JPH05238855A - Production of ceramic coating member - Google Patents

Production of ceramic coating member

Info

Publication number
JPH05238855A
JPH05238855A JP4357892A JP4357892A JPH05238855A JP H05238855 A JPH05238855 A JP H05238855A JP 4357892 A JP4357892 A JP 4357892A JP 4357892 A JP4357892 A JP 4357892A JP H05238855 A JPH05238855 A JP H05238855A
Authority
JP
Japan
Prior art keywords
ceramic coating
ceramic
coating layer
base material
coating member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4357892A
Other languages
Japanese (ja)
Inventor
Yutaka Furuse
裕 古瀬
Yasuyuki Endo
康之 遠藤
Tomonori Takahashi
知典 高橋
Hiromichi Kobayashi
小林  廣道
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Insulators Ltd
Tokyo Electric Power Company Holdings Inc
Original Assignee
NGK Insulators Ltd
Tokyo Electric Power Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Insulators Ltd, Tokyo Electric Power Co Inc filed Critical NGK Insulators Ltd
Priority to JP4357892A priority Critical patent/JPH05238855A/en
Publication of JPH05238855A publication Critical patent/JPH05238855A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/009After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone characterised by the material treated
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/50Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials
    • C04B41/5025Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials with ceramic materials
    • C04B41/5045Rare-earth oxides

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Coating By Spraying Or Casting (AREA)

Abstract

PURPOSE:To provide a method of producing a ceramic coating member having good adhesion between a ceramic substrate and the coating layer, excellent high-temperature strength and heat resistance and good oxidation resistance and corrosion resistance and high in reliability. CONSTITUTION:The surface of a ceramic substrate consisting of a material selected from silicon carbide, silicon nitride or a silicon carbide-dispersed and strengthened silicon nitride composite material is subjected to mechanical processing, heat-treatment or chemical treatment so that ten point average roughness (Rz) as surface roughness may be >=1.5mum and average roughness of center line (Ra) may be >=0.2mum and then at least one kind of material selected from alumina, mullite, zircon, zirconia and yttria is subjected to plasma spray coating onto the surface of the substrate so as to give >=50mum thickness of a ceramic coating layer to provide the objective ceramic coating member.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はセラミックコーティング
部材の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a ceramic coating member.

【0002】[0002]

【従来の技術】従来より、高温で過酷な条件下で使用さ
れる高温構造材料としては、炭化珪素、窒化珪素等のセ
ラミック材料が知られている。
2. Description of the Related Art Conventionally, ceramic materials such as silicon carbide and silicon nitride have been known as high temperature structural materials used under high temperature and severe conditions.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、このよ
うな炭化珪素あるいは窒化珪素等の高温耐熱材料といえ
ども、これらの材料が高速の流速をもつ燃焼ガスに晒さ
れると高温酸化、高温腐食等により部材が減肉されるこ
とが多い。このため、高速の流速をもつ燃焼ガスに晒さ
れる部材については、耐久性を向上するために耐酸化性
を向上させることが最大の課題である。
However, even with such high-temperature heat-resistant materials such as silicon carbide or silicon nitride, when these materials are exposed to combustion gas having a high flow velocity, they are subject to high-temperature oxidation, high-temperature corrosion, etc. Parts are often thinned. For this reason, regarding the members exposed to the combustion gas having a high flow velocity, the most important issue is to improve the oxidation resistance in order to improve the durability.

【0004】この課題解決のため高温耐熱材料の基材表
面に酸化物セラミックスを表面被覆する方法が提案され
るが、この方法によると、基材の表面状態により酸化物
セラミックスを被覆できなかったり、被覆できても高温
での使用により短時間で剥離することがある。本発明の
目的は、セラミック基材と被覆層の密着性が良好とな
り、高温強度、耐熱性に優れ、耐酸化性、耐食性が良好
な、信頼性の高いセラミックコーティング部材の製造方
法を提供することにある。
To solve this problem, a method of coating the surface of the base material of the high temperature heat resistant material with oxide ceramics has been proposed. According to this method, however, the oxide ceramics cannot be coated depending on the surface condition of the base material. Even if it can be coated, it may peel off in a short time when used at high temperature. An object of the present invention is to provide a method for producing a highly reliable ceramic coating member, which has good adhesion between a ceramic base material and a coating layer, excellent high-temperature strength and heat resistance, good oxidation resistance, and good corrosion resistance. It is in.

【0005】[0005]

【課題を解決するための手段】前記目的を達成するため
の本発明によるセラミックコーティング部材の製造方法
は、基材の材料を炭化珪素、窒化珪素または炭化珪素分
散強化窒化珪素複合材から選択し、表面粗さとして十点
平均粗さ(記号Rz)が1.5μm以上、かつ中心線平
均粗さ(記号Ra)が0.2μm以上になる程度に基材
の表面を機械加工、熱処理または化学的処理し、次いで
基材の表面にアルミナ、ムライト、ジルコン、ジルコニ
ア、イットリアから選択される少なくとも1種以上をプ
ラズマ溶射することを特徴とする。
In order to achieve the above object, a method of manufacturing a ceramic coating member according to the present invention comprises selecting a base material from silicon carbide, silicon nitride or a silicon carbide dispersion strengthened silicon nitride composite material. The surface of the base material is machined, heat-treated or chemically treated so that the ten-point average roughness (symbol Rz) is 1.5 μm or more and the center line average roughness (symbol Ra) is 0.2 μm or more. It is characterized in that at least one selected from alumina, mullite, zircon, zirconia, and yttria is plasma sprayed on the surface of the substrate after the treatment.

【0006】前記十点平均粗さ(記号Rz)を1.5μ
m以上にし、かつ前記中心線平均粗さ(記号Ra)を
0.2μm以上としたのは、これらの値未満であると、
基材の表面にアルミナ、ムライト、ジルコン、ジルコニ
アまたはイットリアを強固に耐久性よく被覆することが
困難になるからである。前記プラズマ溶射により得られ
るセラミックコーティング層の層厚は50μm以上とす
ることが好ましい。前記セラミックコーティング層の層
厚を50μm以上としたのは、高速の燃焼ガス等に接触
するような過酷な使用条件下では、前記セラミックコー
ティング層の層厚が50μm未満であると、長期間の使
用における信頼性に問題があるからである。
The ten-point average roughness (symbol Rz) is 1.5 μm.
It is less than these values that the center line average roughness (symbol Ra) is 0.2 μm or more.
This is because it becomes difficult to coat the surface of the substrate with alumina, mullite, zircon, zirconia, or yttria firmly and with good durability. The layer thickness of the ceramic coating layer obtained by plasma spraying is preferably 50 μm or more. The layer thickness of the ceramic coating layer is set to 50 μm or more because it is used for a long time when the layer thickness of the ceramic coating layer is less than 50 μm under severe use conditions such as contact with high-speed combustion gas. This is because there is a problem in reliability.

【0007】[0007]

【作用】本発明のセラミックコーティング部材の製造方
法によると、コーティング前のセラミック基材の表面を
適正な面粗さにし、この粗面化された基材表面にプラズ
マ溶射による被覆層を形成するため、セラミック基材と
被覆材の密着性が良好となり信頼性の高いセラミックコ
ーティング部材を製作できる。
According to the method for manufacturing a ceramic coating member of the present invention, the surface of a ceramic base material before coating is made to have an appropriate surface roughness, and a coating layer formed by plasma spraying is formed on the surface of the roughened base material. As a result, the adhesion between the ceramic base material and the coating material becomes good, and a highly reliable ceramic coating member can be manufactured.

【0008】[0008]

【実施例】以下、本発明の実施例を説明する。B4 C、
Cを添加物とする炭化珪素焼結体(実施例1〜5、比較
例1〜5)、Y23 、Yb23 を添加物とする窒化
珪素焼結体(実施例6〜10、比較例6〜10)、およ
びY23 、Yb23 を添加物とする窒化珪素を母材
とし強化材として炭化珪素粒子あるいはウィスカーを添
加した複合焼結体(実施例11〜15、比較例11〜1
5)を基材に用い、基材表面粗さと酸化物被覆層の密着
性について調べた。試験片形状は幅4mm、高さ3m
m、長さ40mmである。
EXAMPLES Examples of the present invention will be described below. B 4 C,
Silicon carbide sintered bodies containing C as an additive (Examples 1 to 5 and Comparative Examples 1 to 5) and silicon nitride sintered bodies containing Y 2 O 3 and Yb 2 O 3 as additives (Examples 6 to 10). Comparative Examples 6 to 10), and a composite sintered body containing silicon nitride containing Y 2 O 3 and Yb 2 O 3 as a base material and silicon carbide particles or whiskers as a reinforcing material (Examples 11 to 15). Comparative Examples 11 to 1
Using 5) as the substrate, the substrate surface roughness and the adhesion of the oxide coating layer were examined. Width of test piece is 4mm and height is 3m
m, length 40 mm.

【0009】詳細は下記表1に示す。Details are shown in Table 1 below.

【0010】[0010]

【表1】 表1中、実施例1〜5は、大気中、温度1400℃で1
0時間の熱処理を行った。実施例6〜10は、70℃の
HF中で1時間エッチング処理を行った。実施例11〜
15は、#36炭化珪素砥粒50wt%と#36アルミ
ナ砥粒50wt%の混合砥粒でサンドブラスト処理を行
った。
[Table 1] In Table 1, Examples 1 to 5 are 1 at a temperature of 1400 ° C. in the atmosphere.
Heat treatment was performed for 0 hours. In Examples 6 to 10, etching treatment was performed in HF at 70 ° C. for 1 hour. Examples 11 to
Sample No. 15 was sandblasted with mixed abrasive grains of 50 wt% of # 36 silicon carbide abrasive grains and 50 wt% of # 36 alumina abrasive grains.

【0011】比較例1〜5の基材は、炭化珪素で焼成面
を#140ダイヤモンド砥石で機械加工した加工面であ
る。比較例6〜10の基材は、窒化珪素で加工後、大気
中、温度1300℃で1時間熱処理を行った。比較例1
1〜15の基材は複合材で加工後、大気中、温度130
0℃で1時間熱処理を行った。前記実施例1〜15およ
び比較例1〜15の基材に、アルミナ、ムライト、ジル
コン、ジルコニア、イットリアの酸化物被覆層が約10
0μmの厚さになるようにプラズマ溶射により形成し
た。プラズマ溶射により形成された酸化物被覆層の付着
状態および室温と1400℃間の加熱、冷却の繰り返し
による耐熱サイクル特性を測定評価した。その結果は表
1に示すとおりである。
The base material of Comparative Examples 1 to 5 is a machined surface made of silicon carbide and machined with a # 140 diamond grindstone. The base materials of Comparative Examples 6 to 10 were processed with silicon nitride and then heat-treated in the atmosphere at a temperature of 1300 ° C. for 1 hour. Comparative Example 1
The base materials 1 to 15 are processed with the composite material, and the temperature is 130 in the air.
Heat treatment was performed at 0 ° C. for 1 hour. About 10 layers of oxide coating layers of alumina, mullite, zircon, zirconia, and yttria are added to the base materials of Examples 1 to 15 and Comparative Examples 1 to 15.
It was formed by plasma spraying so as to have a thickness of 0 μm. The adhesion state of the oxide coating layer formed by plasma spraying and the heat cycle characteristics by repeated heating and cooling between room temperature and 1400 ° C. were measured and evaluated. The results are shown in Table 1.

【0012】 被覆テスト(酸化物被覆状態評価) 表1において、被覆層の付着状態は基材の表面に酸化物
被覆層が均一に被覆されているかを目視により評価し
た。その結果、実施例1〜15および比較例6〜15に
ついては、酸化物被覆層の付着状態は良好であった。比
較例1〜5については酸化物被覆層が基材の一部にのみ
付着しただけで被覆不能であった。基材の表面粗さが細
かいと酸化物を被覆するのが困難であることが明らかと
なった。
Coating Test (Evaluation of Oxide Covering State) In Table 1, the adhesion state of the coating layer was evaluated by visually observing whether or not the surface of the substrate was uniformly covered with the oxide coating layer. As a result, in Examples 1 to 15 and Comparative Examples 6 to 15, the adhered state of the oxide coating layer was good. In Comparative Examples 1 to 5, the oxide coating layer was attached only to a part of the base material and could not be coated. It has been revealed that it is difficult to coat the oxide when the surface roughness of the substrate is fine.

【0013】 負荷テスト(耐熱サイクル評価) 基材と酸化物被覆の密着性は室温と1400℃との間の
加熱、冷却の繰り返しによる耐熱サイクルを行い、サイ
クル1回毎に光学顕微鏡にて基材と被覆層界面を観察し
た。その結果、実施例1〜15は室温と1400℃との
間の20回の加熱、冷却の繰り返しでも基材と被覆層界
面には剥離が生じなかった。比較例6〜15は室温と1
400℃との間の1回の加熱、冷却の繰り返しで基材と
被覆層界面に剥離が生じた。基材の表面粗さは適正な表
面粗さでないと耐熱サイクルに耐えられないことが明ら
かとなった。
Load Test (Heat Resistance Cycle Evaluation) The adhesion between the base material and the oxide coating is subjected to a heat resistance cycle by repeating heating and cooling between room temperature and 1400 ° C., and the base material is observed with an optical microscope for each cycle. And the coating layer interface was observed. As a result, in Examples 1 to 15, peeling did not occur at the interface between the base material and the coating layer even when the heating and cooling were repeated 20 times between room temperature and 1400 ° C. Comparative Examples 6 to 15 have room temperature and 1
Peeling occurred at the interface between the base material and the coating layer by repeating heating and cooling once at 400 ° C. It has been clarified that the surface roughness of the substrate cannot withstand the heat cycle unless the surface roughness is appropriate.

【0014】[0014]

【発明の効果】以上説明したように、本発明のセラミッ
クコーティング部材の製造方法によれば、セラミック基
材の表面を適正な面粗さにし、プラズマ溶射により基材
の表面にアルミナ、ムライト、ジルコン、ジルコニア、
イットリアから選択される少なくとも1種以上の被覆層
を形成するため、セラミック基材と酸化物被覆層の密着
性および耐熱サイクル特性が良好になるので、高温で十
分に耐え、高温での酸化性、腐食性が良好で信頼性の高
いセラミックコーティング部材を製作できるという効果
がある。
As described above, according to the method for producing a ceramic coating member of the present invention, the surface of the ceramic substrate is made to have an appropriate surface roughness, and the surface of the substrate is alumina, mullite or zircon by plasma spraying. , Zirconia,
Since at least one type of coating layer selected from yttria is formed, the adhesion between the ceramic base material and the oxide coating layer and the heat cycle characteristics are improved, so that it can withstand high temperatures sufficiently and oxidize at high temperatures. There is an effect that a highly reliable ceramic coating member having good corrosiveness can be manufactured.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 高橋 知典 愛知県知多市新舞子字北畑151番地 (72)発明者 小林 廣道 三重県四日市市浮橋1丁目11番地の1 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Tomonori Takahashi 151 Kitahata, Shinmaiko, Chita City, Aichi Prefecture (72) Inventor Hiromichi Kobayashi 1-11 Ukihashi, Yokkaichi City, Mie Prefecture

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 基材の材料を炭化珪素、窒化珪素または
炭化珪素分散強化窒化珪素複合材から選択し、表面粗さ
として十点平均粗さ(記号Rz)が1.5μm以上、か
つ中心線平均粗さ(記号Ra)が0.2μm以上になる
程度に基材の表面を機械加工、熱処理または化学的処理
し、次いで基材の表面にアルミナ、ムライト、ジルコ
ン、ジルコニア、イットリアから選択される少なくとも
1種以上をプラズマ溶射することを特徴とするセラミッ
クコーティング部材の製造方法。
1. A material of a base material is selected from silicon carbide, silicon nitride or a silicon carbide dispersion strengthened silicon nitride composite material and has a ten-point average roughness (symbol Rz) of 1.5 μm or more as a surface roughness and a center line. The surface of the base material is machined, heat-treated or chemically treated so that the average roughness (symbol Ra) becomes 0.2 μm or more, and then the surface of the base material is selected from alumina, mullite, zircon, zirconia and yttria. A method for manufacturing a ceramic coating member, which comprises plasma spraying at least one kind.
【請求項2】 前記プラズマ溶射により得られるセラミ
ックコーティング層の層厚を50μm以上とすることを
特徴とする請求項1に記載のセラミックコーティング部
材の製造方法。
2. The method for producing a ceramic coating member according to claim 1, wherein the thickness of the ceramic coating layer obtained by the plasma spraying is 50 μm or more.
JP4357892A 1992-02-28 1992-02-28 Production of ceramic coating member Pending JPH05238855A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4357892A JPH05238855A (en) 1992-02-28 1992-02-28 Production of ceramic coating member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4357892A JPH05238855A (en) 1992-02-28 1992-02-28 Production of ceramic coating member

Publications (1)

Publication Number Publication Date
JPH05238855A true JPH05238855A (en) 1993-09-17

Family

ID=12667645

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4357892A Pending JPH05238855A (en) 1992-02-28 1992-02-28 Production of ceramic coating member

Country Status (1)

Country Link
JP (1) JPH05238855A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000064836A1 (en) * 1999-04-26 2000-11-02 General Electric Company Ceramic with zircon coating
JP2001278685A (en) * 2000-01-24 2001-10-10 Toshiba Ceramics Co Ltd Silicon carbide material and its manufacturing method
EP1158072A2 (en) * 2000-04-18 2001-11-28 Ngk Insulators, Ltd. Halogen gas plasma-resistive members and method for producing the same, laminates, and corrosion-resistant members
JP2002511833A (en) * 1998-04-27 2002-04-16 ゼネラル エレクトリック カンパニイ Painted articles and manufacturing method
EP1506145A1 (en) * 2002-05-23 2005-02-16 Saint-Gobain Ceramics and Plastics, Inc. Zircon/zirconia mix for refractory coatings and inks
KR100884164B1 (en) * 1999-12-10 2009-02-17 도쿄엘렉트론가부시키가이샤 Etching resistant member and method for producing etching resistant member
US7589025B2 (en) * 2005-12-02 2009-09-15 Rohm And Haas Electronic Materials Llc Semiconductor processing
US7670688B2 (en) * 2001-06-25 2010-03-02 Applied Materials, Inc. Erosion-resistant components for plasma process chambers
US8247080B2 (en) 2004-07-07 2012-08-21 Momentive Performance Materials Inc. Coating structure and method
WO2012138891A2 (en) * 2011-04-06 2012-10-11 Basf Corporation Methods for providing high-surface area coating to mitigate hydrocarbon deposits on engine and powertrain components
US8877002B2 (en) 2002-11-28 2014-11-04 Tokyo Electron Limited Internal member of a plasma processing vessel
JP2016516887A (en) * 2013-06-05 2016-06-09 アプライド マテリアルズ インコーポレイテッドApplied Materials,Incorporated Rare earth oxide corrosion resistant coating for semiconductor applications

Cited By (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4748826B2 (en) * 1998-04-27 2011-08-17 ゼネラル エレクトリック カンパニイ Coated article and method for producing the same
JP2002511833A (en) * 1998-04-27 2002-04-16 ゼネラル エレクトリック カンパニイ Painted articles and manufacturing method
US6517960B1 (en) * 1999-04-26 2003-02-11 General Electric Company Ceramic with zircon coating
WO2000064836A1 (en) * 1999-04-26 2000-11-02 General Electric Company Ceramic with zircon coating
JP2002543030A (en) * 1999-04-26 2002-12-17 ゼネラル・エレクトリック・カンパニイ Ceramic with zircon coating
KR100885597B1 (en) * 1999-12-10 2009-02-24 도쿄엘렉트론가부시키가이샤 Processing apparatus
KR100944570B1 (en) * 1999-12-10 2010-02-25 도쿄엘렉트론가부시키가이샤 Etching-resistant member used in processing apparatus for processing a substrate for semiconductor and liquid crystal display device, and method of producing the member
KR100972878B1 (en) * 1999-12-10 2010-07-28 도쿄엘렉트론가부시키가이샤 Processing apparatus
KR100884164B1 (en) * 1999-12-10 2009-02-17 도쿄엘렉트론가부시키가이샤 Etching resistant member and method for producing etching resistant member
KR100884165B1 (en) * 1999-12-10 2009-02-17 도쿄엘렉트론가부시키가이샤 Processing apparatus
KR100922902B1 (en) * 1999-12-10 2009-10-22 도쿄엘렉트론가부시키가이샤 Etching-resistant member used in processing apparatus for processing a substrate for semiconductor and liquid crystal display device, and method of producing the member
JP2001278685A (en) * 2000-01-24 2001-10-10 Toshiba Ceramics Co Ltd Silicon carbide material and its manufacturing method
JP4743973B2 (en) * 2000-01-24 2011-08-10 コバレントマテリアル株式会社 Silicon carbide members for firing electronic components
US6783875B2 (en) 2000-04-18 2004-08-31 Ngk Insulators, Ltd. Halogen gas plasma-resistive members and method for producing the same, laminates, and corrosion-resistant members
EP1892318A1 (en) * 2000-04-18 2008-02-27 Ngk Insulators, Ltd. Halogen gas plasma-resistive members, laminates, and corrosion-resistant members
EP1158072A2 (en) * 2000-04-18 2001-11-28 Ngk Insulators, Ltd. Halogen gas plasma-resistive members and method for producing the same, laminates, and corrosion-resistant members
EP1158072A3 (en) * 2000-04-18 2004-01-07 Ngk Insulators, Ltd. Halogen gas plasma-resistive members and method for producing the same, laminates, and corrosion-resistant members
US7670688B2 (en) * 2001-06-25 2010-03-02 Applied Materials, Inc. Erosion-resistant components for plasma process chambers
USRE40301E1 (en) 2002-05-23 2008-05-06 Saint-Gobain Ceramics & Plastics, Inc. Zircon/zirconia mix for refractory coatings and inks
EP1506145A4 (en) * 2002-05-23 2007-11-28 Saint Gobain Ceramics Zircon/zirconia mix for refractory coatings and inks
EP1506145A1 (en) * 2002-05-23 2005-02-16 Saint-Gobain Ceramics and Plastics, Inc. Zircon/zirconia mix for refractory coatings and inks
US8877002B2 (en) 2002-11-28 2014-11-04 Tokyo Electron Limited Internal member of a plasma processing vessel
US8247080B2 (en) 2004-07-07 2012-08-21 Momentive Performance Materials Inc. Coating structure and method
US7589025B2 (en) * 2005-12-02 2009-09-15 Rohm And Haas Electronic Materials Llc Semiconductor processing
WO2012138891A3 (en) * 2011-04-06 2013-03-28 Basf Corporation Methods for providing high-surface area coating to mitigate hydrocarbon deposits on engine and powertrain components
WO2012138891A2 (en) * 2011-04-06 2012-10-11 Basf Corporation Methods for providing high-surface area coating to mitigate hydrocarbon deposits on engine and powertrain components
JP2016516887A (en) * 2013-06-05 2016-06-09 アプライド マテリアルズ インコーポレイテッドApplied Materials,Incorporated Rare earth oxide corrosion resistant coating for semiconductor applications
JP2017100938A (en) * 2013-06-05 2017-06-08 アプライド マテリアルズ インコーポレイテッドApplied Materials,Incorporated Rare earth oxide-based corrosion resistant coating for semiconductor application
US9865434B2 (en) 2013-06-05 2018-01-09 Applied Materials, Inc. Rare-earth oxide based erosion resistant coatings for semiconductor application
KR20200038556A (en) * 2013-06-05 2020-04-13 어플라이드 머티어리얼스, 인코포레이티드 Rare-earth oxide based erosion resistant coatings for semiconductor application
US10734202B2 (en) 2013-06-05 2020-08-04 Applied Materials, Inc. Rare-earth oxide based erosion resistant coatings for semiconductor application

Similar Documents

Publication Publication Date Title
JP4113857B2 (en) Article comprising silicon substrate, bond layer and protective layer
JPH05238855A (en) Production of ceramic coating member
TWI400217B (en) A surface-treated ceramic member, a method of manufacturing the same, and a vacuum processing apparatus
KR100775819B1 (en) Ceramic with zircon coating
JPH0967662A (en) Ceramic-coated member
JPH0969554A (en) Electrostatic chuck member and production thereof
US6541134B1 (en) Abradable thermal barrier coating for CMC structures
JPH05238859A (en) Coated member of ceramic
EP0508731B1 (en) Use of an oxide coating to enhance the resistance to oxidation and corrosion of a silicon nitride based gas turbine blade
JPH05117064A (en) Blade for gas turbine and its production
JP3826064B2 (en) Composite cermet covering member and manufacturing method thereof
JP3583812B2 (en) Ceramic coating member and method of manufacturing the same
JP3069462B2 (en) Ceramic coating member and method of manufacturing the same
JPH05238853A (en) Method for modifying surface of ceramic substrate
JPH07166318A (en) Mask for forming coating pattern
JP4379776B2 (en) Silicon impregnated silicon carbide member
JPH05263212A (en) Heat-resistant coating
JP2000273614A (en) Roll for molten glass manufacturing equipment, and its manufacture
JPS6187859A (en) Formation of sprayed film
JPS6028903B2 (en) Surface treatment method for metal materials
JP7162153B1 (en) Quartz glass base material with improved adhesion of thermal spray coating, method for producing same, and method for producing quartz glass parts having thermal spray coating
JPH11314984A (en) Tool material for calcination
JP2000154033A (en) Production of conveying roll
JP4354671B2 (en) Silicon carbide member and manufacturing method thereof
JP7122206B2 (en) thermal spray film