JP2696735B2 - Manufacturing method of silicon nitride sintered body - Google Patents

Manufacturing method of silicon nitride sintered body

Info

Publication number
JP2696735B2
JP2696735B2 JP3335548A JP33554891A JP2696735B2 JP 2696735 B2 JP2696735 B2 JP 2696735B2 JP 3335548 A JP3335548 A JP 3335548A JP 33554891 A JP33554891 A JP 33554891A JP 2696735 B2 JP2696735 B2 JP 2696735B2
Authority
JP
Japan
Prior art keywords
sintering
temperature
sintered body
silicon nitride
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP3335548A
Other languages
Japanese (ja)
Other versions
JPH05148035A (en
Inventor
哲夫 山田
卓二 高橋
敦彦 田中
健二 寺井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ube Corp
Original Assignee
Ube Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ube Industries Ltd filed Critical Ube Industries Ltd
Priority to JP3335548A priority Critical patent/JP2696735B2/en
Publication of JPH05148035A publication Critical patent/JPH05148035A/en
Application granted granted Critical
Publication of JP2696735B2 publication Critical patent/JP2696735B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、高温構造用材料として
有用な窒化珪素質焼結体の製造法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a silicon nitride sintered body useful as a material for a high-temperature structure.

【0002】[0002]

【従来技術及びその問題点】窒化珪素質焼結体は、高温
での機械的特性が優れていることから高温構造材料とし
て有望視されている。この窒化珪素質焼結体を高密度に
製造するには、主成分である窒化珪素が難焼結性材料で
あり、しかも高温で熱分解するおそれがあるために、ホ
ットプレス法、熱間静水圧プレス法、雰囲気加圧焼結法
等の高温高圧下で成形体を焼結することが不可欠であ
る。このうち、雰囲気加圧焼結法は製品形状に制約を受
けることなく、少量の焼結助剤で緻密な焼結体を量産す
るのに最適な手段である。
2. Description of the Related Art Silicon nitride sintered bodies are considered to be promising as high-temperature structural materials because of their excellent mechanical properties at high temperatures. In order to manufacture this silicon nitride sintered body at a high density, since the main component silicon nitride is a difficult-to-sinter material and may be thermally decomposed at a high temperature, the hot pressing method and the hot static It is indispensable to sinter the compact under a high temperature and a high pressure such as a hydraulic pressing method and an atmospheric pressure sintering method. Among them, the atmospheric pressure sintering method is an optimal means for mass-producing a dense sintered body with a small amount of a sintering aid without being restricted by the product shape.

【0003】しかし、製品が相当大きくなると、雰囲気
加圧焼結法によっても焼結過程で焼結体中に気孔が残存
して、緻密な焼結体を得ることが困難となる。これを改
善する方法として、特開昭59−18165号公報や同
62−113769号公報には窒化珪素を主成分とする
成形体を加圧窒素雰囲気中で一次焼結し、次いで一次焼
結よりも高圧下で二次焼結する二段焼結法が提案されて
いる。
[0003] However, when the product becomes considerably large, pores remain in the sintered body during the sintering process even by the atmospheric pressure sintering method, and it becomes difficult to obtain a dense sintered body. As a method of improving this, Japanese Patent Application Laid-Open Nos. 59-18165 and 62-113969 disclose a method of performing a primary sintering of a compact mainly containing silicon nitride in a pressurized nitrogen atmosphere and then performing a primary sintering. Also, a two-stage sintering method in which secondary sintering is performed under high pressure has been proposed.

【0004】しかしながら、二段焼結法でも、一次焼結
の際に残存する気孔を二次焼結で完全に除去することは
困難であり、そのため、得られる焼結体の機械的強度は
充分なものではない。
However, even with the two-stage sintering method, it is difficult to completely remove the pores remaining during the primary sintering by the secondary sintering, and therefore the mechanical strength of the obtained sintered body is not sufficient. Not something.

【0005】[0005]

【発明の目的】本発明の目的は、前記問題点を解決し、
機械的強度が優れた緻密な窒化珪素質焼結体の製造法を
提供するものである。
An object of the present invention is to solve the above problems,
An object of the present invention is to provide a method for producing a dense silicon nitride sintered body having excellent mechanical strength.

【0006】[0006]

【問題点を解決するための手段】本発明は、窒化珪素粉
末と焼結助剤との混合物を成形し、該成形体を焼結する
に際し、1.0〜20kg/cm2 の窒素又は窒素含有不活
性ガス雰囲気下に、1650〜1950℃の範囲で、か
つ焼結により生成する粒界相の融点よりも250℃以上
高い温度で一次焼結して、気孔率0.5〜5%の焼結体
とし、次いで、一次焼結の温度よりも100℃以上低
く、かつ粒界相の融点よりも0〜250℃高い温度とし
た後、一次焼結の圧力の5〜50倍のガス圧で二次焼結
し、さらに、引続き1650〜1950℃の範囲で、か
つ二次焼結の温度よりも100℃以上高い温度で三次焼
結することを特徴とする窒化珪素質焼結体の製造法に関
するものである。
According to the present invention, a mixture of silicon nitride powder and a sintering aid is molded, and when the molded body is sintered, 1.0 to 20 kg / cm 2 of nitrogen or nitrogen is used. Primary sintering in an inert gas atmosphere at a temperature in the range of 1650 to 1950 ° C. and at least 250 ° C. higher than the melting point of the grain boundary phase generated by sintering, and having a porosity of 0.5 to 5% After making the sintered body a temperature that is 100 ° C. or more lower than the temperature of the primary sintering and 0 to 250 ° C. higher than the melting point of the grain boundary phase, the gas pressure is 5 to 50 times the pressure of the primary sintering. A second sintering at a temperature of 1650 to 1950 ° C. and a sintering temperature of 100 ° C. or more higher than the temperature of the second sintering. It is about the law.

【0007】本発明における窒化珪素粉末としては、特
に制限はないが、非晶質窒化珪素粉末及び/又は含窒素
シラン化合物を窒素含有不活性ガス雰囲気下又は窒素含
有還元性ガス雰囲気下に焼成することにより得られる結
晶質窒化珪素粉末が好ましく用いられる。
The silicon nitride powder used in the present invention is not particularly limited, but the amorphous silicon nitride powder and / or the nitrogen-containing silane compound are fired in a nitrogen-containing inert gas atmosphere or a nitrogen-containing reducing gas atmosphere. The crystalline silicon nitride powder obtained in this manner is preferably used.

【0008】本発明における焼結助剤としては、マグネ
シア、アルミナ、イットリア、ベリリア、セリア、ジル
コニア、シリカ、酸化エルビウム、酸化イッテルビウ
ム、窒化アルミニウム及びこれらの混合物が挙げられ
る。焼結助剤の配合量は、窒化珪素粉末に対して1〜1
5重量%、好ましくは4〜9重量%が望ましい。
[0008] Examples of the sintering aid in the present invention include magnesia, alumina, yttria, beryllia, ceria, zirconia, silica, erbium oxide, ytterbium oxide, aluminum nitride and mixtures thereof. The amount of the sintering aid is 1 to 1 with respect to the silicon nitride powder.
5% by weight, preferably 4 to 9% by weight is desirable.

【0009】混合した粉末原料は金型プレス成形法、泥
しょう鋳込法、ラバープレス法、射出成形法等により所
望の形状に成形される。
The mixed powder raw material is formed into a desired shape by a die press molding method, a slurry casting method, a rubber press method, an injection molding method, or the like.

【0010】次いで、この成形体を、1.0〜20kg/
cm2 の窒素又は窒素含有不活性ガス雰囲気下に、165
0〜1950℃の範囲で、かつ焼結により生成する粒界
相の融点よりも250℃以上高い温度で一次焼結して、
気孔率0.5〜5%の焼結体とする。
[0010] Next, the molded body is weighed 1.0 to 20 kg /
165 cm 2 in an atmosphere of nitrogen or a nitrogen-containing inert gas.
Primary sintering at a temperature in the range of 0 to 1950 ° C. and at least 250 ° C. higher than the melting point of the grain boundary phase generated by sintering,
The sintered body has a porosity of 0.5 to 5%.

【0011】雰囲気ガスの圧力は1.0〜20kg/c
m2 、好ましくは1.5〜10kg/cm2 である。圧力が
1.0kg/cm2 よりも低いと、窒化珪素の熱分解を抑制
する効果が発揮されず、また、圧力が20kg/cm2 より
も高いと、焼結体中の閉気孔内に閉じ込められたガスが
高圧化して、緻密化が促進されないので好ましくない。
また、焼成温度は、1650〜1950℃の範囲であ
る。焼成温度が1650℃よりも低いと焼結体の緻密化
が不十分となり、1950℃よりも高くなると窒化珪素
の熱分解が起こってしまうので好ましくない。
The pressure of the atmosphere gas is 1.0 to 20 kg / c.
m 2 , preferably 1.5 to 10 kg / cm 2 . When the pressure is lower than 1.0 kg / cm 2, the effect of suppressing the thermal decomposition of silicon nitride is not exhibited, and when the pressure is higher than 20 kg / cm 2 , the pressure is confined in closed pores in the sintered body. The pressure of the obtained gas is increased, and the densification is not promoted.
The firing temperature is in the range of 1650 to 1950 ° C. If the firing temperature is lower than 1650 ° C., densification of the sintered body is insufficient, and if it is higher than 1950 ° C., thermal decomposition of silicon nitride occurs, which is not preferable.

【0012】さらに、窒化珪素と助剤からなる成形体を
焼結する場合、窒化珪素粒子表面のシリカと助剤との反
応により粒界相が生成するが、この粒界相の融点よりも
250℃以上高い温度で焼結することが必要である。焼
成温度が粒界相の融点よりも250℃以上高くない場合
には、十分な液相を生成しないか、または液相を生成し
てもその粘度が高すぎて焼結が十分に進行しないので好
ましくない。
Further, when sintering a compact formed of silicon nitride and an auxiliary, a grain boundary phase is formed by a reaction between silica on the surface of silicon nitride particles and the auxiliary. It is necessary to perform sintering at a temperature higher than ℃. If the sintering temperature is not higher than the melting point of the grain boundary phase by 250 ° C. or more, a sufficient liquid phase is not generated, or even if a liquid phase is generated, the viscosity is too high and sintering does not sufficiently proceed. Not preferred.

【0013】また、本発明においては、一次焼結を雰囲
気ガスを流通させながら行うことが好ましい。これによ
り、助剤から揮発した酸素含有成分と炉材のカーボンと
の反応によって発生するCOガスを炉外に流出させて、
雰囲気ガス中のCOガス濃度を0.2%以下に抑制する
ことができ、COガスと窒化珪素との反応による炭化珪
素の生成を抑制でき、得られる焼結体中に有害なポアが
残存しなくなる。
Further, in the present invention, it is preferable to perform the primary sintering while flowing an atmospheric gas. This allows CO gas generated by the reaction between the oxygen-containing component volatilized from the auxiliary agent and the carbon of the furnace material to flow out of the furnace,
The CO gas concentration in the atmosphere gas can be suppressed to 0.2% or less, the generation of silicon carbide due to the reaction between the CO gas and silicon nitride can be suppressed, and harmful pores remain in the obtained sintered body. Disappears.

【0014】次いで、一次焼結の温度よりも100℃以
上低く、かつ粒界相の融点よりも0〜250℃高い温度
とした後、一次焼結の圧力の5〜50倍のガス圧で二次
焼結する。二次焼結のガス圧は、例えば、一次焼結のガ
ス圧が1.5kg/cm2 の場合には、7.5〜75kg/cm
2 となり、一次焼結のガス圧が10kg/cm2 の場合に
は、50〜500kg/cm2 となる。
Next, after the temperature is lowered by 100 ° C. or more from the temperature of the primary sintering and higher by 0 to 250 ° C. than the melting point of the grain boundary phase, the gas pressure is reduced by 5 to 50 times the pressure of the primary sintering. Next, sinter. The gas pressure for the secondary sintering is, for example, 7.5 to 75 kg / cm 2 when the gas pressure for the primary sintering is 1.5 kg / cm 2.
2, and when the gas pressure in the primary sintering is 10 kg / cm 2 becomes 50~500kg / cm 2.

【0015】二次焼結では、粒界相の融点よりも0〜2
50℃高い温度で行うので、一次焼結時よりも粒界相の
粘度が高くなり、焼結体の塑性変形、粘性流動等を利用
して閉気孔を消滅させ、さらに緻密化を行うことができ
る。本発明においては、二次焼結の圧力−温度設定が非
常に重要であり、一次焼結の温度のままでガス圧を上げ
ると、閉気孔部に粒界相成分のみが押し込まれて、焼結
体の組織が不均質となる。
In the secondary sintering, the melting point of the grain boundary phase is 0 to 2 degrees.
Since it is performed at a temperature higher by 50 ° C., the viscosity of the grain boundary phase becomes higher than at the time of the primary sintering. it can. In the present invention, the pressure-temperature setting of the secondary sintering is very important. When the gas pressure is increased while maintaining the primary sintering temperature, only the grain boundary phase component is pushed into the closed pores, and the sintering is performed. The tissue of the body becomes heterogeneous.

【0016】さらに、1650〜1950℃の範囲で、
かつ二次焼結の温度よりも100℃以上高い温度で三次
焼結する。これにより、緻密化をさらに進行させ、均質
な焼結体とすることができる。また、三次焼結の温度
は、1650〜1950℃の範囲内であれば、一次焼結
の温度よりも高くても低くてもよい。
Further, in the range of 1650 to 1950 ° C.,
The third sintering is performed at a temperature 100 ° C. or more higher than the temperature of the second sintering. Thereby, densification can be further advanced and a homogeneous sintered body can be obtained. Further, the temperature of the tertiary sintering may be higher or lower than the temperature of the primary sintering as long as it is within the range of 1650 to 1950 ° C.

【0017】[0017]

【実施例】以下に実施例及び比較例を示し、本発明をさ
らに具体的に説明する。 実施例1〜12 α型窒化珪素粉末(宇部興産(株)製:比表面積11m2
/g、酸素含有量1.3wt%)92.5重量%に、イ
ットリア(信越化学(株)製)5重量%及びアルミナ
(住友化学(株)製:AKP−30)2.5重量%を添
加した配合粉を、媒体としてエタノールを用いて48時
間湿式混合した後、減圧乾燥した。
The present invention will be described more specifically with reference to the following Examples and Comparative Examples. Examples 1 to 12 α-type silicon nitride powder (manufactured by Ube Industries, Ltd .: specific surface area: 11 m 2)
/ G, oxygen content 1.3 wt%) 92.5 wt%, yttria (Shin-Etsu Chemical Co., Ltd.) 5 wt% and alumina (Sumitomo Chemical Co., Ltd .: AKP-30) 2.5 wt% The added compounded powder was wet-mixed for 48 hours using ethanol as a medium, and then dried under reduced pressure.

【0018】得られた混合物を断面が50×80mm角の
金型を用いて矩形状に予備成形した後、圧力1.5ton/
cm2 でラバープレスした。得られた成形体を雰囲気加圧
焼結炉に装入し、表1に記載の温度−窒素ガス圧力条件
下で三段焼結を行った。
The resulting mixture was preliminarily formed into a rectangular shape using a mold having a cross section of 50 × 80 mm square.
Rubber pressed in cm 2 . The obtained compact was placed in an atmosphere pressure sintering furnace and subjected to three-stage sintering under the conditions of temperature and nitrogen gas pressure shown in Table 1.

【0019】一次焼結時に5l/分の流量でガスを流通
させることにより、炉内のCOガス濃度は0.1%以下
であった。また、三段焼結における温度−窒素ガス圧力
のパターンを図1に示す。一次焼結及び三次焼結の保持
時間は共に1.5時間とし、二次焼結の保持時間は0.
5時間とした。また、二次焼結においては、所定の温度
に到達後10分間経過した後に窒素ガス圧力を上げた。
By flowing gas at a flow rate of 5 l / min during the primary sintering, the CO gas concentration in the furnace was 0.1% or less. FIG. 1 shows a temperature-nitrogen gas pressure pattern in three-stage sintering. The holding time of the primary sintering and the tertiary sintering are both 1.5 hours, and the holding time of the secondary sintering is 0.1 hour.
5 hours. In the secondary sintering, the nitrogen gas pressure was increased 10 minutes after reaching a predetermined temperature.

【0020】得られた焼結体の嵩密度及び曲げ強度の測
定結果を表1に示す。嵩密度はアルキメデス法により測
定した。また、曲げ強度は、作製した焼結体から3×4
×40mmのテストピースを切り出し、これを外スパン3
0mm、内スパン10mmの4点曲げ試験治具にセットし
て、室温及び1300℃における曲げ強度を測定した。
室温における曲げ強度はテストピース40本の平均値、
1300℃おける曲げ強度はテストピース10本の平均
値で求めた。
Table 1 shows the measurement results of the bulk density and bending strength of the obtained sintered body. The bulk density was measured by the Archimedes method. The bending strength was 3 × 4
Cut out a test piece of × 40mm and insert it into outer span 3
It was set on a 4-point bending test jig having a length of 0 mm and an inner span of 10 mm, and the bending strength at room temperature and 1300 ° C. was measured.
The bending strength at room temperature is the average value of 40 test pieces,
The bending strength at 1300 ° C. was determined by an average value of ten test pieces.

【0021】[0021]

【表1】 [Table 1]

【0022】実施例13〜24 出発原料をα型窒化珪素粉末93.2重量%に、イット
リア3.5重量%、アルミナ2.8重量%及びジルコニ
ア0.5重量%を添加した配合粉とし、表2に記載の温
度−窒素ガス圧力条件に変え、一次焼結時に窒素ガスを
流通させなかった以外は、実施例1〜12と同様の操作
を繰り返した。一次焼結時に炉内のCOガス濃度は5%
以上に上昇した。得られた焼結体の嵩密度及び曲げ強度
の測定結果を表2に示す。得られた焼結体の表層部は緑
灰色に変色していた。X線回折測定によれば、焼結体の
表層部にはβ−SiCのピークが検出された。
Examples 13 to 24 The starting material was a compounded powder obtained by adding 3.5% by weight of yttria, 2.8% by weight of alumina and 0.5% by weight of zirconia to 93.2% by weight of α-type silicon nitride powder, The same operation as in Examples 1 to 12 was repeated except that the temperature was changed to the nitrogen gas pressure condition shown in Table 2 and the nitrogen gas was not passed during the primary sintering. CO gas concentration in the furnace during primary sintering is 5%
It rose above. Table 2 shows the measurement results of the bulk density and the bending strength of the obtained sintered body. The surface layer of the obtained sintered body was discolored to green-grey. According to the X-ray diffraction measurement, a peak of β-SiC was detected in the surface layer of the sintered body.

【0023】[0023]

【表2】 [Table 2]

【0024】比較例1〜6 実施例13において、表2に記載の温度−窒素ガス圧力
条件に変えた以外は、実施例13と同様の操作を繰り返
した。一次焼結及び二次焼結の保持時間は共に1.5時
間とした。一次焼結時に炉内のCOガス濃度は5%以上
に上昇した。得られた焼結体の嵩密度及び曲げ強度の測
定結果を表2に示す。得られた焼結体の表層部は緑灰色
に変色していた。X線回折測定によれば、焼結体の表層
部にはβ−SiCのピークが検出された。
Comparative Examples 1 to 6 The same operation as in Example 13 was repeated, except that the temperature-nitrogen gas pressure conditions shown in Table 2 were changed. The holding time for both the primary sintering and the secondary sintering was 1.5 hours. During the primary sintering, the CO gas concentration in the furnace increased to 5% or more. Table 2 shows the measurement results of the bulk density and the bending strength of the obtained sintered body. The surface layer of the obtained sintered body was discolored to green-grey. According to the X-ray diffraction measurement, a peak of β-SiC was detected in the surface layer of the sintered body.

【0025】[0025]

【発明の効果】本発明によれば、三段焼結法を採用する
ことにより、機械的強度が優れた緻密な窒化珪素質焼結
体を製造することができる。
According to the present invention, a dense silicon nitride sintered body having excellent mechanical strength can be manufactured by employing the three-stage sintering method.

【図面の簡単な説明】[Brief description of the drawings]

【図1】図1は、実施例1〜24及び比較例1〜6の温
度−窒素ガス圧力のパターンを示す図である。
FIG. 1 is a diagram showing temperature-nitrogen gas pressure patterns of Examples 1 to 24 and Comparative Examples 1 to 6.

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 窒化珪素粉末と焼結助剤との混合物を成
形し、該成形体を焼結するに際し、1.0〜20kg/cm
2 の窒素又は窒素含有不活性ガス雰囲気下に、1650
〜1950℃の範囲で、かつ焼結により生成する粒界相
の融点よりも250℃以上高い温度で一次焼結して、気
孔率0.5〜5%の焼結体とし、次いで、一次焼結の温
度よりも100℃以上低く、かつ粒界相の融点よりも0
〜250℃高い温度とした後、一次焼結の圧力の5〜5
0倍のガス圧で二次焼結し、さらに、引続き1650〜
1950℃の範囲で、かつ二次焼結の温度よりも100
℃以上高い温度で三次焼結することを特徴とする窒化珪
素質焼結体の製造法。
1. A method of molding a mixture of a silicon nitride powder and a sintering aid, and sintering the molded product, wherein the compact is 1.0 to 20 kg / cm.
2650 in a nitrogen or nitrogen-containing inert gas atmosphere.
Primary sintering at a temperature in the range of 191950 ° C. and at least 250 ° C. higher than the melting point of the grain boundary phase formed by sintering, to obtain a sintered body having a porosity of 0.5 to 5%, 100 ° C. or more lower than the melting temperature and 0 ° C.
After raising the temperature to ~ 250 ° C, the primary sintering pressure is 5-5
Secondary sintering at 0 times gas pressure, followed by 1650-
In the range of 1950 ° C. and 100 degrees below the secondary sintering temperature.
A method for producing a silicon nitride-based sintered body, characterized by performing tertiary sintering at a temperature higher than or equal to ° C.
【請求項2】 一次焼結を雰囲気ガスを流通させながら
行うことを特徴とする請求項1の窒化珪素質焼結体の製
造法。
2. The method according to claim 1, wherein the primary sintering is performed while flowing an atmosphere gas.
JP3335548A 1991-11-26 1991-11-26 Manufacturing method of silicon nitride sintered body Expired - Lifetime JP2696735B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3335548A JP2696735B2 (en) 1991-11-26 1991-11-26 Manufacturing method of silicon nitride sintered body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3335548A JP2696735B2 (en) 1991-11-26 1991-11-26 Manufacturing method of silicon nitride sintered body

Publications (2)

Publication Number Publication Date
JPH05148035A JPH05148035A (en) 1993-06-15
JP2696735B2 true JP2696735B2 (en) 1998-01-14

Family

ID=18289815

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3335548A Expired - Lifetime JP2696735B2 (en) 1991-11-26 1991-11-26 Manufacturing method of silicon nitride sintered body

Country Status (1)

Country Link
JP (1) JP2696735B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11607733B2 (en) 2019-12-16 2023-03-21 Brown University Bulk grain boundary materials

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2021225158A1 (en) * 2020-05-07 2021-11-11
CN115259163B (en) * 2022-07-19 2023-10-10 宁波合盛新材料有限公司 Synthesis method of cerium silicide

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11607733B2 (en) 2019-12-16 2023-03-21 Brown University Bulk grain boundary materials

Also Published As

Publication number Publication date
JPH05148035A (en) 1993-06-15

Similar Documents

Publication Publication Date Title
EP1160223B1 (en) Silicon nitride filter and method of manufacture thereof
JPS6256107B2 (en)
EP0322174B1 (en) Process for making silicon nitride articles
EP0540671B1 (en) Preparing silicon nitride with densification aid, and results
JP2696735B2 (en) Manufacturing method of silicon nitride sintered body
JP2696734B2 (en) Manufacturing method of silicon nitride sintered body
Semen et al. Structural ceramics derived from a preceramic polymer
JPS6241191B2 (en)
JP2687632B2 (en) Method for producing silicon nitride sintered body
JP3570676B2 (en) Porous ceramic body and method for producing the same
JPH0146472B2 (en)
JPS6042188B2 (en) Manufacturing method of silicon nitride molded body
KR101090275B1 (en) Ceramic compositions for mullite-bonded silicon carbide body, sintered body and its preparing method
JP4963157B2 (en) Ceramic composite and method for producing the same
JP3350759B2 (en) Method for nitriding silicon-containing materials
JPS6346029B2 (en)
JPH0733528A (en) Composite sintered ceramic, its production and semiconductor production jig made therefrom
JP3604128B2 (en) Displacement control type pressure sintering apparatus and pressure sintering method using the same
JPS6344713B2 (en)
JP2671539B2 (en) Method for producing silicon nitride sintered body
JP2706304B2 (en) Method for producing silicon nitride sintered body
JPH10120406A (en) Modified silicon nitride powder and its production and silicon nitride mixture powder and production of silicon nitride sintered product
JPH05339061A (en) Silicon nitride sintered body and its production
JPH08245264A (en) Silicon nitride-titanium nitride composite ceramics and its production
JPH0585506B2 (en)