JP3437194B2 - Oxidation resistant Si-SiC sintered body - Google Patents

Oxidation resistant Si-SiC sintered body

Info

Publication number
JP3437194B2
JP3437194B2 JP23845792A JP23845792A JP3437194B2 JP 3437194 B2 JP3437194 B2 JP 3437194B2 JP 23845792 A JP23845792 A JP 23845792A JP 23845792 A JP23845792 A JP 23845792A JP 3437194 B2 JP3437194 B2 JP 3437194B2
Authority
JP
Japan
Prior art keywords
weight
sic
sintered body
parts
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP23845792A
Other languages
Japanese (ja)
Other versions
JPH0692735A (en
Inventor
茂 半澤
常夫 古宮山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Insulators Ltd
Original Assignee
NGK Insulators Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Insulators Ltd filed Critical NGK Insulators Ltd
Priority to JP23845792A priority Critical patent/JP3437194B2/en
Priority to PCT/JP1993/000759 priority patent/WO1993025859A1/en
Priority to DE4392693T priority patent/DE4392693T1/en
Priority to CN 93108410 priority patent/CN1076468C/en
Publication of JPH0692735A publication Critical patent/JPH0692735A/en
Priority to US08/734,126 priority patent/US5840436A/en
Application granted granted Critical
Publication of JP3437194B2 publication Critical patent/JP3437194B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)

Description

【発明の詳細な説明】 【0001】 【産業上の利用分野】本発明は、陶磁器、タイル等の迅
速焼成炉用棚板等に好ましく使用できる耐酸化性に優れ
たSi−SiC質焼結体に関する。 【0002】 【従来の技術】従来、炭化珪素(SiC)質焼結体は、
その優れた耐熱性及び耐火性から工業上重要な位置を占
めており、例えば碍子、衛生陶器、食器、額縁及び陶管
等の陶磁器やタイル等の焼成用棚板として多用されてい
る。かかるSiC質焼結体のうち、SiCとSiを構成
成分として含むSi−SiC質焼結体が知られており、
このSi−SiC質焼結体は、主として半導体焼成用炉
芯管、ローラーハースキルン用ローラー・熱交換体用チ
ューブ等に用いられていた。 【0003】 【発明が解決しようとする課題】しかしながら、Si−
SiC質焼結体を、窯業製品焼成用の棚板に応用した先
例は見当たらない。かかる状況の下、実際にSi−Si
C質焼結体を棚板として食器、タイル及び衛生陶器等を
焼成すると、該棚板が酸化されて脆化し、クラックが発
生し、最悪の場合には破損してしまい、使用に耐えない
ことが判明した。本発明は、このような従来技術の有す
る課題に鑑みてなされたものであり、その目的とすると
ころは、耐酸化性に優れ、長期間の使用に耐え得るSi
−SiC質焼結体及びその製造方法を提供することにあ
る。 【0004】 【課題を解決するための手段】本発明者は、前記課題を
解決すべく鋭意研究した結果、Si−SiC質焼結体の
気孔率及びSiC原料、C原料及び金属Si原料等に混
入しているCaその他の不純物量を制御することによ
り、前記課題が解決できることを見出し本発明を完成す
るに至った。 【0005】 【0006】従って、本発明のSi−SiC質焼結体の
製造方法は、C粉体、SiC粉体及び金属Siを用いて
Si−SiC質焼結体を製造するに当たり、1〜12重
量%のC粉体と88〜99重量%のSiC粉体とを混合
し、この混合に際し、上記C粉体、SiC粉体及び後に
添加する金属Siに含まれる不純物の量が、製造せんと
する焼結体のSiとSiCとから成る主相100重量部
に対して、Caが0.01〜0.1重量部、Alが0.
02〜0.37重量部、及びFeが0.07〜0.36
重量部であり、これらの不純物の総量が0.8重量部以
下となるように、上記C粉体とSiC粉体とを調整・混
合し、得られた混合物100重量部に対して0.1〜1
5重量部のバインダを添加して成形原料を得、次いで、
この成形原料を成形して成形体を得、この成形体を14
50〜2500℃の減圧の金属Si雰囲気中で焼成する
に際し、得られる焼結体の気孔率が0.8%以下となる
理論量より1.05倍以上過剰量の金属Siを、該成形
原料に添加・焼成して焼結体を得ることを特徴とする。 【0007】 【作用】本発明においては、Si−SiC質焼結体の気
孔率を0.8%以下に制御し、且つCa等の不純物量を
所定量以下に制御した。即ち、気孔率を所定値以下に制
御することにより、この焼結体を棚板として用いた場合
等に酸素ガスと接触する面積を低減するとともに、Ca
等の酸化を促進する元素の量を制御することにより、焼
結体の酸化を抑制した。 【0008】次に、本発明のSi−SiC質焼結体の製
造方法について説明する。まず、成形用原料としては、
1〜12重量%のC粉体、88〜99重量%のSiC粉
体、C粉体とSiC粉体との混合物100重量部に対し
0.1〜15重量部の有機質バインダー及び適当量の水
分又は有機溶剤を含有した原料を用いる。この成形用原
料を混練し、成形体を成形する。次いで、この成形体
を、金属シリコン雰囲気下で、減圧の不活性ガス雰囲気
又は真空中に置き、成形体中に金属シリコンを含浸させ
てSi−SiC質焼結体を製造する。 【0009】上記成形体の作製に際し、C粉体、SiC
粉体及び含浸に用いる金属Siに含まれるCa、Al及
びFeの不純物を、得られる焼結体100重量部に対し
て0.8重量部以下に制御する。具体的には、焼結体1
00重量部に対して、Caが0.01〜0.1重量部
Alが0.02〜0.37重量部、及びFeが0.07
〜0.36重量部であり、これらの不純物の総量が0.
8重量部以下となるように制御する。これらの各不純物
の量が上記所定量を超え、また不純物の総量が0.8重
量部を超えると、耐酸化性が低下する傾向を生じ好まし
くない。この不純物の制御は、C原料、SiC原料及び
金属Si原料を選択して用いることにより行うことがで
きる。即ち、上記不純物を所定量含有する原料を選択し
て用いることにより、得られるSi−SiC質焼結体に
含有される不純物量を制御することができる。また、適
宜これら不純物を添加・除去して微調整することも可能
である。 【0010】上記金属シリコンの含浸に当たっては、得
られるSi−SiC質焼結体の気孔率が0.8%以下と
なるように含浸させる。この場合の金属Siの添加量
は、含浸効率の関係等から、0.8%の気孔率を実現す
るに必要とされる理論量より過剰なものとする必要があ
る。即ち、0.8%の気孔率を実現するには、金属Si
を当該理論量より1.05倍以上過剰に添加する必要が
ある。この際、添加される金属Siは、Si+C→Si
Cの反応に寄与する分と、気孔を埋める分と、余剰なS
i分の3態様で消費される。1.05倍未満の場合に
は、Siの含浸不良を生じ、得られる焼結体の気孔率が
増大して耐酸化性を低下させることとなり好ましくな
い。また、過剰の金属Siを付与することにより、焼結
体の表面には余分なSiが浸出することになるが、これ
はサンドブラスト、旋盤加工等によって除去することが
可能である。このように、金属Siを含浸させる結果、
得られるSi−SiC質焼結体としては、主相が、Si
を3〜30重量%及びSiCを70〜97重量%含有す
ることになる。 【0011】また、本発明における成形体の成形方法と
しては、プレス成形、流し込み成形、押し出し成形いず
れも可能であるが、量産性の観点からはプレス成形が好
ましい。加圧方式としては油圧プレスが好ましく、この
場合の油圧プレス圧は、通常100〜2000kg/c
2である。 【0012】 【実施例】以下、本発明を実施例に基づき更に詳細に説
明するが、本発明はこれら実施例に限定されるものでは
ない。なお、各例によって得られた焼結体は、以下に示
す方法により性能を評価した。 (耐酸化性の評価方法)60mm×60mm×5mm
(厚さ)のテストピースを切り出し、これを1150℃
のH2OとO2との混合ガス中で酸化させた。各テストピ
ースについて、以下に説明する酸化速度を測定した。 【0013】(酸化速度) y=x/1.00 × 106/100[ppm/h
r] 上式において、酸化初期ではテストピースの表層にSi
2質被膜が形成されるため、酸化試験開始100hr
後のテストピースの重量を1.00とし、更にその10
0hr後の重量をxとした。酸化速度yが50を超える
と、通常の大気雰囲気下での使用であっても酸化が2次
関数的に進行し、材料(焼結体)の劣化を生ずる。一
方、yが50以下の場合には、酸化速度は次第に小さく
なるため、高温下での長期間使用に耐える材料といえ
る。 【0014】(実施例1〜9、比較例1〜5)平均粒径
3μmのSiC微粉と平均粒径100μmのSiC粗粉
を30:70(重量比)で混合したSiC粉末に対し、
平均粒径1μmの黒鉛粉をそれぞれ所定の割合で混合し
た。この混合物100重量部に対し有機バインダー(メ
チルセルロース)2重量部、及び水分又は有機溶剤3重
量部をで配合し、成形原料を得た。この際、不純物であ
るCa、Al及びFeを所定量含むSiC原料及びC原
料を用いて混合し、これら不純物の量を、後に含浸させ
る金属Si原料をも考慮して表1に示すような値に制御
した。 【0015】次に、これらの成形原料をボールミルを用
いて解砕し、解砕した成形原料を金型内に導入し、油圧
プレスを用いて500kg/cm2で成形し、厚さ5m
mの板状成形体(400mm×400mm)を得た。 【0016】次いで、BN(窒化ホウ素)コーティング
の反応防止層を施したカーボンルツボ中に、板状成形体
及び金属Siを設置した。この際、0.8%の気孔率を
実現するに必要な金属Siの理論量に対して、金属Si
の量が表1に示す倍率だけ過剰となるように適宜量を変
化させて設置した。この板状成形体及び金属Siを、室
温から600℃の間は0.1Torrの真空下、600
〜1000℃の間は2Torrのアルゴンガス雰囲気
下、1000〜1800℃までアルゴンガス雰囲気で5
Torrの減圧下で焼成することにより、金属Siを含
浸させ、かつCa等の不純物量を制御したSi−SiC
焼結体を製造した。なお、最高温度(1800℃)の保
持時間は3時間とした。また、1400〜1500℃の
間は10℃/hrで昇温した。得られたSi−SiC焼
結体の耐酸化性の測定結果、気孔率及び組成等を表1に
示す。 【0017】 【表1】【0018】表1から明らかなように、本発明のSi−
SiC質焼結体は、50ppm/hr以下の酸化速度を
有し、優れた耐酸化性を有することが分かる。 【0019】 【発明の効果】以上説明したように、本発明によれば、
Si−SiC質焼結体の気孔率及びSiC原料、C原料
及び金属Si原料等に混入しているCaその他の不純物
量を制御することとしたため、耐酸化性に優れ、長期間
の使用に耐え得るSi−SiC質焼結体の製造方法を提
供することができる。また、Si−SiC質焼結体の製
造を極めて再現性よく行うことが可能となる。従って、
本発明の焼結体は、耐酸化性等を重視する迅速焼成炉用
棚板、匣鉢、サヤ等の窯道具、特にローラーハースキル
ンを用いたタイル焼成用棚板に好ましく用いることがで
きる。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a sintered body of Si--SiC having excellent oxidation resistance which can be preferably used for a shelf plate for a rapid firing furnace such as ceramics and tiles. About. Conventionally, silicon carbide (SiC) -based sintered bodies have been
Due to its excellent heat resistance and fire resistance, it occupies an important position in the industry, and is widely used as a shelf for firing ceramics such as insulators, sanitary ware, tableware, picture frames and ceramic tubes, and tiles. Among such SiC-based sintered bodies, Si-SiC-based sintered bodies containing SiC and Si as constituent components are known,
This Si—SiC sintered body was mainly used for a furnace core tube for firing a semiconductor, a roller for a roller hearth kiln, a tube for a heat exchanger, and the like. [0003] However, Si-
There is no precedent for applying a SiC sintered body to a shelf for firing ceramic products. Under such circumstances, the actual Si-Si
When tableware, tiles, sanitary ware, etc. are fired using a C-type sintered body as a shelf, the shelf is oxidized and embrittled, cracking occurs, and in the worst case, it breaks and cannot be used. There was found. The present invention has been made in view of such problems of the related art, and an object of the present invention is to provide Si which has excellent oxidation resistance and can withstand long-term use.
-To provide a SiC-based sintered body and a method for producing the same. The present inventors have conducted intensive studies to solve the above-mentioned problems, and as a result, have found that the porosity of the Si—SiC sintered body, the SiC raw material, the C raw material, the metal Si raw material and the like have been improved. The inventors have found that the above problem can be solved by controlling the amounts of Ca and other impurities mixed therein, and have completed the present invention. Accordingly , the method for producing a Si—SiC sintered body according to the present invention employs a method for producing a Si—SiC sintered body using C powder, SiC powder, and metallic Si. 12% by weight of the C powder and 88 to 99% by weight of the SiC powder are mixed, and the amount of impurities contained in the C powder, the SiC powder and the metal Si to be added later is not produced. 0.01 to 0.1 parts by weight of Ca and 0.1 to 0.1 parts by weight of Al with respect to 100 parts by weight of the main phase composed of Si and SiC.
02 to 0.37 parts by weight, and 0.07 to 0.36 Fe
The C powder and the SiC powder were adjusted and mixed so that the total amount of these impurities was 0.8 parts by weight or less, and 0.1 part by weight with respect to 100 parts by weight of the obtained mixture. ~ 1
5 parts by weight of a binder is added to obtain a molding raw material,
The molding material is molded to obtain a molded body, and the molded body is
When firing in a metal Si atmosphere at a reduced pressure of 50 to 2500 ° C., a metal material having an excess of 1.05 times or more as much as the theoretical amount of porosity of the obtained sintered body of 0.8% or less is used as the forming raw material. And sintering to obtain a sintered body. In the present invention, the porosity of the Si-SiC sintered body is controlled to 0.8% or less, and the amount of impurities such as Ca is controlled to a predetermined amount or less. That is, by controlling the porosity to a predetermined value or less, the area in contact with oxygen gas when the sintered body is used as a shelf plate is reduced,
Oxidation of the sintered body was suppressed by controlling the amount of an element that promotes oxidation such as the above. Next, a method for producing a Si—SiC sintered body of the present invention will be described. First, as a raw material for molding,
1 to 12% by weight of C powder, 88 to 99% by weight of SiC powder, 0.1 to 15 parts by weight of an organic binder and an appropriate amount of water based on 100 parts by weight of a mixture of C powder and SiC powder Alternatively, a raw material containing an organic solvent is used. This molding material is kneaded to form a molded body. Next, the compact is placed in a reduced pressure inert gas atmosphere or vacuum under a metallic silicon atmosphere, and the compact is impregnated with metallic silicon to produce a Si-SiC sintered body. In producing the above-mentioned molded product, C powder, SiC
The impurities of Ca, Al and Fe contained in the powder and the metal Si used for impregnation are controlled to 0.8 parts by weight or less based on 100 parts by weight of the obtained sintered body. Specifically, the sintered body 1
0.01 to 0.1 parts by weight of Ca relative to 00 parts by weight ,
0.02 to 0.37 parts by weight of Al and 0.07
0.30.36 parts by weight , and the total amount of these impurities is 0.
It is controlled to be 8 parts by weight or less. If the amount of each of these impurities exceeds the above-mentioned predetermined amount, and if the total amount of the impurities exceeds 0.8 parts by weight, the oxidation resistance tends to decrease, which is not preferable. The control of the impurities can be performed by selecting and using a C raw material, a SiC raw material, and a metal Si raw material. That is, the amount of impurities contained in the obtained Si—SiC sintered body can be controlled by selecting and using a raw material containing a predetermined amount of the above impurities. Also, fine adjustment can be made by adding or removing these impurities as appropriate. In the impregnation of the metal silicon, the impregnation is performed so that the porosity of the obtained Si—SiC sintered body is 0.8% or less. In this case, the addition amount of the metal Si needs to be larger than the theoretical amount required to realize a porosity of 0.8% from the relationship of impregnation efficiency and the like. That is, to achieve a porosity of 0.8%, metal Si
Must be added in excess of 1.05 times the theoretical amount. At this time, the added metal Si is Si + C → Si
C contributes to the reaction, fills pores, and surplus S
It is consumed in three ways of i. If it is less than 1.05 times, impregnation failure of Si occurs, and the porosity of the obtained sintered body increases, and the oxidation resistance decreases, which is not preferable. Further, by adding excess metal Si, excess Si is leached out on the surface of the sintered body, but this can be removed by sandblasting, lathing, or the like. Thus, as a result of impregnating the metal Si,
The main phase of the obtained Si-SiC sintered body is Si
3 to 30% by weight and 70 to 97% by weight of SiC. The molding method of the present invention can be any of press molding, cast molding and extrusion molding, but press molding is preferred from the viewpoint of mass productivity. As the pressurizing method, a hydraulic press is preferable. In this case, the hydraulic press pressure is usually 100 to 2000 kg / c.
m 2 . Hereinafter, the present invention will be described in more detail with reference to Examples, but the present invention is not limited to these Examples. In addition, the performance of the sintered body obtained in each example was evaluated by the following method. (Evaluation method of oxidation resistance) 60 mm x 60 mm x 5 mm
Cut out (thickness) test pieces and heat them at 1150 ° C
In a mixed gas of H 2 O and O 2 . For each test piece, the oxidation rate described below was measured. [0013] (oxidation rate) y = x / 1.00 × 10 6/100 [ppm / h
r] In the above equation, in the initial stage of oxidation, Si
Oxidation test is started for 100 hours because an O 2 coating is formed.
The weight of the subsequent test piece was set to 1.00, and
The weight after 0 hr was defined as x. If the oxidation rate y exceeds 50, the oxidation proceeds quadratically even when used in a normal atmospheric atmosphere, resulting in deterioration of the material (sintered body). On the other hand, when y is 50 or less, since the oxidation rate gradually decreases, it can be said that the material can withstand long-term use at high temperatures. (Examples 1 to 9 and Comparative Examples 1 to 5) SiC fine powder having an average particle diameter of 3 μm and SiC coarse powder having an average particle diameter of 100 μm were mixed at a ratio of 30:70 (weight ratio).
Graphite powder having an average particle size of 1 μm was mixed at a predetermined ratio. 100 parts by weight of this mixture was mixed with 2 parts by weight of an organic binder (methyl cellulose) and 3 parts by weight of water or an organic solvent to obtain a raw material for molding. At this time, SiC raw materials and C raw materials containing predetermined amounts of Ca, Al, and Fe as impurities are mixed using the raw materials, and the amounts of these impurities are set to values as shown in Table 1 in consideration of the metal Si raw materials to be impregnated later. Was controlled. Next, these forming raw materials are crushed using a ball mill, the crushed forming raw materials are introduced into a mold, and are formed at 500 kg / cm 2 using a hydraulic press to have a thickness of 5 m.
Thus, a plate-shaped molded product (400 mm × 400 mm) was obtained. Next, the plate-shaped compact and the metal Si were placed in a carbon crucible provided with a reaction preventing layer of BN (boron nitride) coating. At this time, the metal Si required for realizing the porosity of 0.8% is compared to the theoretical amount of metal Si.
Was appropriately changed so that the amount was excessive by the magnification shown in Table 1. The plate-shaped formed body and the metal Si are placed in a vacuum of 0.1 Torr between room temperature and 600 ° C. for 600 minutes.
To 1000 ° C. under an argon gas atmosphere of 2 Torr, and up to 1000 to 1800 ° C. in an argon gas atmosphere.
By firing under a reduced pressure of Torr, Si-SiC impregnated with metallic Si and controlling the amount of impurities such as Ca
A sintered body was manufactured. The holding time at the maximum temperature (1800 ° C.) was 3 hours. The temperature was raised at a rate of 10 ° C./hr between 1400 and 1500 ° C. Table 1 shows the measurement results, the porosity, the composition, and the like of the oxidation resistance of the obtained Si—SiC sintered body. [Table 1] As is apparent from Table 1, the Si-
It can be seen that the SiC-based sintered body has an oxidation rate of 50 ppm / hr or less and has excellent oxidation resistance. As described above, according to the present invention,
The porosity of the Si-SiC sintered body and the amount of Ca and other impurities mixed in the SiC raw material, the C raw material, the metal Si raw material, and the like are controlled, so that they have excellent oxidation resistance and can withstand long-term use. A method for producing the obtained Si-SiC sintered body can be provided. In addition, it becomes possible to manufacture the Si-SiC sintered body with extremely high reproducibility. Therefore,
The sintered body of the present invention can be preferably used for a shelf plate for a rapid firing furnace, a sagger, a kiln tool such as a sheath, particularly a shelf plate for tile firing using a roller hearth kiln, which emphasizes oxidation resistance and the like.

Claims (1)

(57)【特許請求の範囲】 【請求項1】 C粉体、SiC粉体及び金属Siを用い
てSi−SiC質焼結体を製造するに当たり、 1〜12重量%のC粉体と88〜99重量%のSiC粉
体とを混合し、 この混合に際し、上記C粉体、SiC粉体及び後に添加
する金属Siに含まれる不純物の量が、製造せんとする
焼結体のSiとSiCとから成る主相100重量部に対
して、Caが0.01〜0.1重量部、Alが0.02
〜0.37重量部、及びFeが0.07〜0.36重量
部であり、これらの不純物の総量が0.8重量部以下と
なるように、上記C粉体とSiC粉体とを調整・混合
し、 得られた混合物100重量部に対して0.1〜15重量
部のバインダを添加して成形原料を得、次いで、この成
形原料を成形して成形体を得、 この成形体を1450〜2500℃の減圧の金属Si雰
囲気中で焼成するに際し、得られる焼結体の気孔率が
0.8%以下となる理論量より1.05倍以上過剰量の
金属Siを、該成形原料に添加・焼成して焼結体を得る
ことを特徴とするSi−SiC質焼結体の製造方法。
(57) [Claims 1] In producing a Si-SiC sintered body using C powder, SiC powder and metallic Si, 1 to 12% by weight of C powder and 88% are used. And 99% by weight of SiC powder, and the amount of impurities contained in the C powder, the SiC powder, and the metal Si added later depends on the amount of Si and SiC of the sintered body to be manufactured. 0.01 to 0.1 parts by weight of Ca and 0.02 parts by weight of Al with respect to 100 parts by weight of the main phase consisting of
The C powder and the SiC powder were adjusted so that the total amount of these impurities was 0.8 parts by weight or less, and the total amount of these impurities was 0.87 parts by weight or less. Mixing, adding 0.1 to 15 parts by weight of a binder to 100 parts by weight of the obtained mixture to obtain a forming raw material, and then forming the forming raw material to obtain a molded body; When firing in a metal Si atmosphere at a reduced pressure of 1450 to 2500 ° C., a metal material having an excess of 1.05 times or more as much as the theoretical amount that the porosity of the obtained sintered body is 0.8% or less, A method for producing a Si-SiC-based sintered body, characterized in that a sintered body is obtained by adding and baking to a sintered body.
JP23845792A 1992-06-08 1992-09-07 Oxidation resistant Si-SiC sintered body Expired - Lifetime JP3437194B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP23845792A JP3437194B2 (en) 1992-09-07 1992-09-07 Oxidation resistant Si-SiC sintered body
PCT/JP1993/000759 WO1993025859A1 (en) 1992-06-08 1993-06-07 Shelf plate having anti-spalling, anti-creep and oxidation resistant properties
DE4392693T DE4392693T1 (en) 1992-06-08 1993-06-07 Inserts resistant to temperature changes, creep and oxidation resistant
CN 93108410 CN1076468C (en) 1992-06-08 1993-06-08 Spallingproof, crackingproof and oxidizingproof plate
US08/734,126 US5840436A (en) 1992-06-08 1996-10-21 Spalling-resistant, creep-resistant and oxidation-resistant setters

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23845792A JP3437194B2 (en) 1992-09-07 1992-09-07 Oxidation resistant Si-SiC sintered body

Publications (2)

Publication Number Publication Date
JPH0692735A JPH0692735A (en) 1994-04-05
JP3437194B2 true JP3437194B2 (en) 2003-08-18

Family

ID=17030514

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23845792A Expired - Lifetime JP3437194B2 (en) 1992-06-08 1992-09-07 Oxidation resistant Si-SiC sintered body

Country Status (1)

Country Link
JP (1) JP3437194B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101819748B1 (en) * 2010-08-11 2018-01-17 엔지케이 인슐레이터 엘티디 Setter for firing

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10167831A (en) * 1996-12-16 1998-06-23 Ngk Insulators Ltd Sic fiber reinforced si-sic composite material and its production
JP3980262B2 (en) 2000-10-31 2007-09-26 日本碍子株式会社 SiC heat treatment jig

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101819748B1 (en) * 2010-08-11 2018-01-17 엔지케이 인슐레이터 엘티디 Setter for firing

Also Published As

Publication number Publication date
JPH0692735A (en) 1994-04-05

Similar Documents

Publication Publication Date Title
JP2642573B2 (en) SiC based sintered body
EP0170889B1 (en) Zrb2 composite sintered material
JP3437194B2 (en) Oxidation resistant Si-SiC sintered body
JPH0777986B2 (en) Manufacturing method of silicon carbide sintered body
JP2535480B2 (en) Creep resistance Si-SiC quality sintered body
US5840436A (en) Spalling-resistant, creep-resistant and oxidation-resistant setters
JP3498989B2 (en) Silicon carbide based composite material and method for producing the same
JPH08208336A (en) Si-sic sintered compact having oxidation and creep resistance
WO2015025951A1 (en) Porous ceramic and method for producing same
JP4975246B2 (en) Tool material for firing silicon carbide
JP2663028B2 (en) Silicon nitride sintered body
JPH0157075B2 (en)
JP4171916B2 (en) Heat-resistant covering material
WO1993025859A1 (en) Shelf plate having anti-spalling, anti-creep and oxidation resistant properties
JP3506721B2 (en) Sporing resistant sintered body
JP4458692B2 (en) Composite material
JP2968882B2 (en) SiC-based sintered body and method of firing the same
JP2000351679A (en) Production of silicon carbide-based porous form and the resultant silicon carbide-based porous form
JPH0359033B2 (en)
JP2758313B2 (en) Sporing-resistant shelf
JP4376479B2 (en) Method for producing Si-SiC composite material
JPH0224789B2 (en)
JPS6212663A (en) Method of sintering b4c base fine body
JP3142359B2 (en) Press molding method
JP2508511B2 (en) Alumina composite

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20001121

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080606

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090606

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100606

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100606

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110606

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120606

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130606

Year of fee payment: 10

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130606

Year of fee payment: 10