JP4376479B2 - Method for producing Si-SiC composite material - Google Patents

Method for producing Si-SiC composite material Download PDF

Info

Publication number
JP4376479B2
JP4376479B2 JP2001265228A JP2001265228A JP4376479B2 JP 4376479 B2 JP4376479 B2 JP 4376479B2 JP 2001265228 A JP2001265228 A JP 2001265228A JP 2001265228 A JP2001265228 A JP 2001265228A JP 4376479 B2 JP4376479 B2 JP 4376479B2
Authority
JP
Japan
Prior art keywords
sic
crucible
range
composite material
impregnated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001265228A
Other languages
Japanese (ja)
Other versions
JP2003071555A (en
Inventor
守 阿諏訪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Denko KK
Original Assignee
Showa Denko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK filed Critical Showa Denko KK
Priority to JP2001265228A priority Critical patent/JP4376479B2/en
Publication of JP2003071555A publication Critical patent/JP2003071555A/en
Application granted granted Critical
Publication of JP4376479B2 publication Critical patent/JP4376479B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【0001】
【発明の属する技術分野】
本発明は珪素・炭化珪素セラミックス(以下、Si−SiCとする。)の製造方法に関し、より詳しくはSiC焼成体中の空隙にSiを含浸させる方法に関する。
【0002】
【従来の技術】
従来よりSiとSiCからなるSi−SiC系材料は緻密性、高熱伝導性、および強度に優れていることから、シリコン単結晶ウエハー等の熱処理用部材、例えば半導体用熱処理用ウエハーボート、半導体用炉芯管等に用いられている。
【0003】
Si−SiC複合材は、通常、SiC粉末を単独もしくは粗粒と細粒とを配合した粉末をバインダーと混合して、それを静水圧加圧成形、鋳込み生成法等によって成形し、焼成したのち、その焼成体にSiを含浸処理等して製造する。
【0004】
SiをSiC焼成体中に含浸する代表的な方法として以下に示す方法が提案されている。
【0005】
(a)多孔質のSiCを、溶融したSi浴中に入れ、SiCの細孔(内部に貫通した開気孔)によって生じる毛細管現象を利用して溶融したSiを含浸させる方法。
【0006】
(b)坩堝にSiを入れ、坩堝とSiC焼成体の間に炭素繊維等を配置し、溶融したSiを炭素繊維の毛細管現象を利用して焼成体に誘導し、焼成体にSiを含浸する方法(特開平7−89778号公報、特開2000−119079号公報)。
【0007】
(c)SiをSiC粉末と混ぜて被含浸体の周辺に配置して、高周波加熱をおこない被含浸体を移動させながらSiを溶融含浸させる方法(特公昭53−29319号公報)。
【0008】
(d)窒化珪素(Si34)を熱分解してSi蒸気をSiC焼成体の気孔中に含浸させる方法(特公昭36−15163号公報)。
【0009】
以上のSi含浸方法の問題点としては
(a)毛細管現象を利用した含浸方法は一定以上の高さを超えると含浸できない領域が生じ、今日の部材の大型化に伴う要求に応えきれない。また、下部に残留したSiが残るため煩雑で面倒な後処理を残すことになる。
【0010】
(b)炭素繊維(ヤーン)を複数配置して一度に含浸させる場合、その事前の手間と準備が複雑である。また被含浸体の他にSiを入れる坩堝や炭素繊維、その他の装置が必要など複雑で、装置全体が高価にならざるを得ない。また、炭素繊維が含浸体に付着してその後処理が必要となる。
【0011】
(c)含浸に周到な準備が必要であり、また効率性に劣る。更に冷却固化後に、周辺に配置したSiC粉末を取り除くことが困難である。
【0012】
(d)Si34の分解温度が高く、含浸に必要以上のSiを分解させるため非効率となり、また過剰のSiは炉周辺に堆積して炉の寿命を損なう。
【0013】
【発明が解決しようとする課題】
開気孔を持つ多孔質SiC中にSiを含浸する方法において、複雑な含浸機構や高価な装置を用いずに、簡便かつ容易で確実な方法によって緻密なSi−SiC複合材を得る製造方法で、溶融Siの供給速度を容易に制御できる方法とそのために必要なSiの坩堝を提供することを課題としている。
【0014】
【課題を解決するための手段】
本発明者は上記課題を解決すべく鋭意努力検討した結果本発明に到達した。すなわち、本発明は下記に関する。
【0015】
(1)SiCを主成分とする焼成体の上部にSiを入れた坩堝を設置し、該坩堝を加熱してSiを溶融状態とし、Siの融液を坩堝が有する孔を通じて焼成体表面に供給し、Siを焼成体に含浸させてSi−SiC複合材を製造するSi−SiC複合材の製造方法。
【0016】
(2)SiCを主成分とする焼成体の上部に、Siを入れた坩堝を2個以上設置することを特徴とする(1)に記載のSi−SiC複合材の製造方法。
【0017】
(3)坩堝が、SiCを主成分とし、密度が1.30g/cm3〜3.02g/cm3の範囲内であり、密度比が40〜92TD%の範囲内であり、水銀ポロシメーターで測定した平均気孔径(平均細孔径)が50nm〜30μmの範囲内であることを特徴とする(1)または(2)に記載のSi−SiC複合材の製造方法。
【0018】
(4)坩堝が、SiCを主成分とし、密度が1.70g/cm3〜2.90g/cm3の範囲内であり、密度比が53TD%〜90TD%の範囲内であり、水銀ポロシメーターで測定した平均気孔径が300nm〜4000nmの範囲内であることを特徴とする(1)または(2)に記載のSi−SiC複合材の製造方法。
【0019】
(5)坩堝が、粒度0.1μm〜300μmの範囲内のSiC粉末に、結合材を加えて鋳込み成形、または、ラバープレス成形、または、金型成形し、その後、1200℃〜2300℃の温度範囲内で加熱して焼成した、SiCを主成分とする坩堝であることを特徴とする(1)〜(4)の何れか1項に記載のSi−SiC複合材の製造方法。
【0020】
(6)坩堝が、黒鉛を主成分とし、密度が1.50g/cm3〜2.05g/cm3の範囲内であり、坩堝の下部または側部に開口部を有することを特徴とする(1)に記載のSi−SiC複合材の製造方法。
【0021】
(7)開口部が孔形状であり、孔径が0.25〜2.0mmφの範囲内であり、開口部を有する領域での孔の個数密度が0.001個/cm3 〜1個/cm3の範囲内であることを特徴とする(6)に記載のSi−SiC複合材の製造方法。
【0022】
(8)SiCを主成分とする焼成体が、密度が1.3g/cm3〜3.0g/cm3の範囲内であり、密度比が40TD%〜92TD%の範囲内であり、水銀ポロシメーターで測定した平均気孔径(平均細孔径)が50nm〜30μmの範囲内であることを特徴とする(1)〜(7)の何れか1項に記載のSi−SiC複合材の製造方法。
【0023】
(9)SiCを主成分とする焼成体への坩堝からのSiの供給速度が、1g/分〜200g/分の範囲内であることを特徴とする(1)〜(8)の何れか1項に記載のSi−SiC複合材の製造方法。
【0024】
(10)SiCを主成分とする焼成体への坩堝からのSiの供給速度が、焼成体の単位体積当たりの、Siの供給速度で0.005g/(cm3・分)〜5g/(cm3・分)の範囲内であることを特徴とする(1)〜(9)の何れか1項に記載のSi−SiC複合材の製造方法。
【0025】
(11)坩堝1個当たりのSiの供給速度が、2g/分〜200g/分の範囲内であることを特徴とする(1)〜(10)の何れか1項に記載のSi−SiC複合材の製造方法。
【0026】
(12)焼成体を構成するSiCの金属不純物の総量が50ppm以下であることを特徴とする(1)〜(11)の何れか1項に記載のSi−SiC複合材の製造方法。
【0027】
(13)坩堝を構成するSiCの金属不純物の総量が50ppm以下であることを特徴とする(3)〜(5)および(8)〜(11)の何れか1項に記載のSi−SiC複合材の製造方法。
【0028】
(14)SiCを主成分とし、密度が1.30g/cm3〜3.02g/cm3の範囲内であり、密度比が40TD%〜92TD%の範囲内であり、水銀ポロシメーターで測定した平均気孔径(平均細孔径)が50nm〜30μmの範囲内であることを特徴とする焼成体への融液含浸用坩堝。
【0029】
(15)黒鉛を主成分とし、密度が1.50g/cm3〜2.05g/cm3の範囲内であり、坩堝の下部または側部に開口部を有することを特徴とする焼成体への融液含浸用坩堝。
【0030】
【発明の実施の形態】
本発明は、SiCを主成分とする焼成体に溶融したSiを含浸させ、Si−SiC複合材とする、例えば半導体用熱処理用部材を製造する方法において、SiCを主成分とする焼成体の上部にSiを入れた坩堝を設置し、該坩堝を加熱してSiを溶融状態とし、Siの融液を坩堝が有する孔を通じて焼成体表面に供給し、Siを焼成体に含浸させて複合材を製造するSi−SiC複合材の製造方法である。この際、あらかじめSiを入れる坩堝の密度(空隙量)や開気孔量、およびその細孔径を制御しておき、被含浸体へ供給する溶融Siの供給量をコントロールすることが好ましい。
【0031】
従来では多孔質のSiCを、溶融したSi浴中に入れ、毛細管現象を利用して細い連続気孔へSiを含浸させていた。本発明では、この毛細管現象と同時に重力を利用して焼成体の上部からSiを滴下させて供給し、焼成体の空隙中にSiを充填させていく。これによって毛細管現象のみでは不可能な距離や、大きな容積、大きな含浸速度が得られる。その結果、形状、大きさの制約を受けずに複雑形状品などへの含浸が容易に達成できるようになった。
【0032】
本発明では、焼成体の上部に設置する坩堝を、被含浸体の形状に応じて何カ所かに分けて設置することが好ましい。これにより、必要最小限度のスペースで効率的な含浸処理ができる。坩堝の材料には、例えば高純度処理をおこなったSiC多孔体や黒鉛、もしくは同質のSi−SiC複合材から選択できる。このように高純度処理を施した各材料を用いることで半導体用途に適したボートや炉芯管を製造できる。
【0033】
Siの供給量は坩堝の開気孔量とその気孔径とに関連する。Siの供給量を多くするには気孔量か細孔径、もしくはその両方を大きくする。反対に坩堝の気孔量と細孔径を小さくすることでSi供給量を制限できる。また黒鉛坩堝の場合は孔径とその数や孔の密度で調整できる。SiCやSi−SiC坩堝の開気孔量や細孔径を制御するには、その原料となるSiC粉末の粒径やその成形方法、焼成条件などを調整することで操作できる。
【0034】
Siを入れた坩堝から被含浸体へのSiの供給速度は被含浸体への含浸能力(速度)を上回らないように抑える必要がある。坩堝からの供給量が多すぎるとSi融液が被含浸体の外部にこぼれ落ち、被含浸体に供給されるべきSi量が不足することになる。
【0035】
一方、黒鉛は通常10〜40体積%と多くの気孔を持っている。この開気孔を通じてSiを供給すると黒鉛の一部が反応してSiCを生成する。この反応により坩堝の強度低下が生ずると共に、体積膨張が生じて坩堝が割れる。このため黒鉛製坩堝を用いる場合は、気孔率が10〜20体積%といった比較的緻密な高純度黒鉛を用いるとSiの進入と反応を抑制できる。そのような坩堝の下部または側面に任意の開口部、例えば孔と、被含浸体形状に応じた位置に必要な孔数をあけてSiの供給量を調整することが好ましい。
【0036】
以上のように、本発明は被含浸体の上部、もしくは被含浸体の上部に接するようにSiを入れた坩堝を配置する。たとえば真空下、加熱した炉内に、被含浸体の上にSiを入れた坩堝をセットして、炉全体をSi融液温度以上に加熱して融液となったSiを、坩堝の開気孔や開口部を通じて被含浸体表面に供給し、含浸処理をおこなうことが好ましい。
【0037】
一般に半導体用熱処理用部材には、高強度、高純度、高熱伝導性が要求される。したがってその前駆体となるSiCを主成分とする焼成体は高密度で、かつ十分な粒子間結合力が必要になる。それには高密度成形体を得たのち、所定温度で焼成することが望ましい。このとき焼成温度に連動して細孔径も拡大する。これらの条件設定により、十分な強度と毛細管引力を最も引き出すように、焼成体の密度、密度比、平均気孔径を設定するのが好ましい。
【0038】
本発明の方法によって含浸処理したSi−SiC複合材は、ポアの量が飛躍的に少なく、緻密な組織とすることができる。また、適当なSi供給量を選択することで付着したSiや、被含浸体に巻き付けた炭素繊維を除去するといった後処理を必要としない極めて効率的な製造方法を提供する。
【0039】
以下に本発明を更に詳しく述べる。
【0040】
被含浸体であるSiCを主成分とする焼成体の製造について例示する。SiC焼結体はSiC粉末と有機系バインダーを用いて成形、脱バインダー処理した後、Si含浸処理に好適な連続した開気孔の形成と、高強度含浸体を得るに十分なSiC前駆体を得るため、これらを所定の温度で焼成する。
【0041】
SiCを主成分とする焼成体とは、主成分であるSiCの他、バインダーからの炭素、含浸させるSi、その他、不可避不純物を含む焼成体を意味する。
【0042】
高純度SiC粉末を単独、もしくは粒子径の異なる何種類かの粉末を配合し、そこにバインダーを混合して緻密な成形体を製造する。
【0043】
SiC原料には高純度粉末を用いるのが望ましい。特に金属不純物として混入しやすいFe、Ni、Cr、Ca、Cuといった元素が少ない粉末を用いるのが好ましい。金属不純物量は一般に弗酸や弗酸と硝酸との混酸で繰り返し酸洗することにより低減できる。さらにハロゲン系ガス中で加熱処理すると、よりいっそう純化される。少なくともこれらの金属不純物量の総計が50ppm以下の粉末が好ましい。
【0044】
SiC粉末の粒子径は0.1μm〜300μmの範囲が好ましい。単一粒径のみで成形する場合には、その平均粒子径が0.3〜20μmの範囲内の粒を用いると成形性と充填性に優れた成形体が得られる。
【0045】
また、二つの粒度以上を混合して緻密化を図る場合には粗粒の平均粒子径は50〜300μmの範囲内、細粒の平均粒子径は0.1〜30μmの範囲内を用いるのが好ましい。その配合比率は粗粒と細粒の比率を3〜7:7〜3とするのが好ましい。より好ましくは粗粒と細粒の比率を4〜6:6〜4の範囲内で選択することにより、高い充填性が得られる。また、粉末は凝集のない単分散した粉末が好ましい。
【0046】
SiCの結晶系は六方晶(以下α)、立方晶(以下β)、非晶質もしくはその混合物の何れでも良い。様々な粒子径を安価で容易に調達できる点から、アチソン法で得られるαSiC粉末が好適に用いることができる。
【0047】
このSiC粉末の高純度化は、一般には粉末を酸洗処理することにより得られる。酸の種類は塩酸、弗酸、硝酸など、あるいは、その混酸が用いられている。
【0048】
アチソン法から合成されたSiC中の金属不純物の分布は特開平5−32458号公報に開示されているが、一般には粒子径が細かい方が不純物を除去しやすい。
【0049】
SiC粉末に分散剤、有機系バインダーを加えて攪拌混合して造粒したのち、金型、ラバープレス成形(CIP)、もしくは混合したスラリーを石膏型を用いた鋳込み成形によって造形する。半導体熱処理部材として多様な形状や薄肉のチューブ、長尺寸法の成形品等を得るには鋳込み成形方法が優れている。
【0050】
有機結合材には水溶性フェノール樹脂、ポリ酢酸エマルジョン、シリコーン樹脂、アクリル樹脂エマルジョン等を使用するのが好ましい。結合材の配合比率は0.2質量%〜15質量%の範囲内でSiC粉末の粒子径によって変える。粗い粒子径の場合は少なく、細かい粒子径のときは多く添加する。フェノール樹脂を結合材として使用するときは成形体にカーボンが残留する。このカーボンはSiを含浸したときにSiCに変わる。
【0051】
開気孔径の測定方法は水銀ポロシメータ−により行う。すなわち、水銀を成形体中に圧入してその圧力から換算した気孔径もしくは細孔径を求める。
【0052】
ぬれ角で90゜以上を持つ液体は表面張力のために自己自身では細孔内に入っていけない。したがって細孔へ液体を入れるためには外側から圧力を加える必要があり必要とする圧力は細孔径に関係する。
【0053】
加えた圧力とそのとき入りうる細孔径の関係は次の式で表される。
【0054】
Pr=2σcosθ
P:加えられた圧力
r:細孔半径
θ:接触角(ぬれ角) (水銀の場合の平均値は141.3度)
σ:水銀の表面張力 (480mN/m2
【0055】
この関係式はフォッシュボーン式として知られている。ほとんどの多孔質物質の細孔径は円筒形ではないがこの式は水銀圧入データーから細孔径分布を計算するために一般的に使用されている。
【0056】
上記細孔を円筒と仮定し、水銀を浸透させた場合には上記値を代入すると次の式が求まる。
【0057】
r=7500/P
r:細孔半径
P:加えられた絶対圧力
【0058】
測定方法は試料容器に入る数mm角、長さ約30mmの長方体の質量を計る。長方体のうち5面を有機系樹脂で塗布する。試料をガラス製容器(ディラトメーター)に入れ、水銀圧入装置にセットする。真空脱気したのち水銀を充填する。水銀圧入措置からディラドメーターを外しオートクレーブにセットする。系内へ順次水銀を圧入して各圧力での圧入量を記録する。計測後、圧力と気孔径との換算をおこない気孔径分布を求める。
【0059】
Siを含浸するには大きな毛管引力を前駆体となるSiC焼成体に付与する
一般に毛細管引力は次式で示される。含浸Siの引き上げ高さをhとすると、
h=(2σ)/r・ρ・cosα
σ:表面張力(Si(1500℃)で800mN/m2
r:毛細管の半径 (細孔径)
ρ:液体の比重(2.5g/cm3
cosα:接触角(40度未満)
【0060】
このように、通常、細孔径が小さいほど大きな毛細管力が働くことになる。しかしながら実際の気孔形態は、三次元的に入り組んでおり、太い孔と細い孔とが交錯した不定形状の連続孔である。
【0061】
成形体の細孔径は用いたSiC粉末の粒子径と関連する。すなわち粒子径の細かいSiC粉末を用いるほど細孔径が小さく、粒子径が大きいSiC粉末を用いるほど細孔径も大きくなる傾向を示す。たとえば、0.4μmの平均粒子径を持つ粉末を上記バインダーに加えて、最密充填した成形体の平均細孔径は約20nm〜30nm前後であり、平均粒子径が0.6μmでは約50nm、同じく3μmでは約70nm〜100nm、また50μm〜100μmの平均粒径を持つ粗粒と十μm以下の細粒とを混合した粉末の平均粒子径が15μm〜40μmの範囲では100〜200nmの細孔径を持った成形体が得られる。50nm以下の小さい細孔では溶融したSiは成形体の持つ毛管力(吸引力)より細孔の気孔形態に起因する抵抗の方が高く、表面近傍のみが含浸するだけである。そのため焼成してSiが入りやすいように細孔径を調整する必要がある。
【0062】
まず成形体を所定の形状に加工した後、真空下、もしくは非酸化性雰囲気の下、脱バインダー処理をおこなう。脱脂温度は700℃〜1100℃の範囲で1時間〜3時間、所定温度で保持する。非酸化性ガスは窒素、アルゴン、ヘリウムガス等を用いるのが好ましい。
【0063】
次に脱脂した成形体を焼成する。焼成温度は1200℃〜2300℃でおこなう。雰囲気は真空下、もしくは非酸化性雰囲気下でおこなう。非酸化性ガスは窒素、アルゴン、ヘリウムガス等を用いるのが好ましい。真空雰囲気下で焼成する場合には、炉の構成材料の耐熱性やSiCの分解を考慮して2000℃以下でおこなうのが好ましい。また、真空度は133Pa(1Torr)以下が好ましく、より望ましくは13Pa(0.1Torr)以下が優れる。真空下で焼成をおこなった場合、常圧下に比較して不純物が除去しやすい。すなわち成形体中のCa、Fe、Cu等の不純物含有量を、真空下で焼成することで50%〜80%低減できる。
【0064】
各焼成温度の保持時間は1時間〜5時間とする。1時間以下であると粒成長が中途半端で終わり、目的とする細孔径に安定した調整ができない。5時間以上保持しても細孔径の拡大がなく意味を持たない。
【0065】
成形体を焼成することにより、成形体中の粒成長が進行し、細孔径は拡大していく。鋭意研究の結果、この焼成体中の細孔径が50nm〜30μmの範囲内、より好ましくは300nm〜5μmの範囲内にあるとき、最もSiを吸引しやすいことを見出した。
【0066】
もう一方の主要な要素である被含浸体にSiを供給する坩堝は、その細孔径または開口部の大きさや密度によりSiの供給速度を制御できる。
【0067】
坩堝の形状と大きさは、被含浸体との形状的なバランスと炉空間の有効的活用の観点から決める。坩堝の形状は円筒が好ましい。肉厚は形状を最低維持するに必要な厚みとする。坩堝の表面積を多くしたいときは小さい坩堝を複数個用意する。坩堝の細孔径は被含浸体と同程度であることが好ましく、細孔径が小さいと被含浸体に対して供給量が少なく、細孔径が大きいと被含浸体に対して供給量は多くなる。細孔径が50nmより小さいと開気孔を通じてSiが供給されない。また、30μmより大きいとSiの供給が速過ぎて目的とする被含浸体中に含浸し切れずに、外にこぼれ落ちる場合がある。
【0068】
SiCを主成分とする坩堝とは、主成分であるSiCの他、バインダーからの炭素、含浸させるSi、その他不可避元素を含む坩堝を意味する。
【0069】
SiCを主成分とする坩堝の密度は成形の際に形状を維持する最低限の密度1.30g/cm3以上、より好ましくは1.70g/cm3以上、密度比で40TD%以上、より好ましくは53TD%以上で、開気孔の形態を維持できる密度の上限として3.02g/cm3以下であることが好ましい。また密度が高くなると気孔量が小さく、かつ細孔径が細くなり、結果、Siの供給量が少なくなる。このため密度は、より好ましくは2.90g/cm3以下、密度比で92TD%以下、より好ましくは90TD%以下のSiC焼結体が望ましい。
【0070】
密度比TD%とは、坩堝を形成する物質の真密度(SiCが100%の場合は3.21g/cm3である。)に対する実際の坩堝の、密度(嵩密度)の比率を表したものである。測定方法としてはアルキメデス法が例示できるが、多孔質の場合は表面をパラフィン等で覆い嵩密度を求める。また、水中で真空脱気し、空中重量(W1)、水中重量(W2)、包含水重量(W3)から嵩密度、気孔率を求めることが出来る。密度、気孔率は下述式にしたがって計算する。
【0071】
嵩密度(ρ)
ρ= W1/(W3−W2
気孔率(Po)
Po=(W3−W1)/(W3−W2)×100
(JISR2205による。)
【0072】
次にSiCを主成分とする坩堝や焼成体の細孔径の調整方法を示す。SiCを主成分とする成形体の焼成温度はSiC粉末粒子径毎に異なる。約0.4μmといった微粉は1000℃で既に粒成長が開始し、1200℃で200nm、1400℃で500nm、1600℃には約1μm、2000℃では約2μmにまで成長する。また粗粒と微粉とを配合した場合には微粉が粗粒子中に拡散していくため著しい粒成長が起こり、その結果細孔径は20μmに達する。したがって焼成温度の範囲は1200℃〜1800℃が好ましい。一方、粒子径が大きくなると焼成温度を変えても細孔径の変化は小さく、15μmの粒子径の場合、細孔径は約3μmと一定の値を示す。このように細孔径は粒子径毎にそれぞれ好ましい焼成温度を適時、選択する。表1に粒子径とその成形体の細孔径、各焼成温度における細孔径の変化を示す。
【0073】
【表1】

Figure 0004376479
【0074】
次に黒鉛を主成分とする坩堝について説明する。黒鉛を主成分とする坩堝とは、主成分である黒鉛以外に不可避不純物や他の添加元素を含む坩堝、また表面改質を行った黒鉛を主成分とする坩堝を含む意味である。
【0075】
黒鉛坩堝の開気孔を経由してSiを供給しようとすると黒鉛粒子と溶融したSiとの反応によって黒鉛の一部がSiC化して坩堝が膨潤し、坩堝に亀裂や破損が起こる。このため黒鉛坩堝は気孔率が10〜20%の高密度品が好ましい。この際の密度は、1.50g/cm3〜2.05g/cm3の範囲内となる。密度が高いと細孔径が小さくなり、気孔中にSiが浸透しないで表面がSiでコーティングされる。
【0076】
黒鉛坩堝を繰り返し使用するといった観点から坩堝の肉厚は20mm以上が好ましい。坩堝の側面、もしくは底部に任意の孔を空け、そこから溶融したSiを被含浸体に供給する。孔径は0.25mmφ〜2.0mmφの範囲内が好ましい。
【0077】
高密度黒鉛に0.25mmφより小さい孔を空けることは実質上困難であり経済的ではない。また、2.0mmφ以上の大きな孔を空けることは溶融したSiを常に一定量供給するといった目的に対して、初期と終期とではSi浴の圧力が変化するためSiの供給量が不安定となり含浸には不都合となる。したがって孔径は0.25mmφ〜2.0mmφの孔が好ましい。黒鉛坩堝を用いた場合のSiの供給量は孔径と孔の数とで制御する。本発明の黒鉛坩堝では、開口部を有する領域での孔の個数密度で、0.001個/cm3〜1個/cm3の範囲内が好ましく、0.01個/cm3〜0.1個/cm3の範囲内であることがより好ましい。なお、開口部を有する領域での孔の個数密度とは、黒鉛坩堝の外表面で、開口部を形成していない領域を除いて孔の個数密度を算出する意味である。
【0078】
坩堝と被含浸体(SiCを主成分とする焼成体)の位置関係としては、焼成体の上部に坩堝を配置した位置関係であり、坩堝の外周のみが被含浸体と接する構造としても良い。また坩堝の表面の全体が接するのではなく、坩堝の表面に櫛の刃状に溝を入れて接触面積を抑える構造とするのがより好ましい。SiC坩堝は1度含浸に使用すればSi−SiC組成となり、Siを供給する坩堝として繰り返して使用できる。同じく黒鉛坩堝も同様に何度でも使用できる。
【0079】
坩堝や焼成体は、Cl2、HClなどのハロゲン系ガスを流通しながら純化処理を行うのが好ましい。純化処理温度は1100℃〜1700℃範囲内で行うのが好ましい。加熱温度が1100℃以下では純化が不十分でSiC表面に拡散してきた不純物を十分に除くことが困難である。また、1700℃以上になるとSiC粒子と塩素との反応による塩化物の形成が著しくなり好ましくない。ハロゲン系ガスによる純化によって坩堝や成形体中のFe,Na,Cu等の不純物量が低減する。この他に湿式酸洗、たとえば弗酸もしくは弗酸と硝酸、弗酸と塩酸等との混酸中に坩堝や焼成体を浸漬して金属不純物を酸中に溶解したのち、純水等で酸基を除去することでも同等な純化が得られ好ましい。
【0080】
焼成、純化した各部材を組み合わせてボートやチューブ等を組み立てることもできる。この際は、部材同士の接着性や基材との馴染みを良好とするような配慮が必要である。
【0081】
接合工程は成形体、もしくは焼成体の何れの場合で行っても良い。接着剤としては組成が同質のスラリーを用いるのが好ましいが、必ずしも同質スラリーである必要はなく、例えば加熱後に残炭して、それがSi含浸時においてSiC反応生成を起こすフェノール系バインダーを添加したSiCスラリー等が接合剤として好適に使用できる。
【0082】
焼成体へのSiの含浸処理は、焼成体の密度から含浸に必要なSi量を割り出し、加熱時に揮散するSi量を補正したSi量を、坩堝に入れる。このときSiCを主成分とする坩堝の場合にはその空隙量に必要なSi量も加える。Siを入れた坩堝を被含浸体の上に置き、炉内にセットする。被含浸体は、例えば純化した黒鉛板、カーボンフェルトや純化した黒鉛粒子の上に設置する。また炉内物全体を高純度製の密閉した黒鉛容器に入れるのが好ましい。減圧にしたのち、1500℃〜1800℃に加熱する。1時間〜3時間、同温度で保持したのち冷却する。
【0083】
炉内の真空度は133Pa(1Torr)以下が好ましく、より好ましくは1Pa(0.01Torr)以下が望ましい。含浸温度はSiの融点以上であれば良いが、Siの粘度が十分に下がる1500℃以上とするのが好ましい。また、1800℃以上になると炉内へのSiのベーパーライズが多くなり、いたずらに炉を汚し好ましくない。保持時間はSiを入れた坩堝からのSiの供給速度に依存することになるが、Siが十分に被含浸体全体に行き渡るには1時間〜3時間が好ましい。
【0084】
このとき、Siの供給量は1g/分〜200g/分の範囲内が好ましい。
1g/分以下であると含浸に時間がかかり過ぎ、揮散するSi量が多くなるため不経済となる。また、200g/分を越えると被含浸体へのSi供給量が多すぎて一部のSiが含浸されずに落下する。
【0085】
供給するSi流量は被含浸体の形状やその空隙量に影響を受ける。毛細管力と重力によって吸引、落下するSiの供給量を被含浸体の単位体積(cm3)当たりに換算した場合、0.005g/(cm3・分)〜5g/(cm3・分)の範囲内、より好ましくは0.01g/(cm3・分)〜1g/(cm3・分)の範囲内で供給するのが好適である。供給量が0.005g/(cm3・分)より少ないと含浸に時間がかかり過ぎ非効率になる。また5g/(cm3・分)より早いと被含浸体のSi吸収能を上回り、Siが被含浸体から外に流れ落ちる。
【0086】
坩堝を取り外した被含浸体をブラスト処理により一部に付着している突起状Siを除く。また溝等の部分はダイヤモンドブレード等を用いて溝切り加工をおこなう。その後、弗酸もしくは弗酸と塩酸の混酸を用いて表面洗浄する。酸濃度はHF:H2Oが1:10〜1:5の範囲内が好ましい。次いで純水を用いた高圧水洗浄と超音波洗浄をおこない酸成分と表面に付着している不純物を完全に除く。その後、約500℃で乾燥をおこなう。
【0087】
乾燥後の被含浸体を1100℃〜1600℃の温度範囲内でシラン系ガスとメタン系ガスを主体とした雰囲気に置き、CVD法により表面にSiC膜を形成させSi−SiC複合材を製造する。
【0088】
【実施例】
(実施例1)
αSiC粉末(#150)と平均粒子径が2μmのαSiC粉末とを弗酸と硝酸(1:1)の混酸で酸洗処理し、Feがそれぞれ2.1ppmと1.2ppmの粉末を得た。αSiC(#150)と2μmのαSiC粒子を1:1(質量比)で配合し、そこへ純水と水溶性フェノール樹脂を加えて混合し、固形分濃度80質量%のスラリーを得た。次にこのスラリーを石膏型(横30mm、縦40mm、長さ1mの角棒型)に流し込み、固形鋳込みした。同様にスラリーを径230mmφの石膏型に流し込み、肉厚が10mmの円盤状となるように成形した。
【0089】
同じく径が140mmφ、高さ100mmの円筒石膏型にスラリーを流し込み、肉厚が4mmの円筒容器となるように成形し坩堝を作製した。
【0090】
上記成形体を乾燥、加工後、1100℃で脱脂したのち、真空雰囲気下、1800℃、2時間保持して焼成した。このときの焼成体の気孔率は19%、焼成体の細孔径は約800nmであった。フェノール樹脂を含んだ同質スラリーを用いて角棒と円盤との接合を行いボート形状とし、200℃で乾燥した。
【0091】
上記の焼成体とSiC坩堝との気孔量に必要な高純度Si量、1.1kgを計り取り、SiC坩堝に入れた。気孔率20%、細孔径が600nmのSiC坩堝をボート上に乗せて含浸炉にセットした。この組み合わせを計5セット用意し、炉内に全て並べた。
【0092】
全体を密閉した高純度黒鉛容器に入れ、真空中、1650℃で1時間保持してSiを含浸した。含浸したボートからSiC坩堝を取り外し、被含浸体をブラスト処理し、表面の一部に付着している突起状Siを取り除いた。ボートの溝切り加工はダイヤモンドブレードを用いて切り込み加工をおこない、2mm幅の溝を形成した。次に弗酸と純水を用いて洗浄した。その後、純水を用いて高圧水洗浄と超音波洗浄をおこなってSi−SiC複合材によるウエハーボートを製造した。複合材は空隙にSiが含浸した気孔のない緻密な組織であった。
【0093】
(実施例2)
αSiC粉末(#180)と平均粒子径が2.5μmのαSiC粉末を弗酸と硝酸との混酸で酸洗処理をおこない、Feがそれぞれ2.4ppmと2ppmの粉末を得た。αSiC粉末(#180)と2.5μmのαSiC粒子とを4:6(質量比)で配合し、そこへ純水とアクリル樹脂エマルジョンを加えて混合し、固形分濃度82質量%のスラリーを得た。次にこのスラリーを円筒形の石膏型に流し込み、約4mmの肉厚を確認したのちスラリーを排泥した。(これを排泥鋳込み成型法という。)これにより、外径350mmφ、内径341mmφ、長さ1.5mの円筒形の成形体を得た。
【0094】
同様に曲率R500mmφのキャップを排泥鋳込み法によって作製し、円筒の一端に接合した。
【0095】
上記成形体を1100℃で脱脂したのち、真空雰囲気下、焼成温度2000℃、2時間保持して焼成した。このときの焼成体の気孔率は19%、同焼成体細孔径は約1μmであった。焼成体とSiC坩堝との気孔量に必要な高純度Si量3.4kgを計り取り坩堝に入れた。気孔率23%、細孔径が900nmのSiC坩堝を均熱管の上に乗せ、それを含浸炉にセットし、全体を密閉した高純度黒鉛容器に入れて準備を終了した。
【0096】
上記含浸炉内を真空にし、1700℃で2時間保持してSiを含浸した。被含浸体からSiC坩堝を取り外し、混酸と純水で酸洗浄をおこなったのち、高圧水洗浄と超音波洗浄をおこなって半導体用均熱管を得た。複合材は空隙にSiが含浸した気孔のない緻密な組織であった。
【0097】
(実施例3)
αSiC粉末(#240)と平均粒子径が1μmの高純度αSiC粉末(Fe不純物濃度:0.6ppm)を3:7の質量比で配合し、そこへ純水、可塑剤としてグリセリン、バインダーとしてセルロースを加えて混合し、固形分濃度77質量%の可塑性を持った混練物を得た。
【0098】
テフロン樹脂でコーティングしたシリンダーとプランジャーを有する押し出し成型機を使用して、外径6mm、内径4mmの細管を得た。同質材で一端を塞いで保護管を製造した。
【0099】
上記保護管を乾燥、加工後、700℃で脱脂したのち、アルゴン雰囲気下、1600℃、1時間保持して焼成した。このときの焼成体の気孔率は21%、同焼成体細孔径は約700nmであった。
【0100】
数十本の上記焼成体を、塞いだ一端が下になるように黒鉛板上に立てて並べた。その上にSiC坩堝を置き、焼成体と坩堝の気孔を含浸するに必要な高純度Si量230gを計り取り、坩堝に入れた。坩堝の気孔率は20%、細孔径は600nmであった。真空中、1650℃で1時間保持して焼成体にSiを含浸した。その後、被含浸体を1200℃、大気中で加熱して被含浸体表面に酸化膜を形成させてSi−SiC複合材による保護管を製造した。複合材は空隙にSiが含浸した気孔のない緻密な組織であった。
【0101】
(実施例4)
実施例1と同一のαSiC粉末を4:6の質量比で配合し、そこへ純水とポリビニルアルコールを加えて混合し、固形分濃度82質量%のスラリーを得た。次にこのスラリーを円筒形の石膏型に流し込み肉厚が約25mmとなるように固形鋳込みをし、外径350mmφ、内径300mmφ、長さ300mmの成形体を製造した。
【0102】
上記成形体を乾燥、加工後、1100℃で脱脂し、アルゴン雰囲気下、1900℃、2時間保持して焼成した。このときの焼成体の気孔率は20%、同焼成体の細孔径は約900nmであった。
【0103】
高純度黒鉛を用いた外径200mmφ、内径150mmφ、高さ100mmの坩堝の側面下部に1mmφの孔を均等に八箇所あけた。黒鉛坩堝に被含浸体の気孔量に見合った高純度Si、1.4kgを入れた。被含浸体を高密度黒鉛板に乗せ、その上に坩堝をセットし、全体を密閉した高純度黒鉛容器に入れ、真空中、1750℃で2時間保持してSiを含浸した。被含浸体から黒鉛坩堝を取り外し、ブラスト処理で突起状Siを除いたのち、研削加工、酸洗浄をおこなったのち、高圧水洗浄と超音波洗浄をおこなってSi−SiC複合材のベルジャー管を製造した。複合材は空隙にSiが含浸した気孔のない緻密な組織であった。
【0104】
(実施例5)
αSiC粉末(#180)と平均粒子径が15μmの高純度αSiC粉末を1:1の質量比で配合し、そこへ純水とポリビニルアルコールを加えて混合し造粒した。次に造粒粉末を、静水圧加圧成形法(CIP成形)で1.5トン/cm2の圧力で成形して、横350mm、縦125mm、厚さ8mmの平板を得た。
【0105】
上記成形体を1100℃で脱脂したのち、アルゴン雰囲気下、2100℃、2時間保持して焼成した。このときの焼成体の気孔率は18%、同焼成体細孔径は約3μmであった。この焼成体を横長になるように立て、各焼成体との間隔を約10mm空けて複数枚を列べた。その上に角形に鋳込み成形で作製した、横200mm、長さ300mm、高さ50mmで、気孔率20%、細孔径が600nmの角状のSiC坩堝を乗せた。SiC坩堝と成形体の気孔量に必要な高純度Si量7.1kgを計り取り、SiC角坩堝に入れた。この組み合わせを計6セット用意し、炉内に全て並べ、全体を密閉した高純度黒鉛容器に入れて、真空中、1600℃で2時間保持してSiを含浸した。含浸した平板から角坩堝を取り外し、被含浸体をブラスト処理により一部に付着している突起状Siを除いた。この被含浸体をさらに研削加工してSi−SiC複合体による4インチウエハーのトレイを製造した。複合材は空隙にSiが含浸した気孔のない緻密な組織であった。
【0106】
(実施例6)
αSiC細粒(#1200)をさらに粉砕、酸洗、HClガスを流通して純化処理をおこない、Feが0.2ppmm、最大粒子径が15μm未満、平均粒子径1.8μmの高純度αSiC細粒を得た。この粉末に純水とアクリル樹脂エマルジョンを加えて混合し、固形分濃度78質量%のスラリーを得た。次にこのスラリーを石膏型に流し込み、ウエハーボート搬送用のフォーク形状成形体を得た。
【0107】
この成形体を乾燥後、1100℃で脱脂したのち、真空雰囲気下、1900℃、2時間保持して焼成した。このときの焼成体の気孔率は21%、同焼成体平均細孔径は約5μmであった。含浸は一度含浸処理に使用したSi−SiC坩堝を用いて、横長に列べた焼成体の上に坩堝を乗せ行った。被含浸体の気孔量に必要な高純度Si量1.2kgを計り取り坩堝の中に入れ、全体を密閉した高純度黒鉛容器に入れ、真空中、1600℃で2時間保持してSiを含浸した。被含浸体から坩堝を取り外し、被含浸体表面をブラスト処理により付着している突起状Siを除いた。
【0108】
この含浸体をさらに研削加工してウエハー搬送用フォーク形状Si−SiC複合材を製造した。複合材は空隙にSiが含浸した気孔のない緻密な組織であった。
【0109】
(実施例7)
SiO2と炭素からβSiCを合成して粉砕、酸洗して平均粒子径1.5μmのβSiC粉末を得た。純水とデキストリンを加えてスラリーとし、実施例1の石膏型に鋳込んだ。固形後、脱型して円盤と角棒を得た。同じく径140mmφ、高さ100mmの円柱石膏型にスラリーを流し込み、厚みが4mmとなるように着肉させたのちスラリーを排泥してSiを入れる坩堝を製造した。
【0110】
上記成形体を、乾燥、加工後、脱脂したのち、真空雰囲気下、1900℃、1時間保持して焼成した。このときの焼成体と坩堝の気孔率は21%、同焼成体細孔径は約4μmであった。焼成体とSiC坩堝との気孔量に必要な高純度Si量1.2kgを計り取り、SiC坩堝に入れ、SiC坩堝を接合したボート上に乗せて含浸炉内にセットし、密閉した高純度黒鉛容器に入れ、真空中、1650℃で1時間保持してSiを含浸した。含浸したボートからSiC坩堝を取り外し、Si−SiC複合材によるボート形状品を製造した。ボート形状品は空隙にSiが含浸した気孔のない緻密な組織であった。
【0111】
(実施例8)
実施例7で合成したβSiC粉末をさらに水分級して平均粒子径が0.3μmの粉末を得た。純化処理を施したのち、ポリビニルアルコールを加えて造粒した。金型成形で成形体密度1.5g/cm3、気孔率53%、100mm角、高さ80mmの角鉢を成形した。これを1200℃で焼成して細孔径300nmの気孔を持つ多孔体を得た。
【0112】
このSiC角鉢と実施例1と同条件で別途焼成した被含浸体との気孔量に必要な高純度Si量1.3kgを計り取りSiC角鉢に入れた。それを被含浸体の上に乗せて含浸炉内にセットし、密閉した高純度黒鉛容器に入れ、真空中、1600℃で2時間保持してSiを含浸した。含浸したボートからSiC坩堝を取り外し、ボート形状品を得た。ボート形状品は空隙にSiが含浸した気孔のない緻密なSi−SiC複合材であることを確認した。
【0113】
(実施例9)
実施例2で配合したαSiC粉末へ、炭素源として水溶性フェノール樹脂を12%添加し、そこへ純水を加えて固形分濃度80質量%のスラリーを得た。これを実施例1で用いた石膏型に流し込みSiC坩堝を成形した。これを加工したのち、乾燥、脱脂し、真空雰囲気下、1900℃、1時間保持して焼成した。このときのSiC坩堝の気孔率は21%、同焼成体細孔径は約900nmであった。この焼成体にSi含浸処理をおこない、残存している炭素をSiC化してSi−SiC複合材を得た。その密度は3.1g/cm3となった。この一部を切り出し、酸によりSiを除去したSiC基体の密度は2.9g/cm3、開気孔量10%、細孔径350nmであった。
【0114】
SiCを主成分とする焼成体の気孔量に必要な高純度Si量0.8kgを計り取り、坩堝に入れ、接合したボート上に同坩堝を乗せて含浸炉内にセットし、密閉した高純度黒鉛容器に入れ、真空中、1650℃で2時間保持してSiを含浸した。含浸後の複合材は織観察から気孔のない緻密体であることを確認した。
【0115】
(比較例1)
実施例5において作製した平板を同条件で焼成して、焼成体が横長になるよう、各焼結体との間隔を約10mmにして並べた。その間に、焼成体の含浸に必要なSi量7.4kgと約5mmφの高純度黒鉛と3mm径のSiCとを同容量混ぜたものを充填した。全体を密閉した高純度黒鉛容器に入れ、真空中、1600℃で2時間保持してSiを含浸した。被含浸体である平板を剥離する際に、過剰なSiとSiC粒子および黒鉛粒子との混在相が下部に堆積しているため、平板の数枚が破損し、また平板に固着した含浸物を取り除くのに多く時間を要した。
【0116】
(比較例2)
実施例1で焼成したSiC焼成体の周辺に、粒状Siをフェノール樹脂で一様に塗布固定し、その周りを炭素繊維で覆い、粒状Siの脱落を防止した。これを真空中、1650℃で1時間保持してSiを含浸した。被含浸体の表面は過剰のSiと炭素繊維とが固着し、それを隔離するのに多くの時間を費やし、また、焼成体の表面には未含浸相が生じたため、再度、含浸処理を施す必要があった。
【0117】
(比較例3)
実施例2で作製した焼成体を炉中央に設置し、焼成体に炭素繊維を巻き付け、黒鉛坩堝に入れたSiが炭素繊維の毛細管現象により供給されるよう配置した。これらを密閉した高純度黒鉛容器内に入れ、真空下、1800℃、2時間保持してSiを含浸した。
【0118】
被含浸体は一部に気孔を残した組織であり、均一なSi−SiC複合材を得ることはできなかった。
【0119】
【発明の効果】
本発明により、従来行われてきた含浸法に比べ、炭素繊維の巻き込みやSiの塗布、充填といった煩雑で人手の掛かる準備が不用となり、極めて簡単で、効率的な製造方法が提供可能となった。特に、製品形態の異なる複数個の製品の一括処理が可能となり生産効率が著しく高まった。
【0120】
また本発明の製造方法を用いることによって製造したSi−SiC複合材は、高純度で緻密な組織を有し、特に半導体用冶具の分野で、製品の歩留まりを高める信頼性の高い冶具を提供可能となった。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for producing silicon / silicon carbide ceramics (hereinafter referred to as Si—SiC), and more particularly to a method for impregnating Si in voids in a SiC fired body.
[0002]
[Prior art]
Conventionally, Si-SiC materials composed of Si and SiC are excellent in denseness, high thermal conductivity, and strength. Therefore, heat treatment members such as silicon single crystal wafers, for example, semiconductor heat treatment wafer boats, semiconductor furnaces. It is used for core tubes.
[0003]
The Si-SiC composite is usually obtained by mixing SiC powder alone or a mixture of coarse and fine particles with a binder, molding it by hydrostatic pressure molding, casting production method, etc., and firing it. The fired body is manufactured by impregnating Si.
[0004]
As a typical method for impregnating Si into a SiC fired body, the following method has been proposed.
[0005]
(A) A method in which porous SiC is placed in a molten Si bath and impregnated with molten Si by utilizing a capillary phenomenon generated by SiC pores (open pores penetrating inside).
[0006]
(B) Si is put into the crucible, carbon fibers are arranged between the crucible and the SiC fired body, the molten Si is guided to the fired body using the capillary action of the carbon fiber, and the fired body is impregnated with Si. Method (JP-A-7-89778, JP-A-2000-119079).
[0007]
(C) A method in which Si is mixed with SiC powder and disposed around the object to be impregnated, and high-frequency heating is performed to melt and impregnate Si while moving the object to be impregnated (Japanese Patent Publication No. 53-29319).
[0008]
(D) Silicon nitride (Si Three N Four ) Is impregnated into the pores of the SiC fired body (Japanese Patent Publication No. 36-15163).
[0009]
The problems of the above Si impregnation method
(A) When the impregnation method using the capillary phenomenon exceeds a certain height, a region that cannot be impregnated is generated, and it cannot meet the demands associated with the increase in the size of today's members. Further, since Si remaining in the lower portion remains, complicated and troublesome post-processing is left.
[0010]
(B) In the case where a plurality of carbon fibers (yarns) are arranged and impregnated at a time, the prior labor and preparation are complicated. In addition to the impregnated body, a crucible for putting Si, carbon fiber, and other devices are complicated and the entire device must be expensive. Further, the carbon fiber adheres to the impregnated body and requires subsequent treatment.
[0011]
(C) Thorough preparation for impregnation is required and the efficiency is poor. Furthermore, it is difficult to remove the SiC powder disposed around after cooling and solidification.
[0012]
(D) Si Three N Four The decomposition temperature of the silicon is high, so that the silicon more than necessary for the impregnation is decomposed, resulting in inefficiency, and excessive Si is deposited around the furnace and impairs the life of the furnace.
[0013]
[Problems to be solved by the invention]
In a method of impregnating Si in porous SiC having open pores, a manufacturing method for obtaining a dense Si-SiC composite material by a simple, easy and reliable method without using a complicated impregnation mechanism and expensive equipment, It is an object to provide a method capable of easily controlling the supply rate of molten Si and a Si crucible necessary for the method.
[0014]
[Means for Solving the Problems]
The inventor of the present invention has reached the present invention as a result of diligent efforts to solve the above problems. That is, the present invention relates to the following.
[0015]
(1) A crucible containing Si is placed on the upper part of a fired body containing SiC as a main component, the crucible is heated to bring the Si into a molten state, and a Si melt is supplied to the surface of the fired body through the holes of the crucible. And Si—SiC composite material manufacturing method for manufacturing Si—SiC composite material by impregnating a fired body with Si.
[0016]
(2) The method for producing a Si—SiC composite material according to (1), wherein two or more crucibles containing Si are installed on an upper part of a fired body containing SiC as a main component.
[0017]
(3) The crucible is composed mainly of SiC and has a density of 1.30 g / cm. Three ~ 3.02 g / cm Three The density ratio is in the range of 40 to 92 TD%, and the average pore diameter (average pore diameter) measured with a mercury porosimeter is in the range of 50 nm to 30 μm (1) or The manufacturing method of the Si-SiC composite material as described in (2).
[0018]
(4) The crucible is composed mainly of SiC and has a density of 1.70 g / cm. Three ~ 2.90 g / cm Three (1) or (2), wherein the density ratio is in the range of 53 TD% to 90 TD%, and the average pore diameter measured with a mercury porosimeter is in the range of 300 nm to 4000 nm. The manufacturing method of Si-SiC composite material of description.
[0019]
(5) A crucible adds a binder to a SiC powder having a particle size in the range of 0.1 μm to 300 μm and casts, rubber press, or molds, and then a temperature of 1200 ° C. to 2300 ° C. The method for producing a Si-SiC composite material according to any one of (1) to (4), wherein the crucible is heated and fired within a range and is composed mainly of SiC.
[0020]
(6) The crucible is composed mainly of graphite and has a density of 1.50 g / cm. Three ~ 2.05 g / cm Three The method for producing a Si—SiC composite material according to (1), wherein the crucible has an opening at a lower part or a side part of the crucible.
[0021]
(7) The opening has a hole shape, the hole diameter is in the range of 0.25 to 2.0 mmφ, and the number density of holes in the region having the opening is 0.001 / cm. Three ~ 1 piece / cm Three (6) The method for producing a Si—SiC composite material according to (6).
[0022]
(8) The sintered body containing SiC as a main component has a density of 1.3 g / cm. Three ~ 3.0 g / cm Three The density ratio is in the range of 40 TD% to 92 TD%, and the average pore diameter (average pore diameter) measured with a mercury porosimeter is in the range of 50 nm to 30 μm (1) The manufacturing method of the Si-SiC composite material of any one of-(7).
[0023]
(9) Any one of (1) to (8), wherein the supply rate of Si from the crucible to the fired body mainly composed of SiC is in the range of 1 g / min to 200 g / min. The manufacturing method of Si-SiC composite material as described in a term.
[0024]
(10) The supply rate of Si from the crucible to the fired body containing SiC as a main component is 0.005 g / (cm) as the Si supply rate per unit volume of the fired body. Three Min) to 5 g / (cm Three The method for producing a Si—SiC composite material according to any one of (1) to (9), characterized in that it is within a range of (min).
[0025]
(11) The Si-SiC composite according to any one of (1) to (10), wherein the supply rate of Si per crucible is within a range of 2 g / min to 200 g / min. A method of manufacturing the material.
[0026]
(12) The method for producing a Si—SiC composite material according to any one of (1) to (11), wherein the total amount of SiC metal impurities constituting the fired body is 50 ppm or less.
[0027]
(13) The Si-SiC composite according to any one of (3) to (5) and (8) to (11), wherein the total amount of SiC metal impurities constituting the crucible is 50 ppm or less. A method of manufacturing the material.
[0028]
(14) SiC as the main component, density 1.30 g / cm Three ~ 3.02 g / cm Three To a fired body characterized in that the density ratio is in the range of 40 TD% to 92 TD% and the average pore diameter (average pore diameter) measured with a mercury porosimeter is in the range of 50 nm to 30 μm. Crucible for impregnating melt.
[0029]
(15) Mainly composed of graphite, with a density of 1.50 g / cm Three ~ 2.05 g / cm Three A crucible for impregnating a melt into a fired body, characterized by having an opening in a lower part or a side part of the crucible.
[0030]
DETAILED DESCRIPTION OF THE INVENTION
The present invention relates to a method of manufacturing a heat treatment member for semiconductor, for example, in a Si-SiC composite material by impregnating a melted Si into a fired body containing SiC as a main component. A crucible containing Si is installed, and the crucible is heated to bring Si into a molten state. The melt of Si is supplied to the surface of the fired body through the holes of the crucible, and the fired body is impregnated with Si to impregnate the composite material. It is a manufacturing method of the Si-SiC composite material to manufacture. At this time, it is preferable to control the supply amount of molten Si to be supplied to the impregnated body by controlling the density (the amount of voids), the amount of open pores, and the pore diameter of the crucible containing Si in advance.
[0031]
Conventionally, porous SiC is put in a molten Si bath, and thin continuous pores are impregnated with Si by using a capillary phenomenon. In the present invention, simultaneously with this capillary action, Si is dropped and supplied from the upper part of the fired body using gravity, and the voids of the fired body are filled with Si. As a result, a distance, a large volume, and a large impregnation speed that are impossible only by capillary action are obtained. As a result, it has become possible to easily achieve impregnation into complex shaped products without being restricted by shape and size.
[0032]
In the present invention, it is preferable that the crucible installed on the upper part of the fired body is divided and installed in several places according to the shape of the impregnated body. Thereby, an efficient impregnation process can be performed in the minimum necessary space. The material for the crucible can be selected from, for example, a high-purity SiC porous body, graphite, or a homogeneous Si—SiC composite material. By using each material subjected to high-purity treatment in this way, it is possible to manufacture boats and furnace core tubes suitable for semiconductor applications.
[0033]
The amount of Si supplied is related to the amount of open pores in the crucible and the pore diameter. In order to increase the supply amount of Si, the amount of pores and / or the pore diameter is increased. On the other hand, the amount of Si supply can be limited by reducing the pore volume and pore diameter of the crucible. In the case of a graphite crucible, it can be adjusted by the hole diameter, the number thereof and the hole density. In order to control the open pore volume and pore diameter of SiC or Si-SiC crucible, it can be operated by adjusting the particle size of SiC powder as the raw material, the molding method, firing conditions, and the like.
[0034]
It is necessary to suppress the supply rate of Si from the crucible containing Si to the object to be impregnated so as not to exceed the impregnation ability (speed) of the object to be impregnated. If the supply amount from the crucible is too large, the Si melt spills outside the impregnated body, and the amount of Si to be supplied to the impregnated body is insufficient.
[0035]
On the other hand, graphite usually has many pores of 10 to 40% by volume. When Si is supplied through the open pores, a part of the graphite reacts to generate SiC. This reaction reduces the strength of the crucible and causes volume expansion to break the crucible. For this reason, when using a graphite crucible, Si intrusion and reaction can be suppressed by using relatively dense high-purity graphite having a porosity of 10 to 20% by volume. It is preferable to adjust the supply amount of Si by opening an arbitrary opening, for example, a hole and a necessary number of holes at a position corresponding to the shape of the impregnated body in the lower part or side surface of such a crucible.
[0036]
As described above, in the present invention, the crucible containing Si is disposed so as to be in contact with the upper part of the object to be impregnated or the upper part of the object to be impregnated. For example, in a furnace heated under vacuum, a crucible containing Si is set on an object to be impregnated, and the entire furnace is heated to a temperature equal to or higher than the Si melt temperature, and the melted Si is converted into open pores It is preferable that the impregnation treatment is performed by supplying to the surface of the object to be impregnated through the openings.
[0037]
In general, a semiconductor heat treatment member is required to have high strength, high purity, and high thermal conductivity. Therefore, the fired body containing SiC as a main component as its precursor is required to have a high density and a sufficient interparticle bonding force. For this purpose, it is desirable to obtain a high-density molded body and then fire it at a predetermined temperature. At this time, the pore diameter also expands in conjunction with the firing temperature. By setting these conditions, it is preferable to set the density, density ratio, and average pore diameter of the fired body so that sufficient strength and capillary attraction can be maximized.
[0038]
The Si—SiC composite material impregnated by the method of the present invention has a remarkably small amount of pores and can have a dense structure. Further, the present invention provides an extremely efficient production method that does not require post-treatment such as removing Si adhered by selecting an appropriate Si supply amount and carbon fibers wound around an impregnated body.
[0039]
The present invention is described in further detail below.
[0040]
An example of manufacturing a fired body mainly composed of SiC, which is an impregnated body, will be described. After the SiC sintered body is molded and debindered using SiC powder and an organic binder, continuous open pores suitable for the Si impregnation treatment are formed, and an SiC precursor sufficient to obtain a high-strength impregnated body is obtained. Therefore, these are fired at a predetermined temperature.
[0041]
The fired body containing SiC as a main component means a fired body containing carbon as a main component, carbon from a binder, Si to be impregnated, and other inevitable impurities.
[0042]
A high-purity SiC powder is used alone or several kinds of powders having different particle diameters are blended, and a binder is mixed therewith to produce a dense compact.
[0043]
It is desirable to use high-purity powder as the SiC raw material. In particular, it is preferable to use a powder containing few elements such as Fe, Ni, Cr, Ca, and Cu that are easily mixed as metal impurities. The amount of metal impurities can generally be reduced by repeated pickling with hydrofluoric acid or a mixed acid of hydrofluoric acid and nitric acid. Furthermore, when the heat treatment is performed in a halogen-based gas, it is further purified. At least the total amount of these metal impurities is preferably 50 ppm or less.
[0044]
The particle size of the SiC powder is preferably in the range of 0.1 μm to 300 μm. In the case of molding with only a single particle size, if a particle having an average particle size in the range of 0.3 to 20 μm is used, a molded body excellent in moldability and fillability can be obtained.
[0045]
In addition, when two or more particle sizes are mixed to achieve densification, the average particle size of coarse particles is in the range of 50 to 300 μm, and the average particle size of fine particles is in the range of 0.1 to 30 μm. preferable. The blending ratio is preferably such that the ratio of coarse particles to fine particles is 3 to 7: 7 to 3. More preferably, high filling properties can be obtained by selecting the ratio of coarse particles to fine particles within the range of 4-6: 6-4. The powder is preferably a monodispersed powder without aggregation.
[0046]
The crystal system of SiC may be hexagonal (hereinafter referred to as α), cubic (hereinafter referred to as β), amorphous, or a mixture thereof. From the viewpoint that various particle sizes can be easily procured at low cost, αSiC powder obtained by the Atchison method can be suitably used.
[0047]
The high purity of the SiC powder is generally obtained by pickling the powder. As the type of acid, hydrochloric acid, hydrofluoric acid, nitric acid, or a mixed acid thereof is used.
[0048]
The distribution of metal impurities in SiC synthesized from the Atchison method is disclosed in Japanese Patent Application Laid-Open No. 5-32458, but in general, the smaller the particle diameter, the easier it is to remove impurities.
[0049]
After adding a dispersant and an organic binder to the SiC powder and stirring and mixing, the mixture is granulated, and then a mold, rubber press molding (CIP), or the mixed slurry is formed by casting using a gypsum mold. The cast molding method is excellent for obtaining various shapes, thin-walled tubes, long-sized molded products, and the like as semiconductor heat treatment members.
[0050]
As the organic binder, it is preferable to use a water-soluble phenol resin, polyacetic acid emulsion, silicone resin, acrylic resin emulsion or the like. The blending ratio of the binder varies depending on the particle size of the SiC powder within the range of 0.2% by mass to 15% by mass. In the case of a coarse particle size, the amount is small, and in the case of a fine particle size, a large amount is added. When phenol resin is used as a binder, carbon remains in the molded body. This carbon changes to SiC when impregnated with Si.
[0051]
The open pore diameter is measured by a mercury porosimeter. That is, the pore diameter or pore diameter converted from the pressure is obtained by pressing mercury into the molded body.
[0052]
Liquids with a wetting angle of 90 ° or more cannot enter the pores themselves due to surface tension. Therefore, in order to put the liquid into the pores, it is necessary to apply pressure from the outside, and the necessary pressure is related to the pore diameter.
[0053]
The relationship between the applied pressure and the pore diameter that can enter at that time is expressed by the following equation.
[0054]
Pr = 2σ cos θ
P: Applied pressure
r: pore radius
θ: Contact angle (wetting angle) (The average value for mercury is 141.3 degrees)
σ: Surface tension of mercury (480 mN / m 2 )
[0055]
This relation is known as the Fochbone formula. Although the pore size of most porous materials is not cylindrical, this formula is commonly used to calculate the pore size distribution from mercury intrusion data.
[0056]
Assuming that the pore is a cylinder and penetrating mercury, substituting the above value gives the following equation.
[0057]
r = 7500 / P
r: pore radius
P: Applied absolute pressure
[0058]
The measuring method measures the mass of a rectangular body of several mm square and about 30 mm in length entering the sample container. Five sides of the rectangular parallelepiped are coated with an organic resin. Place the sample in a glass container (dilatometer) and set in a mercury intrusion device. After degassing in vacuum, fill with mercury. Remove the diradometer from the mercury intrusion measure and place it in the autoclave. Sequentially inject mercury into the system and record the amount of injection at each pressure. After the measurement, the pressure and the pore diameter are converted to obtain the pore diameter distribution.
[0059]
To impregnate Si, a large capillary attractive force is applied to the SiC fired body as a precursor.
Generally, capillary attraction is expressed by the following equation. If the height of the impregnated Si is h,
h = (2σ) / r · ρ · cos α
σ: surface tension (800 mN / m at Si (1500 ° C.)) 2 )
r: radius of capillary tube (pore diameter)
ρ: specific gravity of liquid (2.5 g / cm Three )
cosα: Contact angle (less than 40 degrees)
[0060]
Thus, normally, the smaller the pore diameter, the greater the capillary force. However, the actual pore shape is three-dimensionally complicated, and is an indefinite shape of continuous holes in which thick holes and thin holes intersect.
[0061]
The pore size of the compact is related to the particle size of the SiC powder used. That is, the finer the particle diameter, the smaller the pore diameter, and the larger the SiC powder, the larger the pore diameter. For example, a powder having an average particle size of 0.4 μm is added to the binder, and the average pore size of the close-packed compact is about 20 nm to about 30 nm, and about 50 nm when the average particle size is 0.6 μm. In the case of 3 μm, the powder obtained by mixing coarse particles having an average particle diameter of about 70 nm to 100 nm and fine particles of 10 μm or less has a pore diameter of 100 to 200 nm in the range of 15 μm to 40 μm. A molded product is obtained. In small pores of 50 nm or less, molten Si has a higher resistance due to the pore shape of the pores than the capillary force (suction force) of the molded body, and only the vicinity of the surface is impregnated. Therefore, it is necessary to adjust the pore diameter so that Si can easily enter by firing.
[0062]
First, the molded body is processed into a predetermined shape, and then the binder is removed under vacuum or in a non-oxidizing atmosphere. The degreasing temperature is maintained at a predetermined temperature in the range of 700 ° C. to 1100 ° C. for 1 hour to 3 hours. The non-oxidizing gas is preferably nitrogen, argon, helium gas or the like.
[0063]
Next, the degreased compact is fired. The firing temperature is 1200 ° C to 2300 ° C. The atmosphere is a vacuum or a non-oxidizing atmosphere. The non-oxidizing gas is preferably nitrogen, argon, helium gas or the like. When firing in a vacuum atmosphere, it is preferable to carry out at a temperature of 2000 ° C. or lower in consideration of the heat resistance of the constituent materials of the furnace and the decomposition of SiC. The degree of vacuum is preferably 133 Pa (1 Torr) or less, and more preferably 13 Pa (0.1 Torr) or less. When firing under vacuum, impurities are easier to remove than under normal pressure. That is, the content of impurities such as Ca, Fe, and Cu in the molded body can be reduced by 50% to 80% by firing under vacuum.
[0064]
The holding time for each firing temperature is 1 hour to 5 hours. If it is less than 1 hour, the grain growth ends halfway and stable adjustment to the target pore diameter cannot be achieved. Even if it is held for 5 hours or more, the pore diameter does not increase and is meaningless.
[0065]
By firing the compact, grain growth in the compact proceeds and the pore diameter increases. As a result of intensive studies, it was found that Si is most easily sucked when the pore diameter in the fired body is in the range of 50 nm to 30 μm, more preferably in the range of 300 nm to 5 μm.
[0066]
The crucible for supplying Si to the impregnated body, which is the other main element, can control the supply rate of Si by the pore diameter or the size and density of the opening.
[0067]
The shape and size of the crucible are determined from the viewpoint of the shape balance with the object to be impregnated and the effective utilization of the furnace space. The shape of the crucible is preferably a cylinder. The wall thickness is the thickness necessary to maintain the minimum shape. If you want to increase the surface area of the crucible, prepare several small crucibles. The pore diameter of the crucible is preferably about the same as that of the object to be impregnated. When the pore diameter is small, the supply amount to the impregnated body is small, and when the pore diameter is large, the supply amount to the impregnated body is large. If the pore diameter is smaller than 50 nm, Si is not supplied through the open pores. On the other hand, if the thickness is larger than 30 μm, the supply of Si is too fast and the target impregnated body may not be completely impregnated and may spill out.
[0068]
A crucible containing SiC as a main component means a crucible containing SiC as a main component, carbon from a binder, Si to be impregnated, and other inevitable elements.
[0069]
The density of the crucible mainly composed of SiC is 1.30 g / cm, the minimum density that maintains the shape during molding. Three Or more, more preferably 1.70 g / cm Three The density ratio is 40 TD% or more, more preferably 53 TD% or more, and 3.02 g / cm as the upper limit of the density capable of maintaining the shape of open pores. Three The following is preferable. Further, when the density is increased, the amount of pores is decreased and the pore diameter is decreased, and as a result, the supply amount of Si is decreased. For this reason, the density is more preferably 2.90 g / cm. Three Hereinafter, a SiC sintered body having a density ratio of 92 TD% or less, more preferably 90 TD% or less is desirable.
[0070]
The density ratio TD% is the true density of the material forming the crucible (3.21 g / cm2 when SiC is 100%). Three It is. ) Represents the ratio of the density (bulk density) of the actual crucible to. The Archimedes method can be exemplified as a measuring method. In the case of a porous material, the surface is covered with paraffin or the like to determine the bulk density. In addition, vacuum degassing in water, air weight (W 1 ), Weight in water (W 2 ), Water content (W) Three ) To obtain the bulk density and porosity. The density and porosity are calculated according to the following formula.
[0071]
Bulk density (ρ)
ρ = W 1 / (W Three -W 2 )
Porosity (Po)
Po = (W Three -W 1 ) / (W Three -W 2 ) × 100
(According to JIS R2205.)
[0072]
Next, a method of adjusting the pore diameter of a crucible containing SiC as a main component or a fired body will be described. The firing temperature of the compact mainly composed of SiC varies depending on the SiC powder particle diameter. Grain growth of about 0.4 μm has already started at 1000 ° C., and grows to 200 nm at 1200 ° C., 500 nm at 1400 ° C., about 1 μm at 1600 ° C., and about 2 μm at 2000 ° C. In addition, when the coarse particles and the fine powder are blended, the fine powder diffuses into the coarse particles, so that remarkable particle growth occurs. As a result, the pore diameter reaches 20 μm. Therefore, the range of the firing temperature is preferably 1200 ° C to 1800 ° C. On the other hand, when the particle size is increased, the change in the pore size is small even when the firing temperature is changed. When the particle size is 15 μm, the pore size is a constant value of about 3 μm. As described above, the pore diameter is appropriately selected at a suitable firing temperature for each particle diameter. Table 1 shows the particle diameter, the pore diameter of the molded body, and the change in pore diameter at each firing temperature.
[0073]
[Table 1]
Figure 0004376479
[0074]
Next, a crucible mainly composed of graphite will be described. The crucible containing graphite as a main component means a crucible containing inevitable impurities and other additive elements in addition to graphite as a main component, and a crucible containing graphite as a main component subjected to surface modification.
[0075]
When Si is supplied through the open pores of the graphite crucible, a part of the graphite is converted to SiC by the reaction between the graphite particles and the molten Si, and the crucible swells, and the crucible is cracked or broken. For this reason, the graphite crucible is preferably a high-density product having a porosity of 10 to 20%. The density at this time is 1.50 g / cm. Three ~ 2.05 g / cm Three Within the range. When the density is high, the pore diameter becomes small, and Si does not penetrate into the pores, and the surface is coated with Si.
[0076]
The thickness of the crucible is preferably 20 mm or more from the viewpoint of repeatedly using the graphite crucible. Arbitrary holes are made in the side or bottom of the crucible, and melted Si is supplied to the material to be impregnated. The pore diameter is preferably in the range of 0.25 mmφ to 2.0 mmφ.
[0077]
It is practically difficult and economical to make a hole smaller than 0.25 mmφ in high-density graphite. In addition, opening a large hole of 2.0 mmφ or more is intended to always supply a fixed amount of molten Si, but the Si supply pressure becomes unstable and impregnation because the pressure of the Si bath changes between the initial and final stages. This is inconvenient. Therefore, the hole diameter is preferably 0.25 mmφ to 2.0 mmφ. The amount of Si supplied when a graphite crucible is used is controlled by the hole diameter and the number of holes. In the graphite crucible of the present invention, the number density of holes in the region having openings is 0.001 per cm. Three ~ 1 piece / cm Three Is preferably within the range of 0.01 pieces / cm Three ~ 0.1 / cm Three It is more preferable to be within the range. The number density of the holes in the region having the opening means that the number density of the holes is calculated excluding the region where the opening is not formed on the outer surface of the graphite crucible.
[0078]
The positional relationship between the crucible and the body to be impregnated (fired body containing SiC as a main component) is a positional relation in which the crucible is arranged on the upper part of the fired body, and only the outer periphery of the crucible may be in contact with the body to be impregnated. Further, it is more preferable that the crucible surface is not in contact with the entire surface of the crucible, but a groove is formed in the shape of a comb blade on the surface of the crucible to reduce the contact area. The SiC crucible has a Si—SiC composition once used for impregnation, and can be used repeatedly as a crucible for supplying Si. Similarly, a graphite crucible can be used any number of times.
[0079]
The crucible and fired body must be Cl 2 It is preferable to perform the purification treatment while circulating a halogen-based gas such as HCl. The purification treatment temperature is preferably within a range of 1100 ° C to 1700 ° C. When the heating temperature is 1100 ° C. or lower, purification is insufficient and it is difficult to sufficiently remove impurities diffused on the SiC surface. On the other hand, if the temperature is 1700 ° C. or higher, the formation of chloride due to the reaction between the SiC particles and chlorine becomes remarkable. The amount of impurities such as Fe, Na, Cu, etc. in the crucible and the compact is reduced by purification with the halogen-based gas. In addition, wet pickling, for example, immersing a crucible or fired body in hydrofluoric acid or a mixed acid of hydrofluoric acid and nitric acid, hydrofluoric acid and hydrochloric acid, etc. to dissolve the metal impurities in the acid, It is preferable that the same purification can be obtained by removing.
[0080]
A boat, a tube, or the like can be assembled by combining the baked and purified members. At this time, it is necessary to consider such that the adhesion between members and the familiarity with the base material are good.
[0081]
The joining step may be performed in any case of a molded body or a fired body. Although it is preferable to use a slurry having the same composition as the adhesive, it is not always necessary to use a homogeneous slurry. For example, a residual carbon after heating is added, and a phenolic binder that causes a SiC reaction generation when Si is impregnated is added. SiC slurry or the like can be suitably used as the bonding agent.
[0082]
In the Si impregnation treatment into the fired body, the amount of Si necessary for impregnation is determined from the density of the fired body, and the Si amount corrected for the amount of Si volatilized during heating is placed in the crucible. At this time, in the case of a crucible containing SiC as a main component, a necessary Si amount is added to the void amount. A crucible containing Si is placed on an object to be impregnated and set in a furnace. The impregnated material is placed on, for example, a purified graphite plate, carbon felt, or purified graphite particles. Moreover, it is preferable to put the entire contents of the furnace in a high-purity sealed graphite container. After reducing the pressure, the mixture is heated to 1500 ° C to 1800 ° C. Hold at the same temperature for 1 to 3 hours and then cool.
[0083]
The degree of vacuum in the furnace is preferably 133 Pa (1 Torr) or less, more preferably 1 Pa (0.01 Torr) or less. The impregnation temperature may be not less than the melting point of Si, but is preferably not less than 1500 ° C. at which the viscosity of Si is sufficiently lowered. On the other hand, when the temperature is 1800 ° C. or higher, the vaporization of Si into the furnace increases, which undesirably contaminates the furnace. The holding time depends on the supply rate of Si from the crucible containing Si, but 1 to 3 hours is preferable for the Si to sufficiently reach the entire body to be impregnated.
[0084]
At this time, the supply amount of Si is preferably in the range of 1 g / min to 200 g / min.
If it is 1 g / min or less, it takes too much time to impregnate, and the amount of volatilized Si increases, which is uneconomical. On the other hand, if it exceeds 200 g / min, the amount of Si supplied to the material to be impregnated is too large and a part of Si falls without being impregnated.
[0085]
The supplied Si flow rate is affected by the shape of the impregnated body and the amount of voids. The supply volume of Si sucked and dropped by capillary force and gravity is the unit volume (cm Three ) 0.005 g / (cm Three Min) to 5 g / (cm Three Min), more preferably 0.01 g / (cm Three Min) to 1 g / (cm Three -It is preferable to supply within the range of minutes). Supply amount is 0.005 g / (cm Three If less than min), impregnation takes too much time and becomes inefficient. 5g / (cm Three ・ Min) If it is earlier, the Si absorption capacity of the impregnated body is exceeded, and Si flows down from the impregnated body.
[0086]
The impregnated body from which the crucible has been removed is removed by blasting to remove the protruding Si adhering to a part. Further, the groove portion is grooved using a diamond blade or the like. Thereafter, the surface is cleaned using hydrofluoric acid or a mixed acid of hydrofluoric acid and hydrochloric acid. Acid concentration is HF: H 2 O is preferably in the range of 1:10 to 1: 5. Subsequently, high pressure water cleaning using pure water and ultrasonic cleaning are performed to completely remove acid components and impurities adhering to the surface. Thereafter, drying is performed at about 500 ° C.
[0087]
The impregnated body after drying is placed in an atmosphere mainly composed of a silane-based gas and a methane-based gas within a temperature range of 1100 ° C. to 1600 ° C., and a SiC film is formed on the surface by a CVD method to produce a Si—SiC composite material. .
[0088]
【Example】
Example 1
The α-SiC powder (# 150) and the α-SiC powder having an average particle diameter of 2 μm were pickled with a mixed acid of hydrofluoric acid and nitric acid (1: 1) to obtain powders with Fe of 2.1 ppm and 1.2 ppm, respectively. αSiC (# 150) and 2 μm αSiC particles were blended at a ratio of 1: 1 (mass ratio), and pure water and a water-soluble phenol resin were added thereto and mixed to obtain a slurry having a solid content concentration of 80% by mass. Next, this slurry was poured into a gypsum mold (30 mm wide, 40 mm long, 1 m long square bar type), and solid cast. Similarly, the slurry was poured into a gypsum mold having a diameter of 230 mmφ and formed into a disk shape having a thickness of 10 mm.
[0089]
Similarly, the slurry was poured into a cylindrical gypsum mold having a diameter of 140 mmφ and a height of 100 mm, and formed into a cylindrical container having a thickness of 4 mm to produce a crucible.
[0090]
The molded body was dried and processed, degreased at 1100 ° C., and then fired in a vacuum atmosphere at 1800 ° C. for 2 hours. At this time, the porosity of the fired body was 19%, and the pore diameter of the fired body was about 800 nm. A homogenous slurry containing a phenol resin was used to join a square bar and a disk to form a boat shape, which was dried at 200 ° C.
[0091]
The amount of high purity Si necessary for the pore volume of the fired body and the SiC crucible, 1.1 kg, was weighed and placed in the SiC crucible. A SiC crucible having a porosity of 20% and a pore diameter of 600 nm was placed on a boat and set in an impregnation furnace. A total of 5 sets of this combination were prepared and all were placed in the furnace.
[0092]
The whole was put in a sealed high-purity graphite container and kept at 1650 ° C. for 1 hour in a vacuum to impregnate Si. The SiC crucible was removed from the impregnated boat, the impregnated body was blasted, and the protruding Si adhering to a part of the surface was removed. The grooving of the boat was cut using a diamond blade to form a 2 mm wide groove. Next, it was washed with hydrofluoric acid and pure water. Thereafter, high-pressure water cleaning and ultrasonic cleaning were performed using pure water to manufacture a wafer boat made of a Si—SiC composite material. The composite material was a dense structure without pores in which voids were impregnated with Si.
[0093]
(Example 2)
The α-SiC powder (# 180) and the α-SiC powder having an average particle size of 2.5 μm were pickled with a mixed acid of hydrofluoric acid and nitric acid to obtain powders of 2.4 ppm and 2 ppm of Fe, respectively. αSiC powder (# 180) and 2.5 μm αSiC particles are blended at a ratio of 4: 6 (mass ratio), and pure water and an acrylic resin emulsion are added thereto and mixed to obtain a slurry having a solid content concentration of 82% by mass. It was. Next, this slurry was poured into a cylindrical gypsum mold, and after confirming a thickness of about 4 mm, the slurry was discharged. (This is referred to as a waste mud casting method.) Thus, a cylindrical molded body having an outer diameter of 350 mmφ, an inner diameter of 341 mmφ, and a length of 1.5 m was obtained.
[0094]
Similarly, a cap having a curvature of R500 mmφ was produced by a waste mud casting method and joined to one end of a cylinder.
[0095]
The molded body was degreased at 1100 ° C. and then fired in a vacuum atmosphere at a firing temperature of 2000 ° C. for 2 hours. At this time, the porosity of the fired body was 19%, and the pore diameter of the fired body was about 1 μm. A high-purity Si amount of 3.4 kg necessary for the pore volume of the fired body and the SiC crucible was measured and placed in the crucible. An SiC crucible having a porosity of 23% and a pore diameter of 900 nm was placed on a soaking tube, set in an impregnation furnace, and put into a sealed high-purity graphite container to complete the preparation.
[0096]
The impregnation furnace was evacuated and held at 1700 ° C. for 2 hours to impregnate Si. After removing the SiC crucible from the impregnated body and performing acid cleaning with mixed acid and pure water, high-pressure water cleaning and ultrasonic cleaning were performed to obtain a soaking tube for semiconductor. The composite material was a dense structure without pores in which voids were impregnated with Si.
[0097]
(Example 3)
αSiC powder (# 240) and high-purity αSiC powder (Fe impurity concentration: 0.6 ppm) with an average particle diameter of 1 μm are blended at a mass ratio of 3: 7, and pure water, glycerin as a plasticizer, and cellulose as a binder Were added and mixed to obtain a kneaded material having plasticity with a solid content concentration of 77% by mass.
[0098]
Using an extrusion molding machine having a cylinder and a plunger coated with Teflon resin, a thin tube having an outer diameter of 6 mm and an inner diameter of 4 mm was obtained. A protective tube was manufactured by closing one end with the same material.
[0099]
After drying and processing the protective tube, it was degreased at 700 ° C. and then calcined by holding at 1600 ° C. for 1 hour in an argon atmosphere. At this time, the porosity of the fired body was 21%, and the pore diameter of the fired body was about 700 nm.
[0100]
Several tens of the fired bodies were arranged on a graphite plate so that one end of the fired body was down. An SiC crucible was placed thereon, and 230 g of high-purity Si necessary for impregnating the pores of the fired body and the crucible was measured and placed in the crucible. The crucible had a porosity of 20% and a pore diameter of 600 nm. The fired body was impregnated with Si by holding at 1650 ° C. for 1 hour in vacuum. Then, the to-be-impregnated body was heated at 1200 ° C. in the atmosphere to form an oxide film on the surface of the to-be-impregnated body, thereby manufacturing a protective tube made of a Si—SiC composite material. The composite material was a dense structure without pores in which voids were impregnated with Si.
[0101]
(Example 4)
The same α-SiC powder as in Example 1 was blended at a mass ratio of 4: 6, and pure water and polyvinyl alcohol were added thereto and mixed to obtain a slurry having a solid content concentration of 82 mass%. Next, this slurry was poured into a cylindrical gypsum mold and solid cast so that the wall thickness was about 25 mm to produce a molded body having an outer diameter of 350 mmφ, an inner diameter of 300 mmφ, and a length of 300 mm.
[0102]
The molded body was dried and processed, degreased at 1100 ° C., and fired in an argon atmosphere at 1900 ° C. for 2 hours. At this time, the porosity of the fired body was 20%, and the pore diameter of the fired body was about 900 nm.
[0103]
Eight holes of 1 mmφ were equally drilled in the lower part of the side of a crucible having an outer diameter of 200 mmφ, an inner diameter of 150 mmφ and a height of 100 mm using high-purity graphite. A graphite crucible was charged with 1.4 kg of high purity Si corresponding to the pore volume of the impregnated material. The object to be impregnated was placed on a high-density graphite plate, a crucible was set thereon, and the whole was placed in a sealed high-purity graphite container, and kept at 1750 ° C. in vacuum for 2 hours to impregnate Si. Remove the graphite crucible from the impregnated body, remove the protruding Si by blasting, perform grinding and acid cleaning, then perform high pressure water cleaning and ultrasonic cleaning to produce a Si-SiC composite bell jar tube did. The composite material was a dense structure without pores in which voids were impregnated with Si.
[0104]
(Example 5)
αSiC powder (# 180) and high-purity αSiC powder having an average particle diameter of 15 μm were blended at a mass ratio of 1: 1, and pure water and polyvinyl alcohol were added thereto and mixed for granulation. Next, the granulated powder is 1.5 ton / cm by hydrostatic pressure molding (CIP molding). 2 Was used to obtain a flat plate having a width of 350 mm, a length of 125 mm, and a thickness of 8 mm.
[0105]
The molded body was degreased at 1100 ° C., and then fired in an argon atmosphere at 2100 ° C. for 2 hours. The porosity of the fired body at this time was 18%, and the pore diameter of the fired body was about 3 μm. The fired bodies were placed so as to be horizontally long, and a plurality of sheets were arranged with an interval of about 10 mm between each fired body. A rectangular SiC crucible having a width of 200 mm, a length of 300 mm, a height of 50 mm, a porosity of 20% and a pore diameter of 600 nm, which was produced by casting into a square, was placed thereon. A high-purity Si amount of 7.1 kg necessary for the porosity of the SiC crucible and the compact was weighed and placed in a SiC square crucible. A total of 6 sets of this combination were prepared, all arranged in a furnace, placed in a sealed high-purity graphite container, kept at 1600 ° C. for 2 hours in a vacuum, and impregnated with Si. The square crucible was removed from the impregnated flat plate, and the protruding Si adhering to a part of the impregnated material was removed by blasting. This impregnated material was further ground to produce a 4-inch wafer tray made of a Si-SiC composite. The composite material was a dense structure without pores in which voids were impregnated with Si.
[0106]
(Example 6)
αSiC fine particles (# 1200) are further pulverized, pickled, and purified by flowing HCl gas. Fe is 0.2ppmm, maximum particle size is less than 15μm, average particle size is 1.8μm, high purity αSiC fine particles Got. To this powder, pure water and an acrylic resin emulsion were added and mixed to obtain a slurry having a solid concentration of 78% by mass. Next, this slurry was poured into a gypsum mold to obtain a fork-shaped molded body for transferring a wafer boat.
[0107]
The molded body was dried, degreased at 1100 ° C., and then fired in a vacuum atmosphere at 1900 ° C. for 2 hours. The porosity of the fired body at this time was 21%, and the average pore diameter of the fired body was about 5 μm. The impregnation was performed by placing the crucible on the fired bodies arranged in a horizontally long shape using the Si-SiC crucible once used for the impregnation treatment. Weigh 1.2 kg of high-purity Si necessary for the pore volume of the material to be impregnated, put it in a crucible, place it in a sealed high-purity graphite container, and hold it in vacuum at 1600 ° C for 2 hours to impregnate Si did. The crucible was removed from the body to be impregnated, and the protruding Si adhering to the surface of the body to be impregnated by blasting was removed.
[0108]
This impregnated body was further ground to produce a fork-shaped Si-SiC composite material for wafer conveyance. The composite material was a dense structure without pores in which voids were impregnated with Si.
[0109]
(Example 7)
SiO 2 ΒSiC was synthesized from carbon and pulverized and pickled to obtain βSiC powder having an average particle size of 1.5 μm. Pure water and dextrin were added to form a slurry, which was cast into the gypsum mold of Example 1. After solidification, the mold was removed to obtain a disk and a square bar. Similarly, a slurry was poured into a cylindrical gypsum mold having a diameter of 140 mmφ and a height of 100 mm, and after being made to have a thickness of 4 mm, the slurry was drained to produce a crucible containing Si.
[0110]
The molded body was dried, processed, degreased, and fired in a vacuum atmosphere at 1900 ° C. for 1 hour. At this time, the porosity of the fired body and the crucible was 21%, and the pore diameter of the fired body was about 4 μm. Weigh 1.2kg of high-purity Si necessary for the amount of pores between the fired body and the SiC crucible, put it in the SiC crucible, put it on the boat with the SiC crucible joined, set it in the impregnation furnace, and sealed the high-purity graphite It was put in a container and kept at 1650 ° C. for 1 hour in a vacuum to impregnate Si. The SiC crucible was removed from the impregnated boat to produce a boat-shaped product made of Si-SiC composite material. The boat-shaped product was a dense structure without pores in which voids were impregnated with Si.
[0111]
(Example 8)
The β SiC powder synthesized in Example 7 was further subjected to moisture classification to obtain a powder having an average particle size of 0.3 μm. After the purification treatment, polyvinyl alcohol was added and granulated. Molding density 1.5g / cm Three A square bowl having a porosity of 53%, a 100 mm square, and a height of 80 mm was molded. This was fired at 1200 ° C. to obtain a porous body having pores with a pore diameter of 300 nm.
[0112]
1.3 kg of high-purity Si necessary for the amount of pores between the SiC bowl and the impregnated body separately fired under the same conditions as in Example 1 were weighed and placed in the SiC bowl. It was placed on an object to be impregnated, set in an impregnation furnace, placed in a sealed high-purity graphite container, and kept in vacuum at 1600 ° C. for 2 hours to impregnate Si. The SiC crucible was removed from the impregnated boat to obtain a boat-shaped product. It was confirmed that the boat-shaped product was a dense Si-SiC composite material without pores in which voids were impregnated with Si.
[0113]
Example 9
To the α SiC powder blended in Example 2, 12% of a water-soluble phenol resin was added as a carbon source, and pure water was added thereto to obtain a slurry having a solid concentration of 80% by mass. This was poured into the gypsum mold used in Example 1 to form a SiC crucible. After processing this, it was dried, degreased, and fired in a vacuum atmosphere at 1900 ° C. for 1 hour. At this time, the porosity of the SiC crucible was 21%, and the pore diameter of the fired body was about 900 nm. This fired body was subjected to Si impregnation treatment, and the remaining carbon was converted to SiC to obtain a Si—SiC composite material. Its density is 3.1 g / cm Three It became. The density of the SiC substrate obtained by cutting out a part of this and removing Si with acid is 2.9 g / cm. Three The amount of open pores was 10%, and the pore diameter was 350 nm.
[0114]
Weigh 0.8kg of high-purity Si necessary for the pore volume of the sintered body containing SiC as a main component, put it in a crucible, place the same crucible on a joined boat, set it in an impregnation furnace, and seal it in high purity. It was put into a graphite container and impregnated with Si by holding at 1650 ° C. for 2 hours in a vacuum. It was confirmed that the composite material after impregnation was a dense body without pores by woven observation.
[0115]
(Comparative Example 1)
The flat plates produced in Example 5 were fired under the same conditions, and the fired bodies were arranged horizontally with a spacing of about 10 mm so that the fired bodies were horizontally long. In the meantime, 7.4 kg of Si amount necessary for impregnation of the fired body, about 5 mmφ high-purity graphite and 3 mm diameter SiC mixed in the same volume were filled. The whole was put into a sealed high-purity graphite container, and kept at 1600 ° C. for 2 hours in a vacuum to impregnate Si. When exfoliating the flat plate, which is an impregnated body, a mixed phase of excess Si, SiC particles, and graphite particles is deposited on the lower part. It took a lot of time to get rid of.
[0116]
(Comparative Example 2)
Particulate Si was uniformly applied and fixed with a phenol resin around the SiC fired body fired in Example 1, and the periphery thereof was covered with carbon fibers to prevent the particulate Si from falling off. This was kept at 1650 ° C. in a vacuum for 1 hour to impregnate Si. Excess Si and carbon fibers adhere to the surface of the body to be impregnated, and it takes a lot of time to isolate it. Also, since the surface of the fired body has an unimpregnated phase, it is impregnated again. There was a need.
[0117]
(Comparative Example 3)
The fired body produced in Example 2 was placed in the center of the furnace, and the fired body was wrapped with carbon fiber, and Si placed in a graphite crucible was arranged to be supplied by the capillary action of the carbon fiber. These were put in a sealed high-purity graphite container and kept under vacuum at 1800 ° C. for 2 hours to impregnate Si.
[0118]
The impregnated body had a structure in which pores were partially left, and a uniform Si-SiC composite material could not be obtained.
[0119]
【The invention's effect】
According to the present invention, compared with a conventional impregnation method, it is possible to provide an extremely simple and efficient production method because the complicated and manual preparation of carbon fiber entrainment, Si coating and filling is unnecessary. . In particular, batch processing of a plurality of products having different product forms is possible, and the production efficiency is remarkably increased.
[0120]
In addition, the Si-SiC composite material manufactured by using the manufacturing method of the present invention has a high-purity and dense structure, and can provide a highly reliable jig that increases the yield of products, particularly in the field of semiconductor jigs. It became.

Claims (11)

SiCを主成分とする焼成体の上部にSiを入れた坩堝を2個以上設置し、該坩堝を加熱してSiを溶融状態とし、Siの融液を坩堝が有する孔を通じて焼成体表面に供給し、Siを焼成体に含浸させてSi−SiC複合材を製造するSi−SiC複合材の製造方法。 Two or more crucibles containing Si are placed on top of a sintered body containing SiC as a main component, the crucible is heated to make Si molten, and the Si melt is supplied to the surface of the sintered body through the holes of the crucible. And Si—SiC composite material manufacturing method for manufacturing Si—SiC composite material by impregnating a fired body with Si. 坩堝が、SiCを主成分とし、密度が1.30g/cm3〜3.02g/cm3の範囲内であり、密度比が40〜92TD%の範囲内であり、水銀ポロシメーターで測定した平均気孔径(平均細孔径)が50nm〜30μmの範囲内であることを特徴とする請求項1に記載のSi−SiC複合材の製造方法。Crucible, a main component SiC, in the range density of 1.30g / cm 3 ~3.02g / cm 3 , in the range density ratio of 40~92TD%, the average air measured by a mercury porosimeter The method for producing a Si—SiC composite according to claim 1, wherein the pore diameter (average pore diameter) is in the range of 50 nm to 30 μm. 坩堝が、SiCを主成分とし、密度が1.70g/cm3〜2.90g/cm3の範囲内であり、密度比が53TD%〜90TD%の範囲内であり、水銀ポロシメーターで測定した平均気孔径が300nm〜4000nmの範囲内であることを特徴とする請求項1または2に記載のSi−SiC複合材の製造方法。Average crucible, a main component SiC, density is in the range of 1.70g / cm 3 ~2.90g / cm 3 , the density ratio is in the range of 53TD% ~90TD%, as measured by a mercury porosimeter The method for producing a Si-SiC composite according to claim 1 or 2, wherein a pore diameter is in a range of 300 nm to 4000 nm. 坩堝が、粒度0.1μm〜300μmの範囲内のSiC粉末に、結合材を加えて鋳込み成形、または、ラバープレス成形、または、金型成形し、その後、1200℃〜2300℃の温度範囲内で加熱して焼成した、SiCを主成分とする坩堝であることを特徴とする請求項1〜3の何れか1項に記載のSi−SiC複合材の製造方法。  A crucible adds a binder to SiC powder within a particle size range of 0.1 μm to 300 μm and casts, rubber presses, or molds, and then within a temperature range of 1200 ° C. to 2300 ° C. The method for producing a Si-SiC composite material according to any one of claims 1 to 3, wherein the crucible is heated and baked and contains SiC as a main component. 坩堝が、黒鉛を主成分とし、密度が1.50g/cm3〜2.05g/cm3の範囲内であり、坩堝の下部または側部に開口部を有することを特徴とする請求項1に記載のSi−SiC複合材の製造方法。The crucible is mainly composed of graphite, has a density in a range of 1.50 g / cm 3 to 2.05 g / cm 3 , and has an opening at a lower part or a side part of the crucible. The manufacturing method of Si-SiC composite material of description. SiCを主成分とする焼成体が、密度が1.30g/cm3〜3.02g/cm3の範囲内であり、密度比が40TD%〜92TD%の範囲内であり、水銀ポロシメーターで測定した平均気孔径(平均細孔径)が50nm〜30μmの範囲内であることを特徴とする請求項1〜5の何れか1項に記載のSi−SiC複合材の製造方法。Fired material mainly composed of SiC is, the density is in the range of 1.30g / cm 3 ~3.02g / cm 3 , the density ratio is in the range of 40TD% ~92TD%, was measured with a mercury porosimeter 6. The method for producing a Si—SiC composite according to claim 1, wherein an average pore diameter (average pore diameter) is in a range of 50 nm to 30 μm. SiCを主成分とする焼成体への坩堝からのSiの供給速度が、1g/分〜200g/分の範囲内であることを特徴とする請求項1〜6の何れか1項に記載のSi−SiC複合材の製造方法。  The Si supply rate from the crucible to the fired body containing SiC as a main component is in the range of 1 g / min to 200 g / min. -Manufacturing method of SiC composite material. SiCを主成分とする焼成体への坩堝からのSiの供給速度が、焼成体の単位体積当たりの、Siの供給速度で0.005g/(cm3・分)〜5g/(cm3・分)の範囲内であることを特徴とする請求項1〜7の何れか1項に記載のSi−SiC複合材の製造方法。The feed rate of the Si from the crucible to the fired body mainly composed of SiC is, per unit volume of the fired product, 0.005g / (cm 3 · min) at a feed rate of Si ~5g / (cm 3 · min The method for producing a Si—SiC composite material according to claim 1, wherein the Si—SiC composite material is in a range of 坩堝1個当たりのSiの供給速度が、2g/分〜200g/分の範囲内であることを特徴とする請求項1〜8の何れか1項に記載のSi−SiC複合材の製造方法。  The method for producing a Si-SiC composite according to any one of claims 1 to 8, wherein a supply rate of Si per crucible is in a range of 2 g / min to 200 g / min. 焼成体を構成するSiCの金属不純物の総量が50ppm以下であることを特徴とする請求項1〜9の何れか1項に記載のSi−SiC複合材の製造方法。  The method for producing a Si-SiC composite according to any one of claims 1 to 9, wherein the total amount of SiC metal impurities constituting the fired body is 50 ppm or less. 坩堝を構成するSiCの金属不純物の総量が50ppm以下であることを特徴とする請求項2〜4および6〜10の何れか1項に記載のSi−SiC複合材の製造方法。  The method for producing a Si-SiC composite material according to any one of claims 2 to 4, and 6 to 10, wherein a total amount of SiC metal impurities constituting the crucible is 50 ppm or less.
JP2001265228A 2001-09-03 2001-09-03 Method for producing Si-SiC composite material Expired - Fee Related JP4376479B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001265228A JP4376479B2 (en) 2001-09-03 2001-09-03 Method for producing Si-SiC composite material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001265228A JP4376479B2 (en) 2001-09-03 2001-09-03 Method for producing Si-SiC composite material

Publications (2)

Publication Number Publication Date
JP2003071555A JP2003071555A (en) 2003-03-11
JP4376479B2 true JP4376479B2 (en) 2009-12-02

Family

ID=19091726

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001265228A Expired - Fee Related JP4376479B2 (en) 2001-09-03 2001-09-03 Method for producing Si-SiC composite material

Country Status (1)

Country Link
JP (1) JP4376479B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4585379B2 (en) * 2005-06-02 2010-11-24 太平洋セメント株式会社 Method for producing metal-ceramic composite material
JP5422318B2 (en) * 2009-09-14 2014-02-19 太平洋セメント株式会社 Method for producing ceramic porous body
JP2011253165A (en) * 2010-06-04 2011-12-15 Maruo Calcium Co Ltd Combined reflective element for road surface marking and road surface marking material containing the same
KR20220033050A (en) * 2020-09-07 2022-03-15 엔지케이 인슐레이터 엘티디 refractory

Also Published As

Publication number Publication date
JP2003071555A (en) 2003-03-11

Similar Documents

Publication Publication Date Title
JP5875529B2 (en) Silicon melt contact member, method for producing the same, and method for producing crystalline silicon
EP0192040B1 (en) Fluoride infiltrated carbide or nitride composite
JPS6036372A (en) Manufacture of formed body consisting of silicon-penetrated and reaction-bonded silicon carbide
JP2003505329A (en) Improved silicon carbide composite and method for producing the same
US20120208690A1 (en) Crucible body and method of forming same
PL157887B1 (en) The method of self-supporting ceramic composite obtaining
US8840861B2 (en) Crucible for photovoltaics
US5667742A (en) Methods for making preforms for composite formation processes
JP3472585B2 (en) Aluminum nitride sintered body
JP4376479B2 (en) Method for producing Si-SiC composite material
JP5130334B2 (en) Square silica container for producing polycrystalline silicon ingot, porous silica plate and method for producing the same
KR101222478B1 (en) The High permeability Porous ceramics for vacuum chuck and method for manufacturing the same
JP3878976B2 (en) High strength and high toughness alumina sintered body and manufacturing method thereof
JP2002338366A (en) High purity silicon carbide heating element and method of producing the same
JP4382919B2 (en) Method for producing silicon-impregnated silicon carbide ceramic member
JP3688138B2 (en) Silicon impregnated silicon carbide material for semiconductor heat treatment and wafer boat using the same
JPH0359033B2 (en)
JP3405083B2 (en) Porous ceramic material
JP3437194B2 (en) Oxidation resistant Si-SiC sintered body
JP2005146392A (en) Metal-based composite material, and its production method
JP4217279B2 (en) Method for producing metal-ceramic composite material
JP5130337B2 (en) Square silica container for producing polycrystalline silicon ingot, porous silica plate, and production method thereof
JP2000185979A (en) Production of porous molded article of silicon carbide
JP3994879B2 (en) Porous ceramic material
JP2004284859A (en) Molten siliceous refractory and method of manufacturing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080530

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090106

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090225

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20090225

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090609

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090729

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090908

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090909

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120918

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120918

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150918

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees