JP3378608B2 - Method for producing silicon carbide substrate for jig for semiconductor production - Google Patents

Method for producing silicon carbide substrate for jig for semiconductor production

Info

Publication number
JP3378608B2
JP3378608B2 JP12951193A JP12951193A JP3378608B2 JP 3378608 B2 JP3378608 B2 JP 3378608B2 JP 12951193 A JP12951193 A JP 12951193A JP 12951193 A JP12951193 A JP 12951193A JP 3378608 B2 JP3378608 B2 JP 3378608B2
Authority
JP
Japan
Prior art keywords
silicon carbide
thin film
sintered body
sic
tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP12951193A
Other languages
Japanese (ja)
Other versions
JPH06340479A (en
Inventor
義美 大橋
昇司 高松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ibiden Co Ltd
Original Assignee
Ibiden Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ibiden Co Ltd filed Critical Ibiden Co Ltd
Priority to JP12951193A priority Critical patent/JP3378608B2/en
Publication of JPH06340479A publication Critical patent/JPH06340479A/en
Application granted granted Critical
Publication of JP3378608B2 publication Critical patent/JP3378608B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、例えば拡散炉チューブ
等のような半導体製造用治具のための炭化珪素質基材の
製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of manufacturing a silicon carbide based material for a semiconductor manufacturing jig such as a diffusion furnace tube.

【0002】[0002]

【従来の技術】従来より、半導体の製造における最も重
要でありかつ基本的な工程として、シリコンウェハへの
不純物拡散工程が実施されている。
2. Description of the Related Art Conventionally, an impurity diffusion step into a silicon wafer has been carried out as the most important and basic step in semiconductor manufacturing.

【0003】この不純物拡散工程では、多孔質炭化珪素
製の拡散炉チューブ内にシリコンウェハを装入し、加熱
されたチューブ内に拡散源を供給することにより、窒素
やホウ素等の不純物の拡散が行われる。その際、多孔質
であるチューブの内壁面から、加熱等によって拡散源以
外の物質が放出される場合がある。そして、その放出量
が多いと、シリコンウェハが汚染されることによって製
品の歩留りが悪化することが知られている。
In this impurity diffusion step, a silicon wafer is loaded into a diffusion furnace tube made of porous silicon carbide and a diffusion source is supplied into the heated tube to diffuse impurities such as nitrogen and boron. Done. At that time, a substance other than the diffusion source may be released from the inner wall surface of the porous tube by heating or the like. It is known that when the amount of the release is large, the yield of products deteriorates due to the contamination of the silicon wafer.

【0004】そのため、この種の拡散炉チューブとして
は、5容量%〜50容量%の金属シリコンを含浸させた
ものが近年における主流となっている。また、一部にお
いては、例えば前記チューブの表面にさらにCVD法に
よる緻密かつ高純度な炭化珪素薄膜を形成するという方
法も提案されている。
Therefore, as a diffusion furnace tube of this type, a tube impregnated with 5% by volume to 50% by volume of metallic silicon has become the mainstream in recent years. Further, in some cases, for example, a method of further forming a dense and high-purity silicon carbide thin film by a CVD method on the surface of the tube has been proposed.

【0005】この方法によると、金属シリコン及び炭化
珪素薄膜によって多孔質性チューブの表面を被覆するこ
とにより気密性が改善され、チューブ自体に由来する不
純物の影響を解消し得るものと考えられている。
According to this method, the airtightness is improved by covering the surface of the porous tube with the metallic silicon and silicon carbide thin film, and it is considered that the influence of impurities derived from the tube itself can be eliminated. .

【0006】[0006]

【発明が解決しようとする課題】ところが、金属シリコ
ンの含浸とCVD法による炭化珪素薄膜の形成とを行う
従来の方法には、以下に示すようないくつかの問題点が
あった。
However, the conventional method of impregnating metallic silicon and forming a silicon carbide thin film by the CVD method has some problems as described below.

【0007】例えば、従来のチューブは、金属シリコン
を用いている関係上、その融点を越える約1260℃以
上の温度では使用することができなかった。また、金属
シリコン自体にも不純物を拡散し易いという特性がある
ことが近年明らかとなり、チューブの気密性向上のため
の含浸剤として疑問視する声があった。更に、金属シリ
コンの含浸を行うと、必然的にチューブの重量が増加
し、取扱性が悪くなるという欠点があった。
For example, the conventional tube cannot be used at a temperature of about 1260 ° C. or higher, which is higher than its melting point, because it uses metallic silicon. In addition, it has become clear in recent years that metallic silicon itself has a property of easily diffusing impurities, and some have questioned it as an impregnating agent for improving the airtightness of a tube. Further, the impregnation with metallic silicon inevitably increases the weight of the tube, resulting in poor handling.

【0008】加えて、金属シリコンの含浸はチューブ表
面の平滑性を悪化させる原因となっていたため、前記チ
ューブ表面に対して所望の炭化珪素薄膜を形成すること
が困難であった。このため、形成された薄膜にはピンホ
ールや剥離が生じ易かった。また、含浸とCVD法によ
る薄膜形成とを行う従来方法では、製造コストも高くな
り、製造プロセスも煩雑になるという欠点があった。
In addition, since the impregnation of metallic silicon has caused the deterioration of the smoothness of the tube surface, it has been difficult to form a desired silicon carbide thin film on the tube surface. Therefore, pinholes and peeling were likely to occur in the formed thin film. Further, the conventional method of performing the impregnation and the thin film formation by the CVD method has a drawback that the manufacturing cost becomes high and the manufacturing process becomes complicated.

【0009】そして、不純物拡散工程においてチューブ
に局所的な温度差が生じた場合、チューブが割れてしま
うことがあった。上記の事情のもと本発明者が鋭意研究
を行ったところ、所定の材料及び条件に従って多孔質性
の炭化珪素焼結体を作製し、かつその焼結体に所定の厚
さの高純度CVD薄膜を直接形成すれば、前述の諸問題
を解決し得るという知見を得た。そして、本発明者らは
その知見を更に発展させることにより、以下のような発
明を完成させるに到った。
If a local temperature difference occurs in the tube in the impurity diffusion step, the tube may be broken. Under the circumstances described above, the inventors of the present invention have conducted diligent research and found that a porous silicon carbide sintered body is produced according to predetermined materials and conditions, and high purity CVD of a predetermined thickness is performed on the sintered body. We have found that the above problems can be solved by directly forming a thin film. Then, the present inventors have completed the following invention by further developing the knowledge.

【0010】[0010]

【課題を解決するための手段及び作用】本発明では、平
均粒径が1μm〜500μmでありかつ不純物含有量が
20ppm以下である炭化珪素(SiC)粉末を用いて
成形体を作製した後、その成形体を不活性雰囲気下かつ
1500℃〜2000℃の温度下にて焼成して得られる
多孔質性の焼結体の表面に、CVD法による厚さ10μ
m〜500μmの高純度SiC薄膜を形成している。こ
の場合、焼結体の表面粗さの平均値を0.5μm〜10
μmとし、最大値を2.0μm〜100μmとすること
が良い。また、高純度SiC薄膜における不純物の含有
量を1ppm以下とすることが良い。
Means and Actions for Solving the Problems In the present invention, a molded body is manufactured using a silicon carbide (SiC) powder having an average particle size of 1 μm to 500 μm and an impurity content of 20 ppm or less, On the surface of a porous sintered body obtained by firing the molded body under an inert atmosphere and at a temperature of 1500 ° C. to 2000 ° C., a thickness of 10 μm by a CVD method.
A high-purity SiC thin film having a thickness of m to 500 μm is formed. In this case, the average surface roughness of the sintered body is 0.5 μm to 10 μm.
The maximum value is preferably 2.0 μm to 100 μm. Further, the content of impurities in the high-purity SiC thin film is preferably 1 ppm or less.

【0011】高純度なSiC粉末によって作製された成
形体は、通常のものより不純物含有量が少なくなる。し
かも、その成形体を一般的なSiCの焼成温度より低い
温度で焼成することにより、成形体中の不純物含有量は
格段に少なくなる。従って、今まで必須とされていた金
属シリコン(Si)の含浸を行わなくとも、CVD法に
よって焼結体表面に直接SiC薄膜を形成することが可
能となる。また、金属Siが存在しない箇所への薄膜形
成であるため、SiC薄膜の密着性が向上し、ピンホー
ル・剥離等が生じ難くなる。
A molded body made of high-purity SiC powder has a smaller content of impurities than usual. Moreover, by firing the compact at a temperature lower than the firing temperature of general SiC, the content of impurities in the compact is significantly reduced. Therefore, it is possible to directly form the SiC thin film on the surface of the sintered body by the CVD method without impregnating metal silicon (Si), which has been essential until now. Further, since the thin film is formed on the portion where the metal Si does not exist, the adhesion of the SiC thin film is improved, and pinholes, peeling, etc. are less likely to occur.

【0012】以下、本発明の製造方法を工程順に詳細に
説明する。主原料であるSiC粉末には、不純物含有量
が20ppm以下のものが用いられる。このような高純
度の粉末は、例えば酸の水溶液またはガスによりSiC
粉末を純化する、というような従来公知の方法によって
作製される。また、α型SiC粉末及びβ型SiC粉末
のいずれも使用することが可能であるばかりでなく、両
者を混合して使用することも可能である。
The manufacturing method of the present invention will be described in detail below in the order of steps. The SiC powder as the main raw material has an impurity content of 20 ppm or less. Such high-purity powder can be obtained, for example, by adding an acid aqueous solution or gas to SiC.
It is produced by a conventionally known method such as purifying powder. Further, not only the α-type SiC powder and the β-type SiC powder can be used, but also both can be mixed and used.

【0013】SiC粉末の平均粒径は1μm〜500μ
mの範囲内である必要がある。平均粒径が1μm未満で
あると、粉末を製造する際に不純物の混合量が増加して
しまい、純度の高い基材が得られない。一方、平均粒径
が500μmより大きいと、焼結後における基材の強度
が非常に小さくなってしまい、使用に値しないものとな
る。
The average particle size of the SiC powder is 1 μm to 500 μm.
It must be within the range of m. If the average particle size is less than 1 μm, the amount of impurities mixed during the production of the powder increases, and a highly pure base material cannot be obtained. On the other hand, if the average particle size is larger than 500 μm, the strength of the base material after sintering becomes extremely small, which makes it unusable.

【0014】上記のSiC粉末には成形用のバインダ等
が混合される。この混合物はラバープレス成形、射出成
形、押出成形、鋳込み成形等によって成形されることに
より、所望の形状をした成形体となる。得られた成形体
は、脱枠、乾燥及び脱ワックスの各工程を経た後に、ア
ルゴン等の不活性ガス雰囲気下にて1500℃〜200
0℃前後の温度で焼成される。この温度が1500℃未
満であると、成形体が完全に焼結せず、所望の焼結体が
得られない。一方、この温度が2000℃を越えると、
SiCの焼結が速く進行してしまうため、不純物を完全
に除去することができない。
A binder for molding or the like is mixed with the above-mentioned SiC powder. This mixture is molded by rubber press molding, injection molding, extrusion molding, cast molding, or the like to obtain a molded body having a desired shape. The obtained molded body is subjected to deframed, dried and dewaxed steps, and thereafter, at 1500 ° C. to 200 ° C. in an inert gas atmosphere such as argon.
It is fired at a temperature around 0 ° C. If this temperature is lower than 1500 ° C., the molded body will not be completely sintered and a desired sintered body cannot be obtained. On the other hand, if this temperature exceeds 2000 ° C,
Impurities cannot be completely removed because the sintering of SiC proceeds rapidly.

【0015】前記焼成によってSiC成形体は純度の良
い多孔質性の焼結体となり、その比重も1.6g/cm3
2.2g/cm3 程度となる。その後、焼結体には必要に応
じて機械加工等が施される。
By the above-mentioned firing, the SiC compact becomes a porous sintered body of high purity, and its specific gravity is 1.6 g / cm 3 to.
It will be about 2.2 g / cm 3 . After that, the sintered body is subjected to machining or the like as required.

【0016】次いで、焼結体表面の全部または必要とさ
れる部分には、CVD法によって厚さ10μm〜500
μmの高純度で緻密なSiC薄膜が形成される。この場
合、SiC薄膜の厚さが10μm未満であると、小さな
衝撃でもSiC薄膜に剥離・割れが発生し易くなる。一
方、SiC薄膜の厚さが500μmを越えると、SiC
薄膜の生成に時間がかかるようになり、生産性及びコス
トの面で不利になる。なお、成形体に対するSiC薄膜
の形成は減圧CVD法にて行われることが好ましい。そ
の理由は、減圧CVD法は大量生産に適していることに
加え、成形体が単純な形状でない場合であっても確実に
薄膜を形成できるためである。
Then, a thickness of 10 μm to 500 is formed on the entire surface of the sintered body or a required portion thereof by a CVD method.
A high-purity and dense SiC thin film of μm is formed. In this case, if the thickness of the SiC thin film is less than 10 μm, peeling / cracking is likely to occur in the SiC thin film even with a small impact. On the other hand, if the thickness of the SiC thin film exceeds 500 μm, the SiC
It takes time to form a thin film, which is disadvantageous in terms of productivity and cost. The SiC thin film is preferably formed on the compact by a low pressure CVD method. The reason is that the low pressure CVD method is suitable for mass production, and it is possible to reliably form a thin film even when the molded body is not a simple shape.

【0017】また、SiC薄膜における不純物の含有量
は1ppm以下であることが望ましい。不純物の含有量
がこの値を越えると、SiC薄膜自体に由来する不純物
によって、シリコンウェハが汚染されてしまうからであ
る。
The content of impurities in the SiC thin film is preferably 1 ppm or less. This is because if the content of impurities exceeds this value, the silicon wafer will be contaminated by the impurities derived from the SiC thin film itself.

【0018】更に、焼結体の表面粗さ(JIS B 0
601)の平均値(Ra)は0.5μm〜10μmであ
りかつ最大値(Rmax)は2.0μm〜100μmで
あることが望ましい。即ち、焼結体の表面にある程度の
凹凸があると、そのアンカー効果によってSiC薄膜の
密着強度が向上するからである。
Further, the surface roughness of the sintered body (JIS B 0
It is desirable that the average value (Ra) of 601) is 0.5 μm to 10 μm and the maximum value (Rmax) is 2.0 μm to 100 μm. That is, if the surface of the sintered body has irregularities to some extent, the anchor effect improves the adhesion strength of the SiC thin film.

【0019】RaまたはRmaxが前記の値より小さい
と、充分なアンカー効果を得ることができず、生成した
SiC薄膜が小さな衝撃等によって剥離し易くなる。ま
た、耐熱衝撃値が小さくなるため、高温雰囲気下での使
用が難しくなる。一方、RaまたはRmaxが前記の値
より大きいと、SiC薄膜を平滑化するためには厚膜に
しなければならず、生産性及びコストの面で問題とな
る。
If Ra or Rmax is smaller than the above value, a sufficient anchor effect cannot be obtained, and the produced SiC thin film is likely to be peeled off by a small impact or the like. Further, since the thermal shock resistance value becomes small, it becomes difficult to use it in a high temperature atmosphere. On the other hand, when Ra or Rmax is larger than the above value, a thick film has to be formed in order to smooth the SiC thin film, which is a problem in terms of productivity and cost.

【0020】以上の方法によると、金属Siの含浸を行
わずして基材を高純度化、高強度化、軽量化できるた
め、極めて好適である。また、金属Siの含浸が不要に
なることにより、製造プロセス的にもコスト的にも有利
になる。
According to the above method, the base material can be highly purified, strengthened, and lightened without impregnating the metal Si, which is extremely preferable. In addition, since the impregnation of metal Si is not necessary, it is advantageous in terms of manufacturing process and cost.

【0021】[0021]

【実施例】以下、本発明をシリコンウェハへの不純物拡
散工程において用いられる拡散炉チューブの製造方法に
具体化した一実施例を詳細に説明する。
EXAMPLES An example in which the present invention is embodied in a method of manufacturing a diffusion furnace tube used in a step of diffusing impurities into a silicon wafer will be described in detail.

【0022】本実施例では、不純物含有量が10ppm
以下で平均粒径が1.4μmのβ型SiC粉末を主原料
として選択した。そのSiC粉末に5重量部の成形用バ
インダを加えて造粒し、得られた顆粒をもとにして湿式
ラバープレス法によりチューブ状の成形体(外径25c
m, 内径24cm,長さ150cm)を作製した。
In this embodiment, the impurity content is 10 ppm.
Below, β-type SiC powder having an average particle size of 1.4 μm was selected as the main raw material. The SiC powder was granulated by adding 5 parts by weight of a molding binder, and the resulting granules were formed into a tube-shaped compact (external diameter 25c) by a wet rubber press method.
m, inner diameter 24 cm, length 150 cm).

【0023】成形体を脱枠して乾燥させかつ脱ワックス
を行った後、アルゴンガス雰囲気下にて1800℃,4
時間で焼成を行うことにより、前記成形体を多孔質性の
焼結体とした。得られた焼結体を調査したところ、不純
物含有量は5ppmと少なく、極めて高純度な多孔質体
であった。
After demolding and drying the molded body and dewaxing, the molded body is dried at 1800 ° C. for 4 hours in an argon gas atmosphere.
The molded body was made into a porous sintered body by firing for a period of time. When the obtained sintered body was examined, the content of impurities was as small as 5 ppm, and it was an extremely high-purity porous body.

【0024】次に、チューブ状の焼結体の内外面を機械
加工することにより、肉厚が3mm,Raが2.4μm,
Rmaxが28.2μmの焼結体を得た。ここで、焼結
体をCVD用の真空炉にセットし、炉内を減圧状態にし
てから、SiCl4 ガス及びCCl4 ガスを流通させ
た。そして、高純度で緻密なSiC薄膜(厚さ約100
μm,不純物含有量1ppm以下)を焼結体全面に均一
に形成した。
Next, by machining the inner and outer surfaces of the tube-shaped sintered body, the wall thickness is 3 mm, Ra is 2.4 μm,
A sintered body with Rmax of 28.2 μm was obtained. Here, the sintered body was set in a vacuum furnace for CVD, the inside of the furnace was depressurized, and then SiCl 4 gas and CCl 4 gas were circulated. And a high-purity and dense SiC thin film (thickness of about 100
μm, impurity content 1 ppm or less) was uniformly formed on the entire surface of the sintered body.

【0025】次に、前記実施例に対する比較例の拡散炉
チューブを以下のようにして作製した。まず、実施例と
同じ手順によって得られた同形状・同サイズのチューブ
状焼結体を金属Siの塊と共にカーボンるつぼに入れ、
それらを焼成炉内にセットした。そして、1400℃で
10時間加熱することにより、金属Siを焼結体の気孔
部に含浸させた。次に、カーボンるつぼから焼結体を取
り出して、表面に析出した余剰の金属Siを除去するこ
とにより、焼結体の表面を滑らかにした。更に、前記焼
結体を洗浄・乾燥した後、前記実施例の減圧CVD法に
準じて高純度SiC薄膜の形成を試みた。
Next, a diffusion furnace tube of a comparative example with respect to the above-mentioned example was manufactured as follows. First, a tube-shaped sintered body of the same shape and size obtained by the same procedure as in the example was put in a carbon crucible together with a lump of metal Si,
They were set in the firing furnace. Then, the pores of the sintered body were impregnated with metallic Si by heating at 1400 ° C. for 10 hours. Next, the sintered body was taken out of the carbon crucible and the excess metal Si deposited on the surface was removed to smooth the surface of the sintered body. Further, after washing and drying the sintered body, an attempt was made to form a high-purity SiC thin film according to the low pressure CVD method of the above-mentioned embodiment.

【0026】これらの拡散炉チューブを比較するため
に、各サンプルを10個づつ作製し、全体の重量(k
g)、密度(g/cm3) 、SiC薄膜におけるピンホー
ル・剥離、温度差を加えた場合のチューブの割れの4
項目を調査した。その結果を表1に示す。
In order to compare these diffusion furnace tubes, 10 samples of each were prepared and the total weight (k
g), density (g / cm 3 ), pinholes / peeling in SiC thin film, and tube cracking when a temperature difference is applied.
I researched the item. The results are shown in Table 1.

【0027】[0027]

【表1】 [Table 1]

【0028】表1より明らかなように、実施例の拡散炉
チューブでは重量は約6.4kgであり、取扱性に優れ
るものであった。また、薄膜を除く部分の密度は1.8
6g/cm3 であった。一方、比較例のチューブは実施例の
ものと同サイズであるにも関わらず、重量及び密度が実
施例の1.6倍〜1.7倍となっていた。
As is clear from Table 1, the diffusion furnace tube of the example weighed about 6.4 kg and was excellent in handleability. The density of the part excluding the thin film is 1.8.
It was 6 g / cm 3 . On the other hand, although the tube of the comparative example had the same size as that of the example, the weight and density were 1.6 to 1.7 times that of the example.

【0029】また、実施例ではSiC薄膜にピンホール
や剥離が全く見られなかったのに対して、比較例ではS
iC薄膜の所々にピンホールや剥離が見られた。そし
て、両拡散炉チューブに温度差を加えた場合、実施例で
は全く割れが生じなかったのに対し、比較例では割れが
生じて破壊に到るものがいくつか見られた。
Further, in the examples, no pinholes or peeling were observed in the SiC thin film, whereas in the comparative examples, S
Pinholes and peeling were found in places on the iC thin film. When a temperature difference was applied to both diffusion furnace tubes, no cracks occurred in the examples, whereas some cracks occurred in the comparative examples, leading to breakage.

【0030】なお、両者の製造工程自体を比較した場
合、含浸を行わない実施例では、比較的短時間かつ低コ
ストで拡散炉チューブを作製することが可能であった。
これに対して、比較例ではCVD法の前に金属Siの含
浸を行わなければならず、製造コスト的にも製造プロセ
ス的にも不利であった。
When the two manufacturing processes themselves are compared, it was possible to manufacture the diffusion furnace tube in a comparatively short time and at a low cost in the example in which impregnation was not performed.
On the other hand, in the comparative example, impregnation of metal Si had to be performed before the CVD method, which was disadvantageous in terms of manufacturing cost and manufacturing process.

【0031】以上の結果を総合すると、実施例の製造方
法のほうが比較例の製造方法に比して優れているという
結論に達する。なお、本発明は上記実施例のみに限定さ
れることはなく、以下のように変更することが勿論可能
である。例えば、 (a)本発明は実施例にて具体化した拡散炉チューブの
ほかにも、ウェハボート、ウェハキャリア、エピタキシ
ャル成長用サセプタ等といった各種の治具にも勿論具体
化することが可能である。
By summing up the above results, it is concluded that the manufacturing method of the example is superior to the manufacturing method of the comparative example. It should be noted that the present invention is not limited to the above embodiment, and can be modified as described below. For example, (a) The present invention can of course be embodied in various jigs such as a wafer boat, a wafer carrier, and an epitaxial growth susceptor, in addition to the diffusion furnace tube embodied in the embodiments.

【0032】(b)高純度SiC薄膜は必ずしもチュー
ブの内外両面に設ける必要はなく、少なくとも内面、即
ち汚染を避けるべきシリコンウェハに対面する側に設け
たものであれば良い。
(B) The high-purity SiC thin film does not necessarily have to be provided on both inner and outer surfaces of the tube, and may be provided on at least the inner surface, that is, the side facing the silicon wafer from which contamination should be avoided.

【0033】(c)実施例にて実施した減圧CVD法以
外にも、例えば常圧CVD法、各種プラズマCVD法、
光CVD法等を用いても良い。
(C) In addition to the low pressure CVD method carried out in the embodiment, for example, a normal pressure CVD method, various plasma CVD methods,
An optical CVD method or the like may be used.

【0034】[0034]

【発明の効果】以上詳述したように、本発明の半導体製
造用治具のためのSiC質基材の製造方法によれば、金
属Siの含浸を行わなくとも基材の高純度化、高強度
化、軽量化を図ることができるという優れた効果を奏す
る。また、金属Siの含浸が不要になることに付随し
て、従来に比して製造プロセスを簡単にできかつ低コス
ト化することができるという優れた効果をも奏する。
As described above in detail, according to the method for producing a SiC base material for a semiconductor manufacturing jig of the present invention, the base material can be highly purified and highly purified without impregnation with metallic Si. It has an excellent effect that strength and weight can be reduced. Further, in addition to the fact that the impregnation of metal Si is not required, the manufacturing process can be simplified and the cost can be reduced as compared with the conventional case.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI H01L 21/22 501 C04B 35/56 101X (56)参考文献 特開 昭60−138914(JP,A) 特開 昭60−35452(JP,A) 特開 平5−851(JP,A) 特開 昭64−61376(JP,A) 特開 昭63−85076(JP,A) (58)調査した分野(Int.Cl.7,DB名) C04B 41/85 - 41/87 C04B 35/565 C04B 38/00 304 H01L 21/22 ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 7 Identification code FI H01L 21/22 501 C04B 35/56 101X (56) References JP-A-60-138914 (JP, A) JP-A-60-35452 (JP, A) JP 5-851 (JP, A) JP 64-61376 (JP, A) JP 63-85076 (JP, A) (58) Fields investigated (Int. Cl. 7) , DB name) C04B 41/85-41/87 C04B 35/565 C04B 38/00 304 H01L 21/22

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】平均粒径が1μm〜500μmでありかつ
不純物含有量が20ppm以下である炭化珪素粉末を用
いて成形体を作製した後、その成形体を不活性雰囲気下
かつ1500℃〜2000℃の温度下にて焼成して得ら
れる多孔質性の焼結体の表面に、CVD法による厚さ1
0μm〜500μmの高純度炭化珪素薄膜を形成するこ
とを特徴とした半導体製造用治具のための炭化珪素質基
材の製造方法。
1. A molded body is produced using a silicon carbide powder having an average particle size of 1 μm to 500 μm and an impurity content of 20 ppm or less, and then the molded body is kept in an inert atmosphere at 1500 ° C. to 2000 ° C. On the surface of the porous sintered body obtained by firing at the temperature of 1
A method for manufacturing a silicon carbide based substrate for a semiconductor manufacturing jig, which comprises forming a high-purity silicon carbide thin film of 0 μm to 500 μm.
【請求項2】前記焼結体の表面粗さの平均値は0.5μ
m〜10μmでありかつ最大値は2.0μm〜100μ
mであることを特徴とした請求項1に記載の半導体製造
用治具のための炭化珪素質基材の製造方法。
2. The average surface roughness of the sintered body is 0.5 μm.
m to 10 μm and the maximum value is 2.0 μm to 100 μm
2. The method for manufacturing a silicon carbide based material for a semiconductor manufacturing jig according to claim 1, wherein m is m.
【請求項3】前記高純度炭化珪素薄膜における不純物の
含有量は1ppm以下であることを特徴とした請求項1
または2に記載の半導体製造用治具のための炭化珪素質
基材の製造方法。
3. The impurity content in the high-purity silicon carbide thin film is 1 ppm or less.
Alternatively, the method for manufacturing a silicon carbide based substrate for the semiconductor manufacturing jig described in 2 above.
JP12951193A 1993-05-31 1993-05-31 Method for producing silicon carbide substrate for jig for semiconductor production Expired - Lifetime JP3378608B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12951193A JP3378608B2 (en) 1993-05-31 1993-05-31 Method for producing silicon carbide substrate for jig for semiconductor production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12951193A JP3378608B2 (en) 1993-05-31 1993-05-31 Method for producing silicon carbide substrate for jig for semiconductor production

Publications (2)

Publication Number Publication Date
JPH06340479A JPH06340479A (en) 1994-12-13
JP3378608B2 true JP3378608B2 (en) 2003-02-17

Family

ID=15011306

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12951193A Expired - Lifetime JP3378608B2 (en) 1993-05-31 1993-05-31 Method for producing silicon carbide substrate for jig for semiconductor production

Country Status (1)

Country Link
JP (1) JP3378608B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2745208B2 (en) * 1995-06-21 1998-04-28 日本ピラー工業株式会社 Heat treatment furnace components
JP4049545B2 (en) * 2001-03-22 2008-02-20 日本碍子株式会社 SiC heat treatment jig
JP2016023131A (en) * 2014-07-25 2016-02-08 イビデン株式会社 Tubular body, and production method thereof
CN112521154A (en) * 2020-12-22 2021-03-19 中国科学院上海硅酸盐研究所 SiC ceramic device with high-purity working surface and preparation method and application thereof

Also Published As

Publication number Publication date
JPH06340479A (en) 1994-12-13

Similar Documents

Publication Publication Date Title
EP1899508B1 (en) Crucible for the crystallization of silicon and process for its preparation
US4761134A (en) Silicon carbide diffusion furnace components with an impervious coating thereon
US4619798A (en) Method of manufacturing parts for use to the heat processing furnace
US5571758A (en) Nitrogen-reacted silicon carbide material
US4564601A (en) Shaped polycrystalline silicon carbide articles and isostatic hot-pressing process
EP0340802B1 (en) Silicon carbide diffusion tube for semi-conductor
JP3378608B2 (en) Method for producing silicon carbide substrate for jig for semiconductor production
JPH08188408A (en) Silicon carbide molded product by chemical vapor deposition and its production
EP0759416B1 (en) Vessel of pyrolytic boron nitride
JP2004231493A (en) Porous silicon carbide sintered compact and its manufacturing method
JPH09275078A (en) Silicon wafer retaining jig
TWI228290B (en) Method for forming semiconductor processing components
JP2721678B2 (en) β-silicon carbide molded body and method for producing the same
US6881262B1 (en) Methods for forming high purity components and components formed thereby
JP4382919B2 (en) Method for producing silicon-impregnated silicon carbide ceramic member
JP3642446B2 (en) Semiconductor wafer processing tool
JPH0692761A (en) Sic-cvd coated and si impregnated sic product and its manufacture
JPH03146470A (en) Silicon carbide-based material
JP3297547B2 (en) Method for producing silicon carbide sintered body
JPH0359033B2 (en)
JP4166350B2 (en) Oxidation-resistant boron carbide-silicon carbide composite carbon material, sintering crucible using the same, vacuum evaporation crucible, and high-temperature firing jig
JP2002249387A (en) Method for manufacturing silicon carbide-based member
JPS6236087A (en) Granular sic-dispersed metal silicon heat-resistant material
JPH0583517B2 (en)
JPS59162199A (en) Crystal growth using silicon nitride and manufacture of parts therefor

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071206

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081206

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091206

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091206

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101206

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101206

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111206

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111206

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121206

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131206

Year of fee payment: 11

EXPY Cancellation because of completion of term