできず、これらの残留不純物
は、その後の焼成やシリコン含浸工程で焼結体の内部に
おいて拡散し、焼結体中に残留していることが分かっ
た。
The obtained α-SiC is obtained as a lump in which a large number of coarse crystals are solidified. When this is used as a raw material for manufacturing a semiconductor heat treatment apparatus member, it is pulverized and classified, and then an impurity element such as iron is dissolved out using a mixed acid of hydrofluoric acid and nitric acid, and then pure water is used. Purify by washing. When the present inventors investigated,
Impurity elements adhering to the surface of the particles introduced in the crushing process can be removed relatively easily, but impurities taken in at the grain boundaries and inside the crystal particles can be removed even by washing with mixed acid and pure water. It was found that these residual impurities diffused inside the sintered body in the subsequent firing or silicon impregnation step and remained in the sintered body.

【0021】従って、鉄濃度が5ppm以下、さらには2.5p
pm以下という高純度の半導体熱処理装置用炭化珪素質部
材を得るためには、単に純度の高いα-SiC原料を選んで
用いるだけでは不十分であり、この除去し難い、結晶粒
界や結晶の内部に存在する不純物を除去する必要があ
る。この事実を確認するには、また製造方法を確立する
には、後述する新たな分析手法の開発とその利用が必要
であった。
Therefore, the iron concentration is 5 ppm or less, further 2.5p
In order to obtain a high-purity silicon carbide-based member for a semiconductor heat treatment apparatus of pm or less, it is not enough to simply select and use a high-purity α-SiC raw material, which is difficult to remove. It is necessary to remove impurities existing inside. In order to confirm this fact and to establish the manufacturing method, it was necessary to develop and utilize a new analytical method described later.

【0022】種々検討を行った結果、この結晶の内部に
存在する不純物の多くは結晶の内部に形成された空隙の
表面に付着していることが分かった。α-SiC原料粉末の
最大粒度を44μm 以下とし、重量平均粒子径を25μm 以
下となるように砕いてやると、大部分の結晶粒界や結晶
の内部に形成された空隙の表面に存在する鉄などの不純
物元素が結晶粒子の表面に剥き出しとなり、混酸と純水
による洗浄によって除去が可能となることをつきとめ
た。
As a result of various studies, it was found that most of the impurities existing inside the crystal adhere to the surface of the void formed inside the crystal. When the maximum particle size of the α-SiC raw material powder is set to 44 μm or less and the weight average particle size is crushed to 25 μm or less, most of the iron existing in the grain boundaries and the surfaces of the voids formed inside the crystals are present. It was found that impurity elements such as are exposed on the surface of the crystal particles and can be removed by washing with mixed acid and pure water.

【0023】α-SiC粉末の重量平均粒子径を 2μm 以下
に細かくすると、純度については混酸を使用する洗浄に
よって鉄の含有量を5ppm以下にできるが、粉砕工程で原
料中に混入する不純物の濃度が高くなり、5ppm以下の不
純物濃度の原料粉末とするための洗浄に手間がかかる。
また、粉末の粒子が細かいと成形体の焼成前における生
加工性が不良であり、焼成体の気孔組織が細かくなり、
シリコンの含浸が困難になるので好ましくない。
If the weight average particle diameter of the α-SiC powder is made finer to 2 μm or less, the iron content can be reduced to 5 ppm or less by washing with mixed acid in terms of purity, but the concentration of impurities mixed in the raw material in the crushing step Becomes high, and it takes time and effort to clean the raw material powder with an impurity concentration of 5 ppm or less.
Further, if the particles of the powder are fine, the raw workability before firing of the molded body is poor, and the pore structure of the fired body becomes fine,
It is not preferable because impregnation with silicon becomes difficult.

【0024】逆に、α-SiC原料粉末の重量平均粒子径を
25μmより大きくすると、原料粉末を最大粒子径44μm
で分級するとき篩を通過しない粉末が多く残って原料粉
末の使用できる割合が低下する他、粉末の成形性、特に
排泥鋳込の場合に排泥面(成形体の内側)の平滑度が低
下し、これによって曲げ強度などの材料物性が劣化する
ので好ましくない。
On the contrary, the weight average particle diameter of the α-SiC raw material powder is
If it is larger than 25 μm, the raw material powder has a maximum particle size of 44 μm.
A large amount of powder that does not pass through the sieve remains when the product is classified by, and the ratio of the raw material powder that can be used decreases, and the moldability of the powder, especially in the case of sludge pouring, the smoothness of the sludge discharge surface (inside the compact) is reduced. This lowers the physical properties of the material such as bending strength, which is not preferable.

【0025】不純物の鉄を除去する工程では、他の不純
物元素の多くも同時に除去される。その理由は、洗浄に
使用するフッ酸と硝酸の混酸がほとんどの不純物元素を
溶解するとともに、α-SiC結晶がほとんどの不純物元素
を結晶の内部に固溶せず、不純物が結晶粒界あるいは結
晶の表面のみに存在していることによる。半導体拡散炉
用部材の成形、焼成および高純度シリコンの含浸工程
は、α-SiC粉末の純度のレベルを極力劣化させないよう
に注意して行う必要がある。しかし、出発原料であるα
-SiC粉末の純度を高くすることが最も重要である。
In the step of removing iron as an impurity, most of other impurity elements are also removed at the same time. The reason for this is that the mixed acid of hydrofluoric acid and nitric acid used for cleaning dissolves most of the impurity elements, and α-SiC crystals do not dissolve most of the impurity elements into the inside of the crystal. It exists only on the surface of. The molding, firing and impregnation of high-purity silicon for the semiconductor diffusion furnace member must be carried out with care so as not to deteriorate the purity level of the α-SiC powder as much as possible. However, the starting material α
-High purity of SiC powder is most important.

【0026】半導体熱処理装置用炭化珪素質部材を製造
するための成形方法としては、製品の形状に応じて泥漿
鋳込成形法、アイソスタチックプレス法、押出成形法な
どを採用できるが、いずれの成形方法を使用する場合に
も、粒度分布の幅が広い方が成形性が良好であり、成形
体の密度も高くできるので都合が良い。本発明の半導体
熱処理装置用高純度炭化珪素質部材の製造方法の好まし
い態様では、成形を排泥鋳込成形法で行う。
As a molding method for manufacturing the silicon carbide material for a semiconductor heat treatment apparatus, a slurry casting molding method, an isostatic pressing method, an extrusion molding method or the like can be adopted depending on the shape of the product. Also in the case of using the molding method, it is convenient that the width of the particle size distribution is wide because the moldability is good and the density of the molded body can be increased. In a preferred aspect of the method for producing a high-purity silicon carbide material for a semiconductor heat treatment apparatus of the present invention, the molding is performed by a sludge casting molding method.

【0027】本発明の高純度炭化珪素質部材の製造方法
で使用する原料粉末は、排泥鋳込成形法用の泥漿として
特に適した粒度分布を有している。すなわち、使い易く
安定な泥漿となり、排泥鋳込成形法を適用することによ
って、他の成形法より密度の大きい成形体が得られ、生
成形体が薄肉であってもハンドリングや生加工に必要十
分な強度を有しており、多様な形状の薄肉のチューブや
長尺寸法の成形品が容易に得られ、原料であるα-SiC粉
末の粒径を44μm以下としたことにより、固体粒子の懸
濁液である泥漿中のα-SiC粉末の沈降速度が小さく、部
分による肉厚の差の小さい成形体を得られるなどの利点
がある。
The raw material powder used in the method for producing a high-purity silicon carbide member of the present invention has a particle size distribution particularly suitable as a sludge for the sludge casting molding method. That is, it becomes a sludge that is easy to use and stable, and by applying the sludge casting molding method, a molded body with a higher density than other molding methods can be obtained, and even if the molded body is thin, it is necessary and sufficient for handling and raw processing. Since it has various strengths, thin-walled tubes of various shapes and long-sized molded products can be easily obtained, and the particle size of the raw material α-SiC powder is 44 μm or less. The sedimentation rate of α-SiC powder in the slurry, which is a suspension, is low, and there are advantages such as being able to obtain a molded product with a small difference in wall thickness between parts.

【0028】本発明の半導体熱処理装置用高純度炭化珪
素質部材の製造方法によって得られる部材は高強度であ
って、薄肉にしても十分な強度があり、半導体熱処理装
置全体を軽量化して使い易い装置とすることができる。
比較的厚肉の形状を有するサセプタ、ボートなどの成形
では、アイソスタチックプレス法が好ましく使用でき
る。
The member obtained by the method for producing a high-purity silicon carbide member for a semiconductor heat treatment apparatus of the present invention has high strength and has sufficient strength even if it is thin, and the semiconductor heat treatment apparatus is light in weight and easy to use. It can be a device.
The isostatic pressing method can be preferably used for molding a susceptor having a relatively thick shape, a boat, and the like.

【0029】また、各種形状の成形体を作るのに成形体
を生加工するが、この場合にもある程度粗い粉末が存在
している方が加工性が良い。原料を高純度化するのに適
した粒度であること、製造における成形性、生加工性お
よび得られる焼結体の材料物性を考慮するとき、α-SiC
原料粉末として特に好適な重量平均粒子径の範囲は 3〜
15μm である。
Further, although the molded body is subjected to raw processing to form molded bodies of various shapes, in this case as well, workability is better when a powder having a certain degree of coarseness is present. When considering the particle size suitable for highly purifying the raw material, the formability in production, raw workability, and the material properties of the resulting sintered body, α-SiC
The range of the weight average particle diameter particularly suitable as the raw material powder is 3 to
15 μm.

【0030】焼成後、焼結体の気孔に含浸される高純度
シリコンの量は、焼結体の気孔率が小さいと閉じた気孔
が増えてシリコンの含浸が困難となるので、通常 7重量
%以上シリコンが含浸されるようにするのが好ましい。
焼結体のシリコンの含有量は35重量%以下、より好まし
くは25重量%以下とすることによって高い曲げ強度など
の好ましい物性を確保するこができる。
After firing, the amount of high-purity silicon impregnated into the pores of the sintered body is usually 7% by weight, because if the porosity of the sintered body is small, the number of closed pores increases and it becomes difficult to impregnate silicon. It is preferable that the above is impregnated with silicon.
By setting the silicon content of the sintered body to 35% by weight or less, more preferably 25% by weight or less, preferable physical properties such as high bending strength can be secured.

【0031】本発明の半導体熱処理装置用高純度炭化珪
素質部材の製造方法では、有機質の結合剤は使用する
が、焼結助剤なしで焼結されるので、焼結は主として表
面拡散あるいは蒸発と凝縮の機構によって進行すること
になり、粒子と粒子との間の間隔が縮まず、焼成収縮が
ほとんどないという特徴がある。従って気孔率の小さい
緻密な焼結体を得るためには密度の大きい成形体を得る
必要がある。
In the method for producing a high-purity silicon carbide-based member for a semiconductor heat treatment apparatus of the present invention, an organic binder is used, but since sintering is performed without a sintering aid, sintering is mainly surface diffusion or evaporation. And the condensation mechanism, the gap between particles does not shrink, and there is almost no firing shrinkage. Therefore, in order to obtain a dense sintered body having a small porosity, it is necessary to obtain a compact having a high density.

【0032】有機質の結合剤としては、フェノール樹
脂、ポリ酢酸ビニルエマルジョン、アクリル樹脂エマル
ジョンなどが好ましく使用でき、フェノール樹脂を結合
剤として用いるときは、焼成体中にカーボンが残留する
ことになり、このカーボンはシリコンを含浸するときシ
リコンと反応してβ-SiCに変わる。
As the organic binder, phenol resin, polyvinyl acetate emulsion, acrylic resin emulsion or the like can be preferably used. When the phenol resin is used as the binder, carbon remains in the fired body. When carbon is impregnated with carbon, it reacts with silicon and changes to β-SiC.

【0033】α-SiC粉末からなる成形体の焼成工程で
は、次のシリコン含浸工程でハンドリングできる強度が
得られればよいという意味で、焼成温度は低くてもかま
わないが、1500℃以上で焼成することによりハンドリン
グに十分な強度が得られる。しかし、特にカーボンが残
留するフェノール樹脂のような結合剤を用いた場合、焼
成温度を1000℃程度とすることも可能である。焼成を21
00℃以上で行うと結晶成長(再結晶と呼ばれる)が進行
するようになり、結晶粒子が成長することにより焼結体
の組織が変化してくる。この際、材料の特性が徐々に劣
化するが、2300℃までは焼成温度を上げても結晶の成長
は著しくない。しかし2300℃より更に温度を上げると、
結晶成長が顕著になり、炭化珪素成分の蒸発による減量
もあって材料強度や破壊靭性が低下する傾向がある。
In the firing step of the molded body made of α-SiC powder, the firing temperature may be low in the sense that strength that can be handled in the next silicon impregnation step is obtained, but firing is performed at 1500 ° C. or higher. As a result, sufficient strength for handling can be obtained. However, especially when a binder such as a phenol resin in which carbon remains is used, the firing temperature can be set to about 1000 ° C. Firing 21
If the temperature is higher than 00 ° C., crystal growth (called recrystallization) will proceed, and the structure of the sintered body will change due to the growth of crystal grains. At this time, the characteristics of the material gradually deteriorate, but the crystal growth is not remarkable up to 2300 ° C even if the firing temperature is increased. However, if the temperature is raised above 2300 ℃,
Crystal growth becomes remarkable, and there is a tendency that the material strength and the fracture toughness are reduced due to a decrease in the amount due to evaporation of the silicon carbide component.

【0034】[0034]

【実施例】以下、本発明を実施例に基いて更に詳しく説
明するが、本発明はこれらの実施例によって何ら限定さ
れるものではない。α-SiC粉末の高純度化処理を種々の
粒度を有するα-SiC粉末について試み、処理した粉末の
純度を分析した結果を表1に示した。すなわち、α-SiC
粉末をフッ酸と硝酸(2:1)の混酸中に投入して5時
間撹拌し、次いで純水で洗浄する操作を3回繰り返し
た。それぞれの洗浄を行った後の粉末中の鉄をフッ酸と
硝酸の混酸中で煮沸して溶出し、得られた溶液中の鉄を
原子吸光分析法により定量分析した。
The present invention will be described in more detail based on the following examples, but the invention is not intended to be limited thereto. The purification treatment of α-SiC powder was attempted for α-SiC powder having various particle sizes, and the results of analyzing the purity of the treated powder are shown in Table 1. That is, α-SiC
The operation of pouring the powder into a mixed acid of hydrofluoric acid and nitric acid (2: 1), stirring for 5 hours, and then washing with pure water was repeated 3 times. The iron in the powder after each washing was boiled and eluted in a mixed acid of hydrofluoric acid and nitric acid, and the iron in the obtained solution was quantitatively analyzed by atomic absorption spectrometry.

【0035】ただし、微量の不純物を定量するため、試
薬は通常使用されている特級試薬の代わりに、分析用の
高純度試薬のフッ酸と硝酸(いずれも不純物が1ppb以下
のもの)を用いた。ここで、平均粒子径とは、粒度分布
を積算重量分布で求め、50重量%の位置の粒子径を読み
取った値である。
However, in order to quantify a trace amount of impurities, the reagents used were high-purity reagents for analysis, such as hydrofluoric acid and nitric acid (both having impurities of 1 ppb or less), instead of the usually used special grade reagents. . Here, the average particle size is a value obtained by obtaining the particle size distribution by an integrated weight distribution and reading the particle size at a position of 50% by weight.

【0036】表1の分析結果によれば、粉砕して分級し
た後のα-SiC粉末は粒子径が小さいものの方が不純物を
多く含み、粉砕時に不純物の混入が多いことが分かる。
しかし、洗浄を繰り返すことにより、この分析方法によ
る分析値は粒度に関係なく一定の純度レベルに落ち着
く。
From the analysis results in Table 1, it is understood that the α-SiC powder after pulverization and classification has a larger particle size, but contains more impurities, and more impurities are mixed during pulverization.
However, by repeating the washing, the analysis value by this analysis method settles at a certain purity level regardless of the particle size.

【0037】従って、原料粉末の粒子径が細いと不純物
濃度は大きくなるが、粉砕工程で導入された不純物は混
酸と純水で洗浄することにより除去が可能である。しか
し、このJIS R6124 に基く炭化珪素中の不純物の分析方
法は、粒子表面に存在する不純物元素のみを溶出し、酸
で煮沸して溶出し得た不純物を分析する方法であって、
α-SiCの結晶粒界や結晶の内部に存在する不純物元素ま
で溶解して分析しているわけではない。あくまでもα-S
iC粉末粒子表面の不純物元素を分析しているに過ぎない
ことは以下の検討の結果から明らかになった。
Therefore, if the particle diameter of the raw material powder is small, the impurity concentration increases, but the impurities introduced in the pulverizing step can be removed by washing with mixed acid and pure water. However, the method of analyzing impurities in silicon carbide based on JIS R6124 is a method of eluting only the impurity element present on the particle surface, and boiling the acid to analyze the impurities that can be eluted,
The impurity elements present in the crystal grain boundaries of α-SiC and inside the crystal are not dissolved and analyzed. Only α-S
It was clarified from the results of the following study that only the impurity elements on the surface of the iC powder particles were analyzed.

【0038】α-SiC粒子を分解して、その内部に存在す
る不純物元素の全て、あるいは大部分の不純物元素を溶
解して分析することができれば、真の純度、もしくは真
の純度に近い分析値が得られるはずである。一般に炭化
珪素の結晶粒子を分解する方法としてはアルカリ溶融が
行われるが、溶融に用いる試薬および溶融に用いる容器
に由来する不純物が極微量の不純物の定量の妨げになる
ことが多い。
If the α-SiC particles can be decomposed and all or most of the impurity elements existing inside can be dissolved and analyzed, the true purity or an analysis value close to the true purity can be obtained. Should be obtained. Generally, alkali melting is performed as a method for decomposing silicon carbide crystal particles, but impurities derived from a reagent used for melting and a container used for melting often hinder the determination of a very small amount of impurities.

【0039】これらの欠点を補うことができる分解方法
として、加圧分解法の適用を試みた。すなわち、α-SiC
の粉末をフッ酸と硝酸の混酸とともに耐食性のある容器
(フッソ樹脂製のものを用いる)に収容して密閉し、耐
圧容器中で加熱することにより容器内部の圧力を高め、
α-SiCの結晶粒子の分解を促進する。この方法を適用す
るとα-SiC粒子の全分解も可能であるが、50%以上の分
解を行うことにより、分析される不純物元素量が真の含
有量に近付いて飽和し、全分解までしなくても不純物量
を高い精度で分析できることが以下の検討により判明し
た。
An attempt was made to apply a pressure decomposition method as a decomposition method capable of compensating for these drawbacks. That is, α-SiC
The powder of was stored in a container (using a fluorine resin) with corrosion resistance together with a mixed acid of hydrofluoric acid and nitric acid, sealed, and heated in a pressure resistant container to increase the pressure inside the container,
Promotes the decomposition of α-SiC crystal particles. When this method is applied, total decomposition of α-SiC particles is also possible, but by performing decomposition of 50% or more, the amount of impurity elements to be analyzed approaches the true content and saturates. However, it was found from the following examination that the amount of impurities can be analyzed with high accuracy.

【0040】まず、表1に示されたすでに3回の混酸洗
浄を行ったα-SiC粉末、すなわちJIS 法による分析でい
ずれも同等の純度を有するとされたα-SiC粉末を加圧分
解法によって分解し、原子吸光分析法により溶液中の不
純物元素である鉄を分析した。なお、加圧分解は完全に
は行わず、分解の程度は各々50〜60%となるようにし、
得られた鉄の分析結果を表2に示した。
First, the α-SiC powders shown in Table 1 which have been washed with mixed acid three times, that is, the α-SiC powders which have the same purity in the analysis by JIS method are decomposed by pressure. Was decomposed by, and the impurity element iron in the solution was analyzed by atomic absorption spectrometry. It should be noted that pressure decomposition is not completely performed, and the degree of decomposition is 50 to 60%,
Table 2 shows the analysis results of the obtained iron.

【0041】表2から分かるように、α-SiC粉末は従来
の混酸による洗浄方法では溶解できなかった不純物であ
る鉄をα-SiC粒子の内部に含有しており、粒子径が大き
いものほど不純物である鉄を粒子の内部に多く含有して
いることが分かる。逆に考えれば、ある値、例えば44μ
m より最大粒子径を小さくしておけば、粒子の内部に存
在している不純物元素が粒子の表面に剥き出され、混酸
による洗浄で除去が可能になることが分かる。
As can be seen from Table 2, the α-SiC powder contains iron, which is an impurity that could not be dissolved by the conventional washing method using mixed acid, inside the α-SiC particles. It can be seen that a large amount of iron is contained inside the particles. Considering the opposite, a certain value, for example 44μ
It can be seen that if the maximum particle diameter is smaller than m, the impurity element existing inside the particle is exposed on the surface of the particle and can be removed by washing with mixed acid.

【0042】この粒子径はアチソン法で合成されたα-S
iC結晶の平均の粒子径より顕著に小さい粒子径である。
不純物元素がどのような状態でα-SiC粉末粒子中に含ま
れているかを明らかにするため、α-SiC粉末粒子をX線
マイクロアナライザーで調べたところ、粒子の内部に存
在する鉄を主とする不純物元素は、主として結晶粒子の
内部に存在する空隙の表面に付着していることが分かっ
た。
This particle size is α-S synthesized by the Acheson method.
The particle size is significantly smaller than the average particle size of iC crystals.
In order to clarify in what state the impurity elements are contained in the α-SiC powder particles, we investigated the α-SiC powder particles with an X-ray microanalyzer and found that the iron present inside the particles was mainly found. It was found that the impurity element formed mainly adheres to the surfaces of the voids existing inside the crystal grains.

【0043】これらの結果から、α-SiC粉末粒子を44μ
m 以下の粒子径に砕いてやると、これらの結晶粒子内部
にある空隙のほとんどすべてが粒子表面に剥き出され、
混酸による洗浄で不純物元素の除去が可能になることが
説明できる。以上の考察においては、不純物元素である
鉄について論じたが、これは鉄がα-SiC原料の製造段階
から部材の製造に至るプロセスで最も混入し易い不純物
元素であり、かつ半導体素子の製造工程で最も排除すべ
き不純物元素の一つであることによる。
From these results, α-SiC powder particles were
When crushed to a particle size of m or less, almost all of the voids inside these crystal particles are exposed on the particle surface,
It can be explained that the impurity element can be removed by washing with mixed acid. In the above discussion, iron, which is an impurity element, was discussed, but it is an impurity element in which iron is most easily mixed in the process from the manufacturing stage of α-SiC raw material to the manufacturing of members, and the manufacturing process of the semiconductor element. Because it is one of the most impure elements to be excluded.

【0044】[0044]

【表1】 [Table 1]

【0045】[0045]

【表2】 [Table 2]

【0046】実施例1 325 メッシュの篩で分級された最大粒子径44μm 、平均
粒子径 8μm のα-SiC粉末をフッ酸と硝酸(2:1)の
混酸および純水で洗浄して得られた鉄の含有量が2.1ppm
の原料粉末に、純水と水溶性のフェノール樹脂を加え、
固形分濃度約80重量%の泥漿を得た。次に、この泥漿を
縦長の石膏型中に流し込んで 4mm程度の肉を形成させた
後、内部に残留している泥漿を排出し(排泥鋳込成形法
という)、外径310mm 、内径302mm 、長さ1780mmの円筒
状をした成形体を得た。この成形体の上部と下部におけ
る肉厚の差は0.5mm と小さかった。
Example 1 An α-SiC powder having a maximum particle size of 44 μm and an average particle size of 8 μm classified by a 325 mesh sieve was washed with a mixed acid of hydrofluoric acid and nitric acid (2: 1) and pure water. Iron content 2.1ppm
Pure water and water-soluble phenolic resin are added to the raw material powder of
A slurry having a solid content concentration of about 80% by weight was obtained. Next, this sludge is poured into a vertically long gypsum mold to form a meat of about 4 mm, and the sludge remaining inside is discharged (called a sludge moulding method), the outer diameter is 310 mm, the inner diameter is 302 mm. A cylindrical shaped body having a length of 1780 mm was obtained. The difference in wall thickness between the upper part and the lower part of this molded body was as small as 0.5 mm.

【0047】成形体を乾燥後、不活性雰囲気とした電気
炉中において2000℃で焼成した。次に焼結体を別の電気
炉に移し、真空中1800℃において、半導体単結晶の原料
として使用されている高純度シリコンを溶融含浸せし
め、含浸と同時に焼結体中に残留しているカーボンをシ
リコンと反応せしめて炭化珪素(この場合にはβ-SiCが
生成する)化し、すべての気孔が高純度シリコンで満た
された焼結体を得た。この後さらに混酸と純水で洗浄し
たものが半導体拡散炉のライナー管として使用される。
この焼結体から小片を切りとって、前述の加圧分解分析
法で分析したところ、鉄の含有量は2.2ppmであった。
After the molded body was dried, it was baked at 2000 ° C. in an electric furnace in an inert atmosphere. Next, the sintered body was transferred to another electric furnace, and the high-purity silicon used as the raw material of the semiconductor single crystal was melt-impregnated in vacuum at 1800 ° C., and the carbon remaining in the sintered body was simultaneously impregnated. Was reacted with silicon to form silicon carbide (in which case β-SiC is generated), and a sintered body was obtained in which all the pores were filled with high-purity silicon. After that, the product further washed with mixed acid and pure water is used as a liner tube of a semiconductor diffusion furnace.
When a small piece was cut from this sintered body and analyzed by the pressure decomposition analysis method described above, the iron content was 2.2 ppm.

【0048】実施例2 特注の篩を用いて分級した、最大粒子径30μm 、平均粒
子径 4.5μm のα-SiC粉末をフッ酸と硝酸(1:2)の
混酸および純水で洗浄し、鉄が1.8ppmのα-SiC粉末を得
た。このα-SiC粉末にポリ酢酸ビニルのエマルジョン水
溶液を結合剤として加えて造粒した。この造粒粉末を15
00kg/cm2でアイソスタチックプレス成形し、50mm×50mm
×1000mmの棒状成形体を得た。
Example 2 α-SiC powder having a maximum particle size of 30 μm and an average particle size of 4.5 μm, which had been classified using a custom-made sieve, was washed with a mixed acid of hydrofluoric acid and nitric acid (1: 2) and pure water to obtain iron. To obtain 1.8-ppm α-SiC powder. The α-SiC powder was granulated by adding a polyvinyl acetate emulsion aqueous solution as a binder. 15 of this granulated powder
Isostatic press molding at 00kg / cm 2 , 50mm × 50mm
A rod-shaped molded body of × 1000 mm was obtained.

【0049】次に、この成形体を生加工して外径14mmの
柱状体とし、実施例1で用いた泥漿を接着剤として用い
て接着加工し、ウエハー用ボートの形状にした。加工後
の成形体につき、実施例1と同条件で焼成およびシリコ
ン含浸を行った。次いでダイヤモンドホイールで切り込
み加工を行って、シリコンウエハーを保持するための1m
m幅の溝を形成し、さらに混酸と純水で洗浄してウエハ
ー用ボートを得た。
Next, this molded body was rawly processed into a columnar body having an outer diameter of 14 mm, and the slurry used in Example 1 was used as an adhesive agent for adhesion processing to obtain a wafer boat shape. The molded body after processing was fired and impregnated with silicon under the same conditions as in Example 1. Then, cut it with a diamond wheel to 1m to hold the silicon wafer.
A groove having a width of m was formed and further washed with a mixed acid and pure water to obtain a wafer boat.

【0050】このウエハー用ボートから切り取った小片
について、前述の加圧分解分析法で鉄の含有量を分析し
たところ、1.2ppmであった。鉄の分析と同時に、同じ試
料溶液で他の不純物元素の含有量を分析したところ、Ni
は0.5ppm、Cuは0.1ppm、Caは2ppm、NaとK はいずれも1p
pm以下という結果を得た。
When the iron content of the small piece cut out from the boat for wafers was analyzed by the pressure decomposition analysis method described above, it was 1.2 ppm. Simultaneously with the analysis of iron, the contents of other impurity elements were analyzed in the same sample solution.
Is 0.5ppm, Cu is 0.1ppm, Ca is 2ppm, Na and K are both 1p
The result is less than pm.

【0051】実施例3 325 メッシュの篩で分級して得た最大粒子径44μm 、平
均粒子径 5μm のα-SiC粉末をフッ酸と硝酸(1:2)
の混酸および純水で洗浄して得られた鉄の含有量が1.1p
pmの原料粉末に、純水と結合剤であるアクリル樹脂エマ
ルジョンを加え、固形分濃度約75重量%の泥漿を得た。
この泥漿により、石膏型を用いて排泥鋳込成形を行い、
さらに生加工してウエハーボート搭載用のフォーク状成
形体を得た。
Example 3 α-SiC powder having a maximum particle size of 44 μm and an average particle size of 5 μm obtained by classification with a 325 mesh sieve was treated with hydrofluoric acid and nitric acid (1: 2).
The iron content obtained by washing with mixed acid and pure water is 1.1p
Pure water and an acrylic resin emulsion as a binder were added to the raw material powder of pm to obtain a slurry having a solid content concentration of about 75% by weight.
With this slurry, drainage mud casting is performed using a plaster mold,
Further, raw processing was performed to obtain a fork-shaped molded body for mounting on a wafer boat.

【0052】この成形体を乾燥後、アルゴンの不活性雰
囲気とした電気炉中において1900℃で焼成した。得られ
た焼結体の気孔率は18%で、前述の加圧分解分析法によ
り調べた鉄の含有量は1.0ppmであった。次いで焼結体を
別の電気炉に移し、真空中1800℃において焼結体に高純
度シリコンを溶融含浸せしめ、すべての気孔が高純度シ
リコンで充たされた焼結体を得た。
After this molded body was dried, it was fired at 1900 ° C. in an electric furnace in an inert atmosphere of argon. The porosity of the obtained sintered body was 18%, and the iron content examined by the pressure decomposition analysis method was 1.0 ppm. Then, the sintered body was transferred to another electric furnace, and the sintered body was melt-impregnated with high-purity silicon at 1800 ° C. in vacuum to obtain a sintered body in which all pores were filled with high-purity silicon.

【0053】この後、混酸および純水で洗浄し、焼結体
から切りとった小片について前述の加圧分解分析法で鉄
の含有量を分析したところ1.1ppmであった。同じ焼結体
から試験片を切り出し、JIS 試験法によって3点曲げ強
度を測定したところ、室温で45kg/mm2、1200℃で52kg/m
m2であり、破壊靭性値K1C は室温で4.5MN/m3/2、1200℃
で6.5MN/m3/2という値を得た。従って、得られた焼結体
は、拡散炉用のフォーク状成形体などとして十分な強度
と実用性を有していることが分かった。
Thereafter, the iron content was analyzed by the pressure decomposition analysis method described above for the small pieces cut from the sintered body which were washed with mixed acid and pure water, and found to be 1.1 ppm. A test piece was cut from the same sintered body, and the 3-point bending strength was measured by the JIS test method. It was 45 kg / mm 2 at room temperature and 52 kg / m at 1200 ° C.
m 2 and fracture toughness value K 1C is 4.5 MN / m 3/2 at room temperature, 1200 ℃
At 6.5 MN / m 3/2 was obtained. Therefore, it was found that the obtained sintered body had sufficient strength and practicality as a fork-shaped molded body for a diffusion furnace.

【0054】実施例4 特注の篩で分級して得た最大粒子径30μm 、平均粒子径
6μm のα-SiC粉末を、混酸と純水でそれぞれ3回洗浄
した。加圧分解分析法によるこのα-SiC粉末の鉄の含有
量は1.8ppmであった。このα-SiC粉末に純水と結合剤で
ある低重合度のポリビニルブチラールエマルジョンを加
えて泥漿とした。この泥漿を多孔質ウレタン型に3kg/cm
2 の圧力で注入し、シャフト付き車輪の形に成形した。
Example 4 Maximum particle size obtained by classification with a custom-made sieve 30 μm, average particle size
The 6 μm α-SiC powder was washed three times with mixed acid and pure water. The iron content of this α-SiC powder as determined by pressure decomposition analysis was 1.8 ppm. Pure water and a polyvinyl butyral emulsion having a low degree of polymerization as a binder were added to the α-SiC powder to prepare a slurry. 3 kg / cm of this slurry in a porous urethane mold
It was injected at a pressure of 2 and molded into the shape of a wheel with a shaft.

【0055】成形体を乾燥後、窒素ガス雰囲気とした電
気炉中において1700℃で焼成し、 次いで焼結体を別の電
気炉に移して、真空中1800℃で高純度シリコンを溶融含
浸し、31重量%のシリコンを含むマザーボートの車輪を
得た。この焼結体中の鉄の含有量を前述の加圧分解法で
分析したところ1.4ppmであり、車輪のシャフト部分から
切り取った試験片で1200℃における物性を調べたとこ
ろ、曲げ強度は23kg/mm2、破壊靭性値K1C は7.1 MN/m
3/2 であった。
After the molded body was dried, it was fired at 1700 ° C. in an electric furnace in a nitrogen gas atmosphere, then the sintered body was transferred to another electric furnace, and high-purity silicon was melt-impregnated in vacuum at 1800 ° C., A mother boat wheel containing 31% by weight of silicon was obtained. When the content of iron in this sintered body was analyzed by the pressure decomposition method described above, it was 1.4 ppm, and the physical properties at 1200 ° C. of the test piece cut from the shaft portion of the wheel were examined, and the bending strength was 23 kg / mm 2 , fracture toughness value K 1C is 7.1 MN / m
It was 3/2 .

【0056】実施例5 水中沈降法によって分級して得た最大粒子径15μm 、平
均粒子径3.3μm のα-SiC粉末を実施例1と同じ条件で
洗浄し、純水と結合剤であるデキストリンを加えて泥漿
とした。この泥漿を使用して実施例1と同じ形状のライ
ナー管を成形し、真空とした電気炉中において2150℃で
焼成し、高純度のシリコンを溶融含浸せしめ、11重量%
のシリコンを含むライナー管を得た。
Example 5 An α-SiC powder having a maximum particle size of 15 μm and an average particle size of 3.3 μm obtained by classification by a water sedimentation method was washed under the same conditions as in Example 1 to obtain pure water and dextrin as a binder. In addition, it was slurried. Using this slurry, a liner tube having the same shape as that of Example 1 was molded and fired at 2150 ° C. in an electric furnace under vacuum to melt-impregnate high-purity silicon. 11% by weight
A liner tube containing silicon was obtained.

【0057】この焼結体中の鉄の含有量を前述の加圧分
解法で分析したところ0.5ppmであった。このライナー管
は焼成された温度が高いことによって荒れた表面を有す
るものとなったが、この表面にはジルコンの絶縁コート
層が良く密着した。
When the content of iron in this sintered body was analyzed by the pressure decomposition method described above, it was 0.5 ppm. The liner tube had a rough surface due to the high firing temperature, and the zircon insulation coating layer adhered well to this surface.

【0058】実施例6 実施例5と同じ方法により分級して得た最大粒子径15μ
m 、平均粒子径 2.4μm のα-SiC粉末を実施例1と同じ
条件で洗浄し、この粉末に純水と結合剤であるヒドロキ
シエチルセルロースを加え、可塑性の坏土を得た。ポリ
テトラフルオロエチレン(PTFE)でコーティングさ
れたシリンダーとプランジャーを有する押出成形機を使
用し、外径10mm、内径7mm のチューブを押し出し、先端
を同じ坏土で塞いで保護管の形状に成形した。
Example 6 Maximum particle size 15 μ obtained by classification in the same manner as in Example 5
α-SiC powder having m 2 and an average particle diameter of 2.4 μm was washed under the same conditions as in Example 1, and pure water and hydroxyethyl cellulose as a binder were added to this powder to obtain a plastic kneaded clay. Using an extruder having a cylinder coated with polytetrafluoroethylene (PTFE) and a plunger, a tube with an outer diameter of 10 mm and an inner diameter of 7 mm was extruded, and the tip was closed with the same clay to form a protective tube. .

【0059】成形体を乾燥後、アルゴンガス雰囲気とし
た電気炉中において1600℃で焼成し、さらに水素をキャ
リアガスとしてシランガスを流し、焼結体にシリコンを
含浸せしめた。得られた保護管について、前述の加圧分
解分析法で鉄の含有量を分析したところ0.4ppmであっ
た。この保護管を拡散炉中に入れ、焼結体の表面を酸化
してシリカを生成せしめたものは絶縁性があり、そのま
ま熱電対の保護管として使用できることが確かめられ
た。
After the molded body was dried, it was fired at 1600 ° C. in an electric furnace in an argon gas atmosphere, and silane gas was flown with hydrogen as a carrier gas to impregnate the sintered body with silicon. The content of iron in the obtained protective tube was analyzed by the above-mentioned pressure decomposition analysis method and found to be 0.4 ppm. It was confirmed that this protective tube was placed in a diffusion furnace and the surface of the sintered body was oxidized to produce silica, which has an insulating property and can be used as it is as a protective tube for a thermocouple.

【0060】実施例7 実施例1で得た粉末をさらに空気流で分級して10μm 以
下の粒子を取り除き、最大粒子径44μm で平均粒子径20
μm のα-SiC粉末を得た。この粉末を実施例1と同じ条
件で洗浄し、この粉末に少量のステアリン酸を滑剤とし
て混合し、500kg/cm2でプレス成形して160mm ×500mm
×6mm の板とした。この成形体をアルゴンガス雰囲気と
した電気炉中において1550℃で焼成し、次いで高純度の
シリコンを溶融含浸せしめ、板状の焼結体とした。
Example 7 The powder obtained in Example 1 was further classified by air flow to remove particles of 10 μm or less, and the maximum particle size was 44 μm and the average particle size was 20 μm.
A μm α-SiC powder was obtained. This powder was washed under the same conditions as in Example 1, mixed with a small amount of stearic acid as a lubricant, and press-molded at 500 kg / cm 2 to obtain 160 mm × 500 mm.
A 6 mm plate was used. This molded body was fired at 1550 ° C. in an electric furnace in an argon gas atmosphere, and then high-purity silicon was melt-impregnated to obtain a plate-shaped sintered body.

【0061】この焼結体をさらに研削加工して6インチ
ウエハー用のサセプタを得た。得られたサセプタについ
て、前述の加圧分解法で鉄含有量を分析したところ4.2p
pmであり、同時に分析したクロムの含有量は0.4ppmであ
った。この焼結体から試験片を切り取って曲げ強度を測
定したところ、室温で20kg/mm2、1200℃で22kg/mm2であ
った。
This sintered body was further ground to obtain a susceptor for a 6-inch wafer. The iron content of the obtained susceptor was analyzed by the above-mentioned pressure decomposition method and found to be 4.2 p.
pm and the chromium content simultaneously analyzed was 0.4 ppm. When a test piece was cut out from this sintered body and the bending strength was measured, it was 20 kg / mm 2 at room temperature and 22 kg / mm 2 at 1200 ° C.

【0062】実施例8 実施例5と同じ方法によって分級して得た最大粒子径28
μm 、平均粒子径12μm のα-SiC粉末を実施例1と同じ
条件で洗浄し、純水と結合剤であるポリビニルアルコー
ルを加えて泥漿とした。この泥漿を使用して排泥鋳込成
形を行い、実施例1と同じ形状のプロセス管の形状とし
た。
Example 8 Maximum particle size 28 obtained by classification by the same method as in Example 5
α-SiC powder having a particle size of 12 μm and an average particle size of 12 μm was washed under the same conditions as in Example 1, and pure water and polyvinyl alcohol as a binder were added to prepare a slurry. Using this sludge, drainage sludge molding was performed to obtain a process tube having the same shape as in Example 1.

【0063】成形体を乾燥後、850 ℃で仮焼成して結合
剤を除去し、次いで水素を含む窒素雰囲気とした電気炉
中において1800℃で焼成した。焼結体を真空雰囲気とし
た電気炉に移し、1800℃で高純度のシリコンを溶融含浸
せしめ、約15重量%のシリコンを含むプロセス管を得
た。この焼結体中の鉄の含有量を前述の加圧分解法によ
り分析したところ0.9ppmであった。
After the molded body was dried, it was calcined at 850 ° C. to remove the binder, and then calcined at 1800 ° C. in an electric furnace in a nitrogen atmosphere containing hydrogen. The sintered body was transferred to an electric furnace in a vacuum atmosphere, and high-purity silicon was melt-impregnated at 1800 ° C. to obtain a process tube containing about 15% by weight of silicon. When the content of iron in this sintered body was analyzed by the pressure decomposition method described above, it was 0.9 ppm.

【0064】実施例9 325 メッシュの篩で分級して得た最大粒子径44μm 、平
均粒子径12μm のα-SiC粉末を実施例1と同じ方法で洗
浄し、実施例4と同じ方法により厚さ 6mm、直径 150mm
の円板を成形した。成形体を窒素ガス雰囲気とした電気
炉中において1700℃で焼成し、焼結体を別の電気炉に移
して高純度シリコンを真空中1800℃で溶融含浸した。
Example 9 α-SiC powder having a maximum particle size of 44 μm and an average particle size of 12 μm obtained by classification with a 325 mesh sieve was washed by the same method as in Example 1, and the thickness was increased by the same method as in Example 4. 6mm, diameter 150mm
A circular plate was molded. The compact was fired at 1700 ° C in an electric furnace in a nitrogen gas atmosphere, the sintered compact was transferred to another electric furnace, and high-purity silicon was melt-impregnated at 1800 ° C in vacuum.

【0065】この焼結体から小片を切り取り、前述の加
圧分解分析法で鉄の含有量を分析したところ3.1ppmであ
った。また、この円板を研削加工して輻射防止板とし、
カンチレバーに取り付けてシリコンウエハーに対する影
響を調べたが、不純物による影響はまったく認められな
かった。
A small piece was cut out from this sintered body, and the iron content was analyzed by the pressure decomposition analysis method described above, and it was 3.1 ppm. Also, grinding this disc to make a radiation prevention plate,
The influence on the silicon wafer was examined by mounting it on a cantilever, but no influence by impurities was observed.

【0066】比較例1 48メッシュの篩で分級して得た最大粒子径 297μm 、平
均粒子径32μm のα-SiC粉末を、実施例1と同様にフッ
酸と硝酸の混酸および純水でそれぞれ3回洗浄し、この
粉末について鉄の含有量を加圧分解分析法で分析したと
ころ17.2ppm であった。このα-SiC粉末を用い、実施例
1と同じ方法で、肉厚が約 4mmのライナーチューブを作
製したところ、成形体の上下の肉厚差は、泥漿の粒子の
沈降速度が大きいことによって1.5mm となった。
Comparative Example 1 α-SiC powder having a maximum particle size of 297 μm and an average particle size of 32 μm obtained by classification with a 48-mesh sieve was treated with a mixed acid of hydrofluoric acid and nitric acid and pure water in the same manner as in Example 1. After washing twice, the iron content of this powder was analyzed by the pressure decomposition analysis method and found to be 17.2 ppm. Using this α-SiC powder, a liner tube having a wall thickness of about 4 mm was produced in the same manner as in Example 1. The difference in wall thickness between the upper and lower sides of the molded body was 1.5 because the sedimentation rate of the particles of the slurry was large. It became mm.

【0067】次ぎにこの焼結体から小片を切り取って分
析したところ、鉄の含有量は16.8ppm であり、3点曲げ
強度は室温で18kg/mm2、1200℃で21kg/mm2、破壊靭性値
K1Cは室温で 3.1MN/m3/2 、1200℃で4.0MN/m3/2 であっ
た。
[0067] Next in was analyzed cut pieces from the sintered body, the content of iron is 16.8Ppm, 3-point bending strength 21 kg / mm 2 at 18kg / mm 2, 1200 ℃ at room temperature, fracture toughness value
K 1C was 4.0 mN / m 3/2 at room temperature 3.1MN / m 3/2, at 1200 ° C..

【0068】比較例2 150 メッシュの篩で分級して得た最大粒子径105 μm 平
均粒子径22μm のα-SiC粉末を、実施例1と同じ条件で
洗浄し、加圧分解分析法によりこの粉末中の鉄の含有量
を分析したところ9.2ppmであった。この原料粉末を用
い、実施例1と同じ条件でプロセス管を製作した。この
プロセス管から小片を切り取り、加圧分解分析法で鉄の
含有量を分析したところ10.5ppm であった。
Comparative Example 2 α-SiC powder having a maximum particle size of 105 μm and an average particle size of 22 μm obtained by classification with a 150-mesh sieve was washed under the same conditions as in Example 1, and the powder was analyzed by pressure decomposition analysis. The content of iron in the powder was analyzed and found to be 9.2 ppm. Using this raw material powder, a process tube was manufactured under the same conditions as in Example 1. A small piece was cut out from this process tube, and the content of iron was analyzed by the pressure decomposition analysis method, and it was 10.5 ppm.

【0069】比較例3 水中沈降法によって分級して得た最大粒子径10μm 、平
均粒子径0.8μm のα-SiC粉末を、実施例1と同じ条件
で洗浄し、鉄の含有量が0.8ppmの原料粉末を得た。この
粉末を用い、実施例2と同様に成形加工してウエハー用
ボートの形状とし、アルゴンガス雰囲気とした電気炉中
において2000℃で焼成した。次いでこの焼結体にシリコ
ンを実施例2と同じ条件で溶融含浸したが、シリコンの
含浸しない部分が残り、焼結体には亀裂が生じて満足な
製品は得られなかった。
Comparative Example 3 An α-SiC powder having a maximum particle size of 10 μm and an average particle size of 0.8 μm obtained by classification by the water sedimentation method was washed under the same conditions as in Example 1 to obtain an iron content of 0.8 ppm. A raw material powder was obtained. Using this powder, molding was performed in the same manner as in Example 2 to form a wafer boat, and firing was performed at 2000 ° C. in an electric furnace in an argon gas atmosphere. Next, this sintered body was melt-impregnated with silicon under the same conditions as in Example 2, but a portion not impregnated with silicon remained, and a crack was generated in the sintered body, and a satisfactory product was not obtained.

【0070】[0070]

【発明の効果】α-SiC原料粉末の最大粒子径を44μm 以
下にし、平均粒子径を 2〜25μm の範囲にあるようにす
ることで、α-SiC粉末粒子をほとんど単結晶からなる粒
子とし、結晶粒界や結晶の内部に存在している不純物
を、大部分粒子の表面に剥き出しにすることができ、こ
のα-SiC原料粉末をフッ酸と硝酸などの混酸および純水
で洗浄することにより、鉄の含有量を5ppm以下、さらに
は2.5ppm以下にまで精製することが可能となった。
The maximum particle size of the α-SiC raw material powder is 44 μm or less, and the average particle size is in the range of 2 to 25 μm, so that the α-SiC powder particles are almost single crystal particles, Impurities existing at the grain boundaries and inside the crystal can be barely exposed on the surface of the particles, and by cleaning this α-SiC raw material powder with a mixed acid such as hydrofluoric acid and nitric acid, and pure water. It has become possible to refine the iron content to 5 ppm or less, and further to 2.5 ppm or less.

【0071】不純物元素の代表である鉄の含有量が極め
て少ない、この精製方法により精製されたα-SiC粉末を
原料として成形、焼成し、高純度のシリコンを含浸せし
めた焼結体は、鉄分の濃度が5ppm以下、さらには2.5ppm
以下という高純度のものとなる。この高純度の焼結体で
作製した半導体熱処理装置用炭化珪素質部材およびこの
部材を組み込んだ、拡散炉、酸化炉、CVD炉などの半
導体熱処理装置をウエハーやLSIなどの半導体素子の
熱処理に使用することによって、半導体製品の製品歩留
りと生産性をさらに向上せしめることができる。
A sintered body obtained by molding and firing α-SiC powder refined by this refining method as a raw material and impregnated with high-purity silicon has an extremely low content of iron, which is a representative impurity element, Concentration of less than 5ppm, and even 2.5ppm
It will be of the following high purity. Silicon carbide material for semiconductor heat treatment equipment manufactured by this high-purity sintered body and semiconductor heat treatment equipment such as diffusion furnace, oxidation furnace, CVD furnace, etc., in which this member is incorporated are used for heat treatment of semiconductor elements such as wafers and LSIs. By doing so, the product yield and productivity of semiconductor products can be further improved.

【0072】また、本発明の高純度炭化珪素質部材は、
材料強度と破壊靭性値が従来の部材より大きいので、破
損しにくく信頼性があり、薄肉の部材を使用し、軽量で
使い易い半導体熱処理装置とすることもできるので、そ
の産業上の利用価値は多大である。
The high-purity silicon carbide material of the present invention is
Since the material strength and fracture toughness value are larger than those of conventional members, it is less likely to be damaged and reliable, and thin-walled members can be used to make a lightweight and easy-to-use semiconductor heat treatment apparatus. It's a lot.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 C04B 41/88 U H01L 21/22 501 M C04B 35/56 101 Y (72)発明者 蔭山 信夫 兵庫県高砂市梅井5丁目6番1号 旭硝子 株式会社 高砂工場内 (72)発明者 古川 耕二 兵庫県高砂市梅井5丁目6番1号 旭硝子 株式会社 高砂工場内 (72)発明者 牧村 隆平 富山県富山市田畑南部78−17 (56)参考文献 特開 昭64−72964(JP,A) 特公 平1−36981(JP,B2)─────────────────────────────────────────────────── ─── Continuation of front page (51) Int.Cl. 6 Identification number Internal reference number FI Technical display location C04B 41/88 U H01L 21/22 501 M C04B 35/56 101 Y (72) Inventor Nobuo Kageyama Hyogo Asahi Glass Co., Ltd. Takasago Plant, Takasago City, Takasago Prefecture, Japan (72) Inventor Koji Furukawa 5-6-1, Umei, Takasago City, Hyogo Prefecture Asahi Glass Company, Takasago Plant (72) Inventor Ryuhei Makimura Toyama Prefecture, Toyama Prefecture Minami Ichibata 78-17 (56) Reference Japanese Patent Laid-Open No. 64-72964 (JP, A) JP-B 1-36981 (JP, B2)

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】主としてα型炭化珪素とシリコンからなる
半導体熱処理装置用炭化珪素質部材であって、部材を構
成するα型炭化珪素の結晶粒子径が44μm以下で、そ
の重量平均結晶粒子径が2〜25μmの範囲にあり、シ
リコンが炭化珪素の結晶粒子間を充たしており、かつ部
材中に含まれる不純物である鉄の加圧分解分析法による
含有量が2.5ppm以下であることを特徴とする半導
体熱処理装置用高純度炭化珪素質部材。 【請求項】主としてα型炭化珪素とシリコンから構成
される焼結体からなる部材が組み込まれた半導体熱処理
装置であって、焼結体中のα型炭化珪素の結晶粒子径が
44μm以下で、その重量平均結晶粒子径が2〜25μ
mの範囲にあり、シリコンが炭化珪素の結晶粒子間を充
たしており、かつ焼結体中に含まれる不純物である鉄の
加圧分解分析法による含有量が2.5ppm以下である
高純度炭化珪素質部材が、装置内の高温部に組み込まれ
ていることを特徴とする半導体熱処理装置。 【請求項】請求項において、半導体熱処理装置が半
導体拡散炉である半導体熱処理装置。 【請求項】主としてα型炭化珪素とシリコンからなる
半導体熱処理装置用炭化珪素質部材の製造方法であっ
て、α型炭化珪素を粉砕して分級し、粒子径が44μm
以下で、重量平均粒子径が2〜25μmの範囲にある粉
末を、フッ酸と硝酸の混酸および純水で洗浄して粉末中
の鉄の加圧分解分析法による含有量を5ppm以下に
し、この粉末に有機結合剤を加えて成形し、1500〜
2300℃において焼成した後、高純度のシリコンを溶
融含浸することを特徴とする半導体熱処理装置用高純度
炭化珪素質部材の製造方法。 【請求項】請求項において、成形を排泥鋳込成形法
で行う半導体熱処理装置用高純度炭化珪素質部材の製造
方法。
1. A silicon carbide-based member for a semiconductor heat treatment apparatus, which is mainly composed of α-type silicon carbide and silicon, wherein the α-type silicon carbide constituting the member has a crystal grain size of 44 μm or less, and a weight average crystal grain size thereof. 2 to 25 μm, silicon fills the crystal grains of silicon carbide, and the content of iron, which is an impurity contained in the member, by the pressure decomposition analysis method is 2.5 ppm or less. A high-purity silicon carbide member for a semiconductor heat treatment apparatus. 2. A semiconductor heat treatment apparatus incorporating a member made of a sintered body mainly composed of α-type silicon carbide and silicon, wherein the crystal grain size of α-type silicon carbide in the sintered body is 44 μm or less. , The weight average crystal particle diameter is 2 to 25 μ
In the range of m, silicon fills the crystal grains of silicon carbide, and the content of iron, which is an impurity contained in the sintered body,
A semiconductor heat treatment apparatus, characterized in that a high-purity silicon carbide member having a content of 2.5 ppm or less by a pressure decomposition analysis method is incorporated in a high temperature portion in the apparatus. 3. The semiconductor heat treatment apparatus according to claim 2, wherein the semiconductor heat treatment apparatus is a semiconductor diffusion furnace. 4. A method for manufacturing a silicon carbide-based member for a semiconductor heat treatment apparatus, which mainly comprises α-type silicon carbide and silicon, wherein α-type silicon carbide is crushed and classified to have a particle diameter of 44 μm.
Hereinafter, the powder having a weight average particle diameter in the range of 2 to 25 μm was washed with a mixed acid of hydrofluoric acid and nitric acid and pure water to reduce the content of iron in the powder by the pressure decomposition analysis method to 5 ppm or less. Add an organic binder to the powder and shape it into 1500-500
A method for producing a high-purity silicon carbide-based member for a semiconductor heat treatment apparatus, comprising melt-impregnating high-purity silicon after firing at 2300 ° C. 5. The method for producing a high-purity silicon carbide member for a semiconductor heat treatment apparatus according to claim 4, wherein the molding is performed by a sludge casting molding method.
JP3325213A 1990-11-20 1991-11-13 Semiconductor heat treatment apparatus, high-purity silicon carbide member for semiconductor heat treatment apparatus, and method for manufacturing the same Expired - Fee Related JPH0784351B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3325213A JPH0784351B2 (en) 1990-11-20 1991-11-13 Semiconductor heat treatment apparatus, high-purity silicon carbide member for semiconductor heat treatment apparatus, and method for manufacturing the same

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP31286890 1990-11-20
JP2-312868 1990-11-20
JP3325213A JPH0784351B2 (en) 1990-11-20 1991-11-13 Semiconductor heat treatment apparatus, high-purity silicon carbide member for semiconductor heat treatment apparatus, and method for manufacturing the same

Publications (2)

Publication Number Publication Date
JPH0532458A JPH0532458A (en) 1993-02-09
JPH0784351B2 true JPH0784351B2 (en) 1995-09-13

Family

ID=26567347

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3325213A Expired - Fee Related JPH0784351B2 (en) 1990-11-20 1991-11-13 Semiconductor heat treatment apparatus, high-purity silicon carbide member for semiconductor heat treatment apparatus, and method for manufacturing the same

Country Status (1)

Country Link
JP (1) JPH0784351B2 (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4006716B2 (en) * 1997-06-20 2007-11-14 信越石英株式会社 High purity silicon carbide powder and method for producing the same
JP2975927B1 (en) * 1998-06-10 1999-11-10 助川電気工業株式会社 Plate heating device
JPH11354526A (en) * 1998-06-10 1999-12-24 Sukegawa Electric Co Ltd Plate body heating device
DE60021514T2 (en) 1999-06-14 2006-04-13 Sumitomo Electric Industries, Ltd. A SEMI-FINISHED COMPONENT USING A COMPOSITE MATERIAL OR HEAT-REMAINING SUBSTRATE THEREFOR
US6699401B1 (en) 2000-02-15 2004-03-02 Toshiba Ceramics Co., Ltd. Method for manufacturing Si-SiC member for semiconductor heat treatment
JP4913468B2 (en) * 2006-04-17 2012-04-11 コバレントマテリアル株式会社 Silicon carbide polishing plate and method for polishing semiconductor wafer
JP5048266B2 (en) 2006-04-27 2012-10-17 株式会社アライドマテリアル Heat dissipation board and manufacturing method thereof
JP2016023131A (en) * 2014-07-25 2016-02-08 イビデン株式会社 Tubular body, and production method thereof
EP4144710A1 (en) * 2018-04-03 2023-03-08 Agc Inc. Sic-si composite component
EP4227282A1 (en) * 2020-10-09 2023-08-16 Agc Inc. Sisic member and heating device
CN113479889B (en) * 2021-08-20 2022-12-09 中电化合物半导体有限公司 Synthesis method of silicon carbide powder

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6436981A (en) * 1987-07-31 1989-02-07 Mazda Motor Ignitor for engine
JPS6472694A (en) * 1987-09-14 1989-03-17 Matsushita Electric Ind Co Ltd Bar code reader

Also Published As

Publication number Publication date
JPH0532458A (en) 1993-02-09

Similar Documents

Publication Publication Date Title
KR100196732B1 (en) Heat treating apparatuses for semiconductors and high purity silicon carbide parts for the apparatus and a method of making thereof
US4040849A (en) Polycrystalline silicon articles by sintering
FI88019C (en) Process for manufacturing self-supporting bodies
US6013236A (en) Wafer
JPH08239270A (en) Superplastic silicon carbide sintered product and its production
JPH0784351B2 (en) Semiconductor heat treatment apparatus, high-purity silicon carbide member for semiconductor heat treatment apparatus, and method for manufacturing the same
US4019913A (en) Process for fabricating silicon carbide articles
US4040848A (en) Polycrystalline silicon articles containing boron by sintering
JPWO2004043876A1 (en) Silicon carbide sintered body and method for producing the same
JP4260629B2 (en) Method for producing sintered silicon carbide
JP2001130972A (en) Silicon carbide powder, method for producing green body, and method for producing silicon carbide sintered body
CA2478657A1 (en) Method of producing silicon carbide sintered body jig, and silicon carbide sintered body jig obtained by the production method
EP1184355B1 (en) METHOD FOR MANUFACTURING Si-SiC MEMBER FOR SEMICONDUCTOR HEAT TREATMENT
JP2535768B2 (en) High heat resistant composite material
FI88911B (en) METHOD OF FRAMSTAELLNING AV EN KERAMISK SJAELVBAERANDE SAMMANSATT STRUKTUR
JP4383062B2 (en) Method for producing porous silicon carbide sintered body
JP4068825B2 (en) Method for producing sintered silicon carbide
JP3642446B2 (en) Semiconductor wafer processing tool
JPH01264969A (en) Beta-silicon carbide molding and production thereof
Greskovich et al. Basic Research on Technology Development for Sintered Ceramics
JPH10120466A (en) Highly corrosion-resistant siliceous carbide member and its use
JP4651145B2 (en) Corrosion resistant ceramics
JP2006248807A (en) Silicon carbide sintered compact having silicon carbide surface rich layer
JPS61168567A (en) Manufacture of silicon carbide sintered body
JPH08151268A (en) Production of silicon carbide sintered compact

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19980526

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080913

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090913

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090913

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100913

Year of fee payment: 15

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100913

Year of fee payment: 15

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110913

Year of fee payment: 16

LAPS Cancellation because of no payment of annual fees