JPH08151268A - Production of silicon carbide sintered compact - Google Patents

Production of silicon carbide sintered compact

Info

Publication number
JPH08151268A
JPH08151268A JP6294257A JP29425794A JPH08151268A JP H08151268 A JPH08151268 A JP H08151268A JP 6294257 A JP6294257 A JP 6294257A JP 29425794 A JP29425794 A JP 29425794A JP H08151268 A JPH08151268 A JP H08151268A
Authority
JP
Japan
Prior art keywords
carbon
temperature
silicon
silicon carbide
sintered compact
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6294257A
Other languages
Japanese (ja)
Other versions
JP3297547B2 (en
Inventor
Akihiko Nishimoto
昭彦 西本
Masaki Terasono
正喜 寺園
Shuichi Tateno
周一 立野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP29425794A priority Critical patent/JP3297547B2/en
Publication of JPH08151268A publication Critical patent/JPH08151268A/en
Application granted granted Critical
Publication of JP3297547B2 publication Critical patent/JP3297547B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE: To obtain a silicon carbide sintered compact reduced in free silicon left on the surface of the sintered compact after a silicification treatment, excellent in processability, capable of reducing heat generation and rapid volume expansion due to the reaction of carbon with silicon, and free from cracks. CONSTITUTION: The method for producing the silicon carbide sintered compact by impregnating a molded product comprising silicon carbide and carbon with metallic silicon at >= the melting point of the silicon to silicify the carbon is provided with a gradually temperature-raising process performed at a temperature-raising rate of <=5 deg.C/min in a temperature region ranging from the 1200 deg.C to a silicification temperature in the temperature-raising process in the silicification treatment in an atmosphere containing carbon.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、構造部品用あるいは半
導体製造用治具などに適した炭化珪素質焼結体の製造方
法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a silicon carbide based sintered body suitable for a structural component or a semiconductor manufacturing jig.

【0002】[0002]

【従来技術】炭化珪素質焼結体は、ガスタービン用部品
等の構造部品や半導体素子などを製造する際に使用する
プロセスチューブ、ライナーチューブ、ウエハーボート
などの治具用の材料として注目され、その実用化が進め
られている。
2. Description of the Related Art Sintered silicon carbide has attracted attention as a material for jigs such as process tubes, liner tubes, and wafer boats used for manufacturing structural parts such as gas turbine parts and semiconductor elements. Its practical application is in progress.

【0003】一般に、炭化珪素質焼結体を製造する方法
としては、炭化珪素の焼結助剤として知られるホウ素、
炭素、周期律表第3a族元素酸化物あるいはAl2 3
などを添加しこれを焼成して高密度化した助剤添加系、
あるいは炭化珪素と炭素からなる成形体に珪素を溶融含
浸させ、炭素と珪素を反応させ新たに炭化珪素を生成さ
せる反応焼結法が知られている。
Generally, as a method for producing a silicon carbide-based sintered body, boron, which is known as a sintering aid for silicon carbide,
Carbon, oxide of Group 3a of the Periodic Table or Al 2 O 3
Auxiliary agent addition system that has been densified by adding etc.
Alternatively, a reaction sintering method is known in which a molded body made of silicon carbide and carbon is melt-impregnated with silicon and carbon is reacted with silicon to newly generate silicon carbide.

【0004】また、助剤添加焼結法は、1900〜23
00℃の高温で焼結させるのに対して、反応焼結法は、
1450〜1700℃の低温で焼結させることができ
る。また、助剤添加焼結法は焼結時に15〜20%の寸
法収縮を伴うのに対して、反応焼結法では焼結時の寸法
収縮が1〜2%以下である。このため反応焼結法は複雑
形状の大型焼結体を得る方法として注目されている。ま
た、反応焼結法によれば、高純度が要求される半導体製
造用の焼結体としても多用されている。
Further, the sintering method with addition of an auxiliary agent is 1900-23.
In contrast to sintering at a high temperature of 00 ° C, the reactive sintering method is
It can be sintered at a low temperature of 1450 to 1700 ° C. In addition, the auxiliary additive sintering method has a dimensional shrinkage of 15 to 20% during sintering, whereas the reactive sintering method has a dimensional shrinkage of 1 to 2% or less during sintering. Therefore, the reaction sintering method has been attracting attention as a method for obtaining a large-sized sintered body having a complicated shape. In addition, according to the reaction sintering method, it is often used as a sintered body for semiconductor manufacturing which requires high purity.

【0005】[0005]

【発明が解決しようとする問題点】しかしながら、上述
した2つの製造方法によれば、いずれも製品にするため
には焼結後加工が必要なことから多額な加工費用が必要
となる。特に、反応焼結法で得られた焼結体は焼結後に
遊離珪素が残留するためにその遊離珪素の除去のために
加工に時間を要する。
However, according to the above-mentioned two manufacturing methods, since a post-sintering process is required to obtain a product, a large processing cost is required. In particular, since the sintered body obtained by the reaction sintering method has free silicon remaining after sintering, it takes time to process it for removing the free silicon.

【0006】また、この炭化珪素質焼結体を半導体製造
用の治具として使用する場合は、高純度が要求されるた
め加工により不純物が混入すると製品として使用できな
いという問題があるために加工の方法が特殊な方法に制
限されるといった問題もあった。
Further, when this silicon carbide sintered body is used as a jig for semiconductor manufacturing, there is a problem that it cannot be used as a product if impurities are mixed in during processing because it requires high purity. There was also a problem that the method was limited to a special method.

【0007】さらに、反応焼結法では、炭素と珪素の反
応による発熱、体積膨張により焼結体にクラックが生じ
るという問題があり、特に、大型形状になった場合、ク
ラックの発生は顕著となる。
Further, the reaction sintering method has a problem that cracks are generated in the sintered body due to heat generation and volume expansion due to the reaction between carbon and silicon. Particularly, when the sintered body has a large size, the generation of cracks becomes remarkable. .

【0008】[0008]

【問題を解決するための手段】本発明者等は、上記問題
点を解決すべく検討を重ねた結果、炭化珪素と炭素から
なる成形体に珪素を溶融含浸させ、炭素を珪化させる工
程において、1200℃以上から珪化温度までの温度領
域で、5℃/min以下の昇温速度で且つ炭素を含有す
る雰囲気中で行う、徐昇温工程を具備することにより、
遊離珪素が残留せず、しかも炭素と珪素の反応による発
熱、急激な体積膨張量を抑えることができるために、ク
ラックのない焼結体が得られることを見いだしたもので
ある。
Means for Solving the Problems The inventors of the present invention have conducted extensive studies to solve the above-mentioned problems, and as a result, in a step of melting and impregnating a molded body of silicon carbide and carbon with silicon to silicify carbon, By providing a gradual temperature raising step performed in a temperature range from 1200 ° C. or higher to the silicidation temperature at a temperature rising rate of 5 ° C./min or less and in an atmosphere containing carbon,
It has been found that a crack-free sintered body can be obtained because free silicon does not remain and heat generation and abrupt volume expansion due to the reaction of carbon and silicon can be suppressed.

【0009】以下本発明を詳述する。本発明の炭化珪素
質焼結体を製造するために、まず原料粉末として炭化珪
素粉末を準備する。炭化珪素粉末としてはα型、β型の
いずれかまたは混合して使用することもできる。炭化珪
素粉末の平均粒径としてはサブミクロンから数百μmま
でのいずれでもよいが、焼結体の機械的特性を考慮する
と5μm以下とするのが望ましい。
The present invention will be described in detail below. In order to manufacture the silicon carbide-based sintered body of the present invention, first, silicon carbide powder is prepared as a raw material powder. As the silicon carbide powder, either α type or β type or a mixture thereof can be used. The average particle size of the silicon carbide powder may be any one of submicron to several hundreds of μm, but it is preferably 5 μm or less in consideration of the mechanical properties of the sintered body.

【0010】そして、上記粉末を公知の成形方法、たと
えば、プレス成形、押し出し成形、鋳込み成形、冷間静
水圧成形等により所望の形状に成形する。また、得られ
た成形体に対しては、800〜2000℃の非酸化性雰
囲気中で熱処理して保形性を付与することもできる。
Then, the above-mentioned powder is molded into a desired shape by a known molding method such as press molding, extrusion molding, cast molding, cold isostatic molding and the like. Further, the obtained molded body can be heat-treated in a non-oxidizing atmosphere at 800 to 2000 ° C. to give shape retention.

【0011】その後、上記の成形体あるいは仮焼体に対
して炭素を導入する。炭素を導入する方法としては、ま
ず、熱分解したときに残炭するような樹脂、たとえば、
フェノール樹脂、エポキシ樹脂、ウレタン樹脂、メラミ
ン樹脂等を溶媒に溶解させ、この溶液中に成形体あるい
は仮焼体を浸漬または塗布する。樹脂成分は溶媒に溶解
させているため成形体または仮焼体の細孔中に均一に導
入される。そしてこの処理後の成形体または仮焼体を8
00〜2000℃の非酸化性雰囲気中で熱処理して熱分
解させて炭化させることにより炭素を均一に導入するこ
とができる。
After that, carbon is introduced into the above-mentioned compact or calcined body. As a method of introducing carbon, first, a resin that leaves carbon when thermally decomposed, for example,
Phenol resin, epoxy resin, urethane resin, melamine resin, etc. are dissolved in a solvent, and the molded body or calcined body is dipped or applied in this solution. Since the resin component is dissolved in the solvent, it is uniformly introduced into the pores of the molded body or the calcined body. Then, the molded body or calcined body after this treatment is
Carbon can be uniformly introduced by heat treatment in a non-oxidizing atmosphere at 00 to 2000 ° C. to thermally decompose and carbonize.

【0012】炭素の導入方法としては、上記のほかに出
発組成において、炭化珪素粉末と炭素粉末、または熱分
解により残炭するような前述した樹脂を予め混合し、上
記と同様にこの混合粉末を公知の成形方法により所望の
形状に成形してもよい。
As a method of introducing carbon, in addition to the above, in the starting composition, the silicon carbide powder and the carbon powder, or the above-mentioned resin that causes residual carbon by thermal decomposition is premixed, and this mixed powder is prepared in the same manner as above. It may be molded into a desired shape by a known molding method.

【0013】これら炭素の導入にあたり、炭素の導入量
としては炭化珪素と炭素の合量に対して、炭素が2〜5
0重量%となるように制御することが望ましい。これ
は、炭素量がこれより多いと未反応カーボンが残留する
ためであり、これより少ないと試料内部まで完全にSi
を含浸させることが困難となるためである。
When introducing these carbons, the amount of carbon to be introduced is 2 to 5 for the total amount of silicon carbide and carbon.
It is desirable to control the content to be 0% by weight. This is because unreacted carbon remains if the amount of carbon is larger than this amount, and if the amount of carbon is less than this amount, Si is completely contained inside the sample.
This is because it becomes difficult to impregnate

【0014】次に、炭素が導入された成形体あるいは仮
焼体を溶融珪素と接触させることにより、導入された炭
素を珪化処理する。この珪化処理の方法としては、珪素
粉末と有機溶媒および有機バインダーとを混合して調製
された珪素ペーストを成形体あるいは仮焼体の表面に塗
布し、これを珪素の融点以上、即ち、1414℃以上の
温度に加熱する。この加熱により溶融珪素が成形体ある
いは仮焼体中に浸透し、炭素成分と接触させ炭素の珪化
により新たに炭化珪素が生成される。
Next, the introduced carbon is silicified by bringing the molded body or the calcined body into which the carbon has been introduced into contact with the molten silicon. As the method of this silicidation treatment, a silicon paste prepared by mixing silicon powder with an organic solvent and an organic binder is applied to the surface of a molded body or a calcined body, and this is above the melting point of silicon, that is, 1414 ° C. Heat to the above temperature. By this heating, the molten silicon penetrates into the molded body or the calcined body, is brought into contact with the carbon component, and silicon carbide is newly generated by silicidation of carbon.

【0015】この炭素の珪化処理による炭化珪素の生成
に伴い体積膨張が生じるために成形体および仮焼体の緻
密化が進行する。また、新たに生成された炭化珪素によ
り細孔がすべて充填されない場合も、残存した細孔中を
金属珪素が埋めるために完全な緻密体を得ることができ
る。
Since the volume expansion occurs due to the generation of silicon carbide by the silicidation of carbon, the compacted body and the calcined body are densified. Further, even when the pores are not entirely filled with the newly generated silicon carbide, a completely dense body can be obtained because the remaining pores are filled with metallic silicon.

【0016】本発明によれば、この珪化処理の際、室温
から珪化温度までの昇温過程の1200℃から珪化温度
までの温度領域において、昇温速度を5℃/min以
下、特に3℃/min以下、且つ炭素含有雰囲気で処理
する、いわゆる徐昇温工程を具備することが重要であ
る。炭素含有雰囲気としては珪化処理を炭素製の鉢内で
行ったり、炭素粉末中に成形体あるいは仮焼体を埋めて
処理したり、あるいは炉内の雰囲気中に一酸化炭素など
のガスを導入してもよい。この徐昇温工程での昇温速度
は、昇温速度0℃/min、即ち、1200℃から珪化
温度までのある一定の温度に所定時間保持する場合も含
まれる。この徐昇温工程による処理時間は、温度とその
昇温速度によりだいたい30分から3000分の間で変
わる。
According to the present invention, in this silicidation treatment, the rate of temperature rise is 5 ° C./min or less, particularly 3 ° C./min in the temperature range from 1200 ° C. to the silicidation temperature during the temperature rising process from room temperature to the silicidation temperature. It is important to provide a so-called gradual temperature raising step of treating in a carbon-containing atmosphere at a temperature of min or less. As a carbon-containing atmosphere, silicidation is performed in a carbon pot, a compact or a calcined body is embedded in carbon powder for treatment, or a gas such as carbon monoxide is introduced into the atmosphere in the furnace. May be. The rate of temperature increase in this gradual temperature increase step includes the case of maintaining the temperature increase rate of 0 ° C./min, that is, a certain temperature from 1200 ° C. to the silicidation temperature for a predetermined time. The treatment time in this gradual temperature raising step varies between about 30 minutes and 3000 minutes depending on the temperature and the temperature raising rate.

【0017】そして、珪化温度に達した後は、雰囲気は
真空またはアルゴン等の非酸化性雰囲気とし炭素の珪化
が完全に進行するまで処理を行った後、室温まで冷却す
る。
After reaching the silicidation temperature, the atmosphere is set to a vacuum or a non-oxidizing atmosphere such as argon, treatment is carried out until the silicidation of carbon completely progresses, and then cooled to room temperature.

【0018】なお、珪化温度での保持時間はおよそ0.
5〜10時間が適当である。
The holding time at the silicidation temperature is about 0.
5-10 hours is suitable.

【0019】[0019]

【作用】本発明によれば、炭素の珪化処理における昇温
時の1200℃から珪化温度までの温度領域内で、昇温
速度を5℃/min以下の炭素含有雰囲気で処理する徐
昇温工程を具備する。この徐昇温工程は、珪化処理にお
いて、成形体あるいは仮焼体の表面に存在する珪素を雰
囲気中の炭素あるいは一酸化炭素と反応させて、炭化珪
素を生成させるためである。この炭化珪素の膜は簡単に
取り除くことができるため、珪化処理後の表面への遊離
珪素の付着を防止することができる。これにより、珪化
処理後の遊離珪素の除去を必要とせず、加工を容易に行
うことができる。なお、1200℃以上での昇温速度が
5℃/minよりも速いと塗布した珪素と炭素あるいは
一酸化炭素との反応が進まないために炭化珪素の膜が得
られず、珪化処理後の焼結体表面には遊離珪素が付着し
てしまい、遊離珪素の除去および加工が難しくなる。
According to the present invention, there is provided a gradual temperature raising step of performing treatment in a carbon-containing atmosphere having a temperature raising rate of 5 ° C./min or less within a temperature range from 1200 ° C. to a silicifying temperature at the time of temperature raising in the silicidation treatment of carbon. To do. This gradual temperature raising step is to generate silicon carbide by reacting silicon existing on the surface of the compact or the calcined body with carbon or carbon monoxide in the atmosphere in the silicidation treatment. Since this silicon carbide film can be easily removed, it is possible to prevent free silicon from adhering to the surface after the silicidation treatment. As a result, it is not necessary to remove free silicon after the silicidation treatment, and the processing can be easily performed. If the rate of temperature increase at 1200 ° C. or higher is higher than 5 ° C./min, the reaction between the coated silicon and carbon or carbon monoxide does not proceed, and a silicon carbide film cannot be obtained. Free silicon adheres to the surface of the bonded body, which makes it difficult to remove and process the free silicon.

【0020】また、1200℃以上の温度で5℃/mi
n以下とすることにより炭素と珪素の反応による発熱
量、急激な体積膨張を抑えることができるため、クラッ
クのない焼結体を得ることができる。これは、炭素と珪
素の反応は1200℃付近から始まり、5℃/minで
昇温を行うことによりその反応速度を穏やかに制御でき
るためである。
Also, at a temperature of 1200 ° C. or higher, 5 ° C./mi
Since the heat generation amount and the rapid volume expansion due to the reaction of carbon and silicon can be suppressed by setting the ratio to be n or less, a sintered body without cracks can be obtained. This is because the reaction between carbon and silicon starts at around 1200 ° C. and the reaction rate can be gently controlled by raising the temperature at 5 ° C./min.

【0021】[0021]

【実施例】【Example】

比較例1、2、実施例1〜10、 平均粒径1.5μmの炭化珪素粉末にフェノール樹脂を
熱分解した時の残炭量が2重量%となるように添加し、
これを混練乾燥後、篩を通して成形用顆粒を得た。これ
ら顆粒を金型プレスにより成形し、50×60×7mm
の成形体を作製した。得られた成形体の気孔率は40%
であった。そしてこの成形体をフェノール樹脂を溶解し
た溶液中に含浸してフェノール樹脂を導入した。これに
よる全炭素導入量は4%であった。
Comparative Examples 1 and 2, Examples 1 to 10 were added to silicon carbide powder having an average particle diameter of 1.5 μm so that the residual carbon content when the phenol resin was thermally decomposed was 2% by weight,
After kneading and drying this, it was passed through a sieve to obtain molding granules. These granules are molded by a die press, 50 × 60 × 7mm
A molded body of was produced. The porosity of the obtained molded body is 40%
Met. Then, the molded body was impregnated with a solution in which a phenol resin was dissolved to introduce the phenol resin. The total amount of introduced carbon was 4%.

【0022】その後、成形体の表面に珪素ペーストを塗
布し、試料をカーボン炉内に収容して1450℃の温度
で0.5時間加熱して珪化処理を行った。この時、表1
に示す温度範囲を0.1〜10℃/minの昇温速度で
行った。なお、表1の温度範囲に到達するまでは10℃
/minの昇温速度で昇温した。そして、珪化処理した
試料の表面性状を観察後、研磨しクラックを観察した。
Thereafter, a silicon paste was applied to the surface of the molded body, the sample was placed in a carbon furnace and heated at a temperature of 1450 ° C. for 0.5 hour to perform a silicidation treatment. At this time, Table 1
The temperature range shown in was carried out at a temperature rising rate of 0.1 to 10 ° C./min. In addition, until reaching the temperature range of Table 1, 10 ℃
The temperature was raised at a heating rate of / min. Then, after observing the surface properties of the silicidated sample, it was polished and cracks were observed.

【0023】実施例11 実施例1〜10における珪化処理で、1200℃から珪
化温度(1450℃)までを0.5℃/minの昇温速
度とするとともに、成形体を炭素粉末に埋めて珪化処理
した。そして、珪化処理した試料の表面性状を観察後、
研磨しクラックを観察した。
Example 11 In the silicidation treatment in Examples 1 to 10, the temperature rising rate from 1200 ° C. to the silicidation temperature (1450 ° C.) was 0.5 ° C./min, and the compact was embedded in carbon powder to silicify. Processed. After observing the surface properties of the silicidated sample,
Polished and observed cracks.

【0024】比較例3 実施例1〜10における珪化処理で、1200℃から珪
化温度までを0.5℃/minとし、タングステン炉を
用いて真空中で処理し、同様に試料の表面性状を観察
後、研磨しクラックを観察した。
Comparative Example 3 In the silicidation treatment in Examples 1 to 10, the temperature was changed from 1200 ° C. to the silicidation temperature at 0.5 ° C./min, the treatment was performed in a vacuum using a tungsten furnace, and the surface properties of the samples were similarly observed. After that, polishing was performed and cracks were observed.

【0025】比較例4、実施例12〜15 実施例1〜10における珪化処理で、試料をカーボン炉
に収容し、表1に示す温度にて一次的に保持(昇温速度
0℃/min)として処理を行った。その一次温度保持
前後の昇温過程は、10℃/minの昇温速度に設定し
た。そして、同様に試料の表面性状を観察後、研磨しク
ラックを観察した。
Comparative Example 4, Examples 12 to 15 In the silicidation treatment in Examples 1 to 10, the sample was placed in a carbon furnace and temporarily held at the temperature shown in Table 1 (heating rate 0 ° C./min). Was processed as. The temperature raising process before and after maintaining the primary temperature was set at a temperature raising rate of 10 ° C./min. Then, similarly, after observing the surface properties of the sample, polishing was performed and cracks were observed.

【0026】[0026]

【表1】 [Table 1]

【0027】表1によれば、1200℃以上の温度で昇
温速度を0〜5℃/min以下、かつ炭素含有雰囲気中
で珪化処理したものは、遊離珪素がなく、存在してもご
くわずかであって、またその表面に炭化珪素膜が形成さ
れており、その炭化珪素膜も容易に剥がすことができる
ものであった。しかも、焼結体においてクラックの発生
は何ら認められなかった。
According to Table 1, the temperature rising rate of 1200 ° C. or more and the temperature rising rate of 0 to 5 ° C./min or less and the silicidation treatment in the carbon-containing atmosphere have no free silicon, and even if it is present, it is very small. In addition, the silicon carbide film was formed on the surface, and the silicon carbide film could be easily peeled off. Moreover, no cracks were found in the sintered body.

【0028】これに対して、昇温速度が5℃/minを
越える比較例1、2、保持温度が1200℃より低い比
較例4では遊離珪素がその表面に多量に付着しており、
珪素を研削加工でしかこれを除去することはできなかっ
た。しかも焼結体中にはクラックが発生していた。ま
た、昇温速度が5℃/min以下であっても炭素を含ま
ないタングステン炉で行った比較例3では、クラックの
発生はなかったが、遊離珪素が多量に付着しており、炭
化珪素膜の生成は認められなかった。
On the other hand, in Comparative Examples 1 and 2 in which the temperature rising rate exceeds 5 ° C./min and Comparative Example 4 in which the holding temperature is lower than 1200 ° C., a large amount of free silicon is attached to the surface,
Silicon could only be removed by grinding. Moreover, cracks were generated in the sintered body. Further, in Comparative Example 3 performed in the tungsten furnace containing no carbon even if the temperature rising rate was 5 ° C./min or less, cracks were not generated, but a large amount of free silicon was attached to the silicon carbide film. Was not observed.

【0029】この結果から、本発明の方法によれば、遊
離珪素の表面への付着を抑制できるために加工性が顕著
に向上すると共に、珪化によるクラックの発生を防止で
きることがわかった。
From these results, it was found that according to the method of the present invention, since the adhesion of free silicon to the surface can be suppressed, the workability is remarkably improved, and the occurrence of cracks due to silicidation can be prevented.

【0030】[0030]

【発明の効果】以上詳述した通り、本発明によれば、珪
化処理後の焼結体表面への遊離珪素の残留を抑制し、加
工性に優れた炭化珪素質焼結体を得ることができる。ま
た、同時に炭素と珪素の反応による発熱、急激な体積膨
張をおさえることができ、クラックのない焼結体が得ら
れる。
As described in detail above, according to the present invention, it is possible to suppress the residual of free silicon on the surface of the sintered body after the silicidation treatment, and obtain a silicon carbide based sintered body excellent in workability. it can. At the same time, heat generation and rapid volume expansion due to the reaction between carbon and silicon can be suppressed, and a sintered body without cracks can be obtained.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】炭化珪素と炭素からなる成形体に対して、
珪素の融点以上の温度で金属珪素を含浸させ、前記炭素
を珪化する炭化珪素質焼結体の製造方法であって、前記
炭素を珪化する工程における昇温過程の1200℃以上
から珪化温度までの温度領域で、5℃/min以下の昇
温速度で、且つ炭素を含有する雰囲気中で行う工程を具
備することを特徴とする炭化珪素質焼結体の製造方法。
1. A molded body made of silicon carbide and carbon,
A method for manufacturing a silicon carbide-based sintered body in which metallic silicon is impregnated at a temperature equal to or higher than the melting point of silicon to silicify the carbon, the method comprising: A method for producing a silicon carbide based sintered body, comprising a step of performing the heating step in a temperature range at a temperature rising rate of 5 ° C./min or less and in an atmosphere containing carbon.
JP29425794A 1994-11-29 1994-11-29 Method for producing silicon carbide sintered body Expired - Fee Related JP3297547B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29425794A JP3297547B2 (en) 1994-11-29 1994-11-29 Method for producing silicon carbide sintered body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29425794A JP3297547B2 (en) 1994-11-29 1994-11-29 Method for producing silicon carbide sintered body

Publications (2)

Publication Number Publication Date
JPH08151268A true JPH08151268A (en) 1996-06-11
JP3297547B2 JP3297547B2 (en) 2002-07-02

Family

ID=17805382

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29425794A Expired - Fee Related JP3297547B2 (en) 1994-11-29 1994-11-29 Method for producing silicon carbide sintered body

Country Status (1)

Country Link
JP (1) JP3297547B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003033434A1 (en) * 2001-10-16 2003-04-24 Bridgestone Corporation Process for producing silicon carbide sinter and silicon carbide sinter obtained by the process
WO2004007401A1 (en) 2002-06-18 2004-01-22 Kabushiki Kaisha Toshiba Silicon carbide matrix composite material, process for producing the same and process for producing part of silicon carbide matrix composite material
JP2008024531A (en) * 2006-07-18 2008-02-07 National Institute Of Advanced Industrial & Technology Ceramic structure and method of manufacturing the same
JP2016204244A (en) * 2014-09-18 2016-12-08 Toto株式会社 Method for manufacturing reaction sintered silicon carbide member

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003033434A1 (en) * 2001-10-16 2003-04-24 Bridgestone Corporation Process for producing silicon carbide sinter and silicon carbide sinter obtained by the process
US7335330B2 (en) 2001-10-16 2008-02-26 Bridgestone Corporation Method of producing sintered carbide
WO2004007401A1 (en) 2002-06-18 2004-01-22 Kabushiki Kaisha Toshiba Silicon carbide matrix composite material, process for producing the same and process for producing part of silicon carbide matrix composite material
US7235506B2 (en) 2002-06-18 2007-06-26 Kabushiki Kaisha Toshiba Silicon carbide matrix composite material, process for producing the same and process for producing part of silicon carbide matrix composite material
EP2336098A1 (en) * 2002-06-18 2011-06-22 Kabushiki Kaisha Toshiba Process for producing part of silicon carbide matrix composite material
US8568650B2 (en) 2002-06-18 2013-10-29 Kabushiki Kaisha Toshiba Silicon carbide matrix composite material, process for producing the same and process for producing part of silicon carbide matrix composite material
JP2008024531A (en) * 2006-07-18 2008-02-07 National Institute Of Advanced Industrial & Technology Ceramic structure and method of manufacturing the same
JP4714816B2 (en) * 2006-07-18 2011-06-29 独立行政法人産業技術総合研究所 Ceramic structure and manufacturing method thereof
JP2016204244A (en) * 2014-09-18 2016-12-08 Toto株式会社 Method for manufacturing reaction sintered silicon carbide member

Also Published As

Publication number Publication date
JP3297547B2 (en) 2002-07-02

Similar Documents

Publication Publication Date Title
JP2004018322A (en) Silicon/silicon carbide composite material and method of producing the same
JPS5844630B2 (en) silicone carbide material
WO2003033434A1 (en) Process for producing silicon carbide sinter and silicon carbide sinter obtained by the process
KR101152628B1 (en) SiC/C composite powders and a high purity and high strength reaction bonded SiC using the same
JP4383062B2 (en) Method for producing porous silicon carbide sintered body
JP3297547B2 (en) Method for producing silicon carbide sintered body
CN111484330A (en) Diamond-enhanced silicon carbide substrate, preparation method thereof and electronic product
JP2721678B2 (en) β-silicon carbide molded body and method for producing the same
US5139719A (en) Sintering process and novel ceramic material
JP2686628B2 (en) Porous conductive material
JP4382919B2 (en) Method for producing silicon-impregnated silicon carbide ceramic member
JP4458692B2 (en) Composite material
JP2001348288A (en) Particle-dispersed silicon material and method of producing the same
JP4612608B2 (en) Method for producing silicon / silicon carbide composite material
JP3270798B2 (en) Method for producing silicon carbide sintered body
JP4542747B2 (en) Manufacturing method of high strength hexagonal boron nitride sintered body
JPH08175871A (en) Silicon carbide-based sintered body and its production
JP2801821B2 (en) Ceramic composite sintered body and method of manufacturing the same
JPS6212664A (en) Method of sintering b4c base composite body
JPH02129071A (en) Production of silicon carbide ceramics
JP4002325B2 (en) Method for producing sintered silicon carbide
JP4342143B2 (en) Method for producing Si-SiC material
JP2000026177A (en) Production of silicon-silicon carbide ceramics
JP2944787B2 (en) SiC-based oxide sintered body and method for producing the same
JPH0733528A (en) Composite sintered ceramic, its production and semiconductor production jig made therefrom

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees