JP2019156685A - Silicon carbide porous body and its production method, and brake filter with the silicon carbide porous body - Google Patents

Silicon carbide porous body and its production method, and brake filter with the silicon carbide porous body Download PDF

Info

Publication number
JP2019156685A
JP2019156685A JP2018046604A JP2018046604A JP2019156685A JP 2019156685 A JP2019156685 A JP 2019156685A JP 2018046604 A JP2018046604 A JP 2018046604A JP 2018046604 A JP2018046604 A JP 2018046604A JP 2019156685 A JP2019156685 A JP 2019156685A
Authority
JP
Japan
Prior art keywords
silicon carbide
porous material
porous body
less
based porous
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018046604A
Other languages
Japanese (ja)
Other versions
JP7014647B2 (en
Inventor
福岡 聖一
Seiichi Fukuoka
聖一 福岡
裕樹 渡邉
Hiroki Watanabe
裕樹 渡邉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Coorstek KK
Original Assignee
Coorstek KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Coorstek KK filed Critical Coorstek KK
Priority to JP2018046604A priority Critical patent/JP7014647B2/en
Priority to US16/299,555 priority patent/US10974183B2/en
Priority to KR1020190029198A priority patent/KR102189215B1/en
Publication of JP2019156685A publication Critical patent/JP2019156685A/en
Application granted granted Critical
Publication of JP7014647B2 publication Critical patent/JP7014647B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

To provide a silicon carbide porous body capable of securing particle collection performance and a performance of prevention of particle flying, and returning the inside of a container to atmospheric pressure during a short time in a silicon carbide porous body suitable for a brake filter installed at a gas introduction port, for returning the inside of the container under reduced pressure to atmospheric pressure.SOLUTION: A silicon carbide porous body includes: a plurality of silicon carbide particles 2 that form a skeleton by bonding and forms a plurality of pores; and a neck part 3 formed by surface contact of adjacent the silicon carbide particles, in which an average pore diameter is 3 μm or larger and 9 μm or smaller, and the porosity is 35% or larger and 55% or smaller.SELECTED DRAWING: Figure 1

Description

本発明は、炭化珪素質多孔体及びその製造方法、並びに前記炭化珪素質多孔体を用いたブレイクフィルタ(ディフューザーとも言う)に関し、例えば、半導体製造装置におけるロードロックに用いられ、減圧下の容器内を大気圧に復帰させるためにガス導入口に設置されるブレイクフィルタに好適な炭化珪素質多孔体及びその製造方法、並びに前記炭化珪素質多孔体を用いたブレイクフィルタに関する。   The present invention relates to a silicon carbide based porous material, a method for manufacturing the same, and a break filter (also referred to as a diffuser) using the silicon carbide based porous material. For example, the present invention is used for a load lock in a semiconductor manufacturing apparatus, and in a container under reduced pressure. The present invention relates to a silicon carbide based porous material suitable for a break filter installed at a gas inlet for returning the pressure to atmospheric pressure, a method for manufacturing the same, and a break filter using the silicon carbide based porous material.

半導体製造工程においては、処理装置内部を減圧し、減圧下で熱処理が行われている。そして、この熱処理が終了すると、前記処理装置内を減圧状態から大気圧まで戻し、前記半導体ウェハの取り出しがなされる。
このような半導体処理装置にあっては、処理されるウェハを外部から搬入、または処理されたウェハを外部へ搬出する際に、その処理装置内の雰囲気を外部雰囲気に合わせることになるため、通常、ガス導入口部とガス排気口部とが設けられている。そして、これらガス導入口部、ガス排気口部によって、処理装置内の雰囲気ガスを排出して減圧状態にし、またガスを導入して減圧状態を解除するように構成されている。
In the semiconductor manufacturing process, the inside of the processing apparatus is depressurized and heat treatment is performed under reduced pressure. When this heat treatment is completed, the inside of the processing apparatus is returned from the reduced pressure state to the atmospheric pressure, and the semiconductor wafer is taken out.
In such a semiconductor processing apparatus, when the wafer to be processed is carried in from the outside or the processed wafer is carried out to the outside, the atmosphere in the processing apparatus is adjusted to the external atmosphere. A gas inlet and a gas outlet are provided. The gas introduction port portion and the gas exhaust port portion are configured to discharge atmospheric gas in the processing apparatus to be in a reduced pressure state, and to introduce gas to release the reduced pressure state.

この半導体処理装置の概略構成を、図3に基づいて説明する。
図3に示すように、半導体処理装置50には、ガスを導入して減圧状態を解除するガス導入装置60が設けられている。このガス導入口にガス導入装置(ブレイクフィルタ)60が用いられる場合、開閉弁51を開けた瞬間の圧力変動を緩和させることができるため、装置内のパーティクルの舞い上がりを抑制する効果がある。また、装置内の排気を行う場合、排気用の開閉弁52と並列に微調整弁53が備えられ、排気開始にあたって微調整弁53が操作されることでスロー排気が実現される、尚、図中の符号Wは処理されるウェハである。
A schematic configuration of the semiconductor processing apparatus will be described with reference to FIG.
As shown in FIG. 3, the semiconductor processing apparatus 50 is provided with a gas introduction apparatus 60 that introduces a gas and releases a reduced pressure state. When a gas introduction device (break filter) 60 is used for this gas introduction port, the pressure fluctuation at the moment when the on-off valve 51 is opened can be alleviated, which has the effect of suppressing the rising of particles in the device. Further, when exhausting the apparatus, a fine adjustment valve 53 is provided in parallel with the exhaust on-off valve 52, and slow exhaust is realized by operating the fine adjustment valve 53 at the start of exhaust. The symbol W in the inside is a wafer to be processed.

このようにして用いられるガス導入装置(ブレイクフィルタ)60は、図4に示すように、フィルタエレメント61が、一対の金属製スペーサ62a、62b間にポリテトラフルオロエチレン(PTFE)製ガスケット63、63を介して装着されている。また、金属製中空状で周囲に多数の通気口64が穿設された通気パイプ65が設けられ、スペーサ62a及びフィルタエレメント61を貫通している。   As shown in FIG. 4, the gas introducing device (break filter) 60 used in this manner has a filter element 61 having a polytetrafluoroethylene (PTFE) gasket 63, 63 between a pair of metal spacers 62 a, 62 b. It is mounted through. In addition, a ventilation pipe 65 having a hollow shape made of metal and having a large number of ventilation holes 64 formed therearound is provided and penetrates the spacer 62 a and the filter element 61.

このガス導入装置(ブレイクフィルタ)60によって減圧状態を解除するには、まず開閉弁51が開放されて、ガスがスペーサ62b側の通気パイプ65から導入される。このガスは通気口64及びフィルタエレメント61を介して処理装置内に導入されるが、このときフィルタエレメント61が抵抗となり、流速が減速されて徐々に減圧状態が解除される。
このように、ガスは、処理装置内へ流れ込む速度が減速され、処理装置内のパーティクルの舞い上がりや結露の発生が抑制される。
In order to release the decompressed state by the gas introduction device (break filter) 60, the on-off valve 51 is first opened, and gas is introduced from the ventilation pipe 65 on the spacer 62b side. This gas is introduced into the processing apparatus via the vent 64 and the filter element 61. At this time, the filter element 61 becomes a resistance, the flow rate is reduced, and the reduced pressure state is gradually released.
In this way, the speed at which the gas flows into the processing apparatus is decelerated, and the rising of particles in the processing apparatus and the occurrence of condensation are suppressed.

ところで、ガス導入装置60(ブレイクフィルタ)におけるフィルタエレメント61の材質としては、ニッケルなどの金属粒子からなる濾過材(特許文献1)、或いはPTFE等の樹脂からなる濾過材、或いはアルミナ、シリカなどのセラミックスからなる濾過材が一般に用いられている。また、特許文献2には、炭化珪素質多孔体を濾過材としたブレイクフィルタが開示されている。   By the way, as a material of the filter element 61 in the gas introducing device 60 (break filter), a filter medium made of metal particles such as nickel (Patent Document 1), a filter medium made of resin such as PTFE, or alumina, silica or the like. A filter medium made of ceramic is generally used. Patent Document 2 discloses a break filter using a silicon carbide porous material as a filter material.

特表2012−530592号公報Special table 2012-53092 gazette 特許第5032937号公報Japanese Patent No. 5032937

しかしながら、フィルタエレメント61の材質として、ニッケルなどの金属粒子からなる濾過材を用いた場合、ロードロック内に導入されるガス、例えば腐食性ガスにより腐食が進行するという問題があった。また、アルミナセラミックスを濾過材として用いた場合、アルミナ自体の耐食性は高いが、助剤として添加される添加剤や不可避的不純物により、耐食性が低下するという課題があった。また、シリカセラミックスを濾過材として用いた場合には、フッ素系ガスに対する耐食性が劣るという課題があった。更に、PTFEを濾過材とした場合には、強度及び耐熱性が劣るという課題があった。   However, when a filter medium made of metal particles such as nickel is used as the material of the filter element 61, there is a problem that corrosion proceeds due to gas introduced into the load lock, for example, corrosive gas. Further, when alumina ceramics is used as a filter medium, the corrosion resistance of alumina itself is high, but there is a problem that the corrosion resistance is lowered due to additives and inevitable impurities added as an auxiliary agent. Further, when silica ceramics is used as a filter medium, there is a problem that the corrosion resistance against fluorine-based gas is poor. Furthermore, when PTFE is used as a filter material, there is a problem that strength and heat resistance are inferior.

前記耐食性、及び耐熱性などの課題を解決するものとしては、特許文献2に開示された炭化珪素質多孔体を濾過材に用いることが考えられる。
しかしながら、特許文献2に開示されたブレイクフィルタにあっては、気孔径、気孔率が大きいため、パーティクル捕集性能、及びパーティクルの舞い上がり防止性能の点で不十分という課題があった。
また、前記課題を解決するため、炭化珪素多孔体において気孔径を小さくすると、気孔率が小さくなり、パーティクル捕集性能、パーティクル舞い上がり防止性能は改善されるが、圧力損失が大きくなって容器内を大気圧に復帰させる時間が長くなるという別の課題が生じていた。
In order to solve the problems such as corrosion resistance and heat resistance, it is conceivable to use the silicon carbide based porous material disclosed in Patent Document 2 as a filter medium.
However, the break filter disclosed in Patent Document 2 has a problem that it is insufficient in terms of particle collection performance and particle rise prevention performance because of its large pore diameter and porosity.
Further, in order to solve the above problems, when the pore diameter is reduced in the silicon carbide porous body, the porosity is reduced, and the particle collection performance and the particle rising prevention performance are improved, but the pressure loss is increased and the inside of the container is increased. Another problem has arisen that it takes a long time to return to atmospheric pressure.

そこで、本願発明者は、ブレイクフィルタの濾過材として、耐食性、及び耐熱性に優れる炭化珪素質多孔体を用いることを前提とし、前記特許文献2に開示された発明の有する課題を解決するために鋭意研究を行い、本願発明をするに至った。   Therefore, in order to solve the problems of the invention disclosed in Patent Document 2, the inventor of the present application is based on the premise that a silicon carbide based porous material having excellent corrosion resistance and heat resistance is used as a filter material for a break filter. We have earnestly studied and have come to the present invention.

本発明は、前記事情の下になされたものであり、減圧下の容器内を大気圧に復帰させるために、ガス導入口に設置されるブレイクフィルタとして用いられる炭化珪素質多孔体において、パーティクル捕集性能、及びパーティクル舞い上がり防止性能を確保するとともに、容器内を短時間のうちに大気圧に復帰させることのできる炭化珪素質多孔体及びその製造方法を提供することを目的とする。   The present invention has been made under the above circumstances, and in a silicon carbide based porous material used as a break filter installed at a gas inlet in order to return the inside of a container under reduced pressure to atmospheric pressure, An object of the present invention is to provide a silicon carbide based porous body capable of ensuring the collection performance and the particle rising prevention performance and returning the inside of the container to the atmospheric pressure in a short time, and a method for producing the same.

上記目的を達成するためになされた本発明にかかる炭化珪素質多孔体は、複数の炭化珪素粒子が互いに結合することにより骨格をなすとともに、複数の気孔を形成し、隣接する前記炭化珪素粒子同士が面接触することにより形成されたネック部を有し、平均気孔径が3μmより大きく9μm以下であって、気孔率が35%以上55%以下であることを特徴とする。
このように構成された炭化珪素質多孔体を、半導体処理装置のガス導入口に設置されるブレイクフィルタに用いることによって、十分なガス流量を確保しつつ、優れたパーティクル捕集性能、及びパーティクル舞い上がり防止性能を得ることができる。また、ネック部を有することにより十分な強度を持たせることができる。
The silicon carbide based porous material according to the present invention, which has been made to achieve the above object, forms a skeleton by bonding a plurality of silicon carbide particles to each other, forms a plurality of pores, and the adjacent silicon carbide particles Has a neck portion formed by surface contact, has an average pore diameter of more than 3 μm and 9 μm or less, and a porosity of 35% or more and 55% or less.
By using the silicon carbide based porous material configured in this way for the break filter installed at the gas inlet of the semiconductor processing apparatus, excellent particle collection performance and particle rising while ensuring a sufficient gas flow rate Prevention performance can be obtained. Moreover, it can give sufficient intensity | strength by having a neck part.

また、上記目的を達成するためになされた本発明にかかる炭化珪素質多孔体の製造方法は、半導体処理装置のガス導入口に設置されるブレイクフィルタに用いられる炭化珪素質多孔体の製造方法であって、平均粒子径0.5μm以上5μm以下とした炭化珪素粒子に有機バインダーを添加、混合し、成形後に非酸化性雰囲気下で焼成する工程を備え、前記焼成の温度は2200℃以上2400℃以下であることを特徴とする。
また、前記平均粒子径0.5μm以上5μm以下とした炭化珪素粒子は、平均粒子径1μm未満の炭化珪素微粒子と平均粒子径1μm以上の炭化珪素粒子を混合したものであり、平均粒子径1μm未満の炭化珪素微粒子は、炭化珪素粒子全体の10wt%以上20wt%以下であることが好ましい。
In addition, a method for manufacturing a silicon carbide based porous material according to the present invention made to achieve the above object is a method for manufacturing a silicon carbide based porous material used for a break filter installed at a gas inlet of a semiconductor processing apparatus. An organic binder is added to and mixed with silicon carbide particles having an average particle size of 0.5 μm or more and 5 μm or less, and firing is performed in a non-oxidizing atmosphere after molding, and the firing temperature is 2200 ° C. or more and 2400 ° C. It is characterized by the following.
The silicon carbide particles having an average particle diameter of 0.5 μm or more and 5 μm or less are a mixture of silicon carbide fine particles having an average particle diameter of less than 1 μm and silicon carbide particles having an average particle diameter of 1 μm or more, and an average particle diameter of less than 1 μm. The silicon carbide fine particles are preferably 10 wt% or more and 20 wt% or less of the entire silicon carbide particles.

このような方法で炭化珪素質多孔体を製造することにより、前記した本発明に係る炭化珪素質多孔体を得ることができる。   By producing the silicon carbide based porous material by such a method, the above-described silicon carbide based porous material according to the present invention can be obtained.

また、前記平均粒子径0.5μm以上5μm以下の炭化珪素原料に有機バインダーを添加、混合し、成形後に焼成する工程の後、更に酸化性雰囲気下で、1000℃以上1300℃以下の温度で加熱処理することが好ましい。
このように上記温度範囲での酸化加熱処理を行うことにより、炭化珪素表面に酸化被膜が形成され、欠陥になり得る亀裂が充填され、補修される。その結果、多孔質体としての強度を2倍程度増加させることができる。
In addition, after adding the organic binder to the silicon carbide raw material having an average particle size of 0.5 μm or more and 5 μm or less, mixing, baking after forming, and further heating at a temperature of 1000 ° C. to 1300 ° C. in an oxidizing atmosphere. It is preferable to process.
Thus, by performing the oxidation heat treatment in the above temperature range, an oxide film is formed on the silicon carbide surface, and cracks that can become defects are filled and repaired. As a result, the strength of the porous body can be increased about twice.

本発明によれば、減圧下の容器内を大気圧に復帰させるために、ガス導入口に設置されるブレイクフィルタに用いられる炭化珪素質多孔体において、パーティクル捕集性能、及びパーティクル舞い上がり防止性能を確保するとともに、容器内を短時間のうちに大気圧に復帰させることのできる炭化珪素質多孔体及びその製造方法を提供することができる。   According to the present invention, in order to return the inside of a container under reduced pressure to atmospheric pressure, in a silicon carbide based porous material used for a break filter installed at a gas inlet, particle collection performance and particle rise prevention performance are achieved. It is possible to provide a silicon carbide based porous material that can be secured and can be returned to atmospheric pressure within a short time and a method for producing the same.

図1は、本発明に係る炭化珪素質多孔体の第一の実施形態の骨格構造を示すSEM像である。FIG. 1 is an SEM image showing a skeletal structure of the first embodiment of the silicon carbide based porous material according to the present invention. 図2は、本発明に係る炭化珪素質多孔体の第二の実施形態の骨格構造を示すSEM像である。FIG. 2 is an SEM image showing the skeletal structure of the second embodiment of the silicon carbide based porous material according to the present invention. 図3は、半導体処理装置の概略構成を示すブロック図である。FIG. 3 is a block diagram showing a schematic configuration of the semiconductor processing apparatus. 図4は、ガス導入装置(ブレイクフィルタ)の概略構成を示すブロック図である。FIG. 4 is a block diagram showing a schematic configuration of the gas introduction device (break filter).

以下、本発明に係る炭化珪素質多孔体及びその製造方法の実施の形態について図面に基づき説明する。
図1は本発明に係る炭化珪素質多孔体の第一の実施形態の骨格構造を示すSEM(走査型電子顕微鏡)像である。
Hereinafter, embodiments of a silicon carbide based porous material and a method for producing the same according to the present invention will be described with reference to the drawings.
FIG. 1 is an SEM (scanning electron microscope) image showing the skeletal structure of the first embodiment of the silicon carbide based porous material according to the present invention.

図1に示す炭化珪素質多孔体1は、炭化珪素(SiC)からなり、複数の炭化珪素粒子が結合されて骨格をなし、それらの間に多数の気孔が形成されている。この炭化珪素質多孔体1の平均気孔径は、3μmより大きく9μm以下(好ましくは3μmより大きく6μm以下)であり、気孔率は35%以上55%以下である。
尚、平均気孔径の測定は、水銀圧入法を用いた。また、炭化珪素粒子の平均粒子径の測定には、SEM画像解析法を用いた。
A silicon carbide based porous material 1 shown in FIG. 1 is made of silicon carbide (SiC), and a plurality of silicon carbide particles are combined to form a skeleton, and a large number of pores are formed between them. The average pore diameter of the silicon carbide based porous material 1 is greater than 3 μm and not greater than 9 μm (preferably greater than 3 μm and not greater than 6 μm), and the porosity is not less than 35% and not greater than 55%.
The average pore diameter was measured using a mercury intrusion method. Moreover, the SEM image analysis method was used for the measurement of the average particle diameter of a silicon carbide particle.

また、図1の画像に示すように、隣接する炭化珪素粒子2同士は面接触し、その接続部にネック部3が形成されている。このネック部3が形成されていることにより、濾過材として使用するに耐える十分な強度を持たせることができる。   Moreover, as shown in the image of FIG. 1, adjacent silicon carbide particles 2 are in surface contact with each other, and a neck portion 3 is formed at the connection portion. By forming the neck portion 3, it is possible to have sufficient strength to withstand use as a filter medium.

尚、平均気孔径が3μm以下の場合、圧力損失が大きくガス供給量が少なくなる。そのため、そのため、大気圧に到達するまでの時間が大幅に長くなる。一方、平均気孔径が9μmより大きいと、パーティクル捕集性能、及びパーティクル舞い上がり防止機能が低下し、ウェハ製造歩留まりの低下という課題がある。   When the average pore diameter is 3 μm or less, the pressure loss is large and the gas supply amount is reduced. Therefore, the time until the atmospheric pressure is reached is significantly increased. On the other hand, when the average pore diameter is larger than 9 μm, the particle collecting performance and the particle rising prevention function are lowered, and there is a problem that the wafer manufacturing yield is lowered.

また、気孔率が35%より小さいと、ガス供給量が小さくなり、大気圧に達するまでの時間が大幅に長くなる。一方、気孔率が55%より大きいと、パーティクル舞い上がり防止性能が低下し、ウェハ製造歩留まりが低下する。   On the other hand, if the porosity is less than 35%, the amount of gas supply is reduced, and the time required to reach atmospheric pressure is significantly increased. On the other hand, if the porosity is higher than 55%, the particle rising prevention performance is lowered, and the wafer manufacturing yield is lowered.

このように形成された炭化珪素質多孔体1をブレイクフィルタとして用いることにより、十分なガス流量を確保しつつ、パーティクルを捕集し、パーティクル舞い上がりを十分に防止することができる。   By using silicon carbide based porous body 1 formed in this way as a break filter, particles can be collected and particle rising can be sufficiently prevented while securing a sufficient gas flow rate.

前記炭化珪素質多孔体1を製造するには、平均粒子径0.5μm〜5μmの炭化珪素原料に有機バインダーを添加、混合し、成形後に非酸化性雰囲気下で焼成する。焼成は、2200℃〜2400℃で例えば2時間行う。炭化珪素原料の平均粒子径0.5μm〜5μmの根拠は、0.5μmより小さいと気孔率が小さくなりガス供給量が小さくなって、大気圧に達するまでの時間が大幅に長くなる。5μmより大きいと気孔径が大きくなりパーティクル捕集性能、及びパーティクル舞い上がり防止機能が低下してしまう。   In order to manufacture the silicon carbide based porous material 1, an organic binder is added to and mixed with a silicon carbide raw material having an average particle size of 0.5 μm to 5 μm, followed by firing in a non-oxidizing atmosphere after molding. Firing is performed at 2200 ° C. to 2400 ° C., for example, for 2 hours. The basis for the average particle size of 0.5 μm to 5 μm of the silicon carbide raw material is that when it is smaller than 0.5 μm, the porosity is reduced, the gas supply amount is reduced, and the time to reach atmospheric pressure is significantly increased. When the diameter is larger than 5 μm, the pore diameter becomes large, and the particle collecting performance and the particle rising prevention function are deteriorated.

尚、焼成体を得るには2000℃〜2200℃での加熱で可能であるが、その場合、粒成長が不十分となって炭化珪素微粉が残存し、発塵源となるとともに、気孔径が小さくなり、供給ガス量が減少する。更には、ネック部3の成長が十分ではなくなり、強度も不十分となる。   In order to obtain a fired body, heating at 2000 ° C. to 2200 ° C. is possible, but in that case, the grain growth becomes insufficient, silicon carbide fine powder remains, becomes a source of dust generation, and the pore diameter is It becomes smaller and the supply gas quantity decreases. Furthermore, the neck portion 3 does not grow sufficiently and the strength is insufficient.

焼成温度を前記のように2200℃〜2400℃とすれば、炭化珪素微粉が気化する、或いはネック部に炭化珪素微粉が析出して凝集することで消失する。更には、強度も向上する。
焼成温度が2400℃より大きい場合は、粒成長が進み気孔径が大きくなりパーティクル捕集性能、及びパーティクル舞い上がり防止機能が低下るとともに強度が低下する。
尚、平均粒子径0.5μm以上5μm以下とした炭化珪素粒子は、平均粒子径1μm未満の炭化珪素微粒子と平均粒子径1μm以上の炭化珪素粒子を混合したものとし、平均粒子径1μm未満の炭化珪素微粒子を、炭化珪素粒子全体の10wt%以上20wt%以下とすることにより、炭化珪素粒子全体の大きさの割合が適切に制御され、目的とする気孔や骨格構造が作りやすくなる。
When the firing temperature is 2200 ° C. to 2400 ° C. as described above, the silicon carbide fine powder is vaporized, or the silicon carbide fine powder is precipitated and aggregated at the neck portion, and disappears. Furthermore, the strength is improved.
When the firing temperature is higher than 2400 ° C., the grain growth proceeds and the pore diameter increases, the particle collection performance and the particle rising prevention function decrease, and the strength decreases.
The silicon carbide particles having an average particle diameter of 0.5 μm or more and 5 μm or less are a mixture of silicon carbide fine particles having an average particle diameter of less than 1 μm and silicon carbide particles having an average particle diameter of 1 μm or more. By making the silicon fine particles 10 wt% or more and 20 wt% or less of the entire silicon carbide particles, the size ratio of the entire silicon carbide particles is appropriately controlled, and the intended pores and skeleton structure can be easily formed.

以上のように本発明に係る第一の実施の形態によれば、炭化珪素質多孔体1において、平均気孔径が3μmより大きく9μm以下(好ましくは3μmより大きく6μm以下)、気孔率を35%以上55%以下とすることにより、十分なガス流量を確保しつつ、優れたパーティクル捕集性能、及びパーティクル舞い上がり防止性能を得ることができる。   As described above, according to the first embodiment of the present invention, in the silicon carbide based porous body 1, the average pore diameter is larger than 3 μm and not larger than 9 μm (preferably larger than 3 μm and not larger than 6 μm), and the porosity is 35%. By setting it to 55% or less, it is possible to obtain excellent particle collection performance and particle rise prevention performance while securing a sufficient gas flow rate.

続いて、本発明に係る第二の実施形態について説明する。この第二の実施形態では、前記した第一の実施形態で得られた炭化珪素質多孔体1に対し更に加熱による酸化処理を行う。
即ち、前記得られた炭化珪素質多孔体1を、酸化雰囲気1000℃〜1300℃で例えば2時間、加熱処理する。この酸化処理により得られた炭化珪素質多孔体10を図2に示す。図2は本発明に係る炭化珪素質多孔体の第二の実施形態の骨格構造を示すSEM(走査型電子顕微鏡)像である。
Subsequently, a second embodiment according to the present invention will be described. In the second embodiment, the silicon carbide porous body 1 obtained in the first embodiment is further subjected to an oxidation treatment by heating.
That is, the obtained silicon carbide based porous material 1 is heat-treated in an oxidizing atmosphere of 1000 ° C. to 1300 ° C. for 2 hours, for example. The silicon carbide based porous material 10 obtained by this oxidation treatment is shown in FIG. FIG. 2 is an SEM (scanning electron microscope) image showing the skeletal structure of the second embodiment of the silicon carbide based porous material according to the present invention.

この酸化処理により多孔質体としての強度が2倍程度に増加する。これは、加熱処理によって、SiC表面に酸化被膜(好ましくは膜厚50nm〜200nm)が形成され、欠陥になり得る亀裂が充填され、補修されるためと考えられる。
この加熱処理による高強度化によってガス供給圧が大きくなり、ガス流量が増加できることから減圧された容器が大気圧に復帰するまでの時間を短くすることができる。
By this oxidation treatment, the strength of the porous body is increased about twice. This is considered to be because an oxide film (preferably a film thickness of 50 nm to 200 nm) is formed on the SiC surface by heat treatment, and cracks that can become defects are filled and repaired.
By increasing the strength by this heat treatment, the gas supply pressure increases and the gas flow rate can be increased. Therefore, the time until the decompressed container returns to atmospheric pressure can be shortened.

尚、前記高強度化のための加熱処理において、加熱温度が1000℃より低いと、酸化膜厚が薄くなり、強度向上効果が不十分となる。一方、加熱温度が1300℃より高いと、酸化膜厚は更に厚くなるものの、欠陥の充填、補修効果が飽和し、それ以上の強度効果が認められない。また、厚くなりすぎた酸化膜が、熱膨張率の差によりSiC表面から剥がれてしまい発塵源となりやすい。   In the heat treatment for increasing the strength, if the heating temperature is lower than 1000 ° C., the oxide film thickness becomes thin and the effect of improving the strength becomes insufficient. On the other hand, when the heating temperature is higher than 1300 ° C., the oxide film thickness is further increased, but the defect filling and repairing effects are saturated, and no further strength effect is observed. In addition, the oxide film that has become too thick is easily peeled off from the SiC surface due to the difference in the coefficient of thermal expansion, and tends to be a source of dust generation.

以上のように本発明に係る第二の実施形態によれば、平均気孔径が3μmより大きく9μm以下(好ましくは3μmより大きく6μm以下)、気孔率を35%以上55%以下とした炭化珪素質多孔体1に対し所定温度で酸化加熱処理を行うことで、より高強度となり、パーティクル捕集性能、パーティクル舞い上がり防止性能に優れ、チャンバの減圧から大気圧に復帰までの時間を短縮可能な炭化珪素質多孔体10を得ることができる。   As described above, according to the second embodiment of the present invention, the silicon carbide material having an average pore diameter of more than 3 μm and 9 μm or less (preferably more than 3 μm and 6 μm or less) and a porosity of 35% or more and 55% or less. By performing oxidation heat treatment on the porous body 1 at a predetermined temperature, the silicon carbide has higher strength, excellent particle collection performance and particle rise prevention performance, and can shorten the time from decompression of the chamber to return to atmospheric pressure. A porous material 10 can be obtained.

続いて、本発明に係る炭化珪素質多孔体について、実施例に基づきさらに説明する。
本実施例では、前記実施の形態に示した構成の炭化珪素質多孔体の製造を行うことにより、その効果を検証した。
Subsequently, the silicon carbide based porous material according to the present invention will be further described based on examples.
In this example, the effect was verified by manufacturing the silicon carbide based porous material having the structure shown in the above embodiment.

(実験1)
実験1では、本発明においてフィルタエレメントの材質として用いる炭化珪素質多孔体の耐食性について検証した。
(Experiment 1)
In Experiment 1, the corrosion resistance of the silicon carbide based porous material used as the material of the filter element in the present invention was verified.

実験1で検証する炭化珪素質多孔体として、OY−15(屋久島電工株式会社製)を試料として用いた。
そして、この多孔体の試料をHF10%溶液(22℃)に15時間浸漬し、試料1gあたりの成分溶出量(μg/g)を測定した。
また、前記多孔体の試料をHCI10%溶液(22℃)に15時間浸漬し、試料1gあたりの成分溶出量(μg/g)を測定した。
更に、前記多孔体の試料をHBr10%溶液(22℃)に15時間浸漬し、試料1gあたりの成分溶出量(μg/g)を測定した。
As a silicon carbide based porous material to be verified in Experiment 1, OY-15 (manufactured by Yakushima Electric Works Co., Ltd.) was used as a sample.
And the sample of this porous body was immersed in HF10% solution (22 degreeC) for 15 hours, and the component elution amount (microgram / g) per 1g sample was measured.
Further, the porous body sample was immersed in a 10% HCl solution (22 ° C.) for 15 hours, and the amount of component elution (μg / g) per 1 g of the sample was measured.
Furthermore, the sample of the porous body was immersed in a 10% HBr solution (22 ° C.) for 15 hours, and the component elution amount (μg / g) per 1 g of the sample was measured.

また、参考例1として、A社製ディフューザーエレメント(Niエレメント)の試料をHF10%溶液(22℃)に15時間浸漬し、試料1gあたりの成分溶出量(μg/g)を測定した。
また、A社製ディフューザーエレメント(Niエレメント)の試料をHcl10%溶液(22℃)に15時間浸漬し、試料1gあたりの成分溶出量(μg/g)を測定した。
更に、A社製ディフューザーエレメント(Niエレメント)の試料をHBr10%溶液(22℃)に15時間浸漬し、試料1gあたりの成分溶出量(μg/g)を測定した。
Further, as Reference Example 1, a sample of a diffuser element (Ni element) manufactured by Company A was immersed in a HF 10% solution (22 ° C.) for 15 hours, and the component elution amount (μg / g) per 1 g of the sample was measured.
A sample of a diffuser element (Ni element) manufactured by Company A was immersed in a Hcl 10% solution (22 ° C.) for 15 hours, and the amount of component elution (μg / g) per 1 g of the sample was measured.
Furthermore, a sample of a diffuser element (Ni element) manufactured by Company A was immersed in a 10% HBr solution (22 ° C.) for 15 hours, and the component elution amount (μg / g) per 1 g of the sample was measured.

また、参考例2では、アルミナ多孔体に試料をHF10%溶液(22℃)に15時間浸漬し、試料1gあたりの成分溶出量(μg/g)を測定した。
また、アルミナ多孔体に試料をHcl10%溶液(22℃)に15時間浸漬し、試料1gあたりの成分溶出量(μg/g)を測定した。
更に、アルミナ多孔体に試料をHBr10%溶液(22℃)に15時間浸漬し、試料1gあたりの成分溶出量(μg/g)を測定した。
In Reference Example 2, the sample was immersed in a 10% HF solution (22 ° C.) for 15 hours in an alumina porous body, and the component elution amount (μg / g) per 1 g of the sample was measured.
Further, the sample was immersed in a 10% Hcl solution (22 ° C.) for 15 hours in a porous alumina body, and the amount of component elution (μg / g) per 1 g of the sample was measured.
Further, the sample was immersed in a 10% HBr solution (22 ° C.) for 15 hours in an alumina porous body, and the component elution amount (μg / g) per 1 g of the sample was measured.

実験1の結果を表1に示す。この結果、A社製ディフューザーエレメント(参考例1)からは、Fe,Cr,Cu,Tiの溶出が認められ、アルミナ多孔体(参考例2)からは、Ca、Tiの溶出が認められた。
一方、炭化珪素質多孔体からは、微量のTi溶出が認められたのみであり、耐食性に優れることを確認することができた。
The results of Experiment 1 are shown in Table 1. As a result, elution of Fe, Cr, Cu, and Ti was observed from the diffuser element manufactured by Company A (Reference Example 1), and dissolution of Ca and Ti was recognized from the porous alumina body (Reference Example 2).
On the other hand, only a trace amount of Ti elution was observed from the silicon carbide based porous material, and it was confirmed that the silicon carbide porous material was excellent in corrosion resistance.

(実験2)
実験2では、本発明に係る炭化珪素質多孔体(第一の実施形態)をブレイクフィルタとして用いた場合の特性について検証した。
この実験2では、平均粒子径が所定範囲の炭化珪素原料100重量部にバインダーとしてPVA(ポリビニルアルコール)を2重量部加え、水とともに混合した。これを乾燥後解砕し、金型成形により得た成形体を所定温度で2時間焼成した。これにより得られた多孔体は、粒子径や加熱温度の条件を変えることにより、平均気孔径、平均気孔率が異なるものとなった。
(Experiment 2)
In Experiment 2, the characteristics when the silicon carbide based porous material according to the present invention (first embodiment) was used as a break filter were verified.
In Experiment 2, 2 parts by weight of PVA (polyvinyl alcohol) as a binder was added to 100 parts by weight of a silicon carbide raw material having an average particle diameter in a predetermined range, and mixed with water. This was crushed after drying, and a molded body obtained by molding was fired at a predetermined temperature for 2 hours. The porous body thus obtained had different average pore diameters and average porosity by changing the particle diameter and heating temperature conditions.

そして、得られた多孔体から複数種のサンプルを選定し、それらから直径48mm、厚さ5mmのフィルタを形成した(実施例1〜7、比較例1〜6)。
表2に、実験2の条件を示す。
And several types of samples were selected from the obtained porous body, and the filter of diameter 48mm and thickness 5mm was formed from them (Examples 1-7, Comparative Examples 1-6).
Table 2 shows the conditions of Experiment 2.

表3に、実施例1〜7、比較例1〜6の多孔体をブレイクフィルタとして用いた場合の特性を示す。
尚、表3において、ガス流量(L/min)とは、直径48mm、厚さ5mmの多孔体に供給圧0.2MPaでNガスを流し、多孔体を通過したガス量を示す。
また、発塵数とは、直径48mm、厚さ5mmの多孔体にエアを流し、多孔体から発生したパーティクルの個数を示す。
また、パーティクル捕集性能とは、直径48mm、厚さ5mmの多孔体に30nmのパーティクルが含まれるガスを流し、多孔体を通過したパーティクルの割合を示す。なお、パーティクル捕集性能のデータでNは9を表し、その前の数値は9が連なる数を表す。(例:3N=99.9%)
また、パーティクル舞い上がり防止性能とは、チャンバ内に石英粉(直径30〜60μm)を撒き、真空から大気に復帰するまでに舞い上がった粒子の数を示す。
In Table 3, the characteristic at the time of using the porous body of Examples 1-7 and Comparative Examples 1-6 as a break filter is shown.
In Table 3, the gas flow rate (L / min) indicates the amount of gas that passed through the porous body when N 2 gas was passed through the porous body having a diameter of 48 mm and a thickness of 5 mm at a supply pressure of 0.2 MPa.
Further, the number of dust generation refers to the number of particles generated from the porous body when air is passed through the porous body having a diameter of 48 mm and a thickness of 5 mm.
Further, the particle collection performance indicates the ratio of particles that have passed through the porous body when a gas containing 30 nm particles flows through a porous body having a diameter of 48 mm and a thickness of 5 mm. In the particle collection performance data, N represents 9 and the previous numerical value represents the number of consecutive 9s. (Example: 3N = 99.9%)
Further, the particle soaking prevention performance refers to the number of particles that sowed until the quartz powder (diameter 30 to 60 μm) is sprinkled in the chamber and returned from the vacuum to the atmosphere.

表3に示す結果から実施例1〜7では、十分なガス流量を確保しつつ、パーティクル捕集性能、パーティクル舞い上がり防止性能に優れることを確認した。また、そのときの平均気孔径は、3μmより大きく9μm以下であって、気孔率が35%以上55%以下であることを確認した。
また、平均粒子径0.5μm以上5μm以下の炭化珪素原料に1μm未満の有機バインダーを添加、混合し、成形後に2200℃以上2400℃以下の温度で焼成することにより、前記平均気孔径及び気孔率を有する炭化珪素質多孔体を得ることができることを確認した。
From the results shown in Table 3, in Examples 1 to 7, it was confirmed that the particle collecting performance and the particle rising prevention performance were excellent while securing a sufficient gas flow rate. Moreover, it confirmed that the average pore diameter at that time was larger than 3 μm and 9 μm or less, and the porosity was 35% or more and 55% or less.
In addition, an organic binder of less than 1 μm is added to and mixed with a silicon carbide raw material having an average particle size of 0.5 μm or more and 5 μm or less, and after molding, firing is performed at a temperature of 2200 ° C. or more and 2400 ° C. or less. It was confirmed that a silicon carbide based porous material having the following can be obtained.

(実験3)
実験3では、本発明に係る炭化珪素質多孔体(第一の実施形態)を更に酸化加熱し、酸化膜を形成したフィルタの特性について検証した。
この実験3では、前記第一の実施形態に基づき、平均気孔径が5μm、平均気孔率が40%の炭化珪素質多孔体を形成した。
得られた多孔体に対し、加熱温度を条件に2時間の酸化加熱処理を行い、直径48mm、厚さ5mmのフィルタを形成し、その特性を検証した。
実験3の条件及び特性結果を表4に示す
(Experiment 3)
In Experiment 3, the characteristics of the filter in which the silicon carbide based porous material according to the present invention (first embodiment) was further oxidized and heated to form an oxide film were verified.
In Experiment 3, based on the first embodiment, a silicon carbide based porous material having an average pore diameter of 5 μm and an average porosity of 40% was formed.
The obtained porous body was subjected to an oxidation heat treatment for 2 hours under the condition of the heating temperature to form a filter having a diameter of 48 mm and a thickness of 5 mm, and its characteristics were verified.
Table 4 shows the conditions and characteristic results of Experiment 3.

表4の結果から、第一の実施形態で得られた多孔体に対し、さらに1000℃以上1300℃以下で加熱処理を行うことにより、優れたパーティクル捕集性能及びパーティクル舞い上がり防止性能を維持しつつ更に強度を増加させることができることを確認した。なお、表4のガス流量が表3に比べて多いのは、強度向上により高圧でガスを流すことができたためである。   From the results of Table 4, the porous body obtained in the first embodiment is further subjected to heat treatment at 1000 ° C. or higher and 1300 ° C. or lower, while maintaining excellent particle collection performance and particle rise prevention performance. Further, it was confirmed that the strength could be increased. The reason why the gas flow rate in Table 4 is larger than that in Table 3 is that the gas could be flowed at a high pressure due to the strength improvement.

以上の実施例の実験結果から、本発明に係る炭化珪素質多孔体によれば、パーティクル捕集性能、及びパーティクル舞い上がり防止性能に優れ、設置チャンバの減圧から大気圧に復帰するまでを短時間にすることができることを確認した。   From the experimental results of the above examples, according to the silicon carbide based porous material according to the present invention, the particle collection performance and the particle rise prevention performance are excellent, and it takes a short time to return from the decompression of the installation chamber to the atmospheric pressure. Confirmed that you can.

1 炭化珪素質多孔体
2 炭化珪素粒子
3 ネック部
10 炭化珪素質多孔体
DESCRIPTION OF SYMBOLS 1 Silicon carbide based porous body 2 Silicon carbide particle 3 Neck part 10 Silicon carbide based porous body

Claims (5)

複数の炭化珪素粒子が互いに結合することにより骨格をなすとともに、複数の気孔を形成し、
隣接する前記炭化珪素粒子同士が面接触することにより形成されたネック部を有し、
平均気孔径が3μmより大きく9μm以下であって、気孔率が35%以上55%以下であることを特徴とする炭化珪素質多孔体。
A plurality of silicon carbide particles are bonded to each other to form a skeleton and to form a plurality of pores,
It has a neck portion formed by surface contact between the adjacent silicon carbide particles,
A silicon carbide based porous material having an average pore diameter of more than 3 μm and not more than 9 μm and a porosity of not less than 35% and not more than 55%.
前記請求項1に記載された炭化珪素質多孔体を、半導体処理装置のガス導入口に設置して用いることを特徴とするブレイクフィルタ。   A break filter characterized in that the silicon carbide based porous material according to claim 1 is used by being installed at a gas inlet of a semiconductor processing apparatus. 半導体処理装置のガス導入口に設置されるブレイクフィルタに用いられる炭化珪素質多孔体の製造方法であって、
平均粒子径0.5μm以上5μm以下とした炭化珪素粒子に有機バインダーを添加、混合し、成形後に非酸化性雰囲気下で2200℃以上2400℃以下で焼成することを特徴とする炭化珪素質多孔体の製造方法。
A method for producing a silicon carbide based porous material used in a break filter installed at a gas inlet of a semiconductor processing apparatus,
A silicon carbide based porous material characterized by adding an organic binder to silicon carbide particles having an average particle diameter of 0.5 μm or more and 5 μm or less, mixing the mixture, and firing after molding at 2200 ° C. or more and 2400 ° C. or less in a non-oxidizing atmosphere. Manufacturing method.
前記平均粒子径0.5μm以上5μm以下とした炭化珪素粒子は、平均粒子径1μm未満の炭化珪素微粒子と平均粒子径1μm以上の炭化珪素粒子を混合したものであり、平均粒子径1μm未満の炭化珪素微粒子は、炭化珪素粒子全体の10wt%以上20wt%以下であることを特徴とする請求項3に記載された炭化珪素質多孔体の製造方法。   The silicon carbide particles having an average particle diameter of 0.5 μm or more and 5 μm or less are a mixture of silicon carbide fine particles having an average particle diameter of less than 1 μm and silicon carbide particles having an average particle diameter of 1 μm or more, and carbonization having an average particle diameter of less than 1 μm. The method for producing a silicon carbide based porous material according to claim 3, wherein the silicon fine particles are 10 wt% or more and 20 wt% or less of the entire silicon carbide particles. 前記平均粒子径0.5μm以上5μm以下の炭化珪素原料に有機バインダーを添加、混合し、成形後に焼成する工程の後、
更に酸化性雰囲気下で、1000℃以上1300℃以下の温度で加熱処理することを特徴とする請求項3乃至請求項4のいずれかに記載された炭化珪素質多孔体の製造方法。
After the step of adding an organic binder to the silicon carbide raw material having an average particle size of 0.5 μm or more and 5 μm or less, mixing and baking after molding,
The method for producing a silicon carbide based porous material according to any one of claims 3 to 4, further comprising a heat treatment at a temperature of 1000 ° C or higher and 1300 ° C or lower in an oxidizing atmosphere.
JP2018046604A 2018-03-14 2018-03-14 A break filter and a method for producing a silicon carbide porous body used in the break filter. Active JP7014647B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2018046604A JP7014647B2 (en) 2018-03-14 2018-03-14 A break filter and a method for producing a silicon carbide porous body used in the break filter.
US16/299,555 US10974183B2 (en) 2018-03-14 2019-03-12 Break filter using a silicon carbide porous body and manufacturing method of the break filter
KR1020190029198A KR102189215B1 (en) 2018-03-14 2019-03-14 Silicon carbide porous body and manufacturing method of the same, and break filter using the silicon carbide porous body and manufacturing method of the break filter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018046604A JP7014647B2 (en) 2018-03-14 2018-03-14 A break filter and a method for producing a silicon carbide porous body used in the break filter.

Publications (2)

Publication Number Publication Date
JP2019156685A true JP2019156685A (en) 2019-09-19
JP7014647B2 JP7014647B2 (en) 2022-02-01

Family

ID=67994437

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018046604A Active JP7014647B2 (en) 2018-03-14 2018-03-14 A break filter and a method for producing a silicon carbide porous body used in the break filter.

Country Status (1)

Country Link
JP (1) JP7014647B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021094486A (en) * 2019-12-13 2021-06-24 クアーズテック株式会社 Break filter and manufacturing method of break filter
JP7366075B2 (en) 2020-03-26 2023-10-20 日本碍子株式会社 Manufacturing method of columnar honeycomb structure filter

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02255581A (en) * 1989-03-29 1990-10-16 Ibiden Co Ltd Sintered body of porous silicon carbide and production thereof
JP2004189551A (en) * 2002-12-12 2004-07-08 Tokyo Yogyo Co Ltd Method of producing porous silicon carbide sintered compact
JP2004231493A (en) * 2003-01-31 2004-08-19 Toshiba Ceramics Co Ltd Porous silicon carbide sintered compact and its manufacturing method
JP2006199557A (en) * 2005-01-24 2006-08-03 Ibiden Co Ltd Porous sintered compact, method of manufacturing the same and filter for collecting particulate which is constructed by porous sintered compact
JP2009102191A (en) * 2007-10-23 2009-05-14 Covalent Materials Corp Inorganic porous material for breaking reduced pressure
JP2009106810A (en) * 2007-10-26 2009-05-21 Covalent Materials Corp Pressure-reducing apparatus and porous body of inorganic material used for the same
JP2010112392A (en) * 2008-11-04 2010-05-20 Covalent Materials Corp Pressure reducing exhaust valve, and pressure reducing device using pressure reducing exhaust mechanism including the same
JP2016193401A (en) * 2015-03-31 2016-11-17 日本碍子株式会社 Honeycomb structure and method for manufacturing the same

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02255581A (en) * 1989-03-29 1990-10-16 Ibiden Co Ltd Sintered body of porous silicon carbide and production thereof
JP2004189551A (en) * 2002-12-12 2004-07-08 Tokyo Yogyo Co Ltd Method of producing porous silicon carbide sintered compact
JP2004231493A (en) * 2003-01-31 2004-08-19 Toshiba Ceramics Co Ltd Porous silicon carbide sintered compact and its manufacturing method
JP2006199557A (en) * 2005-01-24 2006-08-03 Ibiden Co Ltd Porous sintered compact, method of manufacturing the same and filter for collecting particulate which is constructed by porous sintered compact
JP2009102191A (en) * 2007-10-23 2009-05-14 Covalent Materials Corp Inorganic porous material for breaking reduced pressure
JP2009106810A (en) * 2007-10-26 2009-05-21 Covalent Materials Corp Pressure-reducing apparatus and porous body of inorganic material used for the same
JP2010112392A (en) * 2008-11-04 2010-05-20 Covalent Materials Corp Pressure reducing exhaust valve, and pressure reducing device using pressure reducing exhaust mechanism including the same
JP2016193401A (en) * 2015-03-31 2016-11-17 日本碍子株式会社 Honeycomb structure and method for manufacturing the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021094486A (en) * 2019-12-13 2021-06-24 クアーズテック株式会社 Break filter and manufacturing method of break filter
JP7189862B2 (en) 2019-12-13 2022-12-14 クアーズテック株式会社 Break filter manufacturing method
JP7366075B2 (en) 2020-03-26 2023-10-20 日本碍子株式会社 Manufacturing method of columnar honeycomb structure filter

Also Published As

Publication number Publication date
JP7014647B2 (en) 2022-02-01

Similar Documents

Publication Publication Date Title
JP4987238B2 (en) Aluminum nitride sintered body, semiconductor manufacturing member, and aluminum nitride sintered body manufacturing method
JPWO2017082147A1 (en) Coating formed on a graphite substrate and method for producing the same
CN110615681A (en) Porous high-entropy hexaboride ceramic and preparation method thereof
JP2019156685A (en) Silicon carbide porous body and its production method, and brake filter with the silicon carbide porous body
WO2018121214A1 (en) Metal-based aluminum nitride composite material and preparation method therefor
CN114956828B (en) Silicon carbide ceramic and preparation method and application thereof
KR101155998B1 (en) Manufacturing Method for Palladium-Copper-Nickel Alloy Hydrogen Separation Membrane
CN109454231B (en) Preparation method of iron-aluminum-copper alloy microporous filter material
JP5032937B2 (en) Break filter
JP2007183085A (en) In-line heater and manufacturing method of the same
US9676631B2 (en) Reaction bonded silicon carbide bodies made from high purity carbonaceous preforms
WO2018151137A1 (en) Electrode plate for plasma processing apparatuses and method for regenerating electrode plate for plasma processing apparatuses
KR102189215B1 (en) Silicon carbide porous body and manufacturing method of the same, and break filter using the silicon carbide porous body and manufacturing method of the break filter
JP4383062B2 (en) Method for producing porous silicon carbide sintered body
JP5219206B2 (en) Pressure reducing exhaust valve
TWI385138B (en) Ceramic components and corrosion resistance components
JP2006327857A (en) Silicon carbide-based porous body and its manufacturing method
CN115159997A (en) High-strength corrosion-resistant SiC refractory material and preparation method thereof
JP4382919B2 (en) Method for producing silicon-impregnated silicon carbide ceramic member
CN113880570A (en) Powder sintering method for reducing double twin crystal defect density in BaTiO3 ceramic
JP2023022339A (en) Oxide sintered body and manufacturing method of oxide sintered body
JP7169169B2 (en) Break filter and manufacturing method thereof
JP2007320810A (en) Method and apparatus for producing carbon nanotube
JP5084608B2 (en) Pressure reducing exhaust valve
CN101641306A (en) Silicon carbide-based porous body and preparation method thereof

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180316

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201106

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20211020

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211102

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211130

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220119

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220120

R150 Certificate of patent or registration of utility model

Ref document number: 7014647

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350