JP2003071555A - MANUFACTURING METHOD FOR Si-SiC COMPOSITE MATERIAL - Google Patents

MANUFACTURING METHOD FOR Si-SiC COMPOSITE MATERIAL

Info

Publication number
JP2003071555A
JP2003071555A JP2001265228A JP2001265228A JP2003071555A JP 2003071555 A JP2003071555 A JP 2003071555A JP 2001265228 A JP2001265228 A JP 2001265228A JP 2001265228 A JP2001265228 A JP 2001265228A JP 2003071555 A JP2003071555 A JP 2003071555A
Authority
JP
Japan
Prior art keywords
crucible
sic
range
composite material
density
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001265228A
Other languages
Japanese (ja)
Other versions
JP4376479B2 (en
Inventor
Mamoru Asuwa
守 阿諏訪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Holdings Corp
Original Assignee
Showa Denko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK filed Critical Showa Denko KK
Priority to JP2001265228A priority Critical patent/JP4376479B2/en
Publication of JP2003071555A publication Critical patent/JP2003071555A/en
Application granted granted Critical
Publication of JP4376479B2 publication Critical patent/JP4376479B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)
  • Manufacture Of Alloys Or Alloy Compounds (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a manufacturing method for a dense Si-SiC composite material without using a complicated mechanism or an expensive device and by a simple and easy method, and a manufacturing method capable of easily controlling a supply speed for Si. SOLUTION: On the upper part of a burnt body Si containing SiC as a main component, a crucible filled with Si is set, the crucible is heated to become a melted state, and a molten Si of the Si is supplied to the surface of the burnt body through the holes that the crucible has, to impregnate the Si in the burnt body. The crucible is made to have density in the range 1.30 g/cm<3> -3.02 g/cm<3> , a density ratio in the range of 40-92TD%, mean pore size (mean fine pore diameter) measured by a mercury porosimeter in the range of 50 nm-30 μm.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は珪素・炭化珪素セラ
ミックス(以下、Si−SiCとする。)の製造方法に
関し、より詳しくはSiC焼成体中の空隙にSiを含浸
させる方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing silicon-silicon carbide ceramics (hereinafter referred to as Si-SiC), and more particularly to a method for impregnating voids in a SiC fired body with Si.

【0002】[0002]

【従来の技術】従来よりSiとSiCからなるSi−S
iC系材料は緻密性、高熱伝導性、および強度に優れて
いることから、シリコン単結晶ウエハー等の熱処理用部
材、例えば半導体用熱処理用ウエハーボート、半導体用
炉芯管等に用いられている。
2. Description of the Related Art Conventionally, Si-S composed of Si and SiC
Since the iC-based material is excellent in denseness, high thermal conductivity and strength, it is used for a heat treatment member such as a silicon single crystal wafer, for example, a semiconductor heat treatment wafer boat, a semiconductor furnace core tube and the like.

【0003】Si−SiC複合材は、通常、SiC粉末
を単独もしくは粗粒と細粒とを配合した粉末をバインダ
ーと混合して、それを静水圧加圧成形、鋳込み生成法等
によって成形し、焼成したのち、その焼成体にSiを含
浸処理等して製造する。
The Si-SiC composite material is usually obtained by mixing SiC powder alone or a powder in which coarse particles and fine particles are mixed with a binder, and molding the mixture by isostatic pressing, casting method or the like. After firing, the fired body is manufactured by impregnating Si or the like.

【0004】SiをSiC焼成体中に含浸する代表的な
方法として以下に示す方法が提案されている。
The following method has been proposed as a typical method for impregnating a SiC sintered body with Si.

【0005】(a)多孔質のSiCを、溶融したSi浴
中に入れ、SiCの細孔(内部に貫通した開気孔)によ
って生じる毛細管現象を利用して溶融したSiを含浸さ
せる方法。
(A) A method in which porous SiC is placed in a molten Si bath, and the molten Si is impregnated by utilizing a capillary phenomenon generated by pores (open pores penetrating inside) of the SiC.

【0006】(b)坩堝にSiを入れ、坩堝とSiC焼
成体の間に炭素繊維等を配置し、溶融したSiを炭素繊
維の毛細管現象を利用して焼成体に誘導し、焼成体にS
iを含浸する方法(特開平7−89778号公報、特開
2000−119079号公報)。
(B) Si is put in the crucible, carbon fiber or the like is placed between the crucible and the SiC calcined body, and the molten Si is guided to the calcined body by utilizing the capillary phenomenon of the carbon fiber, and S is added to the calcined body.
Method of impregnating with i (JP-A-7-89778, JP-A-2000-119079).

【0007】(c)SiをSiC粉末と混ぜて被含浸体
の周辺に配置して、高周波加熱をおこない被含浸体を移
動させながらSiを溶融含浸させる方法(特公昭53−
29319号公報)。
(C) A method in which Si is mixed with SiC powder and disposed around the impregnated body, and high-frequency heating is performed to melt and impregnate Si while moving the impregnated body (Japanese Patent Publication No. 53-53-
29319).

【0008】(d)窒化珪素(Si34)を熱分解して
Si蒸気をSiC焼成体の気孔中に含浸させる方法(特
公昭36−15163号公報)。
(D) A method of thermally decomposing silicon nitride (Si 3 N 4 ) to impregnate Si vapor into the pores of the SiC fired body (Japanese Patent Publication No. 36-15163).

【0009】以上のSi含浸方法の問題点としては (a)毛細管現象を利用した含浸方法は一定以上の高さ
を超えると含浸できない領域が生じ、今日の部材の大型
化に伴う要求に応えきれない。また、下部に残留したS
iが残るため煩雑で面倒な後処理を残すことになる。
The problems of the above Si impregnation method are as follows: (a) The impregnation method utilizing the capillary phenomenon cannot be impregnated when the height exceeds a certain level, and cannot meet the demands associated with the increase in size of today's members. Absent. In addition, the remaining S
Since i remains, a complicated and troublesome post-processing is left.

【0010】(b)炭素繊維(ヤーン)を複数配置して
一度に含浸させる場合、その事前の手間と準備が複雑で
ある。また被含浸体の他にSiを入れる坩堝や炭素繊
維、その他の装置が必要など複雑で、装置全体が高価に
ならざるを得ない。また、炭素繊維が含浸体に付着して
その後処理が必要となる。
(B) When a plurality of carbon fibers (yarns) are arranged and impregnated at the same time, the labor and preparation in advance are complicated. Further, in addition to the material to be impregnated, a crucible for inserting Si, a carbon fiber, and other devices are required, which is complicated and the entire device must be expensive. In addition, the carbon fiber adheres to the impregnated body and requires subsequent treatment.

【0011】(c)含浸に周到な準備が必要であり、ま
た効率性に劣る。更に冷却固化後に、周辺に配置したS
iC粉末を取り除くことが困難である。
(C) Careful preparation is required for impregnation, and efficiency is poor. Furthermore, after cooling and solidification, S placed in the periphery
It is difficult to remove the iC powder.

【0012】(d)Si34の分解温度が高く、含浸に
必要以上のSiを分解させるため非効率となり、また過
剰のSiは炉周辺に堆積して炉の寿命を損なう。
(D) The decomposition temperature of Si 3 N 4 is high, which causes inefficiency because it decomposes Si more than necessary for impregnation, and excess Si is deposited around the furnace to impair the life of the furnace.

【0013】[0013]

【発明が解決しようとする課題】開気孔を持つ多孔質S
iC中にSiを含浸する方法において、複雑な含浸機構
や高価な装置を用いずに、簡便かつ容易で確実な方法に
よって緻密なSi−SiC複合材を得る製造方法で、溶
融Siの供給速度を容易に制御できる方法とそのために
必要なSiの坩堝を提供することを課題としている。
[Problems to be Solved by the Invention] Porous S having open pores
In the method of impregnating Si into iC, a method for producing a dense Si-SiC composite material by a simple, easy, and reliable method without using a complicated impregnation mechanism or an expensive device, and supplying the molten Si at a supply rate It is an object to provide an easily controllable method and a Si crucible necessary for that purpose.

【0014】[0014]

【課題を解決するための手段】本発明者は上記課題を解
決すべく鋭意努力検討した結果本発明に到達した。すな
わち、本発明は下記に関する。
The inventor of the present invention has reached the present invention as a result of intensive studies to solve the above problems. That is, the present invention relates to the following.

【0015】(1)SiCを主成分とする焼成体の上部
にSiを入れた坩堝を設置し、該坩堝を加熱してSiを
溶融状態とし、Siの融液を坩堝が有する孔を通じて焼
成体表面に供給し、Siを焼成体に含浸させてSi−S
iC複合材を製造するSi−SiC複合材の製造方法。
(1) A crucible containing Si is set on the upper portion of a fired body containing SiC as a main component, the crucible is heated to bring Si into a molten state, and a melt of Si is passed through a hole in the crucible to give a fired body. It is supplied to the surface and Si is impregnated into the fired body to form Si-S.
A manufacturing method of Si-SiC composite material which manufactures iC composite material.

【0016】(2)SiCを主成分とする焼成体の上部
に、Siを入れた坩堝を2個以上設置することを特徴と
する(1)に記載のSi−SiC複合材の製造方法。
(2) The method for producing an Si-SiC composite material according to (1), characterized in that two or more crucibles containing Si are provided on the upper part of the fired body containing SiC as a main component.

【0017】(3)坩堝が、SiCを主成分とし、密度
が1.30g/cm3〜3.02g/cm3の範囲内であ
り、密度比が40〜92TD%の範囲内であり、水銀ポ
ロシメーターで測定した平均気孔径(平均細孔径)が5
0nm〜30μmの範囲内であることを特徴とする
(1)または(2)に記載のSi−SiC複合材の製造
方法。
[0017] (3) crucible, the SiC as a main component, the density is in the range of 1.30g / cm 3 ~3.02g / cm 3 , in the range density ratio of 40~92TD%, mercury The average pore size (average pore size) measured with a porosimeter is 5
Within the range of 0 nm to 30 μm, the method for producing a Si—SiC composite material according to (1) or (2).

【0018】(4)坩堝が、SiCを主成分とし、密度
が1.70g/cm3〜2.90g/cm3の範囲内であ
り、密度比が53TD%〜90TD%の範囲内であり、
水銀ポロシメーターで測定した平均気孔径が300nm
〜4000nmの範囲内であることを特徴とする(1)
または(2)に記載のSi−SiC複合材の製造方法。
[0018] (4) crucible, the SiC as a main component, the density is in the range of 1.70g / cm 3 ~2.90g / cm 3 , in the range density ratio of 53TD% ~90TD%,
Average pore diameter measured by mercury porosimeter is 300 nm
Is in the range of up to 4000 nm (1)
Alternatively, the method for producing the Si-SiC composite material according to (2).

【0019】(5)坩堝が、粒度0.1μm〜300μ
mの範囲内のSiC粉末に、結合材を加えて鋳込み成
形、または、ラバープレス成形、または、金型成形し、
その後、1200℃〜2300℃の温度範囲内で加熱し
て焼成した、SiCを主成分とする坩堝であることを特
徴とする(1)〜(4)の何れか1項に記載のSi−S
iC複合材の製造方法。
(5) The crucible has a particle size of 0.1 μm to 300 μm.
A binder is added to the SiC powder within the range of m, and the mixture is cast-molded, rubber-press molded, or mold-molded,
Thereafter, it is a crucible containing SiC as a main component, which is heated and baked in a temperature range of 1200 ° C to 2300 ° C, and the Si-S described in any one of (1) to (4).
Method for manufacturing iC composite material.

【0020】(6)坩堝が、黒鉛を主成分とし、密度が
1.50g/cm3〜2.05g/cm3の範囲内であ
り、坩堝の下部または側部に開口部を有することを特徴
とする(1)に記載のSi−SiC複合材の製造方法。
(6) The crucible is mainly composed of graphite, has a density in the range of 1.50 g / cm 3 to 2.05 g / cm 3 , and has an opening at the bottom or side of the crucible. The manufacturing method of the Si-SiC composite material as described in (1).

【0021】(7)開口部が孔形状であり、孔径が0.
25〜2.0mmφの範囲内であり、開口部を有する領
域での孔の個数密度が0.001個/cm3 〜1個/c
3の範囲内であることを特徴とする(6)に記載のS
i−SiC複合材の製造方法。
(7) The opening has a hole shape and the hole diameter is 0.
It is in the range of 25 to 2.0 mmφ and the number density of holes in the region having the opening is 0.001 / cm 3 to 1 / c.
S in (6), which is within the range of m 3.
Method for manufacturing i-SiC composite material.

【0022】(8)SiCを主成分とする焼成体が、密
度が1.3g/cm3〜3.0g/cm3の範囲内であ
り、密度比が40TD%〜92TD%の範囲内であり、
水銀ポロシメーターで測定した平均気孔径(平均細孔
径)が50nm〜30μmの範囲内であることを特徴と
する(1)〜(7)の何れか1項に記載のSi−SiC
複合材の製造方法。
[0022] (8) fired material mainly composed of SiC is, the density is in the range of 1.3g / cm 3 ~3.0g / cm 3 , in the range density ratio of 40TD% ~92TD% ,
Si-SiC according to any one of (1) to (7), characterized in that the average pore diameter (average pore diameter) measured by a mercury porosimeter is in the range of 50 nm to 30 μm.
Manufacturing method of composite material.

【0023】(9)SiCを主成分とする焼成体への坩
堝からのSiの供給速度が、1g/分〜200g/分の
範囲内であることを特徴とする(1)〜(8)の何れか
1項に記載のSi−SiC複合材の製造方法。
(9) The supply rate of Si from the crucible to the fired body containing SiC as a main component is in the range of 1 g / min to 200 g / min. (1) to (8) The method for manufacturing the Si-SiC composite material according to any one of claims.

【0024】(10)SiCを主成分とする焼成体への
坩堝からのSiの供給速度が、焼成体の単位体積当たり
の、Siの供給速度で0.005g/(cm3・分)〜
5g/(cm3・分)の範囲内であることを特徴とする
(1)〜(9)の何れか1項に記載のSi−SiC複合
材の製造方法。
(10) The supply rate of Si from the crucible to the fired body containing SiC as a main component is from 0.005 g / (cm 3 · min) to the Si supply rate per unit volume of the fired body.
The method for producing a Si-SiC composite material according to any one of (1) to (9), characterized in that it is within a range of 5 g / (cm 3 · min).

【0025】(11)坩堝1個当たりのSiの供給速度
が、2g/分〜200g/分の範囲内であることを特徴
とする(1)〜(10)の何れか1項に記載のSi−S
iC複合材の製造方法。
(11) The Si supply rate of Si per crucible is in the range of 2 g / min to 200 g / min. (1) to (10) -S
Method for manufacturing iC composite material.

【0026】(12)焼成体を構成するSiCの金属不
純物の総量が50ppm以下であることを特徴とする
(1)〜(11)の何れか1項に記載のSi−SiC複
合材の製造方法。
(12) The method for producing a Si-SiC composite material according to any one of (1) to (11), wherein the total amount of metallic impurities of SiC constituting the fired body is 50 ppm or less. .

【0027】(13)坩堝を構成するSiCの金属不純
物の総量が50ppm以下であることを特徴とする
(3)〜(5)および(8)〜(11)の何れか1項に
記載のSi−SiC複合材の製造方法。
(13) The Si according to any one of (3) to (5) and (8) to (11), characterized in that the total amount of metallic impurities of SiC constituting the crucible is 50 ppm or less. -The manufacturing method of a SiC composite material.

【0028】(14)SiCを主成分とし、密度が1.
30g/cm3〜3.02g/cm3の範囲内であり、密
度比が40TD%〜92TD%の範囲内であり、水銀ポ
ロシメーターで測定した平均気孔径(平均細孔径)が5
0nm〜30μmの範囲内であることを特徴とする焼成
体への融液含浸用坩堝。
(14) The main component is SiC, and the density is 1.
In the range of 30g / cm 3 ~3.02g / cm 3 , in the range density ratio of 40TD% ~92TD%, an average pore diameter measured by a mercury porosimeter (average pore diameter) of 5
A crucible for melt impregnation of a fired body, which is in the range of 0 nm to 30 μm.

【0029】(15)黒鉛を主成分とし、密度が1.5
0g/cm3〜2.05g/cm3の範囲内であり、坩堝
の下部または側部に開口部を有することを特徴とする焼
成体への融液含浸用坩堝。
(15) The main component is graphite and the density is 1.5.
0 g / cm 3 in the range of ~2.05g / cm 3, melt impregnation crucible to sintered body characterized by having an opening at the bottom or side of the crucible.

【0030】[0030]

【発明の実施の形態】本発明は、SiCを主成分とする
焼成体に溶融したSiを含浸させ、Si−SiC複合材
とする、例えば半導体用熱処理用部材を製造する方法に
おいて、SiCを主成分とする焼成体の上部にSiを入
れた坩堝を設置し、該坩堝を加熱してSiを溶融状態と
し、Siの融液を坩堝が有する孔を通じて焼成体表面に
供給し、Siを焼成体に含浸させて複合材を製造するS
i−SiC複合材の製造方法である。この際、あらかじ
めSiを入れる坩堝の密度(空隙量)や開気孔量、およ
びその細孔径を制御しておき、被含浸体へ供給する溶融
Siの供給量をコントロールすることが好ましい。
BEST MODE FOR CARRYING OUT THE INVENTION The present invention is mainly applied to a method for producing a heat treatment member for a semiconductor, for example, by impregnating a sintered body containing SiC as a main component with molten Si to obtain a Si—SiC composite material. A crucible containing Si is set on the upper part of a fired body as a component, the crucible is heated to bring Si into a molten state, and a melt of Si is supplied to the surface of the fired body through a hole provided in the crucible, and the Si is fired. S to produce composite material
It is a method of manufacturing an i-SiC composite material. At this time, it is preferable to control the density (void amount), the amount of open pores, and the diameter of the pores of the crucible into which Si is preliminarily controlled to control the amount of molten Si supplied to the impregnated body.

【0031】従来では多孔質のSiCを、溶融したSi
浴中に入れ、毛細管現象を利用して細い連続気孔へSi
を含浸させていた。本発明では、この毛細管現象と同時
に重力を利用して焼成体の上部からSiを滴下させて供
給し、焼成体の空隙中にSiを充填させていく。これに
よって毛細管現象のみでは不可能な距離や、大きな容
積、大きな含浸速度が得られる。その結果、形状、大き
さの制約を受けずに複雑形状品などへの含浸が容易に達
成できるようになった。
Conventionally, porous SiC is obtained by melting molten Si.
Put it in the bath and use the capillary phenomenon to make thin continuous pores Si
Was impregnated. In the present invention, simultaneously with this capillary phenomenon, gravity is used to drop and supply Si from the upper portion of the fired body to fill the voids of the fired body with Si. As a result, a distance, a large volume, and a high impregnation speed, which cannot be obtained only by the capillary phenomenon, can be obtained. As a result, it has become possible to easily impregnate a product with a complicated shape without being restricted by the shape and the size.

【0032】本発明では、焼成体の上部に設置する坩堝
を、被含浸体の形状に応じて何カ所かに分けて設置する
ことが好ましい。これにより、必要最小限度のスペース
で効率的な含浸処理ができる。坩堝の材料には、例えば
高純度処理をおこなったSiC多孔体や黒鉛、もしくは
同質のSi−SiC複合材から選択できる。このように
高純度処理を施した各材料を用いることで半導体用途に
適したボートや炉芯管を製造できる。
In the present invention, it is preferable that the crucible to be installed on the upper portion of the fired body is installed in several places according to the shape of the body to be impregnated. As a result, an efficient impregnation process can be performed in the minimum necessary space. The material for the crucible can be selected, for example, from a highly purified SiC porous body or graphite, or a Si-SiC composite material of the same quality. By using each material that has been subjected to high-purity treatment in this way, it is possible to manufacture boats and furnace core tubes suitable for semiconductor applications.

【0033】Siの供給量は坩堝の開気孔量とその気孔
径とに関連する。Siの供給量を多くするには気孔量か
細孔径、もしくはその両方を大きくする。反対に坩堝の
気孔量と細孔径を小さくすることでSi供給量を制限で
きる。また黒鉛坩堝の場合は孔径とその数や孔の密度で
調整できる。SiCやSi−SiC坩堝の開気孔量や細
孔径を制御するには、その原料となるSiC粉末の粒径
やその成形方法、焼成条件などを調整することで操作で
きる。
The amount of Si supplied is related to the amount of open pores in the crucible and its pore diameter. To increase the supply amount of Si, the amount of pores, the diameter of pores, or both are increased. On the other hand, the Si supply amount can be limited by reducing the pore amount and the pore diameter of the crucible. Further, in the case of a graphite crucible, it can be adjusted by the pore diameter, the number thereof and the density of the pores. In order to control the amount of open pores and the pore size of SiC or Si-SiC crucible, it is possible to operate by adjusting the particle size of the SiC powder as the raw material, the molding method thereof, the firing conditions, and the like.

【0034】Siを入れた坩堝から被含浸体へのSiの
供給速度は被含浸体への含浸能力(速度)を上回らない
ように抑える必要がある。坩堝からの供給量が多すぎる
とSi融液が被含浸体の外部にこぼれ落ち、被含浸体に
供給されるべきSi量が不足することになる。
It is necessary to suppress the supply rate of Si from the crucible containing Si to the body to be impregnated so as not to exceed the impregnation ability (speed) to the body to be impregnated. If the amount supplied from the crucible is too large, the Si melt will spill outside the impregnated body, and the amount of Si to be supplied to the impregnated body will be insufficient.

【0035】一方、黒鉛は通常10〜40体積%と多く
の気孔を持っている。この開気孔を通じてSiを供給す
ると黒鉛の一部が反応してSiCを生成する。この反応
により坩堝の強度低下が生ずると共に、体積膨張が生じ
て坩堝が割れる。このため黒鉛製坩堝を用いる場合は、
気孔率が10〜20体積%といった比較的緻密な高純度
黒鉛を用いるとSiの進入と反応を抑制できる。そのよ
うな坩堝の下部または側面に任意の開口部、例えば孔
と、被含浸体形状に応じた位置に必要な孔数をあけてS
iの供給量を調整することが好ましい。
On the other hand, graphite usually has many pores of 10 to 40% by volume. When Si is supplied through the open pores, a part of graphite reacts to generate SiC. This reaction causes a decrease in the strength of the crucible and also causes a volume expansion to break the crucible. Therefore, when using a graphite crucible,
The use of relatively dense high-purity graphite having a porosity of 10 to 20% by volume can suppress Si intrusion and reaction. An arbitrary opening, for example, a hole is formed in the lower portion or side surface of such a crucible, and a necessary number of holes is formed at a position corresponding to the shape of the impregnated body, and S
It is preferable to adjust the supply amount of i.

【0036】以上のように、本発明は被含浸体の上部、
もしくは被含浸体の上部に接するようにSiを入れた坩
堝を配置する。たとえば真空下、加熱した炉内に、被含
浸体の上にSiを入れた坩堝をセットして、炉全体をS
i融液温度以上に加熱して融液となったSiを、坩堝の
開気孔や開口部を通じて被含浸体表面に供給し、含浸処
理をおこなうことが好ましい。
As described above, according to the present invention, the upper part of the body to be impregnated,
Alternatively, a crucible containing Si is arranged in contact with the upper part of the impregnated body. For example, set a crucible containing Si on the body to be impregnated in a furnace heated under vacuum, and set the entire furnace to S
It is preferable that the Si, which has been heated to a temperature not lower than the melt temperature and becomes a melt, is supplied to the surface of the impregnated body through the open pores and the openings of the crucible to perform the impregnation treatment.

【0037】一般に半導体用熱処理用部材には、高強
度、高純度、高熱伝導性が要求される。したがってその
前駆体となるSiCを主成分とする焼成体は高密度で、
かつ十分な粒子間結合力が必要になる。それには高密度
成形体を得たのち、所定温度で焼成することが望まし
い。このとき焼成温度に連動して細孔径も拡大する。こ
れらの条件設定により、十分な強度と毛細管引力を最も
引き出すように、焼成体の密度、密度比、平均気孔径を
設定するのが好ましい。
Generally, a member for heat treatment for semiconductors is required to have high strength, high purity and high thermal conductivity. Therefore, the sintered body whose main component is SiC, which is its precursor, has a high density,
And sufficient interparticle bonding force is required. For that purpose, it is desirable to obtain a high-density molded product and then fire it at a predetermined temperature. At this time, the pore size also increases in conjunction with the firing temperature. By setting these conditions, it is preferable to set the density, density ratio, and average pore diameter of the fired body so as to maximize the strength and the capillary attraction.

【0038】本発明の方法によって含浸処理したSi−
SiC複合材は、ポアの量が飛躍的に少なく、緻密な組
織とすることができる。また、適当なSi供給量を選択
することで付着したSiや、被含浸体に巻き付けた炭素
繊維を除去するといった後処理を必要としない極めて効
率的な製造方法を提供する。
Si-impregnated by the method of the present invention
The SiC composite material has a remarkably small amount of pores and can have a dense structure. Further, the present invention provides an extremely efficient manufacturing method which does not require a post-treatment such as removing adhered Si and carbon fibers wound around an object to be impregnated by selecting an appropriate Si supply amount.

【0039】以下に本発明を更に詳しく述べる。The present invention will be described in more detail below.

【0040】被含浸体であるSiCを主成分とする焼成
体の製造について例示する。SiC焼結体はSiC粉末
と有機系バインダーを用いて成形、脱バインダー処理し
た後、Si含浸処理に好適な連続した開気孔の形成と、
高強度含浸体を得るに十分なSiC前駆体を得るため、
これらを所定の温度で焼成する。
The production of a fired body containing SiC as the main component, which is the impregnated body, will be exemplified. The SiC sintered body is formed by using SiC powder and an organic binder, is debindered, and is then formed with continuous open pores suitable for Si impregnation treatment.
To obtain a SiC precursor sufficient to obtain a high strength impregnated body,
These are fired at a predetermined temperature.

【0041】SiCを主成分とする焼成体とは、主成分
であるSiCの他、バインダーからの炭素、含浸させる
Si、その他、不可避不純物を含む焼成体を意味する。
The fired body containing SiC as a main component means a fired body containing carbon as a main component, carbon from a binder, Si to be impregnated, and other unavoidable impurities.

【0042】高純度SiC粉末を単独、もしくは粒子径
の異なる何種類かの粉末を配合し、そこにバインダーを
混合して緻密な成形体を製造する。
High-purity SiC powder is used alone, or several kinds of powders having different particle diameters are mixed, and a binder is mixed therein to produce a dense compact.

【0043】SiC原料には高純度粉末を用いるのが望
ましい。特に金属不純物として混入しやすいFe、N
i、Cr、Ca、Cuといった元素が少ない粉末を用い
るのが好ましい。金属不純物量は一般に弗酸や弗酸と硝
酸との混酸で繰り返し酸洗することにより低減できる。
さらにハロゲン系ガス中で加熱処理すると、よりいっそ
う純化される。少なくともこれらの金属不純物量の総計
が50ppm以下の粉末が好ましい。
It is desirable to use high-purity powder as the SiC raw material. Fe and N, which are easily mixed as metal impurities
It is preferable to use a powder containing few elements such as i, Cr, Ca, and Cu. The amount of metal impurities can be generally reduced by repeatedly pickling with hydrofluoric acid or a mixed acid of hydrofluoric acid and nitric acid.
Further heat treatment in a halogen-based gas results in further purification. A powder in which the total amount of these metal impurities is at least 50 ppm is preferable.

【0044】SiC粉末の粒子径は0.1μm〜300
μmの範囲が好ましい。単一粒径のみで成形する場合に
は、その平均粒子径が0.3〜20μmの範囲内の粒を
用いると成形性と充填性に優れた成形体が得られる。
The particle diameter of the SiC powder is 0.1 μm to 300 μm.
The range of μm is preferred. In the case of molding with only a single particle size, if the particles having an average particle size within the range of 0.3 to 20 μm are used, a molded product excellent in moldability and filling property can be obtained.

【0045】また、二つの粒度以上を混合して緻密化を
図る場合には粗粒の平均粒子径は50〜300μmの範
囲内、細粒の平均粒子径は0.1〜30μmの範囲内を
用いるのが好ましい。その配合比率は粗粒と細粒の比率
を3〜7:7〜3とするのが好ましい。より好ましくは
粗粒と細粒の比率を4〜6:6〜4の範囲内で選択する
ことにより、高い充填性が得られる。また、粉末は凝集
のない単分散した粉末が好ましい。
When two or more particle sizes are mixed for densification, coarse particles have an average particle size of 50 to 300 μm, and fine particles have an average particle size of 0.1 to 30 μm. It is preferably used. The mixing ratio of the coarse particles and the fine particles is preferably 3 to 7: 7 to 3. More preferably, by selecting the ratio of coarse particles to fine particles within the range of 4 to 6: 6 to 4, a high filling property can be obtained. Further, the powder is preferably a monodispersed powder without aggregation.

【0046】SiCの結晶系は六方晶(以下α)、立方
晶(以下β)、非晶質もしくはその混合物の何れでも良
い。様々な粒子径を安価で容易に調達できる点から、ア
チソン法で得られるαSiC粉末が好適に用いることが
できる。
The crystal system of SiC may be hexagonal (hereinafter α), cubic (hereinafter β), amorphous or a mixture thereof. The αSiC powder obtained by the Acheson method can be preferably used because various particle sizes can be easily obtained at low cost.

【0047】このSiC粉末の高純度化は、一般には粉
末を酸洗処理することにより得られる。酸の種類は塩
酸、弗酸、硝酸など、あるいは、その混酸が用いられて
いる。
High purification of this SiC powder is generally obtained by pickling the powder. As the type of acid, hydrochloric acid, hydrofluoric acid, nitric acid, or a mixed acid thereof is used.

【0048】アチソン法から合成されたSiC中の金属
不純物の分布は特開平5−32458号公報に開示され
ているが、一般には粒子径が細かい方が不純物を除去し
やすい。
The distribution of metal impurities in SiC synthesized by the Acheson method is disclosed in Japanese Patent Application Laid-Open No. 5-32458. Generally, the finer the particle size, the easier the impurities can be removed.

【0049】SiC粉末に分散剤、有機系バインダーを
加えて攪拌混合して造粒したのち、金型、ラバープレス
成形(CIP)、もしくは混合したスラリーを石膏型を
用いた鋳込み成形によって造形する。半導体熱処理部材
として多様な形状や薄肉のチューブ、長尺寸法の成形品
等を得るには鋳込み成形方法が優れている。
A dispersant and an organic binder are added to the SiC powder, and the mixture is stirred and mixed for granulation, and then a metal mold, rubber press molding (CIP), or the mixed slurry is molded by cast molding using a gypsum mold. The cast molding method is excellent for obtaining various shapes and thin tubes, long-sized molded products and the like as semiconductor heat treatment members.

【0050】有機結合材には水溶性フェノール樹脂、ポ
リ酢酸エマルジョン、シリコーン樹脂、アクリル樹脂エ
マルジョン等を使用するのが好ましい。結合材の配合比
率は0.2質量%〜15質量%の範囲内でSiC粉末の
粒子径によって変える。粗い粒子径の場合は少なく、細
かい粒子径のときは多く添加する。フェノール樹脂を結
合材として使用するときは成形体にカーボンが残留す
る。このカーボンはSiを含浸したときにSiCに変わ
る。
As the organic binder, it is preferable to use a water-soluble phenol resin, polyacetic acid emulsion, silicone resin, acrylic resin emulsion or the like. The compounding ratio of the binder varies depending on the particle size of the SiC powder within the range of 0.2% by mass to 15% by mass. Add a small amount for coarse particles and a large amount for fine particles. When phenolic resin is used as a binder, carbon remains in the molded body. This carbon changes to SiC when impregnated with Si.

【0051】開気孔径の測定方法は水銀ポロシメータ−
により行う。すなわち、水銀を成形体中に圧入してその
圧力から換算した気孔径もしくは細孔径を求める。
The method for measuring the open pore diameter is a mercury porosimeter.
By. That is, mercury is pressed into a molded body and the pore diameter or pore diameter converted from the pressure is obtained.

【0052】ぬれ角で90゜以上を持つ液体は表面張力の
ために自己自身では細孔内に入っていけない。したがっ
て細孔へ液体を入れるためには外側から圧力を加える必
要があり必要とする圧力は細孔径に関係する。
A liquid having a wetting angle of 90 ° or more cannot enter the pores by itself due to surface tension. Therefore, in order to put the liquid into the pores, it is necessary to apply pressure from the outside, and the required pressure is related to the pore diameter.

【0053】加えた圧力とそのとき入りうる細孔径の関
係は次の式で表される。
The relationship between the applied pressure and the pore size that can be entered at that time is expressed by the following formula.

【0054】Pr=2σcosθ P:加えられた圧力 r:細孔半径 θ:接触角(ぬれ角) (水銀の場合の平均値は14
1.3度) σ:水銀の表面張力 (480mN/m2
Pr = 2σ cos θ P: Applied pressure r: Pore radius θ: Contact angle (wetting angle) (The average value for mercury is 14
1.3 degree) σ: Surface tension of mercury (480 mN / m 2 ).

【0055】この関係式はフォッシュボーン式として知
られている。ほとんどの多孔質物質の細孔径は円筒形で
はないがこの式は水銀圧入データーから細孔径分布を計
算するために一般的に使用されている。
This relational expression is known as the Fochborn expression. Although the pore size of most porous materials is not cylindrical, this formula is commonly used to calculate the pore size distribution from mercury intrusion data.

【0056】上記細孔を円筒と仮定し、水銀を浸透させ
た場合には上記値を代入すると次の式が求まる。
When the above pores are assumed to be cylinders and mercury is permeated, the following equation is obtained by substituting the above values.

【0057】r=7500/P r:細孔半径 P:加えられた絶対圧力R = 7500 / P r: Pore radius P: Absolute pressure applied

【0058】測定方法は試料容器に入る数mm角、長さ
約30mmの長方体の質量を計る。長方体のうち5面を
有機系樹脂で塗布する。試料をガラス製容器(ディラト
メーター)に入れ、水銀圧入装置にセットする。真空脱
気したのち水銀を充填する。水銀圧入措置からディラド
メーターを外しオートクレーブにセットする。系内へ順
次水銀を圧入して各圧力での圧入量を記録する。計測
後、圧力と気孔径との換算をおこない気孔径分布を求め
る。
The measuring method is to measure the mass of a rectangular parallelepiped having a length of about 30 mm and a size of several mm. Five sides of the rectangular parallelepiped are coated with an organic resin. Put the sample in a glass container (dilatometer) and set it in the mercury press-in device. After degassing in vacuum, fill with mercury. Remove the diradometer from the mercury injection method and set it in the autoclave. Mercury is sequentially injected into the system and the amount of injection at each pressure is recorded. After the measurement, the pressure and the pore diameter are converted to obtain the pore diameter distribution.

【0059】Siを含浸するには大きな毛管引力を前駆
体となるSiC焼成体に付与する一般に毛細管引力は次
式で示される。含浸Siの引き上げ高さをhとすると、 h=(2σ)/r・ρ・cosα σ:表面張力(Si(1500℃)で800mN/
2) r:毛細管の半径 (細孔径) ρ:液体の比重(2.5g/cm3) cosα:接触角(40度未満)
In order to impregnate Si, a large capillary attraction is applied to the SiC sintered body as a precursor. Generally, the capillary attraction is represented by the following formula. When the pull-up height of the impregnated Si is h, h = (2σ) / r · ρ · cos α σ: surface tension (Si (1500 ° C.) 800 mN /
m 2 ) r: radius of capillary tube (pore diameter) ρ: specific gravity of liquid (2.5 g / cm 3 ) cos α: contact angle (less than 40 degrees)

【0060】このように、通常、細孔径が小さいほど大
きな毛細管力が働くことになる。しかしながら実際の気
孔形態は、三次元的に入り組んでおり、太い孔と細い孔
とが交錯した不定形状の連続孔である。
As described above, generally, the smaller the pore size, the larger the capillary force will be. However, the actual pore morphology is a three-dimensionally intricate, indeterminate-shaped continuous pore in which thick and thin pores intersect.

【0061】成形体の細孔径は用いたSiC粉末の粒子
径と関連する。すなわち粒子径の細かいSiC粉末を用
いるほど細孔径が小さく、粒子径が大きいSiC粉末を
用いるほど細孔径も大きくなる傾向を示す。たとえば、
0.4μmの平均粒子径を持つ粉末を上記バインダーに
加えて、最密充填した成形体の平均細孔径は約20nm
〜30nm前後であり、平均粒子径が0.6μmでは約
50nm、同じく3μmでは約70nm〜100nm、
また50μm〜100μmの平均粒径を持つ粗粒と十μ
m以下の細粒とを混合した粉末の平均粒子径が15μm
〜40μmの範囲では100〜200nmの細孔径を持
った成形体が得られる。50nm以下の小さい細孔では
溶融したSiは成形体の持つ毛管力(吸引力)より細孔
の気孔形態に起因する抵抗の方が高く、表面近傍のみが
含浸するだけである。そのため焼成してSiが入りやす
いように細孔径を調整する必要がある。
The pore size of the compact is related to the particle size of the SiC powder used. That is, the smaller the particle size of the SiC powder, the smaller the pore size, and the larger the particle size of the SiC powder, the larger the pore size. For example,
A powder having an average particle diameter of 0.4 μm was added to the above binder, and the close-packed compact had an average pore diameter of about 20 nm.
Is about 30 nm, about 50 nm when the average particle size is 0.6 μm, and about 70 nm to 100 nm when the average particle size is 3 μm.
Also, coarse particles having an average particle diameter of 50 μm to 100 μm and 10 μm
The average particle size of the powder obtained by mixing fine particles of m or less is 15 μm.
A molded body having a pore size of 100 to 200 nm is obtained in the range of up to 40 μm. In small pores of 50 nm or less, the melted Si has a higher resistance due to the pore morphology of the pores than the capillary force (suction force) of the molded body, and only the vicinity of the surface is impregnated. Therefore, it is necessary to adjust the pore size so that Si can easily enter by firing.

【0062】まず成形体を所定の形状に加工した後、真
空下、もしくは非酸化性雰囲気の下、脱バインダー処理
をおこなう。脱脂温度は700℃〜1100℃の範囲で
1時間〜3時間、所定温度で保持する。非酸化性ガスは
窒素、アルゴン、ヘリウムガス等を用いるのが好まし
い。
First, the molded body is processed into a predetermined shape, and then debinding is performed in a vacuum or a non-oxidizing atmosphere. The degreasing temperature is in the range of 700 ° C. to 1100 ° C. and is maintained at a predetermined temperature for 1 hour to 3 hours. As the non-oxidizing gas, it is preferable to use nitrogen, argon, helium gas or the like.

【0063】次に脱脂した成形体を焼成する。焼成温度
は1200℃〜2300℃でおこなう。雰囲気は真空
下、もしくは非酸化性雰囲気下でおこなう。非酸化性ガ
スは窒素、アルゴン、ヘリウムガス等を用いるのが好ま
しい。真空雰囲気下で焼成する場合には、炉の構成材料
の耐熱性やSiCの分解を考慮して2000℃以下でお
こなうのが好ましい。また、真空度は133Pa(1T
orr)以下が好ましく、より望ましくは13Pa
(0.1Torr)以下が優れる。真空下で焼成をおこ
なった場合、常圧下に比較して不純物が除去しやすい。
すなわち成形体中のCa、Fe、Cu等の不純物含有量
を、真空下で焼成することで50%〜80%低減でき
る。
Next, the degreased compact is fired. The firing temperature is 1200 ° C to 2300 ° C. The atmosphere is a vacuum or a non-oxidizing atmosphere. As the non-oxidizing gas, it is preferable to use nitrogen, argon, helium gas or the like. When firing in a vacuum atmosphere, it is preferable to perform firing at 2000 ° C. or lower in consideration of heat resistance of the constituent materials of the furnace and decomposition of SiC. The degree of vacuum is 133 Pa (1 T
orr) or less is preferable, and more desirably 13 Pa
(0.1 Torr) or less is excellent. When firing under vacuum, impurities are easier to remove than under normal pressure.
That is, the content of impurities such as Ca, Fe and Cu in the compact can be reduced by 50% to 80% by firing under vacuum.

【0064】各焼成温度の保持時間は1時間〜5時間と
する。1時間以下であると粒成長が中途半端で終わり、
目的とする細孔径に安定した調整ができない。5時間以
上保持しても細孔径の拡大がなく意味を持たない。
The holding time at each firing temperature is 1 to 5 hours. Grain growth ends halfway if it is less than 1 hour,
The target pore size cannot be adjusted stably. Even if it is held for 5 hours or more, it has no meaning because the pore diameter does not increase.

【0065】成形体を焼成することにより、成形体中の
粒成長が進行し、細孔径は拡大していく。鋭意研究の結
果、この焼成体中の細孔径が50nm〜30μmの範囲
内、より好ましくは300nm〜5μmの範囲内にある
とき、最もSiを吸引しやすいことを見出した。
By firing the compact, the grain growth in the compact progresses and the pore size increases. As a result of earnest research, it was found that Si is most easily sucked when the pore size in the fired body is in the range of 50 nm to 30 μm, and more preferably in the range of 300 nm to 5 μm.

【0066】もう一方の主要な要素である被含浸体にS
iを供給する坩堝は、その細孔径または開口部の大きさ
や密度によりSiの供給速度を制御できる。
The other main element, the impregnated body, contains S
In the crucible for supplying i, the supply rate of Si can be controlled by the pore diameter or the size and density of the openings.

【0067】坩堝の形状と大きさは、被含浸体との形状
的なバランスと炉空間の有効的活用の観点から決める。
坩堝の形状は円筒が好ましい。肉厚は形状を最低維持す
るに必要な厚みとする。坩堝の表面積を多くしたいとき
は小さい坩堝を複数個用意する。坩堝の細孔径は被含浸
体と同程度であることが好ましく、細孔径が小さいと被
含浸体に対して供給量が少なく、細孔径が大きいと被含
浸体に対して供給量は多くなる。細孔径が50nmより
小さいと開気孔を通じてSiが供給されない。また、3
0μmより大きいとSiの供給が速過ぎて目的とする被
含浸体中に含浸し切れずに、外にこぼれ落ちる場合があ
る。
The shape and size of the crucible are determined from the viewpoint of the geometrical balance with the body to be impregnated and effective utilization of the furnace space.
The shape of the crucible is preferably a cylinder. The wall thickness should be the thickness required to maintain the minimum shape. If you want to increase the surface area of the crucible, prepare multiple small crucibles. The pore diameter of the crucible is preferably about the same as that of the impregnated body. When the pore diameter is small, the supply amount is small with respect to the impregnated body, and when the pore diameter is large, the supply amount is large with respect to the impregnated body. If the pore size is smaller than 50 nm, Si will not be supplied through the open pores. Also, 3
If it is larger than 0 μm, the supply of Si may be too fast and the target object to be impregnated may not be completely impregnated and may spill outside.

【0068】SiCを主成分とする坩堝とは、主成分で
あるSiCの他、バインダーからの炭素、含浸させるS
i、その他不可避元素を含む坩堝を意味する。
A crucible containing SiC as a main component means SiC as a main component, carbon from a binder, and S to be impregnated.
i means a crucible containing other unavoidable elements.

【0069】SiCを主成分とする坩堝の密度は成形の
際に形状を維持する最低限の密度1.30g/cm3
上、より好ましくは1.70g/cm3以上、密度比で
40TD%以上、より好ましくは53TD%以上で、開
気孔の形態を維持できる密度の上限として3.02g/
cm3以下であることが好ましい。また密度が高くなる
と気孔量が小さく、かつ細孔径が細くなり、結果、Si
の供給量が少なくなる。このため密度は、より好ましく
は2.90g/cm3以下、密度比で92TD%以下、
より好ましくは90TD%以下のSiC焼結体が望まし
い。
The density of the crucible containing SiC as a main component is a minimum density of 1.30 g / cm 3 or more, more preferably 1.70 g / cm 3 or more, and a density ratio of 40 TD% or more for maintaining the shape during molding. , More preferably 53 TD% or more, 3.02 g / as the upper limit of the density capable of maintaining the shape of open pores.
It is preferably not more than cm 3 . Further, as the density becomes higher, the amount of pores becomes smaller and the pore size becomes smaller, resulting in Si
Supply of less. Therefore, the density is more preferably 2.90 g / cm 3 or less, and the density ratio is 92TD% or less,
More preferably, a SiC sintered body of 90TD% or less is desirable.

【0070】密度比TD%とは、坩堝を形成する物質の
真密度(SiCが100%の場合は3.21g/cm3
である。)に対する実際の坩堝の、密度(嵩密度)の比
率を表したものである。測定方法としてはアルキメデス
法が例示できるが、多孔質の場合は表面をパラフィン等
で覆い嵩密度を求める。また、水中で真空脱気し、空中
重量(W1)、水中重量(W2)、包含水重量(W3)か
ら嵩密度、気孔率を求めることが出来る。密度、気孔率
は下述式にしたがって計算する。
The density ratio TD% means the true density of the substance forming the crucible (3.21 g / cm 3 in the case of 100% SiC).
Is. It represents the ratio of the density (bulk density) of the actual crucible to (). The Archimedes method can be exemplified as the measuring method, but in the case of a porous material, the surface is covered with paraffin or the like to determine the bulk density. In addition, it is possible to obtain the bulk density and the porosity from the air weight (W 1 ), the water weight (W 2 ), and the included water weight (W 3 ) after vacuum deaeration in water. The density and porosity are calculated according to the following formulas.

【0071】嵩密度(ρ) ρ= W1/(W3−W2) 気孔率(Po) Po=(W3−W1)/(W3−W2)×100 (JISR2205による。)Bulk density (ρ) ρ = W 1 / (W 3 −W 2 ) Porosity (Po) Po = (W 3 −W 1 ) / (W 3 −W 2 ) × 100 (according to JIS R2205)

【0072】次にSiCを主成分とする坩堝や焼成体の
細孔径の調整方法を示す。SiCを主成分とする成形体
の焼成温度はSiC粉末粒子径毎に異なる。約0.4μ
mといった微粉は1000℃で既に粒成長が開始し、1
200℃で200nm、1400℃で500nm、16
00℃には約1μm、2000℃では約2μmにまで成
長する。また粗粒と微粉とを配合した場合には微粉が粗
粒子中に拡散していくため著しい粒成長が起こり、その
結果細孔径は20μmに達する。したがって焼成温度の
範囲は1200℃〜1800℃が好ましい。一方、粒子
径が大きくなると焼成温度を変えても細孔径の変化は小
さく、15μmの粒子径の場合、細孔径は約3μmと一
定の値を示す。このように細孔径は粒子径毎にそれぞれ
好ましい焼成温度を適時、選択する。表1に粒子径とそ
の成形体の細孔径、各焼成温度における細孔径の変化を
示す。
Next, a method for adjusting the pore diameter of the crucible and the fired body containing SiC as a main component will be described. The firing temperature of the formed body containing SiC as a main component differs for each SiC powder particle size. About 0.4μ
Fine powder such as m has already started grain growth at 1000 ° C., and 1
200nm at 200 ° C, 500nm at 1400 ° C, 16
It grows up to about 1 μm at 00 ° C. and about 2 μm at 2000 ° C. Further, when the coarse particles and the fine powder are blended, the fine powder diffuses into the coarse particles, so that remarkable grain growth occurs, and as a result, the pore diameter reaches 20 μm. Therefore, the firing temperature is preferably 1200 ° C to 1800 ° C. On the other hand, when the particle size is large, the change in pore size is small even if the firing temperature is changed, and when the particle size is 15 μm, the pore size shows a constant value of about 3 μm. As described above, the pore size is appropriately selected for each particle size at a preferable firing temperature. Table 1 shows the particle size, the pore size of the molded product, and the change in the pore size at each firing temperature.

【0073】[0073]

【表1】 [Table 1]

【0074】次に黒鉛を主成分とする坩堝について説明
する。黒鉛を主成分とする坩堝とは、主成分である黒鉛
以外に不可避不純物や他の添加元素を含む坩堝、また表
面改質を行った黒鉛を主成分とする坩堝を含む意味であ
る。
Next, the crucible containing graphite as a main component will be described. The crucible containing graphite as a main component means a crucible containing inevitable impurities and other additive elements in addition to graphite as a main component, and a crucible containing graphite whose surface has been modified as a main component.

【0075】黒鉛坩堝の開気孔を経由してSiを供給し
ようとすると黒鉛粒子と溶融したSiとの反応によって
黒鉛の一部がSiC化して坩堝が膨潤し、坩堝に亀裂や
破損が起こる。このため黒鉛坩堝は気孔率が10〜20
%の高密度品が好ましい。この際の密度は、1.50g
/cm3〜2.05g/cm3の範囲内となる。密度が高
いと細孔径が小さくなり、気孔中にSiが浸透しないで
表面がSiでコーティングされる。
When attempting to supply Si through the open pores of the graphite crucible, a part of the graphite is converted into SiC due to the reaction between the graphite particles and the melted Si, and the crucible swells, causing cracking or damage to the crucible. Therefore, the graphite crucible has a porosity of 10 to 20.
% High density products are preferred. The density at this time is 1.50 g
/ Cm 3 be in the range of ~2.05G / cm 3. When the density is high, the pore diameter becomes small, and Si does not penetrate into the pores, and the surface is coated with Si.

【0076】黒鉛坩堝を繰り返し使用するといった観点
から坩堝の肉厚は20mm以上が好ましい。坩堝の側
面、もしくは底部に任意の孔を空け、そこから溶融した
Siを被含浸体に供給する。孔径は0.25mmφ〜
2.0mmφの範囲内が好ましい。
From the viewpoint of repeatedly using the graphite crucible, the thickness of the crucible is preferably 20 mm or more. An arbitrary hole is formed on the side surface or bottom of the crucible, and molten Si is supplied to the impregnated body from the hole. Pore diameter is 0.25mmφ ~
The range of 2.0 mmφ is preferable.

【0077】高密度黒鉛に0.25mmφより小さい孔
を空けることは実質上困難であり経済的ではない。ま
た、2.0mmφ以上の大きな孔を空けることは溶融し
たSiを常に一定量供給するといった目的に対して、初
期と終期とではSi浴の圧力が変化するためSiの供給
量が不安定となり含浸には不都合となる。したがって孔
径は0.25mmφ〜2.0mmφの孔が好ましい。黒
鉛坩堝を用いた場合のSiの供給量は孔径と孔の数とで
制御する。本発明の黒鉛坩堝では、開口部を有する領域
での孔の個数密度で、0.001個/cm3〜1個/c
3の範囲内が好ましく、0.01個/cm3〜0.1個
/cm3の範囲内であることがより好ましい。なお、開
口部を有する領域での孔の個数密度とは、黒鉛坩堝の外
表面で、開口部を形成していない領域を除いて孔の個数
密度を算出する意味である。
It is substantially difficult and uneconomical to form holes smaller than 0.25 mmφ in high density graphite. In addition, for the purpose of always supplying a fixed amount of molten Si by opening a large hole of 2.0 mmφ or more, the pressure of the Si bath changes between the initial stage and the final stage, and the supply amount of Si becomes unstable and impregnation. Would be inconvenient. Therefore, the hole diameter is preferably 0.25 mmφ to 2.0 mmφ. The amount of Si supplied when a graphite crucible is used is controlled by the pore diameter and the number of pores. In the graphite crucible of the present invention, the number density of holes in the region having the opening is 0.001 / cm 3 to 1 / c.
The range of m 3 is preferable, and the range of 0.01 / cm 3 to 0.1 / cm 3 is more preferable. The number density of holes in a region having an opening means the calculation of the number density of holes in the outer surface of the graphite crucible except for the region where no opening is formed.

【0078】坩堝と被含浸体(SiCを主成分とする焼
成体)の位置関係としては、焼成体の上部に坩堝を配置
した位置関係であり、坩堝の外周のみが被含浸体と接す
る構造としても良い。また坩堝の表面の全体が接するの
ではなく、坩堝の表面に櫛の刃状に溝を入れて接触面積
を抑える構造とするのがより好ましい。SiC坩堝は1
度含浸に使用すればSi−SiC組成となり、Siを供
給する坩堝として繰り返して使用できる。同じく黒鉛坩
堝も同様に何度でも使用できる。
The positional relationship between the crucible and the impregnated body (calcined body containing SiC as a main component) is a positional relationship in which the crucible is arranged above the calcined body, and only the outer periphery of the crucible is in contact with the impregnated body. Is also good. Further, it is more preferable that the entire surface of the crucible is not in contact with the crucible but a groove is formed on the surface of the crucible like a comb blade to reduce the contact area. 1 for SiC crucible
If it is used for impregnation, the composition becomes Si-SiC, and it can be repeatedly used as a crucible for supplying Si. Similarly, the graphite crucible can be used any number of times.

【0079】坩堝や焼成体は、Cl2、HClなどのハ
ロゲン系ガスを流通しながら純化処理を行うのが好まし
い。純化処理温度は1100℃〜1700℃範囲内で行
うのが好ましい。加熱温度が1100℃以下では純化が
不十分でSiC表面に拡散してきた不純物を十分に除く
ことが困難である。また、1700℃以上になるとSi
C粒子と塩素との反応による塩化物の形成が著しくなり
好ましくない。ハロゲン系ガスによる純化によって坩堝
や成形体中のFe,Na,Cu等の不純物量が低減す
る。この他に湿式酸洗、たとえば弗酸もしくは弗酸と硝
酸、弗酸と塩酸等との混酸中に坩堝や焼成体を浸漬して
金属不純物を酸中に溶解したのち、純水等で酸基を除去
することでも同等な純化が得られ好ましい。
The crucible and the fired body are preferably subjected to a purification treatment while circulating a halogen-based gas such as Cl 2 or HCl. The purification temperature is preferably in the range of 1100 ° C to 1700 ° C. When the heating temperature is 1100 ° C. or lower, purification is insufficient and it is difficult to sufficiently remove impurities diffused on the SiC surface. Also, if the temperature rises above 1700 ° C, Si
The formation of chloride due to the reaction between C particles and chlorine is remarkable, which is not preferable. Purification with a halogen-based gas reduces the amount of impurities such as Fe, Na and Cu in the crucible and the compact. In addition to this, wet pickling is performed, for example, by immersing the crucible or the fired body in hydrofluoric acid or a mixed acid of hydrofluoric acid and nitric acid, hydrofluoric acid and hydrochloric acid, etc. to dissolve metal impurities in the acid, and then using an acid group with pure water or the like. It is preferable to remove the same because the same purification can be obtained.

【0080】焼成、純化した各部材を組み合わせてボー
トやチューブ等を組み立てることもできる。この際は、
部材同士の接着性や基材との馴染みを良好とするような
配慮が必要である。
It is also possible to assemble a boat, a tube, etc. by combining the fired and purified members. In this case,
Care must be taken to ensure good adhesion between the members and familiarity with the base material.

【0081】接合工程は成形体、もしくは焼成体の何れ
の場合で行っても良い。接着剤としては組成が同質のス
ラリーを用いるのが好ましいが、必ずしも同質スラリー
である必要はなく、例えば加熱後に残炭して、それがS
i含浸時においてSiC反応生成を起こすフェノール系
バインダーを添加したSiCスラリー等が接合剤として
好適に使用できる。
The joining process may be performed on either the molded body or the fired body. It is preferable to use a slurry having the same composition as the adhesive, but it is not always necessary to use the same slurry.
A SiC slurry or the like to which a phenolic binder that causes SiC reaction formation during the impregnation is added can be suitably used as the bonding agent.

【0082】焼成体へのSiの含浸処理は、焼成体の密
度から含浸に必要なSi量を割り出し、加熱時に揮散す
るSi量を補正したSi量を、坩堝に入れる。このとき
SiCを主成分とする坩堝の場合にはその空隙量に必要
なSi量も加える。Siを入れた坩堝を被含浸体の上に
置き、炉内にセットする。被含浸体は、例えば純化した
黒鉛板、カーボンフェルトや純化した黒鉛粒子の上に設
置する。また炉内物全体を高純度製の密閉した黒鉛容器
に入れるのが好ましい。減圧にしたのち、1500℃〜
1800℃に加熱する。1時間〜3時間、同温度で保持
したのち冷却する。
In the impregnation of Si into the fired body, the amount of Si required for impregnation is calculated from the density of the fired body, and the Si amount corrected for the amount of Si volatilized during heating is put in the crucible. At this time, in the case of a crucible containing SiC as a main component, the amount of Si necessary for the amount of voids is also added. The crucible containing Si is placed on the body to be impregnated and set in the furnace. The body to be impregnated is placed on, for example, a purified graphite plate, carbon felt, or purified graphite particles. Further, it is preferable to put the entire contents in the furnace in a highly pure closed graphite container. After depressurizing, 1500 ℃ ~
Heat to 1800 ° C. After keeping at the same temperature for 1 to 3 hours, it is cooled.

【0083】炉内の真空度は133Pa(1Torr)
以下が好ましく、より好ましくは1Pa(0.01To
rr)以下が望ましい。含浸温度はSiの融点以上であ
れば良いが、Siの粘度が十分に下がる1500℃以上
とするのが好ましい。また、1800℃以上になると炉
内へのSiのベーパーライズが多くなり、いたずらに炉
を汚し好ましくない。保持時間はSiを入れた坩堝から
のSiの供給速度に依存することになるが、Siが十分
に被含浸体全体に行き渡るには1時間〜3時間が好まし
い。
The degree of vacuum in the furnace is 133 Pa (1 Torr)
The following is preferable, and more preferably 1 Pa (0.01 To
rr) or less is desirable. The impregnation temperature may be higher than the melting point of Si, but is preferably 1500 ° C. or higher at which the viscosity of Si is sufficiently lowered. On the other hand, if the temperature is 1800 ° C. or higher, vaporization of Si into the furnace increases and the furnace is unnecessarily soiled, which is not preferable. The holding time depends on the supply rate of Si from the crucible containing Si, but it is preferably 1 to 3 hours for the Si to be sufficiently spread over the entire impregnated body.

【0084】このとき、Siの供給量は1g/分〜20
0g/分の範囲内が好ましい。1g/分以下であると含
浸に時間がかかり過ぎ、揮散するSi量が多くなるため
不経済となる。また、200g/分を越えると被含浸体
へのSi供給量が多すぎて一部のSiが含浸されずに落
下する。
At this time, the supply amount of Si is 1 g / min to 20
It is preferably within the range of 0 g / min. When it is 1 g / min or less, impregnation takes too much time and the amount of Si volatilized increases, which is uneconomical. On the other hand, if it exceeds 200 g / min, the amount of Si supplied to the object to be impregnated is too large and a part of Si is not impregnated and falls.

【0085】供給するSi流量は被含浸体の形状やその
空隙量に影響を受ける。毛細管力と重力によって吸引、
落下するSiの供給量を被含浸体の単位体積(cm3
当たりに換算した場合、0.005g/(cm3・分)
〜5g/(cm3・分)の範囲内、より好ましくは0.
01g/(cm3・分)〜1g/(cm3・分)の範囲内
で供給するのが好適である。供給量が0.005g/
(cm3・分)より少ないと含浸に時間がかかり過ぎ非
効率になる。また5g/(cm3・分)より早いと被含
浸体のSi吸収能を上回り、Siが被含浸体から外に流
れ落ちる。
The flow rate of Si supplied is influenced by the shape of the body to be impregnated and the amount of voids. Suction by capillary force and gravity,
Unit volume of the impregnated body (cm 3 )
When converted to per hit, 0.005 g / (cm 3 · min)
Within the range of 5 g / (cm 3 · min), more preferably 0.
It is preferable to supply within the range of 01 g / (cm 3 · min) to 1 g / (cm 3 · min). Supply amount is 0.005g /
If it is less than (cm 3 · min), the impregnation takes too long and becomes inefficient. Also, if it is faster than 5 g / (cm 3 · min), the Si absorption capacity of the impregnated body is exceeded, and Si flows out from the impregnated body.

【0086】坩堝を取り外した被含浸体をブラスト処理
により一部に付着している突起状Siを除く。また溝等
の部分はダイヤモンドブレード等を用いて溝切り加工を
おこなう。その後、弗酸もしくは弗酸と塩酸の混酸を用
いて表面洗浄する。酸濃度はHF:H2Oが1:10〜
1:5の範囲内が好ましい。次いで純水を用いた高圧水
洗浄と超音波洗浄をおこない酸成分と表面に付着してい
る不純物を完全に除く。その後、約500℃で乾燥をお
こなう。
The impregnated body from which the crucible has been removed is subjected to a blast treatment to remove the protruding Si adhered to a part thereof. Further, the groove and the like is subjected to groove cutting using a diamond blade or the like. Then, the surface is cleaned with hydrofluoric acid or a mixed acid of hydrofluoric acid and hydrochloric acid. The acid concentration is 1:10 for HF: H 2 O.
It is preferably within the range of 1: 5. Next, high-pressure water cleaning using pure water and ultrasonic cleaning are performed to completely remove acid components and impurities adhering to the surface. Then, it is dried at about 500 ° C.

【0087】乾燥後の被含浸体を1100℃〜1600
℃の温度範囲内でシラン系ガスとメタン系ガスを主体と
した雰囲気に置き、CVD法により表面にSiC膜を形
成させSi−SiC複合材を製造する。
The impregnated body after drying is heated at 1100 ° C to 1600 ° C.
It is placed in an atmosphere containing silane-based gas and methane-based gas as main components within a temperature range of ° C, and a SiC film is formed on the surface by a CVD method to manufacture a Si-SiC composite material.

【0088】[0088]

【実施例】(実施例1)αSiC粉末(#150)と平
均粒子径が2μmのαSiC粉末とを弗酸と硝酸(1:
1)の混酸で酸洗処理し、Feがそれぞれ2.1ppm
と1.2ppmの粉末を得た。αSiC(#150)と
2μmのαSiC粒子を1:1(質量比)で配合し、そ
こへ純水と水溶性フェノール樹脂を加えて混合し、固形
分濃度80質量%のスラリーを得た。次にこのスラリー
を石膏型(横30mm、縦40mm、長さ1mの角棒
型)に流し込み、固形鋳込みした。同様にスラリーを径
230mmφの石膏型に流し込み、肉厚が10mmの円
盤状となるように成形した。
Example 1 An αSiC powder (# 150) and an αSiC powder having an average particle size of 2 μm were mixed with hydrofluoric acid and nitric acid (1:
Pickled with mixed acid of 1), Fe is 2.1 ppm each
And 1.2 ppm of powder was obtained. αSiC (# 150) and 2 μm αSiC particles were mixed at a ratio of 1: 1 (mass ratio), and pure water and a water-soluble phenol resin were added and mixed therein to obtain a slurry having a solid content concentration of 80% by mass. Next, this slurry was poured into a plaster mold (square rod having a length of 30 mm, a length of 40 mm, and a length of 1 m) to perform solid casting. Similarly, the slurry was poured into a plaster mold having a diameter of 230 mm and molded into a disk shape having a wall thickness of 10 mm.

【0089】同じく径が140mmφ、高さ100mm
の円筒石膏型にスラリーを流し込み、肉厚が4mmの円
筒容器となるように成形し坩堝を作製した。
Similarly, the diameter is 140 mmφ and the height is 100 mm.
The slurry was poured into the cylindrical gypsum mold of No. 1 and molded into a cylindrical container having a wall thickness of 4 mm to prepare a crucible.

【0090】上記成形体を乾燥、加工後、1100℃で
脱脂したのち、真空雰囲気下、1800℃、2時間保持
して焼成した。このときの焼成体の気孔率は19%、焼
成体の細孔径は約800nmであった。フェノール樹脂
を含んだ同質スラリーを用いて角棒と円盤との接合を行
いボート形状とし、200℃で乾燥した。
After the molded body was dried and processed, it was degreased at 1100 ° C., and then baked in a vacuum atmosphere at 1800 ° C. for 2 hours. At this time, the porosity of the fired body was 19%, and the pore size of the fired body was about 800 nm. A rectangular rod and a disk were joined using a homogenous slurry containing a phenol resin to form a boat, and the boat was dried at 200 ° C.

【0091】上記の焼成体とSiC坩堝との気孔量に必
要な高純度Si量、1.1kgを計り取り、SiC坩堝
に入れた。気孔率20%、細孔径が600nmのSiC
坩堝をボート上に乗せて含浸炉にセットした。この組み
合わせを計5セット用意し、炉内に全て並べた。
A high-purity Si amount of 1.1 kg necessary for the porosity of the fired body and the SiC crucible was weighed and put in the SiC crucible. SiC with 20% porosity and 600 nm pore size
The crucible was placed on a boat and set in an impregnation furnace. A total of 5 sets of this combination were prepared and all were arranged in the furnace.

【0092】全体を密閉した高純度黒鉛容器に入れ、真
空中、1650℃で1時間保持してSiを含浸した。含
浸したボートからSiC坩堝を取り外し、被含浸体をブ
ラスト処理し、表面の一部に付着している突起状Siを
取り除いた。ボートの溝切り加工はダイヤモンドブレー
ドを用いて切り込み加工をおこない、2mm幅の溝を形
成した。次に弗酸と純水を用いて洗浄した。その後、純
水を用いて高圧水洗浄と超音波洗浄をおこなってSi−
SiC複合材によるウエハーボートを製造した。複合材
は空隙にSiが含浸した気孔のない緻密な組織であっ
た。
The whole was placed in a closed high-purity graphite container and kept in vacuum at 1650 ° C. for 1 hour to impregnate Si. The SiC crucible was removed from the impregnated boat, the impregnated body was blasted, and the protruding Si adhering to part of the surface was removed. The boat was grooved using a diamond blade to form a groove having a width of 2 mm. Next, it was washed with hydrofluoric acid and pure water. After that, high-pressure water cleaning and ultrasonic cleaning are performed using pure water to remove Si-
Wafer boats made of SiC composite were manufactured. The composite material had a dense structure in which voids were impregnated with Si and had no pores.

【0093】(実施例2)αSiC粉末(#180)と
平均粒子径が2.5μmのαSiC粉末を弗酸と硝酸と
の混酸で酸洗処理をおこない、Feがそれぞれ2.4p
pmと2ppmの粉末を得た。αSiC粉末(#18
0)と2.5μmのαSiC粒子とを4:6(質量比)
で配合し、そこへ純水とアクリル樹脂エマルジョンを加
えて混合し、固形分濃度82質量%のスラリーを得た。
次にこのスラリーを円筒形の石膏型に流し込み、約4m
mの肉厚を確認したのちスラリーを排泥した。(これを
排泥鋳込み成型法という。)これにより、外径350m
mφ、内径341mmφ、長さ1.5mの円筒形の成形
体を得た。
Example 2 αSiC powder (# 180) and αSiC powder having an average particle diameter of 2.5 μm were subjected to pickling treatment with a mixed acid of hydrofluoric acid and nitric acid, and Fe was 2.4 p
A powder with pm and 2 ppm was obtained. αSiC powder (# 18
0) and 2.5 μm αSiC particles 4: 6 (mass ratio)
And mixed with pure water and an acrylic resin emulsion to obtain a slurry having a solid content concentration of 82% by mass.
Next, pour this slurry into a cylindrical plaster mold, and
After confirming the wall thickness of m, the slurry was discharged. (This is called the sludge casting molding method.) As a result, the outer diameter is 350 m.
A cylindrical molded body having mφ, an inner diameter of 341 mmφ and a length of 1.5 m was obtained.

【0094】同様に曲率R500mmφのキャップを排
泥鋳込み法によって作製し、円筒の一端に接合した。
Similarly, a cap having a curvature of 500 mmφ was produced by a sludge casting method and joined to one end of a cylinder.

【0095】上記成形体を1100℃で脱脂したのち、
真空雰囲気下、焼成温度2000℃、2時間保持して焼
成した。このときの焼成体の気孔率は19%、同焼成体
細孔径は約1μmであった。焼成体とSiC坩堝との気
孔量に必要な高純度Si量3.4kgを計り取り坩堝に
入れた。気孔率23%、細孔径が900nmのSiC坩
堝を均熱管の上に乗せ、それを含浸炉にセットし、全体
を密閉した高純度黒鉛容器に入れて準備を終了した。
After degreasing the above molded body at 1100 ° C.,
In a vacuum atmosphere, the firing temperature was kept at 2000 ° C. for 2 hours for firing. At this time, the porosity of the fired body was 19%, and the pore size of the fired body was about 1 μm. A high-purity Si amount of 3.4 kg required for the porosity of the fired body and the SiC crucible was measured and put in the crucible. A SiC crucible having a porosity of 23% and a pore size of 900 nm was placed on a soaking tube, which was set in an impregnation furnace, and the whole was put in a highly purified graphite container to complete the preparation.

【0096】上記含浸炉内を真空にし、1700℃で2
時間保持してSiを含浸した。被含浸体からSiC坩堝
を取り外し、混酸と純水で酸洗浄をおこなったのち、高
圧水洗浄と超音波洗浄をおこなって半導体用均熱管を得
た。複合材は空隙にSiが含浸した気孔のない緻密な組
織であった。
The inside of the impregnation furnace is evacuated to 2700 ° C.
It was kept for a period of time to impregnate Si. The SiC crucible was removed from the impregnated body, acid cleaning was performed with mixed acid and pure water, and then high pressure water cleaning and ultrasonic cleaning were performed to obtain a soaking tube for semiconductors. The composite material had a dense structure in which voids were impregnated with Si and had no pores.

【0097】(実施例3)αSiC粉末(#240)と
平均粒子径が1μmの高純度αSiC粉末(Fe不純物
濃度:0.6ppm)を3:7の質量比で配合し、そこ
へ純水、可塑剤としてグリセリン、バインダーとしてセ
ルロースを加えて混合し、固形分濃度77質量%の可塑
性を持った混練物を得た。
Example 3 αSiC powder (# 240) and high-purity αSiC powder having an average particle size of 1 μm (Fe impurity concentration: 0.6 ppm) were mixed in a mass ratio of 3: 7, and pure water, Glycerin as a plasticizer and cellulose as a binder were added and mixed to obtain a kneaded product having a solid content of 77% by mass and having plasticity.

【0098】テフロン(登録商標)樹脂でコーティング
したシリンダーとプランジャーを有する押し出し成型機
を使用して、外径6mm、内径4mmの細管を得た。同
質材で一端を塞いで保護管を製造した。
Using an extrusion molding machine having a cylinder and a plunger coated with Teflon (registered trademark) resin, a thin tube having an outer diameter of 6 mm and an inner diameter of 4 mm was obtained. A protective tube was manufactured by closing one end with the same material.

【0099】上記保護管を乾燥、加工後、700℃で脱
脂したのち、アルゴン雰囲気下、1600℃、1時間保
持して焼成した。このときの焼成体の気孔率は21%、
同焼成体細孔径は約700nmであった。
After the protective tube was dried and processed, it was degreased at 700 ° C. and then baked at 1600 ° C. for 1 hour in an argon atmosphere. The porosity of the fired body at this time is 21%,
The pore size of the fired body was about 700 nm.

【0100】数十本の上記焼成体を、塞いだ一端が下に
なるように黒鉛板上に立てて並べた。その上にSiC坩
堝を置き、焼成体と坩堝の気孔を含浸するに必要な高純
度Si量230gを計り取り、坩堝に入れた。坩堝の気
孔率は20%、細孔径は600nmであった。真空中、
1650℃で1時間保持して焼成体にSiを含浸した。
その後、被含浸体を1200℃、大気中で加熱して被含
浸体表面に酸化膜を形成させてSi−SiC複合材によ
る保護管を製造した。複合材は空隙にSiが含浸した気
孔のない緻密な組織であった。
Dozens of the above-mentioned fired bodies were arranged upright on a graphite plate so that one closed end faces down. A SiC crucible was placed thereon, and 230 g of high-purity Si required for impregnating the fired body and the pores of the crucible was weighed and put in the crucible. The porosity of the crucible was 20% and the pore size was 600 nm. In vacuum,
The sintered body was impregnated with Si by holding it at 1650 ° C. for 1 hour.
Then, the impregnated body was heated at 1200 ° C. in the atmosphere to form an oxide film on the surface of the impregnated body to manufacture a protection tube made of a Si—SiC composite material. The composite material had a dense structure in which voids were impregnated with Si and had no pores.

【0101】(実施例4)実施例1と同一のαSiC粉
末を4:6の質量比で配合し、そこへ純水とポリビニル
アルコールを加えて混合し、固形分濃度82質量%のス
ラリーを得た。次にこのスラリーを円筒形の石膏型に流
し込み肉厚が約25mmとなるように固形鋳込みをし、
外径350mmφ、内径300mmφ、長さ300mm
の成形体を製造した。
Example 4 The same αSiC powder as in Example 1 was mixed in a mass ratio of 4: 6, and pure water and polyvinyl alcohol were added thereto and mixed to obtain a slurry having a solid content concentration of 82 mass%. It was Next, this slurry is poured into a cylindrical plaster mold, and solid casting is performed so that the wall thickness becomes about 25 mm.
Outer diameter 350 mmφ, inner diameter 300 mmφ, length 300 mm
The molded body of was manufactured.

【0102】上記成形体を乾燥、加工後、1100℃で
脱脂し、アルゴン雰囲気下、1900℃、2時間保持し
て焼成した。このときの焼成体の気孔率は20%、同焼
成体の細孔径は約900nmであった。
After the molded body was dried and processed, it was degreased at 1100 ° C., and kept at 1900 ° C. for 2 hours in an argon atmosphere and baked. At this time, the porosity of the fired body was 20%, and the pore size of the fired body was about 900 nm.

【0103】高純度黒鉛を用いた外径200mmφ、内
径150mmφ、高さ100mmの坩堝の側面下部に1
mmφの孔を均等に八箇所あけた。黒鉛坩堝に被含浸体
の気孔量に見合った高純度Si、1.4kgを入れた。
被含浸体を高密度黒鉛板に乗せ、その上に坩堝をセット
し、全体を密閉した高純度黒鉛容器に入れ、真空中、1
750℃で2時間保持してSiを含浸した。被含浸体か
ら黒鉛坩堝を取り外し、ブラスト処理で突起状Siを除
いたのち、研削加工、酸洗浄をおこなったのち、高圧水
洗浄と超音波洗浄をおこなってSi−SiC複合材のベ
ルジャー管を製造した。複合材は空隙にSiが含浸した
気孔のない緻密な組織であった。
1 is attached to the lower part of the side surface of a crucible made of high-purity graphite and having an outer diameter of 200 mmφ, an inner diameter of 150 mmφ and a height of 100 mm.
Eight holes of mmφ were evenly formed. A graphite crucible was charged with 1.4 kg of high-purity Si corresponding to the amount of pores of the impregnated body.
Place the material to be impregnated on a high-density graphite plate, set the crucible on it, and put it in a highly-purified graphite container that is hermetically sealed.
It was kept at 750 ° C. for 2 hours to impregnate Si. The graphite crucible was removed from the impregnated body, the protruding Si was removed by blasting, and after grinding and acid cleaning, high-pressure water cleaning and ultrasonic cleaning were performed to manufacture a Si-SiC composite bell jar tube. did. The composite material had a dense structure in which voids were impregnated with Si and had no pores.

【0104】(実施例5)αSiC粉末(#180)と
平均粒子径が15μmの高純度αSiC粉末を1:1の
質量比で配合し、そこへ純水とポリビニルアルコールを
加えて混合し造粒した。次に造粒粉末を、静水圧加圧成
形法(CIP成形)で1.5トン/cm2の圧力で成形
して、横350mm、縦125mm、厚さ8mmの平板
を得た。
Example 5 αSiC powder (# 180) and high-purity αSiC powder having an average particle size of 15 μm were mixed in a mass ratio of 1: 1 and pure water and polyvinyl alcohol were added thereto and mixed to granulate. did. Next, the granulated powder was molded by a hydrostatic pressure molding method (CIP molding) at a pressure of 1.5 ton / cm 2 to obtain a flat plate having a width of 350 mm, a length of 125 mm, and a thickness of 8 mm.

【0105】上記成形体を1100℃で脱脂したのち、
アルゴン雰囲気下、2100℃、2時間保持して焼成し
た。このときの焼成体の気孔率は18%、同焼成体細孔
径は約3μmであった。この焼成体を横長になるように
立て、各焼成体との間隔を約10mm空けて複数枚を列
べた。その上に角形に鋳込み成形で作製した、横200
mm、長さ300mm、高さ50mmで、気孔率20
%、細孔径が600nmの角状のSiC坩堝を乗せた。
SiC坩堝と成形体の気孔量に必要な高純度Si量7.
1kgを計り取り、SiC角坩堝に入れた。この組み合
わせを計6セット用意し、炉内に全て並べ、全体を密閉
した高純度黒鉛容器に入れて、真空中、1600℃で2
時間保持してSiを含浸した。含浸した平板から角坩堝
を取り外し、被含浸体をブラスト処理により一部に付着
している突起状Siを除いた。この被含浸体をさらに研
削加工してSi−SiC複合体による4インチウエハー
のトレイを製造した。複合材は空隙にSiが含浸した気
孔のない緻密な組織であった。
After degreasing the molded body at 1100 ° C.,
In an argon atmosphere, 2100 ° C. was maintained for 2 hours for firing. At this time, the porosity of the fired body was 18%, and the pore size of the fired body was about 3 μm. This fired body was erected so as to be horizontally long, and a plurality of sheets were lined up with a gap of about 10 mm from each fired body. Horizontal 200 made by casting into a square shape
mm, length 300 mm, height 50 mm, porosity 20
%, A rectangular SiC crucible having a pore diameter of 600 nm was placed.
High-purity Si amount required for the amount of pores in the SiC crucible and the molded body 7.
1 kg was measured and put in a SiC crucible. A total of 6 sets of this combination were prepared, all were lined up in the furnace, and the whole was placed in a closed high-purity graphite container.
It was kept for a period of time to impregnate Si. The crucible was removed from the impregnated flat plate, and the impregnated body was blasted to remove the protruding Si attached to a part thereof. The impregnated body was further ground to produce a tray of 4-inch wafers made of a Si-SiC composite. The composite material had a dense structure in which voids were impregnated with Si and had no pores.

【0106】(実施例6)αSiC細粒(#1200)
をさらに粉砕、酸洗、HClガスを流通して純化処理を
おこない、Feが0.2ppmm、最大粒子径が15μ
m未満、平均粒子径1.8μmの高純度αSiC細粒を
得た。この粉末に純水とアクリル樹脂エマルジョンを加
えて混合し、固形分濃度78質量%のスラリーを得た。
次にこのスラリーを石膏型に流し込み、ウエハーボート
搬送用のフォーク形状成形体を得た。
(Example 6) αSiC fine particles (# 1200)
Was further pulverized, pickled, and clarified by circulating HCl gas. Fe was 0.2 ppmm and maximum particle size was 15 μm.
High-purity αSiC fine particles having a particle size of less than m and an average particle diameter of 1.8 μm were obtained. Pure water and an acrylic resin emulsion were added to and mixed with this powder to obtain a slurry having a solid content concentration of 78 mass%.
Next, this slurry was poured into a gypsum mold to obtain a fork-shaped compact for wafer boat transportation.

【0107】この成形体を乾燥後、1100℃で脱脂し
たのち、真空雰囲気下、1900℃、2時間保持して焼
成した。このときの焼成体の気孔率は21%、同焼成体
平均細孔径は約5μmであった。含浸は一度含浸処理に
使用したSi−SiC坩堝を用いて、横長に列べた焼成
体の上に坩堝を乗せ行った。被含浸体の気孔量に必要な
高純度Si量1.2kgを計り取り坩堝の中に入れ、全
体を密閉した高純度黒鉛容器に入れ、真空中、1600
℃で2時間保持してSiを含浸した。被含浸体から坩堝
を取り外し、被含浸体表面をブラスト処理により付着し
ている突起状Siを除いた。
After this molded body was dried and degreased at 1100 ° C., it was held in a vacuum atmosphere at 1900 ° C. for 2 hours and baked. At this time, the porosity of the fired body was 21%, and the average pore diameter of the fired body was about 5 μm. For the impregnation, the Si-SiC crucible used once for the impregnation treatment was used, and the crucible was placed on the horizontally elongated fired bodies. A high-purity Si amount of 1.2 kg necessary for the amount of pores of the impregnated body was weighed and placed in a crucible, and the whole was placed in a closed high-purity graphite container.
It was kept at 2 ° C. for 2 hours to impregnate Si. The crucible was removed from the impregnated body, and the surface of the impregnated body was blasted to remove the protruding Si attached.

【0108】この含浸体をさらに研削加工してウエハー
搬送用フォーク形状Si−SiC複合材を製造した。複
合材は空隙にSiが含浸した気孔のない緻密な組織であ
った。
The impregnated body was further ground to produce a fork-shaped Si-SiC composite material for wafer transportation. The composite material had a dense structure in which voids were impregnated with Si and had no pores.

【0109】(実施例7)SiO2と炭素からβSiC
を合成して粉砕、酸洗して平均粒子径1.5μmのβS
iC粉末を得た。純水とデキストリンを加えてスラリー
とし、実施例1の石膏型に鋳込んだ。固形後、脱型して
円盤と角棒を得た。同じく径140mmφ、高さ100
mmの円柱石膏型にスラリーを流し込み、厚みが4mm
となるように着肉させたのちスラリーを排泥してSiを
入れる坩堝を製造した。
Example 7 βSiC from SiO 2 and carbon
ΒS with an average particle diameter of 1.5 μm
iC powder was obtained. Pure water and dextrin were added to form a slurry, which was cast into the gypsum mold of Example 1. After solidification, it was demolded to obtain a disc and a square rod. Similarly, diameter 140mmφ, height 100
Pour the slurry into a mm plaster mold and have a thickness of 4 mm
After that, the crucible was manufactured by draining the slurry and adding Si.

【0110】上記成形体を、乾燥、加工後、脱脂したの
ち、真空雰囲気下、1900℃、1時間保持して焼成し
た。このときの焼成体と坩堝の気孔率は21%、同焼成
体細孔径は約4μmであった。焼成体とSiC坩堝との
気孔量に必要な高純度Si量1.2kgを計り取り、S
iC坩堝に入れ、SiC坩堝を接合したボート上に乗せ
て含浸炉内にセットし、密閉した高純度黒鉛容器に入
れ、真空中、1650℃で1時間保持してSiを含浸し
た。含浸したボートからSiC坩堝を取り外し、Si−
SiC複合材によるボート形状品を製造した。ボート形
状品は空隙にSiが含浸した気孔のない緻密な組織であ
った。
The molded body was dried and processed, degreased, and then baked in a vacuum atmosphere at 1900 ° C. for 1 hour. At this time, the porosity of the fired body and the crucible was 21%, and the pore size of the fired body was about 4 μm. Weigh out 1.2 kg of high-purity Si required for the amount of pores between the fired body and the SiC crucible, and add S
It was placed in an iC crucible, placed on a boat to which a SiC crucible was joined, set in an impregnation furnace, placed in a closed high-purity graphite container, and held in vacuum at 1650 ° C. for 1 hour to impregnate Si. Remove the SiC crucible from the impregnated boat and remove the Si-
A boat-shaped product made of a SiC composite material was manufactured. The boat-shaped product had a dense structure in which voids were impregnated with Si and had no pores.

【0111】(実施例8)実施例7で合成したβSiC
粉末をさらに水分級して平均粒子径が0.3μmの粉末
を得た。純化処理を施したのち、ポリビニルアルコール
を加えて造粒した。金型成形で成形体密度1.5g/c
3、気孔率53%、100mm角、高さ80mmの角
鉢を成形した。これを1200℃で焼成して細孔径30
0nmの気孔を持つ多孔体を得た。
(Example 8) βSiC synthesized in Example 7
The powder was further water-classified to obtain a powder having an average particle size of 0.3 μm. After performing a purification treatment, polyvinyl alcohol was added and granulated. Molded body density of 1.5g / c
A square pot with m 3 , porosity of 53%, 100 mm square and 80 mm height was formed. This is fired at 1200 ° C. to have a pore size of 30.
A porous body having pores of 0 nm was obtained.

【0112】このSiC角鉢と実施例1と同条件で別途
焼成した被含浸体との気孔量に必要な高純度Si量1.
3kgを計り取りSiC角鉢に入れた。それを被含浸体
の上に乗せて含浸炉内にセットし、密閉した高純度黒鉛
容器に入れ、真空中、1600℃で2時間保持してSi
を含浸した。含浸したボートからSiC坩堝を取り外
し、ボート形状品を得た。ボート形状品は空隙にSiが
含浸した気孔のない緻密なSi−SiC複合材であるこ
とを確認した。
A high-purity Si amount required for the porosity of the SiC square bowl and the impregnated body separately fired under the same conditions as in Example 1 was 1.
3 kg was measured and put in a SiC square bowl. Place it on the material to be impregnated, set it in the impregnation furnace, put it in a closed high-purity graphite container, and hold it in vacuum at 1600 ° C. for 2 hours to obtain Si.
Was impregnated. The SiC crucible was removed from the impregnated boat to obtain a boat-shaped product. It was confirmed that the boat-shaped product was a dense Si-SiC composite material in which voids were impregnated with Si and had no pores.

【0113】(実施例9)実施例2で配合したαSiC
粉末へ、炭素源として水溶性フェノール樹脂を12%添
加し、そこへ純水を加えて固形分濃度80質量%のスラ
リーを得た。これを実施例1で用いた石膏型に流し込み
SiC坩堝を成形した。これを加工したのち、乾燥、脱
脂し、真空雰囲気下、1900℃、1時間保持して焼成
した。このときのSiC坩堝の気孔率は21%、同焼成
体細孔径は約900nmであった。この焼成体にSi含
浸処理をおこない、残存している炭素をSiC化してS
i−SiC複合材を得た。その密度は3.1g/cm3
となった。この一部を切り出し、酸によりSiを除去し
たSiC基体の密度は2.9g/cm3、開気孔量10
%、細孔径350nmであった。
Example 9 αSiC blended in Example 2
12% of a water-soluble phenolic resin as a carbon source was added to the powder, and pure water was added thereto to obtain a slurry having a solid content concentration of 80% by mass. This was poured into the gypsum mold used in Example 1 to form a SiC crucible. After processing this, it was dried, degreased, and held in a vacuum atmosphere at 1900 ° C. for 1 hour to be baked. At this time, the porosity of the SiC crucible was 21%, and the pore size of the fired body was about 900 nm. This fired body is impregnated with Si to convert the remaining carbon into SiC, and S
An i-SiC composite material was obtained. Its density is 3.1 g / cm 3.
Became. A part of this was cut out and Si was removed with acid to obtain a SiC substrate having a density of 2.9 g / cm 3 and an open porosity of 10
%, And the pore size was 350 nm.

【0114】SiCを主成分とする焼成体の気孔量に必
要な高純度Si量0.8kgを計り取り、坩堝に入れ、
接合したボート上に同坩堝を乗せて含浸炉内にセット
し、密閉した高純度黒鉛容器に入れ、真空中、1650
℃で2時間保持してSiを含浸した。含浸後の複合材は
織観察から気孔のない緻密体であることを確認した。
A high-purity Si amount of 0.8 kg necessary for the porosity of the fired body containing SiC as a main component was measured and put in a crucible,
Place the crucible on the joined boat and set it in the impregnation furnace, put it in a closed high-purity graphite container, and in vacuum 1650
It was kept at 2 ° C. for 2 hours to impregnate Si. It was confirmed from the weave observation that the composite material after impregnation was a dense body having no pores.

【0115】(比較例1)実施例5において作製した平
板を同条件で焼成して、焼成体が横長になるよう、各焼
結体との間隔を約10mmにして並べた。その間に、焼
成体の含浸に必要なSi量7.4kgと約5mmφの高
純度黒鉛と3mm径のSiCとを同容量混ぜたものを充
填した。全体を密閉した高純度黒鉛容器に入れ、真空
中、1600℃で2時間保持してSiを含浸した。被含
浸体である平板を剥離する際に、過剰なSiとSiC粒
子および黒鉛粒子との混在相が下部に堆積しているた
め、平板の数枚が破損し、また平板に固着した含浸物を
取り除くのに多く時間を要した。
(Comparative Example 1) The flat plate produced in Example 5 was fired under the same conditions, and the fired bodies were arranged side by side with an interval of about 10 mm so that the fired body was horizontally long. In the meantime, a mixture of 7.4 kg of Si required for impregnation of the fired body, high-purity graphite of about 5 mmφ, and SiC of 3 mm in diameter was filled. The whole was placed in a closed high-purity graphite container and kept at 1600 ° C. for 2 hours in vacuum to impregnate Si. When the flat plate that is the impregnated body is peeled off, a mixed phase of excess Si, SiC particles, and graphite particles is deposited in the lower portion, so several flat plates are damaged and It took a lot of time to remove it.

【0116】(比較例2)実施例1で焼成したSiC焼
成体の周辺に、粒状Siをフェノール樹脂で一様に塗布
固定し、その周りを炭素繊維で覆い、粒状Siの脱落を
防止した。これを真空中、1650℃で1時間保持して
Siを含浸した。被含浸体の表面は過剰のSiと炭素繊
維とが固着し、それを隔離するのに多くの時間を費や
し、また、焼成体の表面には未含浸相が生じたため、再
度、含浸処理を施す必要があった。
(Comparative Example 2) Granular Si was uniformly applied and fixed with a phenol resin around the SiC fired body fired in Example 1, and the periphery thereof was covered with carbon fiber to prevent the granular Si from falling off. This was kept in vacuum at 1650 ° C. for 1 hour to impregnate Si. Excessive Si and carbon fibers adhered to the surface of the impregnated body, and it took a lot of time to isolate them. Also, the surface of the fired body had an unimpregnated phase, so the impregnation treatment was performed again. There was a need.

【0117】(比較例3)実施例2で作製した焼成体を
炉中央に設置し、焼成体に炭素繊維を巻き付け、黒鉛坩
堝に入れたSiが炭素繊維の毛細管現象により供給され
るよう配置した。これらを密閉した高純度黒鉛容器内に
入れ、真空下、1800℃、2時間保持してSiを含浸
した。
(Comparative Example 3) The fired body produced in Example 2 was placed in the center of the furnace, carbon fibers were wound around the fired body, and Si placed in the graphite crucible was arranged so as to be supplied by the capillary action of the carbon fibers. . These were placed in a closed high-purity graphite container and kept under vacuum at 1800 ° C. for 2 hours to impregnate Si.

【0118】被含浸体は一部に気孔を残した組織であ
り、均一なSi−SiC複合材を得ることはできなかっ
た。
The impregnated body had a structure in which some pores were left, and a uniform Si-SiC composite material could not be obtained.

【0119】[0119]

【発明の効果】本発明により、従来行われてきた含浸法
に比べ、炭素繊維の巻き込みやSiの塗布、充填といっ
た煩雑で人手の掛かる準備が不用となり、極めて簡単
で、効率的な製造方法が提供可能となった。特に、製品
形態の異なる複数個の製品の一括処理が可能となり生産
効率が著しく高まった。
EFFECTS OF THE INVENTION According to the present invention, as compared with the conventional impregnation method, complicated and labor-intensive preparation such as winding of carbon fiber, coating and filling of Si is unnecessary, and an extremely simple and efficient manufacturing method is achieved. Available now. In particular, batch processing of a plurality of products with different product forms has become possible, resulting in a marked increase in production efficiency.

【0120】また本発明の製造方法を用いることによっ
て製造したSi−SiC複合材は、高純度で緻密な組織
を有し、特に半導体用冶具の分野で、製品の歩留まりを
高める信頼性の高い冶具を提供可能となった。
Further, the Si-SiC composite material produced by using the production method of the present invention has a high-purity and dense structure, and particularly in the field of semiconductor jigs, a highly reliable jig for increasing the yield of products. Can be provided.

Claims (15)

【特許請求の範囲】[Claims] 【請求項1】SiCを主成分とする焼成体の上部にSi
を入れた坩堝を設置し、該坩堝を加熱してSiを溶融状
態とし、Siの融液を坩堝が有する孔を通じて焼成体表
面に供給し、Siを焼成体に含浸させてSi−SiC複
合材を製造するSi−SiC複合材の製造方法。
1. Si is formed on the upper portion of a fired body containing SiC as a main component.
The crucible containing the above is installed, and the crucible is heated to bring Si into a molten state, and a melt of Si is supplied to the surface of the fired body through the holes of the crucible, and the fired body is impregnated with Si to impregnate the Si-SiC composite material. The manufacturing method of Si-SiC composite material which manufactures.
【請求項2】SiCを主成分とする焼成体の上部に、S
iを入れた坩堝を2個以上設置することを特徴とする請
求項1に記載のSi−SiC複合材の製造方法。
2. S is formed on the upper part of a fired body containing SiC as a main component.
The method for producing a Si-SiC composite material according to claim 1, wherein two or more crucibles containing i are installed.
【請求項3】坩堝が、SiCを主成分とし、密度が1.
30g/cm3〜3.02g/cm3の範囲内であり、密
度比が40〜92TD%の範囲内であり、水銀ポロシメ
ーターで測定した平均気孔径(平均細孔径)が50nm
〜30μmの範囲内であることを特徴とする請求項1ま
たは2に記載のSi−SiC複合材の製造方法。
3. The crucible contains SiC as a main component and has a density of 1.
In the range of 30g / cm 3 ~3.02g / cm 3 , in the range density ratio of 40~92TD%, an average pore diameter measured by a mercury porosimeter (average pore diameter) is 50nm
It is in the range of -30 μm. 3. The method for producing a Si—SiC composite material according to claim 1, wherein
【請求項4】坩堝が、SiCを主成分とし、密度が1.
70g/cm3〜2.90g/cm3の範囲内であり、密
度比が53TD%〜90TD%の範囲内であり、水銀ポ
ロシメーターで測定した平均気孔径が300nm〜40
00nmの範囲内であることを特徴とする請求項1また
は2に記載のSi−SiC複合材の製造方法。
4. The crucible contains SiC as a main component and has a density of 1.
In the range of 70g / cm 3 ~2.90g / cm 3 , in the range density ratio of 53TD% ~90TD%, an average pore diameter measured by a mercury porosimeter 300nm~40
It is in the range of 00 nm, The manufacturing method of the Si-SiC composite material of Claim 1 or 2 characterized by the above-mentioned.
【請求項5】坩堝が、粒度0.1μm〜300μmの範
囲内のSiC粉末に、結合材を加えて鋳込み成形、また
は、ラバープレス成形、または、金型成形し、その後、
1200℃〜2300℃の温度範囲内で加熱して焼成し
た、SiCを主成分とする坩堝であることを特徴とする
請求項1〜4の何れか1項に記載のSi−SiC複合材
の製造方法。
5. A crucible is cast-molded by adding a binder to SiC powder having a particle size of 0.1 μm to 300 μm, or rubber press-molded or die-molded, and thereafter,
5. A Si-SiC composite material according to any one of claims 1 to 4, which is a crucible containing SiC as a main component, the crucible being heated and fired within a temperature range of 1200 ° C to 2300 ° C. Method.
【請求項6】坩堝が、黒鉛を主成分とし、密度が1.5
0g/cm3〜2.05g/cm3の範囲内であり、坩堝
の下部または側部に開口部を有することを特徴とする請
求項1に記載のSi−SiC複合材の製造方法。
6. The crucible mainly contains graphite and has a density of 1.5.
In the range of 0g / cm 3 ~2.05g / cm 3 , the manufacturing method of the Si-SiC composite material according to claim 1, characterized in that it comprises an opening at the bottom or side of the crucible.
【請求項7】開口部が孔形状であり、孔径が0.25〜
2.0mmφの範囲内であり、開口部を有する領域での
孔の個数密度が0.001個/cm3 〜1個/cm3
範囲内であることを特徴とする請求項6に記載のSi−
SiC複合材の製造方法。
7. The opening has a hole shape and the hole diameter is 0.25 to 0.25.
It is within the range of 2.0 mmφ, and the number density of holes in the region having the opening is within the range of 0.001 / cm 3 to 1 / cm 3. 7. Si-
Method for manufacturing SiC composite material.
【請求項8】SiCを主成分とする焼成体が、密度が
1.30g/cm3〜3.02g/cm3の範囲内であ
り、密度比が40TD%〜92TD%の範囲内であり、
水銀ポロシメーターで測定した平均気孔径(平均細孔
径)が50nm〜30μmの範囲内であることを特徴と
する請求項1〜7の何れか1項に記載のSi−SiC複
合材の製造方法。
8. A sintered body mainly composed of SiC is, the density is in the range of 1.30g / cm 3 ~3.02g / cm 3 , in the range density ratio of 40TD% ~92TD%,
The average pore diameter (average pore diameter) measured by a mercury porosimeter is within a range of 50 nm to 30 μm, The method for producing a Si—SiC composite material according to claim 1.
【請求項9】SiCを主成分とする焼成体への坩堝から
のSiの供給速度が、1g/分〜200g/分の範囲内
であることを特徴とする請求項1〜8の何れか1項に記
載のSi−SiC複合材の製造方法。
9. The supply rate of Si from the crucible to the fired body containing SiC as a main component is within the range of 1 g / min to 200 g / min. Item 6. A method for producing a Si-SiC composite material according to Item.
【請求項10】SiCを主成分とする焼成体への坩堝か
らのSiの供給速度が、焼成体の単位体積当たりの、S
iの供給速度で0.005g/(cm3・分)〜5g/
(cm3・分)の範囲内であることを特徴とする請求項
1〜9の何れか1項に記載のSi−SiC複合材の製造
方法。
10. The feed rate of Si from the crucible to the fired body containing SiC as a main component is S per unit volume of the fired body.
i at a feed rate of 0.005 g / (cm 3 · min) to 5 g /
Method for producing a Si-SiC composite material according to any one of claims 1-9, characterized in that it is in the range of (cm 3 · min).
【請求項11】坩堝1個当たりのSiの供給速度が、2
g/分〜200g/分の範囲内であることを特徴とする
請求項1〜10の何れか1項に記載のSi−SiC複合
材の製造方法。
11. The supply rate of Si per crucible is 2
It is in the range of g / min to 200 g / min, The manufacturing method of Si-SiC composite material of any one of Claims 1-10 characterized by the above-mentioned.
【請求項12】焼成体を構成するSiCの金属不純物の
総量が50ppm以下であることを特徴とする請求項1
〜11の何れか1項に記載のSi−SiC複合材の製造
方法。
12. The total amount of metal impurities of SiC constituting the fired body is 50 ppm or less.
12. The method for producing a Si-SiC composite material according to any one of 1 to 11.
【請求項13】坩堝を構成するSiCの金属不純物の総
量が50ppm以下であることを特徴とする請求項3〜
5および8〜11の何れか1項に記載のSi−SiC複
合材の製造方法。
13. The total amount of metallic impurities of SiC forming the crucible is 50 ppm or less.
The manufacturing method of the Si-SiC composite material of any one of 5 and 8-11.
【請求項14】SiCを主成分とし、密度が1.30g
/cm3〜3.02g/cm3の範囲内であり、密度比が
40TD%〜92TD%の範囲内であり、水銀ポロシメ
ーターで測定した平均気孔径(平均細孔径)が50nm
〜30μmの範囲内であることを特徴とする焼成体への
融液含浸用坩堝。
14. Main component is SiC, and density is 1.30 g.
/ Cm 3 to 3.02 g / cm 3 , the density ratio is in the range of 40TD% to 92TD%, and the average pore diameter (average pore diameter) measured by a mercury porosimeter is 50 nm.
A crucible for impregnating a fired body with a melt, characterized in that the crucible has a thickness within the range of -30 μm.
【請求項15】黒鉛を主成分とし、密度が1.50g/
cm3〜2.05g/cm3の範囲内であり、坩堝の下部
または側部に開口部を有することを特徴とする焼成体へ
の融液含浸用坩堝。
15. A graphite-based material having a density of 1.50 g /
A crucible for impregnating a melt into a fired body, characterized in that the crucible has an opening in a lower portion or a side portion of the crucible in a range of from cm 3 to 2.05 g / cm 3 .
JP2001265228A 2001-09-03 2001-09-03 Method for producing Si-SiC composite material Expired - Fee Related JP4376479B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001265228A JP4376479B2 (en) 2001-09-03 2001-09-03 Method for producing Si-SiC composite material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001265228A JP4376479B2 (en) 2001-09-03 2001-09-03 Method for producing Si-SiC composite material

Publications (2)

Publication Number Publication Date
JP2003071555A true JP2003071555A (en) 2003-03-11
JP4376479B2 JP4376479B2 (en) 2009-12-02

Family

ID=19091726

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001265228A Expired - Fee Related JP4376479B2 (en) 2001-09-03 2001-09-03 Method for producing Si-SiC composite material

Country Status (1)

Country Link
JP (1) JP4376479B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006336076A (en) * 2005-06-02 2006-12-14 Taiheiyo Cement Corp Method for manufacturing metal-ceramics composite material
JP2011057535A (en) * 2009-09-14 2011-03-24 Taiheiyo Cement Corp Porous ceramic body and method for production thereof
JP2011253165A (en) * 2010-06-04 2011-12-15 Maruo Calcium Co Ltd Combined reflective element for road surface marking and road surface marking material containing the same
JPWO2022049818A1 (en) * 2020-09-07 2022-03-10

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006336076A (en) * 2005-06-02 2006-12-14 Taiheiyo Cement Corp Method for manufacturing metal-ceramics composite material
JP4585379B2 (en) * 2005-06-02 2010-11-24 太平洋セメント株式会社 Method for producing metal-ceramic composite material
JP2011057535A (en) * 2009-09-14 2011-03-24 Taiheiyo Cement Corp Porous ceramic body and method for production thereof
JP2011253165A (en) * 2010-06-04 2011-12-15 Maruo Calcium Co Ltd Combined reflective element for road surface marking and road surface marking material containing the same
JPWO2022049818A1 (en) * 2020-09-07 2022-03-10
WO2022049818A1 (en) * 2020-09-07 2022-03-10 日本碍子株式会社 Refractory material
JP7167367B2 (en) 2020-09-07 2022-11-08 日本碍子株式会社 refractory material

Also Published As

Publication number Publication date
JP4376479B2 (en) 2009-12-02

Similar Documents

Publication Publication Date Title
US5904892A (en) Tape cast silicon carbide dummy wafer
US8664135B2 (en) Crucible body and method of forming same
US4657876A (en) Composite by infiltration
EP0192040B1 (en) Fluoride infiltrated carbide or nitride composite
US8840861B2 (en) Crucible for photovoltaics
PL157887B1 (en) The method of self-supporting ceramic composite obtaining
US20130192302A1 (en) Crucibles for holding molten material and methods for producing them and for their use
US4917941A (en) Fiber- and filament-containing ceramic preform and composite
JP5130334B2 (en) Square silica container for producing polycrystalline silicon ingot, porous silica plate and method for producing the same
JP3472585B2 (en) Aluminum nitride sintered body
JP4376479B2 (en) Method for producing Si-SiC composite material
JP2010280529A (en) Method for manufacturing crucible for polycrystalline silicon production
JP4382919B2 (en) Method for producing silicon-impregnated silicon carbide ceramic member
JP2000178069A (en) Sintering jig
JP3878976B2 (en) High strength and high toughness alumina sintered body and manufacturing method thereof
JP5130337B2 (en) Square silica container for producing polycrystalline silicon ingot, porous silica plate, and production method thereof
JP3656899B2 (en) High density barium zirconate sintered body and production method
JP4803877B2 (en) Silicon carbide sintered body and method for producing the same
JP2013095651A (en) Silica sintered body crucible
JP4217279B2 (en) Method for producing metal-ceramic composite material
JP2968882B2 (en) SiC-based sintered body and method of firing the same
JP3287202B2 (en) Silicon nitride ceramic composite and method for producing the same
JPH11171671A (en) Production of plate silicon carbide-silicon composite ceramic
JP2588278B2 (en) Method for producing porous silicon carbide sintered body
JP3358472B2 (en) Method for producing silicon nitride ceramic-based composite material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080530

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090106

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090225

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20090225

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090609

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090729

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090908

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090909

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120918

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120918

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150918

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees