JP2001278685A - Silicon carbide material and its manufacturing method - Google Patents

Silicon carbide material and its manufacturing method

Info

Publication number
JP2001278685A
JP2001278685A JP2001006276A JP2001006276A JP2001278685A JP 2001278685 A JP2001278685 A JP 2001278685A JP 2001006276 A JP2001006276 A JP 2001006276A JP 2001006276 A JP2001006276 A JP 2001006276A JP 2001278685 A JP2001278685 A JP 2001278685A
Authority
JP
Japan
Prior art keywords
silicon carbide
zirconia
layer
substrate
ceramic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001006276A
Other languages
Japanese (ja)
Other versions
JP4743973B2 (en
Inventor
Osamu Morita
修 森田
Yoichiro Mochizuki
陽一郎 望月
Seiichi Fukuoka
聖一 福岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Coorstek KK
Original Assignee
Toshiba Ceramics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Ceramics Co Ltd filed Critical Toshiba Ceramics Co Ltd
Priority to JP2001006276A priority Critical patent/JP4743973B2/en
Publication of JP2001278685A publication Critical patent/JP2001278685A/en
Application granted granted Critical
Publication of JP4743973B2 publication Critical patent/JP4743973B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/009After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone characterised by the material treated
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/50Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials
    • C04B41/5025Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials with ceramic materials
    • C04B41/5042Zirconium oxides or zirconates; Hafnium oxides or hafnates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00474Uses not provided for elsewhere in C04B2111/00
    • C04B2111/00482Coating or impregnation materials
    • C04B2111/00577Coating or impregnation materials applied by spraying

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Ceramic Products (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a silicon carbide material, which is hardly reacted with heat-treated materials and is lightweight and of which ceramic-sprayed film is hardly stripped. SOLUTION: In manufacturing the silicon carbide material, a ceramic-sprayed film 4 with multiple layers, of which the outside layer is the zirconia ceramic- sprayed film, is formed on part or all of surface 3 of a substrate 2. The substrate 2 is made of atmospheric pressure sintering silicon carbide with porosity of 0.1% or less and central line average height in roughness (Ra) of 3-15 μm at the surface 3.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明はセラミック溶射被膜
を有する炭化珪素部材に係わり、特に電子部品を非酸化
性雰囲気で熱処理する際に使用される治具に適した炭化
珪素部材に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a silicon carbide member having a ceramic sprayed coating, and more particularly to a silicon carbide member suitable for a jig used when heat-treating an electronic component in a non-oxidizing atmosphere.

【0002】[0002]

【従来の技術】セラミックコンデンサ等の電子部品の熱
処理工程においては、コンデンサとの接触部分での反応
が最も少ないジルコニア、アルミナ、スピネル等を溶射
した熱処理用治具が用いられ、その基材としては、アル
ミナ−シリカ質、炭化珪素質材料等が使用されている。
2. Description of the Related Art In a heat treatment process for electronic components such as ceramic capacitors, a heat treatment jig sprayed with zirconia, alumina, spinel, or the like, which has the least reaction at a contact portion with the capacitor, is used. , Alumina-silica, silicon carbide, and the like are used.

【0003】また、従来の熱処理用治具の肉厚は約5〜
10mmであるが、これを4mm以下の薄肉化にするこ
とによりコンデンサ等の熱処理工程の際の段積み枚数を
増やして生産性向上が望まれていた。
The thickness of a conventional heat treatment jig is about 5 to 5 mm.
Although the thickness is 10 mm, it is desired to improve the productivity by reducing the thickness to 4 mm or less to increase the number of stacks in the heat treatment step of a capacitor or the like.

【0004】そこで、従来使用されてきた基材の材料の
中で、気孔率が0.1%以下の常圧炭化珪素焼結体を基
材として用いることにより、高強度で薄肉化が図れる
が、この基材は表面の開気孔が少なく、中心線平均粗さ
がRa=0.1μm程度なので、そのままの状態で溶射
しても熱処理用治具として使用した場合に、膜の剥離が
原因で十分な耐用寿命とならない欠点があった。
[0004] Therefore, among the conventionally used materials of the base material, by using a normal pressure silicon carbide sintered body having a porosity of 0.1% or less as the base material, it is possible to achieve high strength and a thin wall. Since this substrate has few open pores on the surface and has a center line average roughness of about Ra = 0.1 μm, even if it is used as a jig for heat treatment even if it is sprayed as it is, the film peels off. There is a drawback that the service life is not sufficient.

【0005】この対策として、特開平5−238853
号公報にはセラミックス基材の表面改質により被覆層の
密着性の向上を図る提案がなされている。この発明の具
体的手段は、基材表面を中心線平均粗さがRa=0.1
5μm以上に粗面化することにより、被覆層の密着性の
向上が図れることが開示されている。しかしながら、こ
の発明では中心線平均粗さがRa=2.85μmまでの
検討しかしておらず、電子部品の熱処理用治具として使
用した場合に、膜の十分な剥離防止効果が得られない。
As a countermeasure against this, Japanese Patent Laid-Open Publication No.
In Japanese Patent Application Laid-Open Publication No. H11-264, a proposal is made to improve the adhesion of a coating layer by modifying the surface of a ceramic substrate. The specific means of the present invention is that the center line average roughness is Ra = 0.1
It is disclosed that by roughening the surface to 5 μm or more, the adhesion of the coating layer can be improved. However, in the present invention, the center line average roughness is only studied up to Ra = 2.85 μm, and when used as a jig for heat treatment of an electronic component, a sufficient peeling prevention effect of the film cannot be obtained.

【0006】また、特開平11−263671号公報に
はポーラスなアルミナ・シリカ系やSiC系の焼結体基
材の下地層に水プラズマ溶射による気孔率が12%以上
のポーラスなセラミック溶射膜と、表面層にガスプラズ
マ溶射による気孔率が7%以下のセラミック溶射膜の2
層からなるセラミック溶射膜を備えた焼成用道具材が記
載されている。しかし、この焼成用道具材は被焼成物と
の接触面が比較的徽密な組織であるため、被焼成物との
接触面積が大きくなり反応を十分に抑制できず、また、
十分な軽量化が期待できない。
Japanese Patent Application Laid-Open No. 11-263671 discloses a porous ceramic sprayed film having a porosity of 12% or more by water plasma spraying on a base layer of a porous alumina-silica or SiC based sintered body. A ceramic sprayed film having a porosity of 7% or less on the surface layer by gas plasma spraying;
A firing tool with a ceramic spray coating comprising layers is described. However, since the firing tool material has a relatively dense structure in which the contact surface with the object to be fired is relatively dense, the contact area with the object to be fired becomes large, and the reaction cannot be sufficiently suppressed.
Sufficient weight reduction cannot be expected.

【0007】[0007]

【発明が解決しようとする課題】そこで、被熱処理物と
反応しにくく、軽量化が図られ、かつセラミック溶射被
膜が剥離しにくい炭化珪素部材が要望されていた。
Accordingly, there has been a demand for a silicon carbide member which is less likely to react with the object to be heat-treated, is lighter in weight, and is less likely to peel off the ceramic sprayed coating.

【0008】本発明は上述した事情を考慮してなされた
もので、被熱処理物と反応しにくく、軽量化が図られ、
かつセラミック溶射被膜が剥離しにくい炭化珪素部材を
提供することを目的とする。
[0008] The present invention has been made in view of the above circumstances, it is difficult to react with the object to be heat-treated, the weight is reduced,
Further, it is an object of the present invention to provide a silicon carbide member in which a ceramic sprayed coating is difficult to peel off.

【0009】[0009]

【課題を解決するための手段】上記目的を達成するため
になされた本願請求項1の発明は、気孔率が0.1%以
下で、表面が中心線平均粗さ(Ra)3〜15μmに粗
面化された常圧焼結炭化珪素製基材と、この基材の表面
の一部または全部に形成された複数のセラミック溶射被
膜層とを有し、このセラミック溶射被膜の最外層はジル
コニア質溶射被膜であることを特徴とする炭化珪素部材
であることを要旨としている。
Means for Solving the Problems According to the first aspect of the present invention, which has been made to achieve the above object, the porosity is 0.1% or less and the surface has a center line average roughness (Ra) of 3 to 15 μm. It has a roughened normal pressure sintered silicon carbide substrate, and a plurality of ceramic sprayed coating layers formed on part or all of the surface of the substrate, and the outermost layer of the ceramic sprayed coating is zirconia. The gist of the present invention is a silicon carbide member characterized by being a thermal sprayed coating.

【0010】本願請求項2の発明では、上記ジルコニア
質溶射被膜はカルシア、マグネシア、またはイットリア
から選ばれた少なくとも1つにより安定化または部分安
定化したジルコニア、または安定化ジルコニアと未安定
ジルコニアとの混合物からなることを特徴とする請求項
1に記載の炭化珪素部材であることを要旨としている。
In the invention of claim 2 of the present application, the sprayed zirconia coating is zirconia stabilized or partially stabilized by at least one selected from calcia, magnesia, and yttria, or a mixture of stabilized zirconia and unstable zirconia. The gist is a silicon carbide member according to claim 1, which is made of a mixture.

【0011】本願請求項3の発明では、上記常圧焼結炭
化珪素焼結体は、かさ密度が、3.05g/cm以上
で、かつ室温の3点曲げ強さが380MPa以上である
ことを特徴とする請求項1または2に記載の炭化珪素焼
結部材であることを要旨としている。
[0011] In the third aspect of the present invention, the normal pressure sintered silicon carbide sintered body has a bulk density of 3.05 g / cm 3 or more and a three-point bending strength at room temperature of 380 MPa or more. It is a gist of the silicon carbide sintered member according to claim 1 or 2.

【0012】本願請求項4の発明は、常圧焼結炭化珪素
焼結体表面の一部あるいは全面にガスプラズマ溶射によ
りアルミナ、または、ムライトからなるプラズマ溶射層
の下地層を形成し、さらに、この下地層の上に水プラズ
マ溶射により未安定、カルシア部分安定、イットリア部
分安定ジルコニアの中の一種または二種以上からなる表
面層を形成することを特徴とする炭化珪素焼結部材の製
造方法であることを要旨としている。
[0012] The invention of claim 4 of the present application is to form an underlayer of a plasma sprayed layer made of alumina or mullite by gas plasma spraying on a part or the whole surface of the normal pressure sintered silicon carbide sintered body. A method for producing a silicon carbide sintered member, characterized by forming a surface layer composed of one or more of unstable, calcia partially stable, and yttria partially stable zirconia on the underlayer by water plasma spraying. The gist is that there is.

【0013】本願請求項5の発明では、上記下地層が形
成される焼結体表面の十点平均粗さ(Ra)はRz≧2
0μmであることを特徴とする請求項4に記載の炭化珪
素部材の製造方法であることを要旨としている。
In the invention of claim 5 of the present application, the ten-point average roughness (Ra) of the surface of the sintered body on which the underlayer is formed is Rz ≧ 2.
The gist of the invention is a method of manufacturing a silicon carbide member according to claim 4, wherein the thickness is 0 μm.

【0014】[0014]

【発明の実施の形態】本発明に係わる炭化珪素部材の一
実施の形態について図面に基づき説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS One embodiment of a silicon carbide member according to the present invention will be described with reference to the drawings.

【0015】図1に示すように、炭化珪素部材は、気孔
率が0.1%以下で、表面が中心線平均粗さ(Ra)3
〜15μmに粗面化された常圧焼結炭化珪素製の基材2
と、この基材2の表面3に形成された複数層、例えば2
層のセラミック溶射被膜4とを有し、このセラミック溶
射被膜4の最外層5はジルコニアセラミック溶射被膜で
あり、基材2に形成される下地層6はムライト溶射被膜
である。
As shown in FIG. 1, the silicon carbide member has a porosity of 0.1% or less and a surface having a center line average roughness (Ra) of 3 or less.
Substrate 2 made of atmospheric pressure sintered silicon carbide roughened to a thickness of 15 μm
And a plurality of layers formed on the surface 3 of the substrate 2, for example, 2
And the outermost layer 5 of the ceramic sprayed coating 4 is a zirconia ceramic sprayed coating, and the underlayer 6 formed on the substrate 2 is a mullite sprayed coating.

【0016】最外層(表面層)5のジルコニアセラミッ
ク溶射被膜は、カルシア、マグネシア、またはイットリ
アから選ばれた少なくとも1つにより安定化された安定
化ジルコニア、部分安定化ジルコニア、または安定化ジ
ルコニアと未安定化ジルコニアとの混合物からなる。
The thermal spray coating of the zirconia ceramic of the outermost layer (surface layer) 5 is composed of stabilized zirconia, partially stabilized zirconia, or stabilized zirconia stabilized by at least one selected from calcia, magnesia, and yttria. Consists of a mixture with stabilized zirconia.

【0017】下地層6は、ムライト溶射被膜が好ましい
が、セラミック溶射被膜を3層にする場合には、下地層
をAlにし、この下地層と最外層間に形成される
中間層をムライトにしてもよい。
The undercoat layer 6 is preferably a mullite sprayed coating, but when three ceramic sprayed coatings are used, the underlayer is made of Al 2 O 3 and the intermediate layer formed between this underlayer and the outermost layer is formed. It may be mullite.

【0018】次に炭化珪素部材の製造方法を説明する。Next, a method for manufacturing a silicon carbide member will be described.

【0019】炭化珪素部材の製造方法は、一般に用いら
れている製造方法を用い、複数の粒度からなるSiC原
料と焼結助剤としてのB系化合物からなる配合に、珪素
樹脂と熱硬化性樹脂とを添加して、混合し、加圧成形
し、焼成して気孔率が0.1%以下の常圧焼結炭化珪素
の焼成体を得る。この焼成体のかさ密度は3.05g/
以上で、かつ、室温曲げ強さが380MPa以上で
ある。これにより棚板治具として用いる場合には高温強
度や耐ベンド性が得られ肉薄化が図れる。かさ密度が
3.05g/m未満であると高温強度や耐ベンド性に
劣るため、十分な耐用が得られない。
The silicon carbide member is manufactured by using a generally used manufacturing method. A silicon resin and a thermosetting resin are added to a mixture of a SiC raw material having a plurality of particle sizes and a B-based compound as a sintering aid. Are added, mixed, pressed, and fired to obtain a fired body of normal pressure sintered silicon carbide having a porosity of 0.1% or less. The bulk density of the fired body is 3.05 g /
In m 3 or more, and is at room temperature bending strength is 380MPa or more. Accordingly, when used as a shelf jig, high-temperature strength and bend resistance can be obtained and the thickness can be reduced. If the bulk density is less than 3.05 g / m 3 , the high temperature strength and the bend resistance are inferior, so that sufficient durability cannot be obtained.

【0020】また、この焼成体の少なくとも被熱処理物
が載置される側の一表面を、例えばサンドブラストやア
ルカリエッチングによって、算術平均粗さRaを特定範
囲、すなわち、Ra=3〜15μmになるように粗面化
する。最も好ましくは、Ra=10〜15μmである。
また、十点平均粗さはRz≧20μmである。Ra=1
0〜15μmおよびRz≧20μmに粗面化するには、
焼成前に素地状態でサンドブラスト処理が好ましい。
At least one surface of the fired body on which the object to be heat-treated is placed is subjected to, for example, sandblasting or alkali etching so that the arithmetic average roughness Ra is in a specific range, that is, Ra = 3 to 15 μm. The surface is roughened. Most preferably, Ra = 10 to 15 μm.
The ten-point average roughness is Rz ≧ 20 μm. Ra = 1
To roughen to 0 to 15 μm and Rz ≧ 20 μm,
Sand blasting is preferably performed in a green state before firing.

【0021】平均粗さR=3〜15μmの範囲にするこ
とで、使用中の温度差による熱応力の伝達を緩和し、割
れや亀裂の発生を抑制することが可能となり、棚板治具
としての信頼性および寿命を向上させる。また、部材表
面の粗面化は一表面あるいは全表面行い、粗面化後に焼
結することで、粗面化の際にできた微細なクラックは焼
結時の粒成長によって消滅するため粗面化による強度の
低下を抑えることができる。
By setting the average roughness R in the range of 3 to 15 μm, the transmission of thermal stress due to the temperature difference during use can be reduced, and the generation of cracks and cracks can be suppressed. Improve reliability and life. In addition, the surface of the member is roughened on one surface or the entire surface, and sintering is performed after the surface is roughened. Since fine cracks formed during the surface roughening disappear due to grain growth during sintering, the surface is roughened. A decrease in strength due to the formation can be suppressed.

【0022】Raが3μmより小さいと、ジルコニア層
(最外層)の剥離までの使用可能回数が小さくなり、熱
処理治具として用いた場合に実用に供しにくい。
When Ra is smaller than 3 μm, the number of usable times until the zirconia layer (outermost layer) is peeled off becomes small, and it is difficult to put the zirconia layer to practical use when used as a heat treatment jig.

【0023】また、サンドブラストやアルカリエッチン
グによって、常圧焼結炭化珪素の焼成体の粗面化は、1
5μmを超え、特に20μmより大きくするのは、困難
である。その理由として気孔率が0.1%以下と表面の
開気孔が非常に少ない常圧燒結炭化珪素はもとから開気
孔を有する耐火物系の炭化珪素材料とは異なり、粗面化
によって初めて溶射被膜形成が可能になるが、構成して
いる炭化珪素造粒粒径が数μm程度であり、粗面化を長
く行えば、粒子ごと剥離してしまい、部分的に深く掘る
ことは非常に困難であるからである。また、15μmを
超えると基材の強度が低下し、20μmより大きい場合
には、加熱冷却サイクルにより、基材自身にも亀裂が入
るおそれがある。
The roughening of the sintered body of normal pressure sintered silicon carbide by sandblasting or alkali etching
It is difficult to exceed 5 μm, especially larger than 20 μm. The reason for this is that, unlike normal pressure sintered silicon carbide, which has very small open pores on the surface with a porosity of 0.1% or less, is different from refractory silicon carbide materials that have open pores, and is first sprayed by roughening. Although it is possible to form a film, the granulated particle size of silicon carbide is about several μm, and if the surface is roughened for a long time, the particles will peel off together, making it extremely difficult to partially dig deep. Because it is. On the other hand, if it exceeds 15 μm, the strength of the base material decreases, and if it exceeds 20 μm, there is a possibility that the base material itself may be cracked by the heating / cooling cycle.

【0024】基材の表面粗さがRz≧20μmであれ
ば、溶射膜に対する十分なアンカー効果が得られ、溶射
膜の耐剥離性を向上させることができる。Rz<20μ
mであると溶射膜に対する十分なアンカー効果が得られ
ずに、溶射膜が剥離しやすくなる。
When the surface roughness of the substrate is Rz ≧ 20 μm, a sufficient anchor effect on the sprayed film can be obtained, and the peeling resistance of the sprayed film can be improved. Rz <20μ
If m, a sufficient anchor effect on the sprayed film cannot be obtained, and the sprayed film is easily peeled.

【0025】しかる後、この一表面に溶射により複数層
の溶射被膜を形成する。例えば、一表面にはアルゴン雰
囲気でのガスプラズマ溶射によりムライト溶射被膜を下
地層として形成し、この上に水プラズマ溶射によりジル
コニア溶射被膜を形成する。
Thereafter, a plurality of thermal spray coatings are formed on one surface by thermal spraying. For example, a mullite sprayed coating is formed as an underlayer on one surface by gas plasma spraying in an argon atmosphere, and a zirconia sprayed coating is formed thereon by water plasma spraying.

【0026】上記常圧焼結炭化珪素の焼成体は、室温で
の曲げ強さが、概ね400MPa程度であり、熱処理用
治具基材に常圧焼結炭化珪素を用いることで、肉厚を4
mm以下の肉薄にすることができる。また、焼成体は炭
化珪素が95%程度であり、焼結助剤としてのB系化合
物を用いたが、焼結助剤の種類はいずれでもよい。
The sintered body of the normal pressure sintered silicon carbide has a flexural strength at room temperature of about 400 MPa, and has a reduced thickness by using the normal pressure sintered silicon carbide as a heat treatment jig base. 4
mm or less. The fired body contains about 95% silicon carbide, and a B-based compound is used as a sintering aid, but any type of sintering aid may be used.

【0027】下地層はムライト、Alなどの溶射
被膜である。ムライトが耐クリープ性に優れており、最
も好ましくは、ムライト組成(3Al・2SiO
、Al=71.8重量%)であるが、ムライト
原料の製法上、ムライト化していないSiOが含まれ
るため、現行の市販の原料を用いた場合は耐クリープ性
を向上させるには、好ましくはAlが72〜85
重量%、最も好ましくは74〜78重量%である。下地
層の厚さは、熱処理用治具の形状、基体の材質種によっ
て異なるが0.05mm以上であれば耐クリープ性向上
の効果が得られる。厚くすれば耐クリープ性は向上する
が、厚すぎると重量が増加し軽量化に反し、また剥離が
発生しやすくなる。
The underlayer is a thermal spray coating of mullite, Al 2 O 3 or the like. Mullite has excellent creep resistance, and most preferably, has a mullite composition (3Al 2 O 3 .2SiO
2 , Al 2 O 3 = 71.8% by weight). However, since non-mullite SiO 2 is included in the production method of the mullite raw material, the creep resistance is improved when a current commercially available raw material is used. Preferably has Al 2 O 3 of 72 to 85
%, Most preferably 74-78% by weight. The thickness of the underlayer differs depending on the shape of the jig for heat treatment and the material type of the base, but if it is 0.05 mm or more, the effect of improving the creep resistance can be obtained. If the thickness is too large, the creep resistance is improved.

【0028】最外層はカルシア、マグネシア、またはイ
ットリアから選ばれた少なくとも1つにより安定化され
た安定化ジルコニア、部分安定化ジルコニア、または安
定化ジルコニアと未安定化ジルコニアとの混合物からな
るジルコニアセラミック溶射被膜である。
The outermost layer is a zirconia ceramic sprayed material comprising stabilized zirconia stabilized by at least one selected from calcia, magnesia, and yttria, partially stabilized zirconia, or a mixture of stabilized zirconia and unstabilized zirconia. It is a coating.

【0029】最外層に要求される特性は、被熱処理物と
の難反応性、耐久性(剥離、脱落)である。最外層をジ
ルコニアにすることにより、被熱処理物との反応を最小
限に抑えることができる。
The properties required for the outermost layer are difficulty in reacting with the object to be heat-treated and durability (peeling, falling off). By using zirconia as the outermost layer, the reaction with the object to be heat-treated can be minimized.

【0030】ジルコニア層の単層被膜である従来の場合
には、基材を粗面化しても、常圧焼結炭化珪素基材とジ
ルコニア層の熱膨張率の差により、熱処理用治具として
被膜の剥離により耐用寿命に耐えられない。
In the conventional case where the zirconia layer is a single-layer film, even if the substrate is roughened, the difference in thermal expansion coefficient between the normal pressure sintered silicon carbide substrate and the zirconia layer causes the jig to be used as a heat treatment jig. The service life cannot be endured due to peeling of the coating.

【0031】また、コーティング品の欠点である最外層
の剥離については、溶射法を用いることで剥離しにくい
被膜を得ることができる。プラズマ溶射法で溶射された
被膜は、弾性率が低く膨張収縮に伴う熱応力の発生が小
さい、応力が分散される、膨張自体が緩和される等の効
果により剥離が起こり難い。特に、表面層が水プラズマ
の場合、被焼成物との接触面積が小さくなると共に、溶
射材料の粒径が大きいことから、反応を抑制することが
できる。これに対して、下地層と表面層が共に水プラズ
マ溶射からなる場合、比較的気孔率が大きいことから、
被焼成物中の成分が溶射層へ浸透し、一方で基材が極め
て緻密なため、基材と溶射層の界面へ蓄積して物理的に
付着している溶射層を剥離させやすくする。
As for the peeling of the outermost layer, which is a drawback of the coated product, it is possible to obtain a film which is hard to peel by using a thermal spraying method. The coating sprayed by the plasma spraying method has a low elastic modulus, a small generation of thermal stress due to expansion and contraction, dispersion of stress, relaxation of expansion itself, and other effects hardly cause peeling. In particular, when the surface layer is water plasma, the reaction area can be suppressed because the contact area with the object to be fired is small and the particle diameter of the sprayed material is large. On the other hand, when both the underlayer and the surface layer are formed by water plasma spraying, the porosity is relatively large,
The components in the material to be fired penetrate into the thermal spray layer, while the base material is extremely dense, so that the thermal spray layer that accumulates at the interface between the base material and the thermal spray layer and is physically adhered is easily peeled off.

【0032】上述のような熱処理用治具は、基体の気孔
率が0.1%以上であるので、曲げ強さが大きく、ま
た、密度は3.05g/m以上で室温曲げ強さが38
0MPa以上であるので、棚板治具として用いる場合に
は高温強度や耐ベンド性が得られ肉薄化が図れる。この
基材の表面に耐クリープ性に優れたムライト等を主成分
とする下地層を形成することにより、耐熱衝撃性を維持
しつつ、耐クリープ性を向上させ、かつ薄肉化が可能と
なり、さらに、その内被膜層の表面に被熱処理物と難反
応性であるジルコニアあるいはジルコン酸塩を被膜して
最外層を形成することにより被熱処理物を直接載置する
ことが可能で、種々の被熱処理物の焼成に対応可能な熱
処理用治具を提供することができる。
The heat treatment jig as described above has a large flexural strength since the porosity of the substrate is 0.1% or more, and a flexural strength at room temperature with a density of 3.05 g / m 3 or more. 38
Since it is 0 MPa or more, when it is used as a shelf jig, high-temperature strength and bend resistance can be obtained and the thickness can be reduced. By forming an underlayer mainly composed of mullite or the like having excellent creep resistance on the surface of the base material, it is possible to improve the creep resistance while maintaining the thermal shock resistance, and to reduce the thickness. The surface of the inner coating layer is coated with zirconia or zirconate, which is hardly reactive with the object to be heat-treated, so that the outermost layer is formed. It is possible to provide a heat treatment jig capable of coping with firing of a product.

【0033】また、肉薄化しても使用中に反りが発生し
にくく、高耐用・被熱処理物の積載スペースの拡大によ
る焼成工程のスループットの向上、熱処理用治具の軽
量、低熱容量による省エネが可能となった。
Further, even if the thickness is reduced, warping hardly occurs during use, and high durability and an improvement in throughput of a firing process by expanding a loading space for a heat treatment object, and energy saving by light weight and low heat capacity of a heat treatment jig are possible. It became.

【0034】[0034]

【実施例】1.試験1 「1」目的:本発明に係わる炭化珪素部材の製造方法を
用い、以下に示す基材に、表1に示すような材質の下地
層と最外層を形成した試料について、被膜剥離試験およ
び被加熱物との反応性試験を行った。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Test 1 "1" Purpose: A film peeling test was performed on a sample in which a base layer and an outermost layer having the materials shown in Table 1 were formed on a substrate shown below using the method for manufacturing a silicon carbide member according to the present invention. A reactivity test with an object to be heated was performed.

【0035】「2」試料: (1)基材 実施例1〜8および比較例1〜7 大きさが200mm×350mmで厚さ3.5mm、材
質がSiC98重量%、かさ密度3.15kg/cm
程度、室温3点曲げ強さ400MPa程度の常圧焼結炭
化珪素材質である。
"2" sample: (1) Base material Examples 1 to 8 and Comparative examples 1 to 7 The size was 200 mm × 350 mm, the thickness was 3.5 mm, the material was 98% by weight of SiC, and the bulk density was 3.15 kg / cm. 3
Pressure-sintered silicon carbide material having a three-point bending strength of about 400 MPa at room temperature.

【0036】 比較例8 寸法はと同様であり、材質はSiC94重量%、かさ
密度2.5kg/cm 程度、室温3点曲げ強さ25M
Pa程度の炭化珪素焼結体である。
Comparative Example 8 The dimensions were the same as in the above, and the material was 94% by weight of SiC,
Density 2.5kg / cm 3Degree, room temperature 3-point bending strength 25M
It is a silicon carbide sintered body of about Pa.

【0037】(2)粗面化 実施例1〜8および比較例1〜4 約500℃に加熱した水酸化ナトリウムと硝酸ナトリウ
ムの混合アルカリ溶液中(重量比:NaOH/NaNO
=5:1〜6:1)に基材を浸漬させ、エッチング時
間を変えてエッチング処理を行い、Ra値を変化させ、
表面を表1および表2に示すようなRa値程度に粗面化
した。
(2) Roughening Examples 1 to 8 and Comparative Examples 1 to 4 In a mixed alkaline solution of sodium hydroxide and sodium nitrate heated to about 500 ° C. (weight ratio: NaOH / NaNO)
3 = 5: 1 to 6: 1), the etching process is performed by changing the etching time, and the Ra value is changed.
The surface was roughened to a Ra value as shown in Tables 1 and 2.

【0038】 比較例6、7 サンドブラストにより表面を表2に示すようなRa値程
度に粗面化した。
Comparative Examples 6 and 7 The surface was roughened to a Ra value as shown in Table 2 by sandblasting.

【0039】(3)溶射被膜形成 実施例1〜8および比較例1〜4、6〜8 表1および表2に示す材質をガスプラズマ溶射により、
試料の一表面のみに溶射することにより溶射被膜を形成
した。このときの溶射被膜(下地層から表面層まで)の
厚さは200〜300μmであった。
(3) Formation of Thermal Spray Coating Examples 1 to 8 and Comparative Examples 1 to 4, 6 to 8 The materials shown in Tables 1 and 2 were subjected to gas plasma spraying.
A thermal spray coating was formed by spraying only one surface of the sample. At this time, the thickness of the thermal spray coating (from the base layer to the surface layer) was 200 to 300 μm.

【0040】「3」試験方法: (1)図2に示すような電気炉を用い、試料を大気中、
1400℃に加熱、1400℃を2時間保持後、室温ま
で冷却する加熱冷却サイクルを複数回(最大15回迄)
行い、ジルコニア層(最外層)が剥離するまでの回数を
調べた。
[3] Test method: (1) Using an electric furnace as shown in FIG.
Heat to 1400 ° C, hold at 1400 ° C for 2 hours, and then cool to room temperature multiple times in heating and cooling cycles (up to 15 times)
The number of times until the zirconia layer (outermost layer) was peeled was examined.

【0041】(2)実機使用して被熱処理物であるセラ
ミックコンデンサと試料との反応性を調べた。
(2) The reactivity between the ceramic capacitor, which is the object to be heat-treated, and the sample was examined using an actual machine.

【0042】「4」試験結果:表1および表2に示す。"4" Test results: Tables 1 and 2 show the results.

【0043】[0043]

【表1】 [Table 1]

【0044】[0044]

【表2】 [Table 2]

【0045】実施例1(Ra=10μm): ジルコニ
ア層の剥離、セラミックコンデンサとの反応性がなく、
最も安定している。
Example 1 (Ra = 10 μm): No peeling of zirconia layer, no reactivity with ceramic capacitor,
Most stable.

【0046】実施例2(Ra=3μm): 実施例1に
は及ばないが、ジルコニア層の剥離までの回数は13回
と従来例に比べて著しく向上しており、また、セラミッ
クコンデンサとの反応性もない。剥離までの回数が13
回を超えているため、実機使用に対応できるとみなせる
ことから、表面粗さはRa=3μm以上であればよいこ
とが確認された。
Example 2 (Ra = 3 μm): Although not as good as Example 1, the number of times until the zirconia layer was peeled was 13 times, which is significantly improved as compared with the conventional example, and the reaction with the ceramic capacitor was also improved. There is no sex. Number of times until peeling is 13
Since the number of times is more than the number of times, it can be considered that the device can be used for the actual machine. Therefore, it was confirmed that the surface roughness should be Ra = 3 μm or more.

【0047】実施例3(Ra=5μm): 実施例1に
は及ばないが、ジルコニア層の剥離までの回数は14回
と実施例2に比べて優れており、また従来例に比べて著
しく向上しており、さらにセラミックコンデンサとの反
応性もない。
Example 3 (Ra = 5 μm): Although not equal to Example 1, the number of times until the zirconia layer was peeled was 14 times, which was superior to Example 2, and was significantly improved as compared with the conventional example. And no reactivity with ceramic capacitors.

【0048】実施例4(Ra=15μm): ジルコニ
ア層の剥離、セラミックコンデンサとの反応性もない。
しかし、この実施例4の基材強度を測定したところ、粗
面化前よりも強度が約40%も低下していることが判明
した。粗面化を進めれば溶射被膜は剥離しにくくなる
が、同時に基材強度が低下し、割れが発生し易くなり、
表面粗さはRa=15を超えないことが必要であること
が確認できた。
Example 4 (Ra = 15 μm): Neither peeling of the zirconia layer nor reactivity with the ceramic capacitor was observed.
However, when the strength of the substrate of Example 4 was measured, it was found that the strength was reduced by about 40% as compared with that before the surface roughening. If the roughening is promoted, the sprayed coating becomes difficult to peel off, but at the same time, the strength of the base material decreases and cracks easily occur,
It was confirmed that the surface roughness did not need to exceed Ra = 15.

【0049】実施例5(Ra=10μm): 実施例1
と同様に基材を用い、下地層をムライトからAl
に変更したが、ジルコニア層の剥離、セラミックコンデ
ンサとの反応性はなく、実施例1と同様に安定してい
る。下地層はムライトと同程度で炭化珪素と反応しない
材質であればよいことが確認できた。
Example 5 (Ra = 10 μm): Example 1
Similarly using a base material and, Al 2 O 3 underlying layer of mullite
However, there is no separation of the zirconia layer and no reactivity with the ceramic capacitor, and it is stable as in Example 1. It has been confirmed that the underlayer should be made of a material that is substantially the same as mullite and does not react with silicon carbide.

【0050】実施例6: 実施例1と同様に基材を用
い、ジルコニア安定化材質を実施例1のイットリア8%
安定化からイットリア4%部分安定化に変更したが、最
外層ジルコニア層の剥離、セラミックコンデンサとの反
応性もなく、実施例1と同様に安定している。
Example 6: A substrate was used in the same manner as in Example 1, and the zirconia-stabilizing material was changed to 8% of yttria of Example 1.
Although the stabilization was changed to 4% partial stabilization of yttria, the outermost zirconia layer did not peel off and did not react with the ceramic capacitor, and was stable as in Example 1.

【0051】実施例7: 同様にカルシア4%部分安定
化に変更したが、最外層ジルコニア層の剥離、セラミッ
クコンデンサとの反応性もなく、実施例1と同様に安定
している。
Example 7: Calcia was changed to 4% partial stabilization in the same manner. However, there was no separation of the outermost zirconia layer and no reactivity with the ceramic capacitor.

【0052】実施例8: 同様にマグネシア4%部分安
定化に変更したが、最外層ジルコニア層の剥離、セラミ
ックコンデンサとの反応性もなく、実施例1と同様に安
定している。
Example 8: Similarly, the magnesia was changed to 4% partial stabilization, but the outermost zirconia layer was not peeled off, and there was no reactivity with the ceramic capacitor.

【0053】実施例6〜8は種々の安定化材のジルコニ
アを使用した基材を対象に剥離試験および反応性調査を
行ったが、安定化材8%イットリアを使用した実施例1
と同じく問題はなかったことから、安定化材の種類を特
に限定する必要がないことを確認した。
In Examples 6 to 8, peeling tests and reactivity investigations were conducted on substrates using various stabilizers of zirconia. Example 1 using 8% yttria of the stabilizer was used.
Since there was no problem similarly to the above, it was confirmed that it was not necessary to particularly limit the type of the stabilizing material.

【0054】実施例9: 実施例1において、基材とム
ライト間に下地層としてAlを被覆し、3層にし
たが、ジルコニア層の剥離、セラミックコンデンサとの
反応性はなく、実施例1と同様に安定している。溶射層
は下地層が形成されていれば、層数を特に限定する必要
がないことが確認できた。
Example 9 In Example 1, Al 2 O 3 was coated as a base layer between the substrate and mullite to form three layers. However, there was no peeling of the zirconia layer and no reactivity with the ceramic capacitor. It is stable as in Example 1. It was confirmed that the number of layers of the thermal sprayed layer does not need to be particularly limited as long as the underlayer is formed.

【0055】なお、安定化ジルコニア、部分安定化ジル
コニアの他に安定化ジルコニアと未安定化ジルコニアと
の混合物でも実施例1と同様の効果が得られた。
In addition to the stabilized zirconia and the partially stabilized zirconia, a mixture of stabilized zirconia and unstabilized zirconia exhibited the same effect as in Example 1.

【0056】比較例1(Ra=1μm): 実施例1と
同様の基材を用い、表面粗さをRa=1μmにしたが、
ジルコニア層の剥離までの回数は1回と著しく低く、実
用に供しえない。
Comparative Example 1 (Ra = 1 μm): The same substrate as in Example 1 was used, and the surface roughness was Ra = 1 μm.
The number of times until the zirconia layer is peeled off is as extremely low as one time, which is not practical.

【0057】比較例2(Ra=2μm): 同様に表面
粗さをRa=2μmにしたが、ジルコニア層の剥離まで
の回数は6回と低く、実用に供しにくい。
Comparative Example 2 (Ra = 2 μm): Similarly, the surface roughness was set to Ra = 2 μm, but the number of times until the zirconia layer was peeled was as low as 6 times, making it difficult to be put to practical use.

【0058】比較例3(Ra=20μm): 同様に表
面粗さをRa=20μmにしたが、ジルコニア層の剥離
までの回数は1回と著しく低くく、さらに基材自体にも
亀裂が発生し、実用に供しえない。
Comparative Example 3 (Ra = 20 μm): Similarly, the surface roughness was set to Ra = 20 μm, but the number of times until the zirconia layer was peeled was extremely low as one, and cracks also occurred in the substrate itself. , Not practical.

【0059】比較例4: 実施例1と同様の基材を用
い、下地層を形成せず、ジルコニア層を直接基材に形成
したが、ジルコニア層の剥離までの回数は1回と著しく
低く、実用に供しえない。
COMPARATIVE EXAMPLE 4 A zirconia layer was formed directly on a substrate using the same substrate as in Example 1 without forming an underlayer, but the number of times until the zirconia layer was peeled was extremely low at one time. Not practical.

【0060】比較例5: 焼結された基材そのものを用
い、粗面化、被膜形成を行わない。被加熱物との反応が
あり、実用に供しえない。
Comparative Example 5: The sintered substrate itself was used, and no surface roughening and no film formation were performed. There is a reaction with the object to be heated, and it is not practical.

【0061】比較例6: 実施例1に用いた基板を用
い、この基材にムライト被膜の単層を形成した。被加熱
物との反応があり、実用に供しえない。
Comparative Example 6 Using the substrate used in Example 1, a single layer of a mullite film was formed on the substrate. There is a reaction with the object to be heated, and it is not practical.

【0062】比較例7: 同様に基材にAl被膜
の単層を形成した。被加熱物との反応があり、実用に供
しえない。
Comparative Example 7 Similarly, a single layer of an Al 2 O 3 film was formed on a substrate. There is a reaction with the object to be heated, and it is not practical.

【0063】比較例8: 実施例7において、基材を常
圧燒結炭化珪素焼結体から耐火物系炭化珪素焼結体に変
更した。ジルコニア層の剥離までの回数は3回と低く、
実用に供しえない。耐火物系炭化珪素焼結体は粗い粒子
を原料とし気孔率が15%であり、剥離試験では剥離の
ほか、基材自身に反りおよび亀裂が発生した。
Comparative Example 8: In Example 7, the substrate was changed from a normal pressure sintered silicon carbide sintered body to a refractory silicon carbide sintered body. The number of times until the zirconia layer is removed is as low as 3 times,
Not practical. The refractory silicon carbide sintered body was made of coarse particles and had a porosity of 15%. In the peel test, in addition to peeling, the substrate itself warped and cracked.

【0064】2.試験2 「1」目的:表3および表4に示すような材質と下地層
と表面層の形成条件で、試験1と同様の試験を行った。
2. Test 2 "1" Purpose: A test similar to Test 1 was performed using the materials shown in Tables 3 and 4 and the conditions for forming the underlayer and the surface layer.

【0065】「2」試験結果:表3および表4に示す。"2" Test results: Tables 3 and 4 show the results.

【0066】[0066]

【表3】 [Table 3]

【0067】[0067]

【表4】 [Table 4]

【0068】実施例10〜14は、いずれも耐剥離性と
耐反応性が優れていることがわかった。
It was found that all of Examples 10 to 14 had excellent peeling resistance and reaction resistance.

【0069】これに対して、比較例9、11は耐反応性
に問題はないが、耐剥離性に問題があり、また、比較例
10、12は耐剥離性に問題はないが、耐反応性に問題
があり、実用に供し得ないことがわかった。
On the other hand, Comparative Examples 9 and 11 had no problem with the reaction resistance, but had a problem with the peeling resistance. Comparative Examples 10 and 12 had no problem with the peeling resistance. It was found that there was a problem in the properties and it could not be put to practical use.

【0070】3.試験3 「1」目的:本発明に係わる炭化珪素部材に用いられる
常圧焼結炭化珪素製基材のかさ比重、室温3点曲げ強さ
および表面粗さRaを変えて、図3に示すようなヒート
サイクル試験装置を用いて、亀裂発生の有無を調べる。
3. Test 3 "1" Purpose: As shown in FIG. 3, the bulk specific gravity, room temperature three-point bending strength and surface roughness Ra of the normal pressure sintered silicon carbide substrate used for the silicon carbide member according to the present invention were changed. The presence or absence of cracks is examined using a simple heat cycle test device.

【0071】「2」試料:実施例15〜25および比較
例13〜21の材質は、SiC95%程度の常圧焼結炭
化珪素材質である。この材質は炭化珪素97%程度で焼
結助剤としてボロンとカーボン(B−C系)を用いたが
焼結助剤の種類は問わない。製造方法は市販の純度約9
9%、比表面積約15m/gのSiC粉末に、焼結助
剤として平均粒径約2.5μmのB4Cを0.3質量%
(但し、比較例18のみ0.2%)、残炭量約50質量
%のフェノールレジン(レゾールタイプ)を8.5質量
%添加し、エタノール中で24時間湿式粉砕混合した。
そのスラリーをスプレードライヤーにより平均粒径約8
0μmに造粒した後、成形圧力一軸加圧成形により約2
35×4mmの成形体を得た。成形圧力については実施
例・比較例ごとに数値を変えている。
"2" Sample: The materials of Examples 15 to 25 and Comparative Examples 13 to 21 are normal pressure sintered silicon carbide materials of about 95% of SiC. This material is about 97% silicon carbide, and boron and carbon (BC) are used as sintering aids. The production method is a commercially available purity of about 9
9%, SiC powder having a specific surface area of about 15 m 2 / g and 0.3 mass% of B4C having an average particle size of about 2.5 μm as a sintering aid.
(However, only Comparative Example 18 was 0.2%), 8.5% by mass of a phenol resin (resole type) having a residual carbon content of about 50% by mass was added, and wet-pulverized and mixed in ethanol for 24 hours.
The slurry is spray-dried to an average particle size of about 8
After granulating to 0 μm, molding pressure was about 2
A molded body of 35 × 4 mm was obtained. Regarding the molding pressure, numerical values are changed for each of the examples and comparative examples.

【0072】この成形体を200℃で12時間硬化させ
た後サンドブラスト(砥粒SiC#60)により下記表
5〜表7に示す実施例15〜25、比較例13〜21の
表面粗さ(焼結後)になるように粗面化を行った。(但
し、比較例16のみ焼成後に粗面化を行なった。) その後、カーボンケースに充填し、220℃で2時間焼
結した。なお、焼結時の雰囲気は、室温から1400℃
まではフェノールレジンの熱分解を考慮し真空中で、そ
れ以降は常圧のアルゴン雰囲気中とした。
The molded body was cured at 200 ° C. for 12 hours, and then subjected to sand blasting (abrasive SiC # 60) to obtain the surface roughness (firing) of Examples 15 to 25 and Comparative Examples 13 to 21 shown in Tables 5 to 7 below. (After consolidation). (However, the surface was roughened after firing only in Comparative Example 16.) Thereafter, it was filled in a carbon case and sintered at 220 ° C. for 2 hours. The atmosphere during sintering is from room temperature to 1400 ° C.
Until the above, the vacuum was set in consideration of the thermal decomposition of the phenolic resin, and thereafter, it was set in an argon atmosphere at normal pressure.

【0073】得られた炭化珪素焼結体のかさ密度をJI
S R1634に準拠して測定後、JIS R1601
に準拠して曲げ試験片(3×4×40mm、C0.2)
をそれぞれ30本作製し、室温における3点曲げ強さを
測定した。
The bulk density of the obtained silicon carbide sintered body was determined by JI
After measurement according to S R1634, JIS R1601
Bending test piece (3 × 4 × 40 mm, C0.2)
Were prepared, and the three-point bending strength at room temperature was measured.

【0074】中心線平均粗さの測定条件は測定長さ4.
8mm、カットオフ値0.8mmである。
The conditions for measuring the center line average roughness are as follows:
8 mm and a cutoff value of 0.8 mm.

【0075】比較例19〜21については実際にコンデ
ンサ等焼成治具として使われているものを入手した。す
べて200×200×t3.5板形状に成形及び加工し
たものである。
For Comparative Examples 19 to 21, those actually used as firing jigs such as capacitors were obtained. All were molded and processed into a 200 × 200 × t3.5 plate shape.

【0076】比較例19の材質はSiC94%、かさ密
度2.5g/cm程度、室温三点曲げ強さ25MPa
程度の炭化珪素材質である。
The material of Comparative Example 19 was 94% SiC, bulk density was about 2.5 g / cm 3 , and three-point bending strength at room temperature was 25 MPa.
Of silicon carbide.

【0077】比較例20の材質はAl72%、S
iO26%程度、かさ密度2.65g/cm程度、
室温三点曲げ強さ9MPa程度のアルミナ・シリカ材質
である。
The material of Comparative Example 20 was Al 2 O 3 72%, S
iO 2 26%, bulk density 2.65 g / cm 3 ,
It is an alumina / silica material having a three-point bending strength of about 9 MPa at room temperature.

【0078】比較例21の材質はZrO95%程度、
CaO部分安定、かさ密度4.3g/cm程度、室温
三点曲げ強さ25MPa程度のジルコニア材質である。
The material of Comparative Example 21 was about 95% ZrO 2 ,
It is a zirconia material having a CaO partial stability, a bulk density of about 4.3 g / cm 3 and a three-point bending strength of about 25 MPa at room temperature.

【0079】また、実施例15〜25、比較例13〜2
1の焼成治具を薄肉化した場合コンデンサ等の焼成時に
亀裂が発生するのを調査するため200×200×t
3.5板形状に成形及び加工した実施例15〜25、比
較例1〜21のサンプルを大気中、1400℃に加熱、
1400℃を2時間保持後、室温まで冷却する加熱冷却
サイクルを複数回行い(最大15回まで)、亀裂が発生
した回数を調べた。サンプルに載置させたセッタはジル
コニア製(サイス:50×50×t3)である。(但
し、比較例21は加熱冷却サイクル試験の際はジルコニ
ア製のセッタは載置せず)。
Examples 15 to 25 and Comparative Examples 13 to 2
In order to investigate the occurrence of cracks during firing of a capacitor or the like when the firing jig 1 is thinned, 200 × 200 × t
Samples of Examples 15 to 25 and Comparative Examples 1 to 21 which were formed and processed into a 3.5-plate shape were heated to 1400 ° C. in the air.
After holding at 1400 ° C. for 2 hours, a heating / cooling cycle of cooling to room temperature was performed a plurality of times (up to 15 times), and the number of times of occurrence of cracks was examined. The setter mounted on the sample is made of zirconia (size: 50 × 50 × t3). (However, in Comparative Example 21, a zirconia setter was not placed during the heating / cooling cycle test).

【0080】「3」試験結果:表5〜表7に示す。"3" Test results: Tables 5 to 7 show the results.

【0081】[0081]

【表5】 [Table 5]

【0082】[0082]

【表6】 [Table 6]

【0083】[0083]

【表7】 [Table 7]

【0084】実施例15〜25は、表面粗さRa=3〜
15μm、かさ密度3.05g/cm以上、室温の3
点曲げ強さが380MPa以上に製作されており、加熱
冷却サイクル試験においていずれも亀裂の発生は認めら
れなかった。
In Examples 15 to 25, the surface roughness Ra = 3 to
15 μm, bulk density 3.05 g / cm 3 or more, room temperature 3
The point bending strength was 380 MPa or more, and no cracks were observed in any of the heating / cooling cycle tests.

【0085】これに対して、比較例13および14の様
にRa=0.2μmおよび2μmでは加熱冷却サイクル
回数4および7回で亀裂が発生した。
On the other hand, as in Comparative Examples 13 and 14, when Ra = 0.2 μm and 2 μm, cracks occurred at the number of heating and cooling cycles of 4 and 7 times.

【0086】比較例16は、焼結体時に粗面化を行った
が、加熱冷却サイクル回数4回で亀裂が発生した。
In Comparative Example 16, the surface was roughened at the time of sintering, but cracks were generated after four heating / cooling cycles.

【0087】比較例17は、焼結体かさ密度が低いため
加熱冷却サイクル12回目で亀裂が発生した。これは密
度が低いと開気孔率が高いので、加熱冷却サイクルで材
質が継続酸化される面積が多くなり、サイクル回数が増
えると強度の低下が著しくなるためと考えられる。
In Comparative Example 17, cracks occurred in the twelfth heating / cooling cycle because of the low bulk density of the sintered body. This is considered to be because the open porosity is high when the density is low, so that the area where the material is continuously oxidized in the heating / cooling cycle increases, and the strength decreases remarkably as the number of cycles increases.

【0088】比較例18は、焼結助剤の量を所定量より
も少なくしたので、曲げ強さが低く加熱冷却サイクル8
回目で亀裂が発生した。
In Comparative Example 18, since the amount of the sintering aid was smaller than the predetermined amount, the bending strength was low and the heating and cooling cycle 8
Cracks occurred on the second round.

【0089】比較例19〜21は、従来の材質の薄肉化
が可能かどうか検証したものであり、厚み3.5mmに
した場合、いずれの材質も加熱冷却サイクル回数1〜4
で剥離が発生した。
Comparative Examples 19 to 21 verify whether or not the conventional material can be made thinner. When the thickness is set to 3.5 mm, each of the materials has a heating / cooling cycle of 1 to 4 times.
Peeling occurred.

【0090】[0090]

【発明の効果】本発明に係わる炭化珪素部材およびその
製造方法によれば、被熱処理物と反応しにくく、軽量化
が図られ、かつセラミック溶射被膜が剥離しにくい炭化
珪素部材を提供することができる。
According to the silicon carbide member and the method of manufacturing the same according to the present invention, it is possible to provide a silicon carbide member which is less likely to react with an object to be heat-treated, is reduced in weight, and hardly peels off the ceramic sprayed coating. it can.

【0091】すなわち、気孔率が0.1%以下で、表面
が中心線平均粗さ(Ra)3〜15μmに粗面化された
常圧焼結炭化珪素製の基材と、この基材の表面の一部ま
たは全部に形成された複数層のセラミック溶射被膜とを
有し、最外層はジルコニアセラミック溶射被膜であり、
Raを特定範囲にすることにより、繰返し使用によって
もジルコニア層に剥離がなく、長寿命であり、被熱処理
物を直接載置することが可能で、種々の被熱処理物の焼
成に対応可能な熱処理用治具に適する炭化珪素部材を提
供することができる。さらに、肉薄化しても使用中に反
りが発生しにくく、高耐用・被熱処理物の積載スペース
の拡大による焼成工程のスループットの向上、熱処理用
治具の軽量、低熱容量による省エネが可能となった。
That is, a substrate made of normal pressure sintered silicon carbide having a porosity of 0.1% or less and having a surface roughened to a center line average roughness (Ra) of 3 to 15 μm; A plurality of ceramic sprayed coatings formed on part or all of the surface, the outermost layer is a zirconia ceramic sprayed coating,
By setting Ra to a specific range, the zirconia layer does not peel even after repeated use, has a long service life, can directly mount the object to be heat-treated, and can cope with firing of various objects to be heat-treated. A silicon carbide member suitable for a jig can be provided. Furthermore, even if the thickness is reduced, warpage is less likely to occur during use. High durability and increased throughput of the baking process by expanding the loading space for heat treatment objects, and light weight of heat treatment jigs and energy saving by low heat capacity are possible. .

【0092】また、ジルコニアセラミック溶射被膜はカ
ルシア、マグネシア、またはイットリアから選ばれた少
なくとも1つにより安定化された安定化ジルコニア、部
分安定化ジルコニア、または安定化ジルコニアと未安定
化ジルコニアとの混合物からなるので、被熱処理物と難
反応性であり、被熱処理物を直接熱処理用治具に載置す
ることが可能で、種々の被熱処理物の焼成に対応可能な
熱処理用治具を提供することができる。
The zirconia ceramic sprayed coating may be made of stabilized zirconia stabilized by at least one selected from calcia, magnesia, and yttria, partially stabilized zirconia, or a mixture of stabilized zirconia and unstabilized zirconia. Therefore, there is provided a heat treatment jig which is difficult to react with a heat treatment object, can directly mount the heat treatment object on a heat treatment jig, and can cope with firing of various heat treatment objects. Can be.

【0093】また、常圧焼結炭化珪素焼結体は、かさ密
度が、3.05g/cm以上で、かつ室温の3点曲げ
強さが380MPa以上であるので、棚板治具として用
いる場合には高温強度や耐ベンド性が得られ肉薄化が図
れる。
Since the normal pressure sintered silicon carbide sintered body has a bulk density of 3.05 g / cm 3 or more and a three-point bending strength at room temperature of 380 MPa or more, it is used as a shelf plate jig. In this case, high-temperature strength and bend resistance can be obtained, and the thickness can be reduced.

【0094】また、常圧焼結炭化珪素焼結体表面の一部
あるいは全面にガスプラズマ溶射によりアルミナ、また
は、ムライトからなるプラズマ溶射層の下地層を形成
し、さらに、この下地層の上に水プラズマ溶射により未
安定、カルシア部分安定、イットリア部分安定ジルコニ
アの中の一種または二種以上からなる表面層を形成する
製造方法であるので、被焼成物との接触面積が小さくな
ると共に、溶射材料の粒径が大きいことから、反応を抑
制した炭化珪素部材を製造することができる。
Further, an underlayer of a plasma sprayed layer made of alumina or mullite is formed on a part or the entire surface of the normal pressure sintered silicon carbide sintered body by gas plasma spraying. Since it is a manufacturing method of forming a surface layer composed of one or more of unstable, calcia partially stable, and yttria partially stable zirconia by water plasma spraying, the contact area with an object to be fired is reduced, and the sprayed material is formed. Has a large particle size, it is possible to manufacture a silicon carbide member in which the reaction is suppressed.

【0095】また、下地層が形成される焼結体表面の十
点平均粗さ(Rz)はRz≧20μmであるので、溶射
膜に対する十分なアンカー効果が得られ、溶射膜の耐剥
離性が向上した炭化珪素部材を製造することができる。
Further, since the ten-point average roughness (Rz) of the surface of the sintered body on which the underlayer is formed is Rz ≧ 20 μm, a sufficient anchor effect on the sprayed film is obtained, and the peeling resistance of the sprayed film is reduced. An improved silicon carbide member can be manufactured.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係わる炭化珪素部材の断面図。FIG. 1 is a sectional view of a silicon carbide member according to the present invention.

【図2】実施例における試験1に用いられる電気炉の概
略図。
FIG. 2 is a schematic diagram of an electric furnace used for Test 1 in Examples.

【図3】実施例における試験3に用いられる電気炉(ヒ
ートサイクル試験装置)の概略図。
FIG. 3 is a schematic diagram of an electric furnace (heat cycle test device) used for Test 3 in Examples.

【符号の説明】[Explanation of symbols]

1 熱処理用治具 2 基材 3 表面 4 セラミック溶射被膜 5 最外層 6 下地層 DESCRIPTION OF SYMBOLS 1 Heat treatment jig 2 Substrate 3 Surface 4 Ceramic spray coating 5 Outermost layer 6 Underlayer

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 気孔率が0.1%以下で、表面が中心線
平均粗さ(Ra)3〜15μmに粗面化された常圧焼結
炭化珪素製基材と、この基材の表面の一部または全部に
形成された複数のセラミック溶射被膜層とを有し、この
セラミック溶射被膜の最外層はジルコニア質溶射被膜で
あることを特徴とする炭化珪素部材。
1. A substrate made of normal pressure sintered silicon carbide having a porosity of 0.1% or less and having a surface roughened to a center line average roughness (Ra) of 3 to 15 μm, and a surface of the substrate. And a plurality of ceramic sprayed coating layers formed on a part or all of the ceramic sprayed coating, and the outermost layer of the ceramic sprayed coating is a zirconia sprayed coating.
【請求項2】 上記ジルコニア質溶射被膜はカルシア、
マグネシア、またはイットリアから選ばれた少なくとも
1つにより安定化または部分安定化したジルコニア、ま
たは安定化ジルコニアと未安定ジルコニアとの混合物か
らなることを特徴とする請求項1に記載の炭化珪素部
材。
2. The zirconia sprayed coating is calcia,
The silicon carbide member according to claim 1, comprising zirconia stabilized or partially stabilized by at least one selected from magnesia and yttria, or a mixture of stabilized zirconia and unstable zirconia.
【請求項3】 上記常圧焼結炭化珪素焼結体は、かさ密
度が、3.05g/cm以上で、かつ室温の3点曲げ
強さが380MPa以上であることを特徴とする請求項
1または2に記載の炭化珪素焼結部材。
3. The normal pressure sintered silicon carbide sintered body has a bulk density of 3.05 g / cm 3 or more and a three-point bending strength at room temperature of 380 MPa or more. 3. The sintered silicon carbide member according to 1 or 2.
【請求項4】 常圧焼結炭化珪素焼結体表面の一部ある
いは全面にガスプラズマ溶射によりアルミナ、または、
ムライトからなるプラズマ溶射層の下地層を形成し、さ
らに、この下地層の上に水プラズマ溶射により未安定、
カルシア部分安定、イットリア部分安定ジルコニアの中
の一種または二種以上からなる表面層を形成することを
特徴とする炭化珪素焼結部材の製造方法。
4. A method for forming alumina or gas on a part or the entire surface of a normal pressure sintered silicon carbide sintered body by gas plasma spraying.
A base layer of a plasma sprayed layer made of mullite is formed, and further, the base layer is not stable by water plasma spraying,
A method for producing a silicon carbide sintered member, comprising forming a surface layer made of one or more of calcia partially stable and yttria partially stable zirconia.
【請求項5】 上記下地層が形成される焼結体表面の十
点平均粗さ(Rz)はRz≧20μmであることを特徴
とする請求項4に記載の炭化珪素部材の製造方法。
5. The method for producing a silicon carbide member according to claim 4, wherein the ten-point average roughness (Rz) of the surface of the sintered body on which the underlayer is formed is Rz ≧ 20 μm.
JP2001006276A 2000-01-24 2001-01-15 Silicon carbide members for firing electronic components Expired - Lifetime JP4743973B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001006276A JP4743973B2 (en) 2000-01-24 2001-01-15 Silicon carbide members for firing electronic components

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2000-14828 2000-01-24
JP2000014828 2000-01-24
JP2000014828 2000-01-24
JP2001006276A JP4743973B2 (en) 2000-01-24 2001-01-15 Silicon carbide members for firing electronic components

Publications (2)

Publication Number Publication Date
JP2001278685A true JP2001278685A (en) 2001-10-10
JP4743973B2 JP4743973B2 (en) 2011-08-10

Family

ID=26584041

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001006276A Expired - Lifetime JP4743973B2 (en) 2000-01-24 2001-01-15 Silicon carbide members for firing electronic components

Country Status (1)

Country Link
JP (1) JP4743973B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009234817A (en) * 2008-03-26 2009-10-15 Covalent Materials Corp Tool material for firing electronic component
JP2014172767A (en) * 2013-03-07 2014-09-22 Tokai Konetsu Kogyo Co Ltd Silicon carbide composite and method of manufacturing the same
JP2015190038A (en) * 2014-03-28 2015-11-02 山陽特殊製鋼株式会社 Disc for manufacturing powder by centrifugal atomization
KR101663498B1 (en) * 2015-06-19 2016-10-07 서동식 Surface treating method of injection molding product
JP2020128335A (en) * 2018-09-27 2020-08-27 ダイセルポリマー株式会社 Composite molding

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58167482A (en) * 1982-03-24 1983-10-03 昭和電工株式会社 Flame sprayed formed body of silicon carbide
JPS58204884A (en) * 1982-05-20 1983-11-29 九州耐火煉瓦株式会社 Ceramic roll
JPS6272583A (en) * 1985-09-26 1987-04-03 日本碍子株式会社 Zirconia-coated silicon carbide sintered member
JPH04182356A (en) * 1990-11-13 1992-06-29 Youyuu Tansanengata Nenryo Denchi Hatsuden Syst Gijutsu Kenkyu Kumiai Silicon carbide molding and its production
JPH05238853A (en) * 1992-02-28 1993-09-17 Tokyo Electric Power Co Inc:The Method for modifying surface of ceramic substrate
JPH05238855A (en) * 1992-02-28 1993-09-17 Tokyo Electric Power Co Inc:The Production of ceramic coating member
JPH05330916A (en) * 1992-06-01 1993-12-14 Toshiba Ceramics Co Ltd Heat-resistant mechanical part for gas turbine
JPH06279975A (en) * 1993-03-26 1994-10-04 Tokyo Electric Power Co Inc:The Ceramic coated member and its production
JPH0873288A (en) * 1994-09-05 1996-03-19 Tokyo Electric Power Co Inc:The Ceramic coating member and its production
JPH09304335A (en) * 1996-05-17 1997-11-28 Toyota Motor Corp Manufacture of ceramic forming body having thermally sprayed layer
JPH11263671A (en) * 1998-03-13 1999-09-28 Toshiba Ceramics Co Ltd Firing tool material
JPH11314984A (en) * 1998-05-06 1999-11-16 Toshiba Ceramics Co Ltd Tool material for calcination
JP2000109367A (en) * 1998-10-02 2000-04-18 Toshiba Ceramics Co Ltd Heat treatment method for silicon carbide sintered body and heat-treated silicon carbide
JP2002511833A (en) * 1998-04-27 2002-04-16 ゼネラル エレクトリック カンパニイ Painted articles and manufacturing method

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58167482A (en) * 1982-03-24 1983-10-03 昭和電工株式会社 Flame sprayed formed body of silicon carbide
JPS58204884A (en) * 1982-05-20 1983-11-29 九州耐火煉瓦株式会社 Ceramic roll
JPS6272583A (en) * 1985-09-26 1987-04-03 日本碍子株式会社 Zirconia-coated silicon carbide sintered member
JPH04182356A (en) * 1990-11-13 1992-06-29 Youyuu Tansanengata Nenryo Denchi Hatsuden Syst Gijutsu Kenkyu Kumiai Silicon carbide molding and its production
JPH05238853A (en) * 1992-02-28 1993-09-17 Tokyo Electric Power Co Inc:The Method for modifying surface of ceramic substrate
JPH05238855A (en) * 1992-02-28 1993-09-17 Tokyo Electric Power Co Inc:The Production of ceramic coating member
JPH05330916A (en) * 1992-06-01 1993-12-14 Toshiba Ceramics Co Ltd Heat-resistant mechanical part for gas turbine
JPH06279975A (en) * 1993-03-26 1994-10-04 Tokyo Electric Power Co Inc:The Ceramic coated member and its production
JPH0873288A (en) * 1994-09-05 1996-03-19 Tokyo Electric Power Co Inc:The Ceramic coating member and its production
JPH09304335A (en) * 1996-05-17 1997-11-28 Toyota Motor Corp Manufacture of ceramic forming body having thermally sprayed layer
JPH11263671A (en) * 1998-03-13 1999-09-28 Toshiba Ceramics Co Ltd Firing tool material
JP2002511833A (en) * 1998-04-27 2002-04-16 ゼネラル エレクトリック カンパニイ Painted articles and manufacturing method
JPH11314984A (en) * 1998-05-06 1999-11-16 Toshiba Ceramics Co Ltd Tool material for calcination
JP2000109367A (en) * 1998-10-02 2000-04-18 Toshiba Ceramics Co Ltd Heat treatment method for silicon carbide sintered body and heat-treated silicon carbide

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009234817A (en) * 2008-03-26 2009-10-15 Covalent Materials Corp Tool material for firing electronic component
JP2014172767A (en) * 2013-03-07 2014-09-22 Tokai Konetsu Kogyo Co Ltd Silicon carbide composite and method of manufacturing the same
JP2015190038A (en) * 2014-03-28 2015-11-02 山陽特殊製鋼株式会社 Disc for manufacturing powder by centrifugal atomization
KR101663498B1 (en) * 2015-06-19 2016-10-07 서동식 Surface treating method of injection molding product
JP2020128335A (en) * 2018-09-27 2020-08-27 ダイセルポリマー株式会社 Composite molding
JP7100084B2 (en) 2018-09-27 2022-07-12 ダイセルポリマー株式会社 Composite molded body

Also Published As

Publication number Publication date
JP4743973B2 (en) 2011-08-10

Similar Documents

Publication Publication Date Title
CN101333113B (en) Material for baking multilayer ceramic capacitor, manufacturing method thereof and regenerating method
JP5466831B2 (en) Yttria sintered body and member for plasma process equipment
JP4987238B2 (en) Aluminum nitride sintered body, semiconductor manufacturing member, and aluminum nitride sintered body manufacturing method
JP2003146751A (en) Plasma-resistant member and method of producing the same
JP7481509B2 (en) Sintered ceramic bodies containing magnesium aluminate spinel
JP5154276B2 (en) Tools for firing electronic components
KR20020050710A (en) Aluminum nitride sintered bodies and members for semiconductor producing apparatus
JP2001278685A (en) Silicon carbide material and its manufacturing method
JP4422044B2 (en) Refractory
JP2007076935A (en) Tool for firing electronic component and its production method
JP4057443B2 (en) Semiconductor manufacturing apparatus member and manufacturing method thereof
JP3716386B2 (en) Plasma-resistant alumina ceramics and method for producing the same
JP4975246B2 (en) Tool material for firing silicon carbide
JP2009062243A (en) Method of regenerating firing vessel
JP3812715B2 (en) Recycling method for firing containers
JP4186099B2 (en) Silicon carbide member and method for manufacturing the same
JP6562914B2 (en) Baking jig and method for manufacturing the baking jig
TWI383965B (en) A ceramic material for a ceramic ceramic container, a method for manufacturing the same, and a method for producing the same
JP4060822B2 (en) Ceramic composite material
JP4161050B2 (en) Method for producing sintered silicon carbide member having non-reactive sprayed film
JP2002201070A (en) Silicon carbide sintered compact and its manufacturing method
JP2003292372A (en) Ceramic sintered compact and production method therefor
JP2005225745A (en) Plasma resistant member and its producing method
JP2002068864A (en) Plasma resistant member and method of manufacturing for the same
JP4054098B2 (en) Firing jig

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20070711

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070907

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100924

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100928

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101129

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101214

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110204

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110315

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110329

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110510

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110510

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140520

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4743973

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term