JP2000109367A - Heat treatment method for silicon carbide sintered body and heat-treated silicon carbide - Google Patents

Heat treatment method for silicon carbide sintered body and heat-treated silicon carbide

Info

Publication number
JP2000109367A
JP2000109367A JP10294705A JP29470598A JP2000109367A JP 2000109367 A JP2000109367 A JP 2000109367A JP 10294705 A JP10294705 A JP 10294705A JP 29470598 A JP29470598 A JP 29470598A JP 2000109367 A JP2000109367 A JP 2000109367A
Authority
JP
Japan
Prior art keywords
silicon carbide
sintered body
heat treatment
carbide sintered
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10294705A
Other languages
Japanese (ja)
Inventor
Toshiyuki Suzuki
利幸 鈴木
Toyokazu Matsuyama
豊和 松山
Jun Hikita
順 疋田
Tamotsu Wakita
保 脇田
Kazuji Matsuyama
和司 松山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Coorstek KK
Original Assignee
Toshiba Ceramics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Ceramics Co Ltd filed Critical Toshiba Ceramics Co Ltd
Priority to JP10294705A priority Critical patent/JP2000109367A/en
Publication of JP2000109367A publication Critical patent/JP2000109367A/en
Pending legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)

Abstract

PROBLEM TO BE SOLVED: To improve the strength and low toughness of a silicon carbide sintered body by a simple and industrial method. SOLUTION: In this heat treatment method, a dense base material of the silicon carbide sintered body which is produced by an atmospheric sintering method and has a relative density of >=90% to the theoretical density, is heat- treated under an oxidative atmosphere at a temp. of >=1,000 to <1,500 deg.C to form silicon oxide having a thickness of 0.5-50 μm (preferably, 10-50 μm) on the surface of the base material.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は炭化ケイ素焼結体の
強度及び靭性を向上させる熱処理方法と、その方法によ
り製造された炭化ケイ素焼結体に関するものである。
The present invention relates to a heat treatment method for improving the strength and toughness of a silicon carbide sintered body, and a silicon carbide sintered body manufactured by the method.

【0002】[0002]

【従来の技術】炭化ケイ素焼結体は耐熱性、耐酸化性、
耐食性、耐摩耗性及び電気的特性などに優れた材料であ
り、現在では構造用材料や発熱体などとして様々な分野
で用いられている。
2. Description of the Related Art Sintered silicon carbide has heat resistance, oxidation resistance,
It is a material excellent in corrosion resistance, abrasion resistance, electrical characteristics, and the like, and is currently used in various fields as a structural material, a heating element, and the like.

【0003】炭化ケイ素の常圧焼結法では、B4 CとC
などのB−C含有添加物系、Al、Al2 3 、AlN
などのAl系、Be,BeOなどのBe系、さらに前記
B、ll、Be系などの焼結助剤にY2 3 、Ce2
3 、Er2 3 などの希土類元素を添加した系などの各
種焼結助剤が開発されている。
In normal pressure sintering of silicon carbide, B 4 C and C
BC-containing additive system such as Al, Al 2 O 3 , AlN
Y 2 O 3 , Ce 2 O, etc. are used as sintering aids such as Al, Be, BeO, etc., and B, II, Be, etc.
3 , various sintering aids such as a system to which a rare earth element such as Er 2 O 3 is added have been developed.

【0004】BとCを焼結助剤として用いた炭化ケイ素
焼結体は、軽量、高硬度、室温から1400℃の高温に
おいても曲げ強さが低下しないなど優れた特性を有して
いる。そのため、室温ではもちろんのこと、加熱雰囲気
においても幅広く実用化されている。
A silicon carbide sintered body using B and C as sintering aids has excellent properties such as light weight, high hardness, and the bending strength does not decrease even at room temperature to a high temperature of 1400 ° C. Therefore, it is widely used not only at room temperature but also in a heating atmosphere.

【0005】Al系の焼結助剤を使用した炭化ケイ素焼
結体は、ホウ素と炭素を焼結助剤として製造した焼結体
よりも室温での曲げ強さが高く、低温にて焼結が可能な
どの利点がある。
[0005] A silicon carbide sintered body using an Al-based sintering aid has a higher bending strength at room temperature than a sintered body produced using boron and carbon as sintering aids, and sinters at a lower temperature. There are advantages which are possible.

【0006】従来例をB+C系とAl系+添加物に分類
して簡略して示すと、次のとおりである。
[0006] The following is a brief description of the conventional example, classified into B + C-based and Al-based + additives.

【0007】[BとC系] 特開昭50−78609号(β−SiC+B,C) 特開昭51−148712号(α−SiC+B,C) 特開昭52−6716号(β−SiC+α−SiC+
B,C) 特開昭55−116664号(α−SiCorβ−Si
C+B,C) [Al系+添加物] 特開昭53−127512号(AlB2 +C;ホット
プレス) 特開昭55−20269号(0.15<B/Al<2, 0.15〜0.
60wt% +C) 特開昭55−136174号(固溶Al+C) 特開昭57−156377号(Al含有窒化物) 特開昭58−140374号(B化合物+C+Al
N) 特開昭60−33262号(B化合物+C+Al化合
物:液体状) 特開昭60−81065号(B化合物+C+Al化合
物:コロイド状) 特開昭61−26566号(Al化合物+Be,B,Al,lV
a-Vla 元素含有物の内少なくとも一種類)
[B and C systems] JP-A-50-78609 (β-SiC + B, C) JP-A-51-148712 (α-SiC + B, C) JP-A-52-6716 (β-SiC + α-SiC +)
B, C) JP-A-55-116664 (α-SiCorβ-Si
C + B, C) [Al-based + additive] JP-A-53-127512 (AlB 2 + C; hot press) JP-A-55-20269 (0.15 <B / Al <2, 0.15-0.
JP-A-55-136174 (Solubilized Al + C) JP-A-57-156377 (Al-containing nitride) JP-A-58-140374 (B compound + C + Al
N) JP-A-60-33262 (B compound + C + Al compound: liquid) JP-A-60-81065 (B compound + C + Al compound: colloidal) JP-A-61-26566 (Al compound + Be, B, Al, lV
a-Vla At least one of the elements containing)

【0008】[0008]

【発明が解決しようとする課題】BとCを焼結助剤とし
て用いた常圧焼結法による炭化ケイ素は、他の焼結助剤
系を使用したものよりも高密度の焼結体が得られやすい
が、一般に低靭性となり、衝撃が加わる用途には不向き
である。
The silicon carbide produced by the normal pressure sintering method using B and C as sintering aids has a higher density of sintered bodies than those using other sintering aid systems. Although it is easy to obtain, it generally has low toughness and is not suitable for applications in which impact is applied.

【0009】Al系の常圧焼結法による炭化ケイ素焼結
体は、BとC系よりも高靭性となるが、高温での曲げ強
さが低くなり、高温構造部材としては好ましくない。ま
た液相が関与した焼結となるため、焼結時の温度及び雰
囲気の制御が難しいなどの問題もある。
The Al-based silicon carbide sintered body obtained by the normal-pressure sintering method has higher toughness than the B- and C-based sintered bodies, but has a low bending strength at high temperatures and is not preferable as a high-temperature structural member. In addition, since sintering involves a liquid phase, there is a problem that it is difficult to control the temperature and atmosphere during sintering.

【0010】また、Al系化合物に各種添加剤を加えた
常圧焼結法による炭化ケイ素も提案されている。たとえ
ば特開昭60−33262号、特開昭60−81065
号。しかし、これらの従来例では、液体状態の各種Al
化合物を添加するため、安価に製造できない欠点があ
る。さらに、多量のAl化合物(Al換算で最大8質量
%あるいは15質量%)及び有機炭素化合物(熱分解後
の残炭量が最大15質量%)を添加するため、機械的特
性がBとCを焼結助剤とした場合よりも大幅に低下する
などの欠点もある。
[0010] Further, silicon carbide obtained by adding a variety of additives to an Al-based compound by a normal pressure sintering method has also been proposed. For example, JP-A-60-33262, JP-A-60-81065
issue. However, in these conventional examples, various types of Al in a liquid state are used.
Since the compound is added, there is a disadvantage that it cannot be manufactured at low cost. Furthermore, since a large amount of an Al compound (up to 8% by mass or 15% by mass in terms of Al) and an organic carbon compound (up to 15% by mass of the residual carbon after pyrolysis) are added, the mechanical properties of B and C are reduced. There are also drawbacks such as a significant reduction compared to the case of using a sintering aid.

【0011】Be系の常圧焼結法による炭化ケイ素焼結
体は、BとC系のものに比べ高密度の焼結体が得られに
くいため、機械的特性が劣り、また製品としてはBeの
毒性が問題となり、取り扱いが問題となる。さらに電気
抵抗率が109 から1013Ω・cmであり、BとC系よ
りも高いため、摺動用部材としては帯電が大きな問題と
なる。
A Be-based silicon carbide sintered body obtained by a normal pressure sintering method is difficult to obtain a high-density sintered body as compared with B- and C-based sintered bodies, and therefore has poor mechanical properties. Toxicity is a problem, and handling is a problem. Further, since the electrical resistivity is 10 9 to 10 13 Ω · cm, which is higher than those of the B and C systems, charging is a major problem for the sliding member.

【0012】本発明の目的は、炭化ケイ素焼結体の強度
及び靭性を大幅に向上させることである。
An object of the present invention is to significantly improve the strength and toughness of a silicon carbide sintered body.

【0013】[0013]

【課題を解決するための手段】本発明は、常圧焼結法に
より作製されることを前提としている。そして、理論密
度に対して90%以上の密度を有する緻密質の炭化ケイ
素焼結体を基材とする。それを酸化雰囲気中で1000
℃以上1500℃未満で加熱処理する。それによりその
基材の表面に0.5μm以上50μm以下の厚みを有す
る酸化ケイ素を生成させる。
The present invention is based on the premise that it is manufactured by a normal pressure sintering method. Then, a dense silicon carbide sintered body having a density of 90% or more with respect to the theoretical density is used as a base material. 1000 in an oxidizing atmosphere
The heat treatment is performed at a temperature not lower than 1500 ° C. Thereby, silicon oxide having a thickness of 0.5 μm or more and 50 μm or less is generated on the surface of the base material.

【0014】炭化ケイ素焼結体は、好ましくは、かさ密
度が3.0g/cm3 以上で、かつ室温の3点曲げ強さ
が370MPa以上である。そして、炭化ケイ素焼結体
の表面の中心線平均粗さ(Ra)は10μm未満とす
る。
[0014] The silicon carbide sintered body preferably has a bulk density of 3.0 g / cm 3 or more and a three-point bending strength at room temperature of 370 MPa or more. Then, the center line average roughness (Ra) of the surface of the silicon carbide sintered body is less than 10 μm.

【0015】基材の密度は理論密度に対して90%以上
であれば良いが、好ましくは95%以上である。
The density of the substrate may be 90% or more with respect to the theoretical density, but is preferably 95% or more.

【0016】前述の方法で作製した炭化ケイ素熱処理体
は、表面に0.5μm以上50μm未満、好ましくは1
0〜50μmの厚みの酸化ケイ素膜を有する。
The heat-treated silicon carbide body produced by the above-described method has a surface of 0.5 μm or more and less than 50 μm, preferably 1 μm or less.
It has a silicon oxide film having a thickness of 0 to 50 μm.

【0017】以下に、特許請求の範囲の数値限定の理由
を記す。
The reasons for limiting the numerical values in the claims are described below.

【0018】加熱処理温度が1000℃未満では十分な
作用効果が得られる酸化処理時間が数百時間以上必要と
なり、効率が悪く、1500℃以上では逆に瞬時に酸化
されてしまうため、制御が困難となる。
If the heat treatment temperature is lower than 1000 ° C., an oxidation treatment time for obtaining a sufficient action and effect is required for several hundred hours or more, and the efficiency is poor. Becomes

【0019】焼結体の表面に生成させる酸化ケイ素の厚
みが0.5μm未満では、表面欠陥の緩和効果がなく、
また50μm以上の酸化ケイ素の酸化膜を生成させる
と、酸化ケイ素膜内が破壊の起点となり、逆に強度が基
材以下に低下する。10μm以上が好ましい理由は、一
般的な常圧焼結SiCの(曲げ強さと破壊靭性値から算
出される)臨界クラック(平板状クラック)長さが約1
0μmであるため、表面欠陥の緩和効果が大きくなるた
めである。
When the thickness of the silicon oxide formed on the surface of the sintered body is less than 0.5 μm, there is no effect of alleviating the surface defects.
Further, when an oxide film of silicon oxide having a thickness of 50 μm or more is formed, the inside of the silicon oxide film becomes a starting point of destruction, and conversely, the strength is reduced to below the substrate. The reason why the thickness is preferably 10 μm or more is that the critical crack (flat crack) length (calculated from the bending strength and the fracture toughness) of the normal pressure sintered SiC is about 1 μm.
This is because the effect of alleviating surface defects is increased because the thickness is 0 μm.

【0020】加熱処理する炭化ケイ素焼結体のかさ密度
が3.0g/cm3 未満で、かつ室温の3点曲げ強さが
370MPa未満であると、その焼結体の表面に多くの
開気孔が存在し、均一かつ平滑な酸化ケイ素の酸化膜を
生成できず、表面欠陥の影響の緩和が困難となる。
When the bulk density of the silicon carbide sintered body to be subjected to the heat treatment is less than 3.0 g / cm 3 and the three-point bending strength at room temperature is less than 370 MPa, many open pores are formed on the surface of the sintered body. Exists, and a uniform and smooth silicon oxide film cannot be formed, which makes it difficult to reduce the influence of surface defects.

【0021】また、焼結体表面の中心線平均粗さ(R
a)が10μm以上であると、凹凸の影響で均一かつ平
滑な酸化ケイ素の酸化膜を生成できず、生成できても表
面欠陥の影響の緩和が困難となる。
Further, the center line average roughness (R
If a) is 10 μm or more, a uniform and smooth oxide film of silicon oxide cannot be generated due to the influence of unevenness, and even if it can be formed, it is difficult to reduce the influence of surface defects.

【0022】[0022]

【発明の実施の形態】本発明においては、炭化ケイ素焼
結基材の表面に所定厚みのシリカ膜を形成するだけでな
く、炭化ケイ素中に遊離シリコンを含まない。炭化ケイ
素は、常圧焼結のもののみに限定している。
BEST MODE FOR CARRYING OUT THE INVENTION In the present invention, not only a silica film having a predetermined thickness is formed on the surface of a silicon carbide sintered substrate, but also free silicon is not contained in silicon carbide. Silicon carbide is limited to that of normal pressure sintering.

【0023】常圧焼結(自焼結)のSiCの基材表面に
0.5〜50μm、好ましくは10〜50μmの厚みの
酸化ケイ素膜を形成するように炭化ケイ素焼結体を熱処
理するのである。
Since the silicon carbide sintered body is heat-treated so as to form a silicon oxide film having a thickness of 0.5 to 50 μm, preferably 10 to 50 μm on the surface of the SiC substrate under normal pressure sintering (self-sintering). is there.

【0024】酸化雰囲気中にて1000℃以上1500
℃未満で加熱処理し、その表面に酸化ケイ素を0.5μ
m以上50μm(好ましくは10〜50μm)未満生成
させる。
1000 ° C. or more and 1500 ° C. in an oxidizing atmosphere
Heat treatment at less than ℃, silicon oxide on the surface 0.5μ
m and less than 50 μm (preferably 10 to 50 μm).

【0025】そのような熱処理により、炭化ケイ素焼結
体の短所である機械的強度及び靭性を向上させることが
可能となる。
By such a heat treatment, it is possible to improve mechanical strength and toughness which are disadvantages of the silicon carbide sintered body.

【0026】臨界クラック長さの違いによる強度回復の
可能性について説明する。
The possibility of strength recovery due to the difference in critical crack length will be described.

【0027】SiSiC(Si含浸SiC)と常圧焼結
SiCでは曲げ強さ及び破壊靭性値が異なる。
Bending strength and fracture toughness are different between SiSiC (Si-impregnated SiC) and normal pressure sintered SiC.

【0028】従来の常圧焼結SiCの曲げ強さは一般に
400〜600MPa程度であり、SiSiCは200
〜300MPaが一般的である。破壊靭性値は、常圧焼
結SiCの場合が2〜3MPa・m1/2 程度である。S
iSiCでは4〜5MPa・m1/2 程度である。
The bending strength of conventional normal pressure sintered SiC is generally about 400 to 600 MPa, and the SiSiC has a bending strength of 200 MPa.
300300 MPa is common. The fracture toughness value is about 2 to 3 MPa · m 1/2 for normal pressure sintered SiC. S
In the case of iSiC, it is about 4 to 5 MPa · m 1/2 .

【0029】臨界クラックには、平板状クラックと半円
状クラックがあるが、強度低下に大きく関与するのは平
板状クラックの方であり、臨界クラック長さは常圧焼結
SiCでは10μm前後、SiSiCではそれの約10
倍の100μm前後となる。言い換えると、常圧焼結S
iCでは10μm前後の平板状クラックが存在していれ
ば、強度は大幅に低下するが、SiSiCでは10μm
前後のクラックが存在していても強度が大幅に低下する
ことはない。すなわち、強度を回復させるためには、S
iSiCでは常圧焼結SiCに比べ、より厚いSiO2
酸化膜が必要となる。それゆえ、酸化膜厚が最大で0.
5μm未満では強度の回復には寄与しない。酸化膜厚は
10μm以上にするのが好ましい。
There are flat cracks and semi-circular cracks in the critical cracks, but the flat cracks greatly contribute to the decrease in strength. The critical crack length is about 10 μm in normal pressure sintered SiC, In SiSiC, about 10
It is about 100 μm, which is twice as large. In other words, normal pressure sintering S
In the case of iC, if a flat crack of about 10 μm is present, the strength is greatly reduced.
Even if cracks before and after exist, the strength is not significantly reduced. That is, in order to recover strength, S
iSiC has a thicker SiO 2 than normal pressure sintered SiC.
An oxide film is required. Therefore, the oxide film thickness is at most 0.
If it is less than 5 μm, it does not contribute to the recovery of strength. The oxide film thickness is preferably set to 10 μm or more.

【0030】なお、強度レベルの低いSiSiCでは、
常圧焼結SiCに比べて、強度の回復割合は低くなり、
効果が小さい。
In the case of SiSiC having a low strength level,
Compared with normal pressure sintered SiC, the strength recovery ratio is lower,
The effect is small.

【0031】本発明の特徴をより明確にするために、主
な従来例と対比する。
In order to clarify the features of the present invention, a comparison is made with the main conventional example.

【0032】この点に関して、特開平2−172879
号に記載の再結晶SiCは、15〜25%の気孔率を有
するためポーラスである。それゆえ、材料中のいたると
ころが破壊の起点となりうるため、SiSiCよりさら
に強度レベルが低くなる(約100MPa以下)。その
ため、強度回復には無関係か、あるいは強度回復があっ
てもごく僅かである。
Regarding this point, Japanese Patent Application Laid-Open No. 2-172879
The recrystallized SiC described in the above item is porous because it has a porosity of 15 to 25%. Therefore, since everywhere in the material can be a starting point of the breakdown, the strength level is further lower than that of SiSiC (about 100 MPa or less). Therefore, it is irrelevant to the strength recovery, or the strength recovery is negligible.

【0033】特開昭64−61376号に記載のSiC
あるいはSiSiCなどの炭化ケイ素基材はその表面に
SiO2 酸化膜を形成し、さらにその表面にCVD−S
iC膜を形成させる。これは、本発明とは意味合いが異
なる。この当時の常圧焼結のものは密度が低く、表面に
CVD−SiC膜を形成させることにより強度回復は望
めなかった。
SiC described in JP-A-64-61376
Alternatively, a silicon carbide substrate such as SiSiC forms an SiO 2 oxide film on its surface, and further forms a CVD-S
An iC film is formed. This has a different meaning from the present invention. At that time, the normal pressure sintering had a low density, and the strength could not be recovered by forming a CVD-SiC film on the surface.

【0034】特開昭62−293713号に記載の炭素
基材はその表面にCVD法などによりSiC膜を形成さ
せ、さらにその表面にSiO2 膜を5〜1000オング
ストローム形成させる。その場合のSiO2 膜は最大で
も0.1μm(1000オングストローム)であり、そ
のように薄い酸化膜では強度は回復されない。
In the carbon substrate described in JP-A-62-293713, a SiC film is formed on the surface thereof by a CVD method or the like, and a SiO 2 film is formed on the surface in a thickness of 5 to 1000 Å. In this case, the SiO 2 film has a maximum thickness of 0.1 μm (1000 angstroms), and the strength is not recovered by such a thin oxide film.

【0035】また、本発明においては、基材の緻密性も
重要である。たとえば、密度が低すぎると、所望の特性
が得られない。本発明は、理論密度に対して90%以上
の密度を有する緻密な炭化ケイ素焼結基材に限定する。
好ましくは、理論密度に対して95%以上の緻密な炭化
ケイ素焼結基材を用いる。
In the present invention, the density of the substrate is also important. For example, if the density is too low, desired characteristics cannot be obtained. The present invention is limited to dense silicon carbide sintered substrates having a density of 90% or more with respect to the theoretical density.
Preferably, a dense silicon carbide sintered substrate having a theoretical density of 95% or more is used.

【0036】[0036]

【実施例】本発明の特徴をさらに詳細に説明する。DESCRIPTION OF THE PREFERRED EMBODIMENTS The features of the present invention will be described in more detail.

【0037】本発明による炭化ケイ素焼結体の加熱処理
温度は、酸化雰囲気中にて1000℃以上1500℃未
満、好ましくは1200℃以上1450℃未満とし、処
理時間は、酸素濃度及び焼結体の表面状態などにより異
なるが、低温では長く、高温では短くし、その表面に酸
化ケイ素を0.5μm以上50μm未満生成させる。
The heat treatment temperature of the silicon carbide sintered body according to the present invention is 1000 ° C. to less than 1500 ° C., preferably 1200 ° C. to less than 1450 ° C. in an oxidizing atmosphere. Although it differs depending on the surface condition and the like, it is long at a low temperature and short at a high temperature, and silicon oxide is generated on the surface at 0.5 μm or more and less than 50 μm.

【0038】一般に低靭性の緻密質炭化ケイ素焼結体を
ダイヤモンド砥石により加工すると、結晶粒子の脱落や
微細な亀裂が生成する。そこに外部応力が負荷される
と、これらの箇所が起点となって破壊することは避けら
れないが、前述の加熱処理によって焼結体の表面に酸化
ケイ素を生成させることにより、理論的根拠は明らかで
はないが、表面に存在する欠陥の破壊強度への影響を緩
和することが可能となる。
In general, when a low-density dense silicon carbide sintered body is processed by a diamond grindstone, crystal grains fall off and fine cracks are generated. When an external stress is applied thereto, it is inevitable that these points will be the starting points and breakage.However, the above-mentioned heat treatment generates silicon oxide on the surface of the sintered body, and the theoretical basis is as follows. Although it is not clear, it is possible to reduce the influence of the defects existing on the surface on the breaking strength.

【0039】特に、使用する炭化ケイ素焼結体のかさ密
度が3.0g/cm3 以上で、かつ室温の3点曲げ強さ
が370Mpa以上である炭化ケイ素焼結体、さらに焼
結体表面の中心線平均粗さ(Ra)が10μm未満であ
る炭化ケイ素焼結体を使用する場合に、この高強度化の
効果が顕著である。
In particular, the silicon carbide sintered body used has a bulk density of not less than 3.0 g / cm 3 and a three-point bending strength at room temperature of not less than 370 Mpa. When a silicon carbide sintered body having a center line average roughness (Ra) of less than 10 μm is used, the effect of increasing the strength is remarkable.

【0040】実験例 以下、実験例により本発明の加熱処理の効果をより詳細
に説明する。
Experimental Example Hereinafter, the effect of the heat treatment of the present invention will be described in more detail with reference to an experimental example.

【0041】1)B−C系焼結助剤を使用して炭化ケイ
素焼結体を作製 市販の純度約99%、比表面積約15m2 /gのSiC
粉末に、焼結助剤として平均粒径約2.5μmのB4
を0.3質量%、残炭量約50質量%のフェノールレジ
ン(レゾールタイプ)を8.5質量%添加し、エタノー
ル中で24時間湿式粉砕混合した。そのスラリーを熱風
温度80℃のスプレードライヤーにより平均粒径約85
μmに造粒した後、成形圧力30MPaにて金型を用い
て一次成形し、さらに147MPaにてCIP成形を行
い、約150×150×30mmの成形体を得た。この
成形体をカーボンケースに充填し、2050℃及び22
00℃で1.5時間焼結した。なお、焼結時の雰囲気
は、室温から1400℃まではフェノールレジンの熱分
解を考慮し真空中で、それ以降は常圧のアルゴン雰囲気
中とした。
1) Preparation of a silicon carbide sintered body using a BC-based sintering aid A commercially available SiC having a purity of about 99% and a specific surface area of about 15 m 2 / g
B 4 C having an average particle size of about 2.5 μm as a sintering aid
Was added and 8.5% by mass of a phenol resin (resole type) having a residual carbon amount of about 50% by mass was wet-pulverized and mixed in ethanol for 24 hours. The slurry is dried with a hot air temperature of 80 ° C. using a spray drier having an average particle size of about 85.
After granulating to a thickness of μm, primary molding was performed using a mold at a molding pressure of 30 MPa, and CIP molding was further performed at 147 MPa to obtain a molded body of about 150 × 150 × 30 mm. This molded body was filled in a carbon case,
Sintered at 00 ° C. for 1.5 hours. The atmosphere during sintering was in a vacuum from room temperature to 1400 ° C. in consideration of the thermal decomposition of phenolic resin, and thereafter in a normal pressure argon atmosphere.

【0042】2)Al系焼結助剤を使用して炭化ケイ素
焼結体を作製 市販の純度約99%、比表面積約15m2 /gのSiC
粉末に、焼結助剤として比表面積約50m2 /gの高純
度超微粒子酸化アルミニウムを1.0質量%添加し、成
形用バインダーとしてPVBを2.0質量%添加し、エ
タノール中で24時間湿式粉砕混合した。そのスラリー
を熱風温度80℃のスプレードライヤーにより平均粒径
約85μmに造粒した後、成形圧力30MPaにて金型
を用いて一次成形し、さらに147MPaにてCIP成
形を行い、約150×150×30mmの成形体を得
た。この成形体を力ーボンケースに充填し、2000℃
及び2200℃で1.5時間焼結した。なお、焼結時の
雰囲気は、室温から1400℃までは真空中で、それ以
降は常圧のアルゴン雰囲気中とした。
2) Production of a silicon carbide sintered body using an Al-based sintering aid Commercially available SiC having a purity of about 99% and a specific surface area of about 15 m 2 / g
To the powder, 1.0% by mass of high-purity ultrafine aluminum oxide having a specific surface area of about 50 m 2 / g was added as a sintering aid, and 2.0% by mass of PVB was added as a molding binder. Wet pulverized and mixed. The slurry was granulated to an average particle size of about 85 μm with a hot air temperature of 80 ° C. using a spray drier, then subjected to primary molding using a mold at a molding pressure of 30 MPa, and further subjected to CIP molding at 147 MPa, to form about 150 × 150 × A 30 mm compact was obtained. This molded body is filled in a bonbon case,
And sintering at 2200 ° C. for 1.5 hours. The atmosphere during sintering was in a vacuum from room temperature to 1400 ° C., and thereafter in a normal pressure argon atmosphere.

【0043】3)通常品及び熱処理品の特性評価 上記1)及び2)で得られた炭化ケイ素焼結体のかさ密
度をJIS R1634に準拠して測定後、JIS R
1601及びJIS R1604に準拠して曲げ試験片
(3×4×40mm,C0.2)をそれぞれ30本作製
し、室温及び1400℃における3点曲げ強さを測定し
た。
3) Characteristic evaluation of normal product and heat-treated product After the bulk density of the silicon carbide sintered body obtained in the above 1) and 2) was measured in accordance with JIS R1634, JIS R
Thirty bending test pieces (3 × 4 × 40 mm, C0.2) were prepared in accordance with 1601 and JIS R1604, respectively, and the three-point bending strengths at room temperature and 1400 ° C. were measured.

【0044】また、得られた炭化ケイ素焼結体の曲げ試
験片(3×4×40mm,C0.2,各30本)を大気
中にて加熱処理後、同様にJIS R1601及びJI
SR1604に準拠して室温及び1400℃における3
点曲げ強さを測定した。
Further, a bending test piece (3 × 4 × 40 mm, C0.2, 30 pieces each) of the obtained silicon carbide sintered body was subjected to a heat treatment in the air, and then similarly to JIS R1601 and JIS R1601.
3 at room temperature and 1400 ° C. according to SR1604
The point bending strength was measured.

【0045】なお、この加熱処理により生成した酸化ケ
イ素の膜厚は、ICP発光分析装置を用いてSiO2
を測定し、かさ密度から酸化膜厚に換算して求めた。
The thickness of the silicon oxide formed by this heat treatment was determined by measuring the amount of SiO 2 using an ICP emission spectrometer and converting the bulk density to an oxide film thickness.

【0046】処理条件及び測定結果を表1にまとめて示
す。
Table 1 summarizes the processing conditions and measurement results.

【0047】[0047]

【表1】 表中、実施例1〜8は本発明の範囲に入り、比較例1〜
8は本発明の範囲に入らない。
[Table 1] In the table, Examples 1 to 8 fall within the scope of the present invention, and Comparative Examples 1 to 8.
8 does not fall within the scope of the present invention.

【0048】4)優位差検定(*) JIS Z9048に準拠して、実施例1及び比較例1
の室温3点曲げ強さの測定結果について有意差検定を行
った結果、危険率5%にて本発明により加熱処理を行っ
た実施例2の曲げ強さは未処理品の比較例1よりも高強
度であると認められた。
4) Superior Difference Test (*) Example 1 and Comparative Example 1 in accordance with JIS Z9048
As a result of performing a significant difference test on the measurement results of the three-point bending strength at room temperature of Example 2, the bending strength of Example 2 in which the heat treatment was performed according to the present invention at a risk factor of 5% was higher than that of Comparative Example 1 of the untreated product. It was recognized as having high strength.

【0049】5)表面状態の異なる焼結体での評価 比較例1の炭化ケイ素焼結体から、表面粗さの異なる曲
げ試験片を数種類作製し、加熱処理前後における室温3
点曲げ強さ(JIS R1601,n=30)を測定し
た。その結果を表2に示す。
5) Evaluation with sintered bodies having different surface states From the silicon carbide sintered body of Comparative Example 1, several kinds of bending test pieces having different surface roughness were prepared, and room temperature before and after heat treatment was measured.
The point bending strength (JIS R1601, n = 30) was measured. Table 2 shows the results.

【0050】[0050]

【表2】 〔中心線平均粗さの測定条件〕 測定長さ4.8mm,カットオフ値0.8mm 6)予亀裂導入試験片を用いた強度回復 比較例1の炭化ケイ素焼結体を用いて、JIS R16
07に準拠して、荷重10kgfにて曲げ試験片の一辺
(3×40mm)に圧痕を3ヶ所設け、予亀裂を導入し
た後、加熱処理前後における破断荷重を測定した。その
結果を表3に示す。
[Table 2] [Measurement conditions of center line average roughness] Measurement length 4.8 mm, cut-off value 0.8 mm 6) Strength recovery using pre-crack-introduced test piece Using silicon carbide sintered body of Comparative Example 1, JIS R16
According to No. 07, three indentations were formed on one side (3 × 40 mm) of a bending test piece with a load of 10 kgf, a pre-crack was introduced, and the breaking load before and after the heat treatment was measured. Table 3 shows the results.

【0051】[0051]

【表3】 〔圧痕作製条件〕JIS R1601に準拠した曲げ試
験片(3×4×40mm,C0.2)の内、3×40m
mの一面(引っ張り面)の中央部に3ヶ所の圧痕を作製
した。
[Table 3] [Indentation preparation conditions] 3 × 40 m of bending test pieces (3 × 4 × 40 mm, C0.2) according to JIS R1601
Three indentations were made at the center of one surface (tensile surface) of m.

【0052】曲げ試験片引張り面の中心平均粗さが10
μm以下のものを熱処理することによって、30MPa
以上曲げ強さが向上することが認められた。
The center average roughness of the tensile surface of the bending test piece is 10
heat treatment of those having a diameter of 30 μm or less.
As described above, it was recognized that the bending strength was improved.

【0053】予亀裂を設けた試験片を熱処理することに
よって、破断荷重は大幅に向上し、予亀裂など加工表面
に存在するマイクロラックに非常に有効であることが判
明した。
By heat-treating the test piece provided with the pre-crack, the breaking load was greatly improved, and it was found that it was very effective for a micro-rack existing on the processed surface such as a pre-crack.

【0054】7)実機評価 炭化ケイ素焼結体の高耐熱性、高耐酸化性及び高耐食性
を利用した熱処理関連製品(実機製品)を作製し、加熱
処理の有無による使用初期(使用開始から約1週間、あ
るいは1000h)の破損割合を評価した。その結果を
表4に示す。
7) Evaluation of actual machine A heat treatment-related product (actual machine product) utilizing the high heat resistance, high oxidation resistance and high corrosion resistance of the silicon carbide sintered body was produced, and the initial stage of use (from the start of use) depending on the presence or absence of heat treatment The damage rate for one week or 1000 h) was evaluated. Table 4 shows the results.

【0055】[0055]

【表4】 急速に昇温及び冷却されるバーナー周辺の関連製品及び
熱間強度が要求される棚板製品を熱処理することによっ
て、使用初期の破損率が大幅に減少し、有効性が確認で
きた。
[Table 4] The heat treatment of the related products around the burner, which is rapidly heated and cooled, and the shelf products, which require hot strength, significantly reduced the breakage rate at the beginning of use and confirmed the effectiveness.

【0056】[0056]

【発明の効果】前述の実施例1〜8からも明らかなよう
に、常圧焼結法により作製された緻密質炭化ケイ素焼結
体を酸化雰囲気中で加熱処理し、その表面に酸化ケイ素
を0.5μm以上50μm未満生成させることにより、
その強度及び靭性を大幅に向上させることが可能となっ
た。また実際の熱処理関連製品に適応した場合でもその
有効性が確認できた。しかも、このような熱処理は、工
業的に非常に簡便な熱処理である。
As is clear from the above Examples 1 to 8, the dense silicon carbide sintered body produced by the normal pressure sintering method is subjected to a heat treatment in an oxidizing atmosphere, and silicon oxide is applied to the surface thereof. By generating 0.5 μm or more and less than 50 μm,
Its strength and toughness can be greatly improved. In addition, its effectiveness was confirmed even when applied to actual heat treatment-related products. Moreover, such a heat treatment is an industrially very simple heat treatment.

【0057】本発明によれば、高温で使用される一般的
な熱処理関連部材の他に、これまで低靭性・低強度のた
め炭化ケイ素焼結体では適用できないと考えられていた
各種製品に適応可能となる。
According to the present invention, in addition to general heat treatment-related members used at high temperatures, it is applicable to various products which have been considered to be inapplicable to silicon carbide sintered bodies due to low toughness and low strength. It becomes possible.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 疋田 順 神奈川県秦野市曽屋30番地 東芝セラミッ クス株式会社開発研究所内 (72)発明者 脇田 保 愛知県刈谷市小垣江町南藤1番地 東芝セ ラミックス株式会社刈谷製造所内 (72)発明者 松山 和司 愛知県刈谷市小垣江町南藤1番地 東芝セ ラミックス株式会社刈谷製造所内 Fターム(参考) 4G001 BA03 BA22 BA23 BB03 BB04 BB22 BB23 BC13 BC56 BC72 BD04 BD07 BD14 BD15 BD16 BD37 BE33 BE35  ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Jun Hikita 30 Soya, Hadano-shi, Kanagawa Pref., Toshiba Ceramics Co., Ltd. (72) Inventor Kazuji Matsuyama 1 Minami Fuji, Ogakie-cho, Kariya-shi, Aichi F-term (reference) 4G001 BA03 BA22 BA23 BB03 BB04 BB22 BB23 BC13 BC56 BC72 BD04 BD07 BD14 BD15 BD16 BD37 BE33 BE35

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 常圧焼結法により作製されていて、かつ
理論密度に対して90%以上の密度を有する緻密質の炭
化ケイ素焼結体の基材を酸化雰囲気中で1000℃以上
1500℃未満で加熱処理して、その基材の表面に0.
5μm以上50μm以下の厚みを有する酸化ケイ素を生
成させることを特徴とする炭化ケイ素焼結体の熱処理方
法。
1. A dense silicon carbide sintered body made by a normal pressure sintering method and having a density of 90% or more with respect to a theoretical density in an oxidizing atmosphere at 1000 ° C. to 1500 ° C. Less than 0.1% on the surface of the substrate.
A heat treatment method for a silicon carbide sintered body, wherein silicon oxide having a thickness of 5 μm or more and 50 μm or less is generated.
【請求項2】 炭化ケイ素焼結体は、かさ密度が3.0
g/cm3 以上で、かつ室温の3点曲げ強さが370M
Pa以上であることを特徴とする請求項1記載の炭化ケ
イ素焼結体の熱処理方法。
2. The silicon carbide sintered body has a bulk density of 3.0.
g / cm 3 or more, and the three-point bending strength at room temperature is 370M
The heat treatment method for a silicon carbide sintered body according to claim 1, wherein the pressure is Pa or more.
【請求項3】 炭化ケイ素焼結体の表面の中心線平均粗
さ(Ra)が10μm未満であることを特徴とする請求
項1又は2記載の炭化ケイ素焼結体の熱処理方法。
3. The heat treatment method for a silicon carbide sintered body according to claim 1, wherein the center line average roughness (Ra) of the surface of the silicon carbide sintered body is less than 10 μm.
【請求項4】 基材が理論密度に対して95%以上の密
度を有する緻密な炭化ケイ素焼結体であることを特徴と
する請求項1〜3のいずれか1項に記載の炭化ケイ素焼
結体の熱処理方法。
4. The sintered silicon carbide according to claim 1, wherein the substrate is a dense silicon carbide sintered body having a density of 95% or more with respect to a theoretical density. Heat treatment method of the solidified body.
【請求項5】 基材表面の酸化ケイ素の厚みが10μm
以上50μm以下である請求項1〜4のいずれか1項に
記載の炭化ケイ素焼結体の熱処理方法。
5. The thickness of silicon oxide on the surface of a substrate is 10 μm.
The heat treatment method for a silicon carbide sintered body according to any one of claims 1 to 4, wherein the thickness is not less than 50 µm.
【請求項6】 請求項1、2又は3に記載の熱処理方法
で作製した炭化ケイ素熱処理体であって、表面に0.5
μm以上50μm未満の酸化ケイ素膜が存在することを
特徴とする炭化ケイ素熱処理体。
6. A heat-treated silicon carbide produced by the heat treatment method according to claim 1, wherein the heat-treated silicon carbide has a surface
A heat-treated silicon carbide, wherein a silicon oxide film having a thickness of not less than μm and less than 50 μm is present.
【請求項7】 基材表面の酸化ケイ素の厚みが10μm
以上50μm以下である請求項1〜6のいずれか1項に
記載の炭化ケイ素熱処理体。
7. The thickness of silicon oxide on the surface of a substrate is 10 μm.
The heat-treated silicon carbide according to any one of claims 1 to 6, which is at least 50 µm or less.
JP10294705A 1998-10-02 1998-10-02 Heat treatment method for silicon carbide sintered body and heat-treated silicon carbide Pending JP2000109367A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10294705A JP2000109367A (en) 1998-10-02 1998-10-02 Heat treatment method for silicon carbide sintered body and heat-treated silicon carbide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10294705A JP2000109367A (en) 1998-10-02 1998-10-02 Heat treatment method for silicon carbide sintered body and heat-treated silicon carbide

Publications (1)

Publication Number Publication Date
JP2000109367A true JP2000109367A (en) 2000-04-18

Family

ID=17811243

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10294705A Pending JP2000109367A (en) 1998-10-02 1998-10-02 Heat treatment method for silicon carbide sintered body and heat-treated silicon carbide

Country Status (1)

Country Link
JP (1) JP2000109367A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001278685A (en) * 2000-01-24 2001-10-10 Toshiba Ceramics Co Ltd Silicon carbide material and its manufacturing method
JP2006117472A (en) * 2004-10-21 2006-05-11 Toshiba Ceramics Co Ltd Silicon carbide tool material for firing and its manufacturing method
KR100938690B1 (en) * 2001-11-14 2010-01-25 스미토모 오사카 세멘토 가부시키가이샤 Electrostatic chuck and manufacturing method thereof
WO2011145387A1 (en) * 2010-05-21 2011-11-24 日本碍子株式会社 Si-SiC-BASED COMPOSITE MATERIAL AND PROCESS FOR PRODUCTION THEREOF, HONEYCOMB STRUCTURE, HEAT-CONDUCTIVE MATERIAL, AND HEAT EXCHANGER
KR101157044B1 (en) 2004-12-24 2012-06-21 재단법인 포항산업과학연구원 Fabrication Method dof Porous Silicon Carbide Ceramics
CN102924084A (en) * 2012-11-22 2013-02-13 中原工学院 Method for preparing silicon carbide ceramic product by adopting pre-oxidizing process

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001278685A (en) * 2000-01-24 2001-10-10 Toshiba Ceramics Co Ltd Silicon carbide material and its manufacturing method
JP4743973B2 (en) * 2000-01-24 2011-08-10 コバレントマテリアル株式会社 Silicon carbide members for firing electronic components
KR100938690B1 (en) * 2001-11-14 2010-01-25 스미토모 오사카 세멘토 가부시키가이샤 Electrostatic chuck and manufacturing method thereof
JP2006117472A (en) * 2004-10-21 2006-05-11 Toshiba Ceramics Co Ltd Silicon carbide tool material for firing and its manufacturing method
KR101157044B1 (en) 2004-12-24 2012-06-21 재단법인 포항산업과학연구원 Fabrication Method dof Porous Silicon Carbide Ceramics
WO2011145387A1 (en) * 2010-05-21 2011-11-24 日本碍子株式会社 Si-SiC-BASED COMPOSITE MATERIAL AND PROCESS FOR PRODUCTION THEREOF, HONEYCOMB STRUCTURE, HEAT-CONDUCTIVE MATERIAL, AND HEAT EXCHANGER
CN102924084A (en) * 2012-11-22 2013-02-13 中原工学院 Method for preparing silicon carbide ceramic product by adopting pre-oxidizing process

Similar Documents

Publication Publication Date Title
US5470806A (en) Making of sintered silicon carbide bodies
JPH06100370A (en) Silicon nitride sintered compact and its production
JP4312293B2 (en) Silicon carbide ceramic composite material and manufacturing method thereof
JP2000109367A (en) Heat treatment method for silicon carbide sintered body and heat-treated silicon carbide
JP3810183B2 (en) Silicon nitride sintered body
JP5170612B2 (en) Conductive silicon nitride sintered body and manufacturing method thereof
JP2773976B2 (en) Super tough monolithic silicon nitride
JP2000351679A (en) Production of silicon carbide-based porous form and the resultant silicon carbide-based porous form
JP2960591B2 (en) Silicon carbide-silicon nitride-mixed oxide-based sintered body and method for producing the same
JP3124867B2 (en) Silicon nitride sintered body and method for producing the same
JP2641993B2 (en) Method for producing silicon nitride based composite sintered body
JPH025711B2 (en)
JP2581128B2 (en) Alumina-sialon composite sintered body
JP2985519B2 (en) Particle-dispersed ZrO2-based ceramic material and method for producing the same
KR20020072440A (en) Silicon Carbide Ceramics with Improved Oxidation Resistance and Process Therefor
JP3236739B2 (en) Silicon nitride sintered body and method for producing the same
JP3241215B2 (en) Method for producing silicon nitride based sintered body
JP3027215B2 (en) Silicon nitride bonded SiC refractories
JPH0269359A (en) Production of sintered silicon nitride body
JP3007731B2 (en) Silicon carbide-mixed oxide sintered body and method for producing the same
JPH06305836A (en) Silicon nitride-based ceramic composite material
JPS63117962A (en) Silicon carbide base sintered body and manufacture
JP2001019550A (en) Crystallite granule silicon carbide sintered compact having superplasticity and its production
JPS62148370A (en) Manufacture of high oxidation-resistance silicon nitride base ceramics
JPH09157031A (en) Silicon nitride ceramic and its production

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050209

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050816

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060104