JP3812715B2 - Recycling method for firing containers - Google Patents

Recycling method for firing containers Download PDF

Info

Publication number
JP3812715B2
JP3812715B2 JP2000334593A JP2000334593A JP3812715B2 JP 3812715 B2 JP3812715 B2 JP 3812715B2 JP 2000334593 A JP2000334593 A JP 2000334593A JP 2000334593 A JP2000334593 A JP 2000334593A JP 3812715 B2 JP3812715 B2 JP 3812715B2
Authority
JP
Japan
Prior art keywords
coating
film
sic
firing
fired
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000334593A
Other languages
Japanese (ja)
Other versions
JP2002145671A (en
Inventor
裕 岡田
雅也 佐藤
Original Assignee
東芝セラミックス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東芝セラミックス株式会社 filed Critical 東芝セラミックス株式会社
Priority to JP2000334593A priority Critical patent/JP3812715B2/en
Publication of JP2002145671A publication Critical patent/JP2002145671A/en
Application granted granted Critical
Publication of JP3812715B2 publication Critical patent/JP3812715B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
被焼成物が載置される焼成用容器に係わり、特に、誘電体、ソフトフェライト、コンデンサ等のセラミック電子部品の焼成、あるいは蛍光体粉末等のセラミック粉末の熱処理工程で被焼成物が載置される焼成用容器に関する。
【0002】
【従来の技術】
従来、セラミック電子部品の焼成は、一般に900〜1400℃の温度域で行われるため、被焼成物が載置される焼成用容器としては、耐熱性に優れたAl−SiO−MgO質、MgO−Al−ZrO質、SiC質等のセラミックス、Mo、Ni基の耐熱合金等の耐熱金属が使用される。これらの焼成用容器上に直接焼成物を載置させると焼成用容器成分との反応が起こる場合は、難反応性のZrO等の素材からなるセッター、もしくは棚板表面に難反応性のZrO等の素材でコーティングを施した焼成用容器(道具材)が使用される(特開昭61―12017号、特開昭61―24225号、特開昭63―84011号)。
【0003】
例えば、ソフトフェライト(Mn・Zn系・Ni・Zn系等が主成分)の場合は、材質によってAl、ZrO、あるいは被焼成物と同組成のセッターもしくはコーティング品が使い分けられ使用される。被焼成物がコンデンサー(BaTiO、TiO等が主成分)の場合は、ZrOのセッター、もしくはZrOのコーティング品が主に使用されている。
【0004】
しかしながら、これら焼成用容器は、次のような理由により使用不可能となることが多い。▲1▼基材自体が割れたり、反り等の変形。▲2▼セラミックスの被膜の剥離。▲3▼被焼成物と基材間、被焼成物と被膜間で付着等の反応が発生。
【0005】
そして、これらの不具合は以下のようにして発生することが多い。被焼成物に含まれる成分が、焼成容器から拡散、浸透し、焼成容器表面部でこれらの濃度が高くなると、融着(フラックス成分の濃度が高くなった場合等)や被焼成物の特性異常(被焼成物と焼成容器間で成分の移動が起こり被焼成物組成のズレが起こる場合等)が起こる。また被焼成物に含まれる成分が被膜に拡散、さらには基材まで拡散、浸透し、被膜および基材を劣化させたり、被膜、基材界面に反応物を生成し被膜を剥離させる。上記▲2▼、▲3▼の被膜の不具合が原因で寿命となる場合は、基材自体の損傷は少なく、使用可能なレベルであることが多い。
【0006】
特に、アルミナ−シリカ質基材に比べ機械的特性に優れる緻密質SiCを基材として用いた場合、基材の反りやワレといった損傷は起こりにくく、再利用として特に好ましい。
【0007】
このため、焼成用容器を用いた焼成コストの低減および廃棄物低減の観点からも焼成用容器の再利用が地球環境にも好ましい。
【0008】
【発明が解決しようとする課題】
そこで、SiC基材の焼成用容器の再生方法が望まれていた。
【0009】
本発明は上述した事情を考慮してなされたもので、SiC基材の再利用が可能な焼成成用容器の再生方法を提供することを目的とする。
【0011】
【課題を解決するための手段】
上記目的を達成するためになされた本願請求項の発明は、セラミックス部品の被焼成物を載置して用い、大気中1400℃で100時間保持した場合の表面酸化による単位面積当たりの質量変化が1×10−2g/cm以下であるSiC質基材の表面に、Al、ムライト、ZrO、スピネルの少なくとも1種または複数を主成分とするセラミックス被膜を形成た焼成用容器の再生方法であって、この焼成用容器を数回使用した後に、前記SiC質基材の表面の前記セラミックス被膜を除去し、新たに前記セラミックス被膜を30〜500μmプラズマ溶射し、再生することを特徴とする焼成用容器の再生方法であることを要旨としている。
【0012】
本願請求項2の発明は、上記焼成用容器の数回使用後においてもSiC質基材の硬度はビッカース硬度1800以上であり、かつ、再溶射の前処理として旧被膜を除去した時の基材表面の表面粗さがRa=3〜15μmであることを特徴とする請求項に記載の焼成用容器の再生方法であることを要旨としている。
【0013】
【発明の実施の形態】
本発明に係わる焼成用容器の再生方法の実施形態について説明する。
【0014】
本発明に係わる焼成用容器の再生方法の実施形態は、セラミックス部品の被焼成物が載置されて用いられ、SiC質基材の表面にAl、ムライト、ZrO、スピネルの少なくとも1種または複数を主成分とするセラミックス被膜を形成した焼成用容器の再生方法において、この焼成用容器を数回使用した後に、プラズマ溶射によりSiC質基材の表面に上記セラミックス被膜を再生する方法である。
【0015】
すなわち、被焼成物、例えば、セラミックス電子部品の焼成用で、表面にジルコニア等の難反応性の被膜が形成された焼成用容器を再生する方法であり、従来、この分野で使用されている基材に比較して数段機械的特性に優れるSiC質基材として用い、この基材表面を適度な表面粗さに調整した後、溶射法を用いて表面被膜を形成することで、使用時に被膜の不具合が起こり使用不可能となった場合に、溶射法により新たな被膜を形成することで焼成用容器の再使用を可能にし、寿命を飛躍的に延長し、使用済み焼成容器の廃棄物量を大幅に削減することを可能にする。
【0016】
再生使用のポイントとなる焼成用容器表面に被膜を形成する方法としては、
▲1▼セラミックスラリーを塗布した後、高温で焼き付けを行う方法 ▲2▼CVD法
▲3▼溶射法がある。
【0017】
使用後の焼成用容器(表面部に被焼成物成分を多量に含む)への被膜の形成を考慮すると、▲1▼のセラミックスのスラリーを塗布した後、高温(1300〜1600℃)で焼き付ける方法で使用後品の再生を試みた場合、被膜表面部の被焼成物成分(例えば、Zn、Ba、Bi等)がコート焼き付け時に蒸発し焼成炉を汚染する。焼き付け時に(1200〜1600℃で1〜6時間保持)、新しい被膜表面に被焼成物成分が拡散移動してしまうという問題があった。また、このようなコーティング方法では、被膜と基材の化学的な結合が主であるので、被焼成物の成分の種類や量によっては他の化合物が生成してしまい結合状態が安定しないという欠点がある。
【0018】
また、▲2▼のCVD法では、減圧したチャンバー内で被膜を形成するため、被焼成物成分による汚染、量産性に欠ける等の問題がある。
【0019】
これに対して、▲3▼溶射法では、基材側が高温になるのは瞬時であり、被焼成物成分の蒸発、拡散による弊害はほとんど起こらない。大気中での施工が可能、一工程で被膜が形成できるため大量処理も十分可能である。また、この溶射法による被膜は、基材(旧被膜)表面と溶射被膜との物理的なかみ合い(アンカー効果)が結合力の主であり、被焼成物成分の存在にはあまり影響を受けない(ただし被焼成物成分の影響で表面が滑らかになる場合は、ショットブラストやケミカルエッチング等による表面の粗面化が必要である)。上記のような理由から溶射法は、使用後の焼成用容器への被膜形成に非常に適している。
【0020】
本発明に係わる焼成用容器の再生方法における溶射膜の機能としては、▲1▼被焼成物成分が高濃度になった表面部と被焼成物を遮断する、▲2▼使用温度で被焼成物と直接接触しても反応し難い、▲3▼被焼成物成分の侵入を防止し、基材を保護するなどがある。
【0021】
また、本再生方法において溶射膜を形成するセラミックスは、ZrO等の高融点のものが多いため、各種の溶射法の中でも高温が得られるプラズマ溶射法が好ましい。
【0022】
再溶射では、旧被膜の上に重ねて溶射する場合と、一旦、旧被膜を除去する場合とがある。
【0023】
旧被膜の除去が不必要な場合: 被膜自体の組織劣化、剥離はないが、被膜表面部の被焼成成分の濃度が高くなり、付着や、被焼成物の特性異常が起こる場合である。ただし、被焼成物成分と基材成分、もしくは被膜成分が反応生成物を作り出し、これが脆弱な場合は後述の方法で脆弱部を除去する必要がある。反応生成物が基材表面に強固に固定されている場合は、この反応生成物は使用条件で非常に安定であるためこの表面に溶射層を形成することで、寿命の飛躍的向上が可能である。この場合、数回使用後における旧被膜の再溶射前の表面粗さはRa=3〜15μmであることが好ましい。
【0024】
旧被膜の除去が必要な場合: 使用中に、被膜が劣化し、基材と被膜との界面に変質層ができ被膜の剥離が起こる場合である。被膜の除去は、ブラスト等で行う。脆弱化した被膜のみを除去し基材の損傷、基材表面の表面粗さの減少を防止するためには、ブラストに用いるグリットとして、ユリア樹脂、ナイロン樹脂、くるみ、アプリコット等が好ましい。ヒートサイクルや被焼成物成分との反応により脆弱化した部分のみを除去することが目的であるので、AlやSiC等の硬度の高い素材のグリットは、粗面化された基材の表面状態を損なうため好ましくない。また、基材の硬度が低い場合には、ブラストにより基材部が損傷したり、当初の溶射に対応して施された前処理により適度に粗面化された表面粗さRa=3〜15μmが損なわれるので好ましくない。このような問題を回避し、基材の表面粗さをRa=3〜15μmに保つには、基材の硬度は、ビッカース硬度1800以上であることが必要であり、ビッカース硬度1800未満では旧被膜を除去するためのブラスト時に基材の損傷が発生し易い。
【0025】
再溶射を行う時期は、使用温度、雰囲気、被焼成物の成分、量等で異なるためあらかじめ予備試験を行い、焼成用容器の経時変化、付着等の不具合の発生時期より決定する。不具合の発生後に溶射を行う場合と、予備試験で被膜による基材の保護効果が低下し劣化が激しくなる時期を掴んでおき、劣化が激しくなる前に溶射による被膜の再形成を行う場合がある。
【0026】
基材としては、上述のように旧被膜の除去を前提とした再生を考える場合は、被膜除去方法としてブラスト等の機械的な衝撃による除去を行うため、こうした衝撃に耐えうる機械的強さを有する基材が好ましい。一般に、AlやZrO等で曲げ強さ等の機械的特性を高くするために織密化を図った材質では熱衝撃破壊が起こり易い。その点SiC質は、熱伝導率が非常に高く熱応力が発生しにくく熱衝撃に対して強いので、本発明の焼成用容器の基材として好ましい。また、熱伝導率が高いことは、焼成容器内の温度分布をより均一にできる、ヒートプロファイルに対する追随性が良い等の焼成用容器としての大きなメリットをもたらす。
【0027】
ただし、SiC質の問題点としては、酸化雰囲気で使用した場合の表面酸化の問題があった。SiCと酸素の反応で生成するSiOは、電子セラミックス部品の主成分であるBaOやTiOやFeなどと容易に低融点物質をつくり被焼成物と焼成容器の付着、被焼成物の特性異常、外観不良の原因となり易い。また、SiC基材表面にCaO安定化ZrO被膜をコーティングした場合、基材と被膜との界面に生成したSiOがCaOを吸収しZrOの脱安定化を促進し被膜の急激な劣化をもたらすという問題があった。
【0028】
そこで、本発明に係わる焼成用容器の再生方法に用いるSiCとしては、耐酸化性に優れるSiCが好ましい。各種SiC基材の耐酸化性および被膜の耐剥離性を検討したところ、酸化性の目安としては、JISに規定されている耐酸化性試験(R1609)において、1400℃で100時間保持後の単位面積当りの酸化増量が1.00×10−2g/cm以下であることが好ましい。特に好ましくは、常圧焼結SiCや再結晶SiC、Si含浸SiCで気孔率が0に近い材質が耐酸化性に優れ、被膜の耐剥離性にも優れる。
【0029】
再溶射のところでも説明したが、溶射被膜の場合、被膜と基材との結合はアンカー効果などの物理的な結合によるところが大きい、従って基材表面の表面粗さが重要となる。使用時に剥離しにくい被膜を得るには、基材表面を粗して表面積を大きくして、被膜と基材表面の接触面積を大きくすると良い。表面状態としては、平均粗さRaが3μm以下では、表面粗さが不十分で十分な結合強さが得られないために被膜が均一に形成しにくく、例え、形成できたとしても使用時に早期に剥離が発生し易い。また表面粗さが増すと粗面化時に発生する微細亀裂の影響が大きくなり機械的強度が低下する。Ra=15μm以上では、基材の機械的強度の低下が大きくなるため使用時に割れが発生する確率が高くなり好ましくない。基材の表面粗さとしては、Ra=3〜15μmが好ましく、Ra=8〜12μmが最も好ましい。
【0030】
被膜厚さは、道具材の形状、基材材質種によって異なるが、0.03mm以上であれば効果が得られる。厚すぎると溶射特有の溶射時に発生する残留応力が大きくなり剥離が発生し易くなる。現行の焼成用容器の標準サイズは外径100〜300mm長方形、肉厚3〜10mmであるが,こうした容器を想定した場合は被膜の厚さは0.03〜0.50mmが好ましい。溶射法では、溶射時に残留応力が発生するため被膜厚さを厚くし過ぎるとこの残留応力により被膜が反ったり、剥離が発生するため被膜厚さには限界がある。
【0031】
水プラズマ溶射法を用いた場合は、比較的厚い被膜の溶射が可能であるが、本発明に係わる焼成用容器の再生方法における用途では、0.5mmが限界であり、これ以上では、剥離が発生し易い。ただし再溶射の場合は、熱処理に使用し、温度が昇降するうちに旧溶射被膜の残留応力は緩和されており、再溶射することにより旧被膜の残留応力と再溶射被膜の残留応力が合成され剥離が発生することはないので、旧被膜との合計厚さが0.5mm以上になっても構わない。アンダーコートとしては、Al、ムライトが適している。表面被膜に要求される特性は、被焼成物との難反応性、耐久性(剥離、脱落)である。ZrOは、難反応性で従来のセッター材質、コーティング材質あるいは敷き粉として使用されてきた。セッターや、コーティング層として使用される場合は、CaOやYで安定化、あるいは部分安定化されたZrOが使用されることが多い。未安定ZrOは焼成工程で温度が昇降する際に1000℃近辺で単斜晶←→正方晶(立方晶)の相変態に伴う体積変化が起こるためにセッターやトレーをすべてZrOで製造し使用した場合は、割れ、粒子の脱落が起こり易いためにあまり使用されていない。ただし、安定化剤を含まないので反応性は良好であるため、敷き粉としては多く使用されている。本発明に係わる焼成用容器の再生方法における表面被膜材質としてもこうした材質が適する。また用途によっては、ジルコン酸カルシウム(CaZrO)、ジルコン酸バリウム(BaZrO)、ジルコン酸ストロンチウム(SrZrO)・ジルコン酸マグネシウム(MgZrO)等のジルコン酸塩が反応性、耐久性で好ましい場合もある。この他にも、アルミナ系の絶縁体やフェライト用にAl溶射、BiやPbO等を被焼成物が多く含む用途にはスピネル溶射が適する。
【0032】
なお、本発明に係わる焼成用容器の再生方法は、器形状の基板に限らず、板形状の基板であっても適応できる。
【0033】
【実施例】
(実施例1)Mn−Zn系フェライト
SiC97%で見掛気孔率が0%の常圧焼結SiC質プレート(200×200×10mm)の表面を表面粗さRa=9μmに粗面化した後、水プラズマ溶射でアルミナ原料(Al=99.5%)を溶射して膜厚0.3mmのアルミナ被膜を形成し、プレート形状の焼成用容器を作製した。
【0034】
このSiC基材単独の酸化試験(1400℃で100時間保持)での単位面積当りの質量変化は1.00×10−4g/cmであった。酸化試験の方法は、JIS R1609の非酸化物系ファインセラミックスの耐酸化性試験方法に準じて行った。試験片は、3×4×40mmで表面粗さは全面0.2a以下とし稜部は面取りを行い、本数は10本とした。試験は大気中で行い、図1のような支持具に試験片を置き、1400℃で100時間保持した前後の質量変化を測定し、単位面積当りの質量変化で耐酸化性を評価した。
【0035】
このプレートの上にMn−Znフェライト成形体(φ30×3mm)をのせて、1350℃で2時間保持で焼成を行った。この操作を繰返したところ、25回目にアルミナ被膜の粒子がMn−Znフェライトの試料に付着するようになった。この時点で、アルミナ被膜は脆弱になっており粒子の脱落が見られたため、一旦ブラストを用いてアルミナ被膜を除去した。ブラストはグリットとしてJISの研摩材粒子粒径で♯46のユリア樹脂を用い、サクション式のブラスト装置で噴出圧力0.4MPaで行った。旧被膜除去後のSiCプレート表面の表面粗さは、Ra=8μmであった。このプレート表面に再度、水プラズマ溶射法でAl(純度:99.5%)を溶射し厚さ0.3mmの被膜を形成した。このプレートを用いてMn−Znフェライトの焼成を行ったところ付着は発生せず、20回目(通算45回)にアルミナ溶射被膜に部分的に剥離が発生したが、基材には損傷がなかったため、再度ショットブラストを用いてアルミナ被膜を除去した後(表面粗さRa=7.5μm)、水プラズマ溶射法でAlを溶射した(条件は前回と同様)。このプレートを用いて焼成を繰返した。30回目(通算75回目)にアルミナ溶射被膜に部分的に剥離が発生したため使用を中止した。前述と同様の条件で再溶射を行い試験を継続した。最終的には、通算100回までの試験を行ったが、基材の損傷は見られなかった。再溶射は通算3回実施した。
【0036】
(実施例2)Mn−Zn系フェライト
SiC97%で見掛気孔率が0%の常圧焼結SiC質プレート(200×200×10mm)の表面を表面粗さRa=10μmに粗面化した後、水プラズマ溶射法を用いて中間層コート(Al:99.5%)さらに、その上に表面層コート(8%Y−ZrO:99.5%)を形成し、プレート形状の焼成用容器を作製した。
【0037】
このプレートの上にMn−Znフェライト成形体(φ30×3mm)をのせて、1350℃で2時間焼成を行った。この操作を30回繰返したところ、30回目にMn−Znフェライト試料の溶射被膜の表面に接触する面の一部で変色が見られるようになった。この部分を拡大して観察すると表面の結晶粒が異常成長し粗大化していた。この時プレートの溶射被膜表面はフェライト成分が付着し変色していたが、脆弱化はしていなかった。また、被膜表面の表面粗さはRa=10μm程度であり、溶射が十分可能な表面粗さであった。そこで、この被膜表面に水プラズマ溶射法で8%Y−ZrO(純度=99.5%)を溶射し厚さ0.2mmの被膜を形成した。このプレートを用いてMn−Znフェライトの焼成を行ったところ付着は発生せず、さらに25回(通算55回)の使用が可能で、26回目(通算56回)に前述と同様の現象が発生したので、再度被膜表面に水プラズマ溶射法で8%Y−ZrO(純度:99.5%)を溶射し厚さ0.2mmの被膜を形成した。さらに24回(通算80回)使用した時点で前述と同様の現象が発生したので、前述と同様の条件で再溶射を行い試験を継続した。最終的には通算100回までの試験を行った。この間に、再溶射は4回実施した。
【0038】
(実施例3)BaTiO 系誘電体
実施例1と同様のSiC97%で見掛気孔率が0%である常圧焼結SiCのプレート(200×200×4mm)の表面をRa=8μmに粗面化した後、溶射被膜(中間層コート:ムライトで表面層コート:4%Y−ZrO、膜厚はそれぞれ0.1mm)を形成した。溶射はガスプラズマ溶射法で行った。このプレートの上にBaTiOを主成分とする誘電体の成形体(φ30×3mm)をのせて、1350℃で2時間保持で焼成を行った。この操作を20回繰返したところ、20回目に溶射被膜に付着するようになった。そこで、この被膜表面にガスプラズマ溶射法で4%Y−ZrO(純度:99.5%)を溶射し厚さ0.05mmの被膜を形成した。このプレートを用いて同様の焼成を行ったところ付着は発生せず、さらに15回(通算35回)の使用が可能で、16回目(通算36回)に前述と同様の現象が発生したので、再度被膜表面にガスプラズマ溶射法で4%Y−ZrO(純度:99.5%)を溶射し厚さ0.05mmの被膜を形成した。さらに17回(通算53回目に)使用した時点で、前述と同様の現象が発生したので、上述と同様の条件で再溶射を行い試験を継続した。最終的には、通算100回までの試験を行ったが、基材の損傷は見られなかった。再溶射は通算6回実施した。
【0039】
(比較例1)(実施例2と同用途で焼き付け法による再コート)
Al:70%、SiO:28%で見掛気孔率が20%のアルミナームライトを主成分とするAl−SiO質プレート(200×200×10mm)の表面にアルミナスラリー(アルミナ純度99.5%)を吹き付けた後1450℃で焼き付けてアルミナ被膜を作製した。このプレートの上にMn−Znフェライト成形体(φ30×3mm)をのせて、1350℃で2時間保持で焼成を行った。この操作を3回繰返したところ、4回目にアルミナ被膜のアルミナ粒子がMn−Znフェライトの試料に付着するようになった。
【0040】
この時点で、アルミナ被膜は脆弱になっており粒子の脱落が見られたため、一旦ショットブラストを用いてアルミナ被膜を除去した後、アルミナスラリー(アルミナ純度99.5%)を吹き付けた後、1450℃で焼き付けて被膜を作製した。被膜は、緑色に変色しており、端部で被膜が反り上がり剥離していた。また、焼き付けに使用した炉の炉材(Al主成分)の表面が緑色に変色していた。このため同用途では、焼き付け法による再コーティングは難しいと判断した。
【0041】
(比較例2)(実施例3と同用途で焼き付け法による再コート)
SiC:97%以上で見掛気孔率が0%の常圧焼結SiCのプレート(200×200×4mm)の表面をケミカルエッチングにより表面を粗化した後、溶射被膜(中間層コート:ムライト、表面層コート:4%Y−ZrO)を形成した。溶射はガスプラズマ溶射法で行った。このプレートの上にBaTiOを主成分とする誘電体の成形体(φ30×3mm)をのせて、1350℃で2時間保持で焼成を行った。この操作を16回繰返したところ、16回目に誘電体試料が溶射被膜表面に付着するようになった。そこで、この被膜表面にジルコニアスラリー(4%Y−ZrO)を吹き付けた後、1450℃で焼き付けて被膜を作製した。被膜の一部にひび割れが発生、被膜表面の色も場所により黄色い部分とオレンジ色の部分がありムラがあった。このプレートを用いて上述のと同様の焼成試験を行ったところ、1回目から誘電体とコートの間で部分的に付着が発生した。
【0042】
(比較例3)(実施例3と同方法でコート、基材異なる)
SiC:90%で見掛気孔率が7%のSiCのプレート(200×200×4mm)の表面をRa=8μmに粗面化した後、溶射被膜(中間層コート:ムライトで、表面層コート:4%Y−ZrO、膜厚はそれぞれ0.1mm)を形成した。溶射はガスプラズマ溶射法で行った。なお、この基材について実施例1と同様の酸化試験を行ったところ、単位面積当りの質量変化は1.5×10−1g/cmであった。このプレートの上にBaTiOを主成分とする誘電体の成形体(φ30×3mm)をのせて、1350℃で2時間保持で焼成を行った。この操作を5回繰返したところで被膜が部分的に剥離した。実施例2と同様のブラストにより旧被膜を除去したところ、基材表面にガラス層が形成されていることが確認された。
【0043】
【発明の効果】
本発明に係わる焼成用容器の再生方法によれば、SiC基材の焼成用容器の再生方法を提供することができる。
【0044】
すなわち、セラミックス部品の被焼成物を載置して用い、SiC質基材の表面にAl、ムライト、ZrO、スピネルの少なくとも1種または複数を主成分とするセラミックス被膜を形成した焼成用容器の再生方法において、この焼成用容器を数回使用した後に、SiC質基材の表面にセラミックス被膜を30〜500μmプラズマ溶射し、再生するので、被焼成物が載置されて用いられ、SiC質基材の表面にAl、ムライト、被焼成物との付着等の反応や、被膜の剥離等の不具合で使用不可能となった焼成用容器の表面に溶射により被膜を形成することで再利用が可能となり、また、焼成用容器の表面被膜に使用途中で溶射により新たな被膜を形成することで寿命を延長させることが可能になる。
【0045】
また、SiC質基材は、大気中1400℃で100時間保持した場合の表面酸化による単位面積当りの質量変化が1×10−2g/cm以下であるので、材質が耐酸化性に優れ、被膜の耐剥離性にも優れる。
【0046】
また、焼成用容器の数回使用後のSiC質基材の硬度はビッカース硬度1800以上であり、かつ、再溶射の前処理として旧被膜を除去した時の基材表面の表面粗さがRa=3〜15μmであるので、旧被膜を除去するためのブラスト時に基材の損傷が発生せず、表面粗さが確保され、強固な被膜を形成することができる。
【0047】
また、焼成用容器において、数回使用後における旧被膜の再溶射前の表面粗さはRa=3〜15μmであるので、旧被膜を除去することなしに、この旧被膜の上に強固な被膜を形成することができる。
【0048】
また、焼成用容器は、SiC基材表面に形成されたAlもしくは3Al・2SiOの溶射被膜の表面にCaO、Y、MgO、CeOにより安定化されたジルコニア層もしくは未安定のZrO層もしくは、CaOやSrO等のアルカリ土類金層とのジルコン酸塩もしくはこれらの複数からなる層を形成しており、それぞれの層の厚さが30〜500μmであるので、反応性、耐久性に優れ、長寿命化が期待できる。
【図面の簡単な説明】
【図1】実施例の試験方法を説明する説明図。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a firing container in which a material to be fired is placed, and in particular, the material to be fired is placed in a firing process of ceramic electronic parts such as dielectrics, soft ferrites and capacitors, or a heat treatment process of ceramic powder such as phosphor powder. This relates to a firing container.
[0002]
[Prior art]
Conventionally, since firing of ceramic electronic components is generally performed in a temperature range of 900 to 1400 ° C., Al is excellent in heat resistance as a firing container on which a material to be fired is placed.2O3-SiO2-MgO quality, MgO-Al2O3-ZrO2And ceramics such as SiC and SiC, and heat-resistant metals such as Mo and Ni-based heat-resistant alloys are used. When a fired product is placed directly on these firing containers and a reaction with the firing container components occurs, it is difficult to react with ZrO which is difficult to react.2Setters made of materials such as ZrO that is difficult to react on the shelf surface2A baking container (tool material) coated with a raw material such as JP-A-61-12017, JP-A-61-2225, or JP-A-63-84011 is used.
[0003]
  For example, in the case of soft ferrite (Mn / Zn-based / Ni / Zn-based)2O3, ZrO2Alternatively, a setter or a coated product having the same composition as that of the object to be fired is used properly. The object to be fired is a capacitor (BaTiO3TiO2In the case of ZrO2Setter,OrZrO2Coating products are mainly used.
[0004]
However, these firing containers often cannot be used for the following reasons. (1) Deformation such as cracking or warping of the substrate itself. (2) Peeling of ceramic film. (3) Reactions such as adhesion occur between the object to be fired and the substrate, and between the object to be fired and the film.
[0005]
These problems often occur as follows. If the components contained in the material to be fired diffuse and permeate from the firing container and these concentrations increase on the surface of the firing container, fusion (such as when the concentration of the flux component increases) or abnormal properties of the material to be fired (For example, when components move between the object to be fired and the container for firing, and the composition of the object to be fired shifts). Further, components contained in the object to be fired diffuse into the film, and further diffuse and penetrate into the base material, thereby degrading the film and the base material, generating a reaction product at the interface between the film and the base material, and peeling the film. In the case where the service life is reached due to the problems of the coatings of the above (2) and (3), the base material itself is hardly damaged and is often at a usable level.
[0006]
In particular, when dense SiC having excellent mechanical properties as compared with an alumina-silica base material is used as a base material, damage such as warpage or cracking of the base material is unlikely to occur, and this is particularly preferable for reuse.
[0007]
For this reason, the reuse of the firing container is also preferable for the global environment from the viewpoint of reducing the firing cost using the firing container and reducing waste.
[0008]
[Problems to be solved by the invention]
Thus, a method for regenerating a container for firing a SiC substrate has been desired.
[0009]
The present invention has been made in view of the above-described circumstances, and an object of the present invention is to provide a method for regenerating a firing container capable of reusing a SiC substrate.
[0011]
[Means for Solving the Problems]
  Claims made to achieve the above object1According to the invention, the change in mass per unit area due to surface oxidation is 1 × 10 × 10 when the ceramic part firing object is placed and used at 1400 ° C. in the atmosphere for 100 hours.-2g / cm2On the surface of the SiC substrate which is the following, Al2O3, Mullite, ZrO2Forming a ceramic coating mainly composed of at least one or more spinelsShiA method for reclaiming a firing container, the container being fired several timesuseAfter that, the ceramic coating on the surface of the SiC base material is removed, and the ceramic coating is newly sprayed with a plasma of 30 to 500 μm and regenerated. Yes.
[0012]
  Claim of this applicationThe invention of 2 is the aboveEven after the firing container is used several times, the SiC substrate has a Vickers hardness of 1800 or more, and the surface roughness of the substrate surface when the old coating is removed as a pretreatment for respraying is Ra = 3. -15 μm1The gist of the method is the method for regenerating a firing container described in 1.
[0013]
DETAILED DESCRIPTION OF THE INVENTION
An embodiment of a method for regenerating a firing container according to the present invention will be described.
[0014]
In the embodiment of the method for regenerating a firing container according to the present invention, an object to be fired of ceramic parts is placed and used, and the surface of the SiC substrate is made of Al.2O3, Mullite, ZrO2In a method for regenerating a firing container in which a ceramic film mainly composed of at least one or more of spinels is formed, the ceramic film is applied to the surface of the SiC substrate by plasma spraying after the firing container is used several times. Is a way to play.
[0015]
That is, it is a method for reclaiming a firing container for firing an object to be fired, for example, a ceramic electronic component and having a surface having a hardly reactive coating such as zirconia formed thereon. Used as a SiC base material that is excellent in mechanical properties several times compared to the material, and after adjusting the surface of the base material to an appropriate surface roughness, a surface coating is formed using a thermal spraying method. In the event that it becomes impossible to use, it is possible to reuse the firing container by forming a new coating by the thermal spraying method, dramatically extending the service life and reducing the amount of waste in the used firing container. It makes it possible to reduce significantly.
[0016]
As a method of forming a film on the surface of the firing container that becomes the point of recycle use,
(1) Method of baking at high temperature after applying ceramic slurry (2) CVD method
(3) There is a thermal spraying method.
[0017]
In consideration of the formation of a film on a firing container after use (including a large amount of a component to be fired on the surface), a method of baking at a high temperature (1300 to 1600 ° C.) after applying the ceramic slurry of (1) When an attempt is made to regenerate the product after use, the components to be fired (for example, Zn, Ba, Bi, etc.) on the surface of the coating film evaporate during coating baking and contaminate the firing furnace. At the time of baking (held at 1200 to 1600 ° C. for 1 to 6 hours), there was a problem that the component to be fired diffused and moved to the new coating surface. In addition, in such a coating method, the chemical bond between the film and the substrate is the main, so depending on the type and amount of components of the object to be baked, other compounds are generated and the bonding state is not stable. There is.
[0018]
Further, in the CVD method (2), since a film is formed in a decompressed chamber, there are problems such as contamination by a component to be fired and lack of mass productivity.
[0019]
On the other hand, in (3) the thermal spraying method, the temperature on the substrate side is instantaneously high, and there is almost no adverse effect due to evaporation and diffusion of the components to be fired. Construction in the atmosphere is possible, and since a film can be formed in one step, a large amount of processing is possible. In addition, the coating by this thermal spraying method is mainly influenced by the physical engagement (anchor effect) between the surface of the base material (old coating) and the thermal spray coating, and is hardly affected by the presence of the components to be fired. (However, when the surface becomes smooth due to the influence of the component to be fired, the surface must be roughened by shot blasting, chemical etching, or the like). For the above reasons, the thermal spraying method is very suitable for forming a film on a firing container after use.
[0020]
As the function of the sprayed film in the method for regenerating a firing container according to the present invention, (1) the surface portion where the component to be fired is concentrated and the material to be fired are blocked, and (2) the material to be fired at the operating temperature. It is difficult to react even if it is in direct contact with (3), preventing invasion of the components to be fired and protecting the substrate.
[0021]
In addition, the ceramic that forms the sprayed film in this regeneration method is ZrO.2Of these various thermal spraying methods, a plasma spraying method that can obtain a high temperature is preferable.
[0022]
In re-spraying, there are a case where thermal spraying is performed on the old coating, and a case where the old coating is once removed.
[0023]
When removal of the old film is unnecessary: The film itself does not deteriorate or peel off, but the concentration of the component to be fired on the surface of the film becomes high, causing adhesion or abnormal characteristics of the material to be fired. However, when the component to be fired and the base material component or the coating component produce a reaction product and this is fragile, it is necessary to remove the fragile portion by the method described later. If the reaction product is firmly fixed on the substrate surface, this reaction product is very stable under the conditions of use, so forming a sprayed layer on this surface can dramatically improve the service life. is there. In this case, it is preferable that the surface roughness before re-spraying of the old coating after use several times is Ra = 3 to 15 μm.
[0024]
When it is necessary to remove the old film: This is a case where the film deteriorates during use, and a deteriorated layer is formed at the interface between the substrate and the film, and the film peels off. The film is removed by blasting or the like. In order to remove only the weakened film and prevent damage to the base material and reduction in surface roughness of the base material surface, urea resin, nylon resin, walnut, apricot, etc. are preferable as the grit used for blasting. Since the purpose is to remove only the part weakened by the reaction with the heat cycle and the component to be fired, Al2O3A grit of a material having high hardness such as SiC or SiC is not preferable because it impairs the surface state of the roughened substrate. Further, when the hardness of the substrate is low, the substrate portion is damaged by blasting, or the surface roughness Ra is appropriately roughened by the pretreatment corresponding to the initial thermal spraying = 3 to 15 μm. Is unfavorable because it is damaged. In order to avoid such problems and keep the surface roughness of the substrate at Ra = 3 to 15 μm, the substrate needs to have a Vickers hardness of 1800 or more. The base material is easily damaged during blasting for removing water.
[0025]
The timing of re-spraying varies depending on the use temperature, atmosphere, components and amount of the object to be fired, and therefore a preliminary test is performed in advance, and is determined from the time of occurrence of defects such as aging and adhesion of the firing container. There are cases where thermal spraying is performed after the occurrence of a defect and when the preliminary effect of the coating reduces the protective effect of the base material and the deterioration becomes severe, and the coating is re-formed by thermal spraying before the deterioration becomes severe. .
[0026]
As the base material, when considering the regeneration based on the removal of the old film as described above, the film removal method is performed by mechanical impact such as blasting. The base material which has is preferable. Generally, Al2O3And ZrO2In the case of a material that has been densified in order to increase mechanical properties such as bending strength, etc., thermal shock breakdown is likely to occur. In this respect, the SiC material has a very high thermal conductivity, hardly generates thermal stress, and is strong against thermal shock. Therefore, the SiC material is preferable as the base material of the firing container of the present invention. In addition, the high thermal conductivity brings about a great merit as a firing container such that the temperature distribution in the firing container can be made more uniform and the followability to the heat profile is good.
[0027]
However, as a problem of SiC quality, there was a problem of surface oxidation when used in an oxidizing atmosphere. SiO produced by reaction of SiC and oxygen2Is the main component of electronic ceramic parts BaO and TiO2Or Fe2O3Such a low-melting-point material is easily produced, which tends to cause adhesion between the object to be fired and the firing container, abnormal characteristics of the object to be fired, and poor appearance. In addition, the CaO stabilized ZrO2When coating a coating, SiO formed at the interface between the substrate and the coating2Absorbs CaO and ZrO2There was a problem that the destabilization of the film was promoted and the coating was rapidly deteriorated.
[0028]
Therefore, SiC having excellent oxidation resistance is preferable as the SiC used in the method for regenerating a firing container according to the present invention. The oxidation resistance of various SiC substrates and the peeling resistance of the coating were examined. As a measure of oxidation, in the oxidation resistance test (R1609) defined in JIS, the unit after holding at 1400 ° C. for 100 hours Oxidation increase per area is 1.00 × 10-2g / cm2The following is preferable. Particularly preferably, a material having a porosity close to 0 such as atmospheric pressure sintered SiC, recrystallized SiC, or Si-impregnated SiC is excellent in oxidation resistance and excellent in peel resistance of the coating film.
[0029]
As described in the respraying method, in the case of a thermal spray coating, the bond between the coating and the substrate is largely due to a physical bond such as an anchor effect. Therefore, the surface roughness of the substrate surface is important. In order to obtain a coating that is difficult to peel off during use, the surface of the substrate is roughened to increase the surface area, thereby increasing the contact area between the coating and the substrate surface. As the surface state, when the average roughness Ra is 3 μm or less, the surface roughness is insufficient and sufficient bonding strength cannot be obtained, so that it is difficult to form a uniform film. Peeling easily occurs. Further, when the surface roughness is increased, the influence of fine cracks generated at the time of roughening is increased and the mechanical strength is lowered. Ra = 15 μm or more is not preferable because the mechanical strength of the base material is greatly reduced, and the probability of cracking during use increases. As the surface roughness of the substrate, Ra = 3 to 15 μm is preferable, and Ra = 8 to 12 μm is most preferable.
[0030]
The film thickness varies depending on the shape of the tool material and the material type of the base material, but an effect is obtained if it is 0.03 mm or more. If it is too thick, the residual stress generated at the time of thermal spraying peculiar to thermal spraying will increase and peeling will easily occur. The standard size of current baking containers is a rectangle with an outer diameter of 100 to 300 mm and a thickness of 3 to 10 mm. When such a container is assumed, the thickness of the coating is preferably 0.03 to 0.50 mm. In the thermal spraying method, residual stress is generated at the time of thermal spraying. Therefore, if the film thickness is excessively increased, the film is warped or peeled off due to the residual stress, so that the film thickness is limited.
[0031]
When the water plasma spraying method is used, it is possible to spray a relatively thick film, but 0.5 mm is the limit for use in the method for regenerating a firing container according to the present invention. It is easy to generate. However, in the case of respraying, the residual stress of the old sprayed coating is relaxed as the temperature rises and falls, and the residual stress of the old sprayed coating and the residual stress of the resprayed coating are synthesized by respraying. Since peeling does not occur, the total thickness with the old film may be 0.5 mm or more. As an undercoat, Al2O3Mullite is suitable. The characteristics required for the surface coating are poor reactivity with the object to be fired and durability (peeling and dropping). ZrO2Has been used as a conventional setter material, coating material or bedding powder due to its poor reactivity. CaO or Y when used as a setter or coating layer2O3Stabilized or partially stabilized ZrO2Is often used. Unstable ZrO2When the temperature rises and falls in the firing process, volume change occurs in the vicinity of 1000 ° C due to the phase transformation of monoclinic crystal ← → tetragonal crystal (cubic crystal).2When it is manufactured and used, it is rarely used because it easily breaks and drops off particles. However, since it does not contain a stabilizer and has good reactivity, it is often used as a bedding powder. Such a material is also suitable as a surface coating material in the method for regenerating a firing container according to the present invention. Depending on the application, calcium zirconate (CaZrO3), Barium zirconate (BaZrO)3), Strontium zirconate (SrZrO)3) ・ Magnesium zirconate (MgZrO)3Zirconate salts such as) may be preferable in terms of reactivity and durability. In addition, Al for alumina insulators and ferrites2O3Thermal spray, Bi2O3Spinel spraying is suitable for applications in which the object to be fired contains a large amount of PbO or the like.
[0032]
In addition, the reproduction | regenerating method of the container for baking concerning this invention is applicable not only to a container-shaped board | substrate but to a board-shaped board | substrate.
[0033]
【Example】
(Example 1) Mn-Zn ferrite
The surface of an atmospheric pressure sintered SiC plate (200 × 200 × 10 mm) having an apparent porosity of 0% with SiC of 97% is roughened to a surface roughness Ra = 9 μm, and then an alumina raw material (Al2O3= 99.5%) was sprayed to form an alumina coating having a thickness of 0.3 mm, and a plate-shaped baking container was produced.
[0034]
The mass change per unit area in the oxidation test of this SiC substrate alone (held at 1400 ° C. for 100 hours) was 1.00 × 10-4g / cm2Met. The method for the oxidation test was performed in accordance with the oxidation resistance test method for non-oxide fine ceramics of JIS R1609. The test piece was 3 × 4 × 40 mm, the surface roughness was 0.2a or less on the entire surface, the ridge portion was chamfered, and the number was 10. The test was carried out in the atmosphere, the test piece was placed on a support as shown in FIG. 1, the change in mass before and after being held at 1400 ° C. for 100 hours was measured, and the oxidation resistance was evaluated by the change in mass per unit area.
[0035]
A Mn—Zn ferrite molded body (φ30 × 3 mm) was placed on the plate and fired at 1350 ° C. for 2 hours. When this operation was repeated, the alumina coating particles were attached to the Mn—Zn ferrite sample for the 25th time. At this time, since the alumina coating became brittle and particles were dropped, the alumina coating was temporarily removed using blasting. Blasting was performed using a JIS abrasive particle size # 46 urea resin as a grit and a suction type blasting apparatus at an ejection pressure of 0.4 MPa. The surface roughness of the SiC plate surface after removal of the old film was Ra = 8 μm. Again on this plate surface, water plasma spraying Al2O3(Purity: 99.5%) was sprayed to form a film having a thickness of 0.3 mm. When Mn—Zn ferrite was baked using this plate, no adhesion occurred, and the alumina sprayed coating partially peeled off at the 20th time (45 times in total), but the substrate was not damaged. After removing the alumina coating again using shot blasting (surface roughness Ra = 7.5 μm), water plasma spraying is used to produce Al.2O3Was sprayed (conditions were the same as before). Firing was repeated using this plate. In the 30th time (75th time in total), the alumina sprayed coating was partially peeled off, so the use was stopped. Re-spraying was performed under the same conditions as described above, and the test was continued. Finally, the test was conducted up to 100 times in total, but no damage to the substrate was observed. Re-spraying was performed three times in total.
[0036]
(Example 2) Mn-Zn ferrite
After roughening the surface of an atmospheric pressure sintered SiC plate (200 × 200 × 10 mm) with SiC 97% and apparent porosity of 0% to a surface roughness Ra = 10 μm, an intermediate layer is formed using a water plasma spraying method. Coat (Al2O3: 99.5%) Further, a surface layer coat (8% Y)2O3-ZrO2: 99.5%) to form a plate-shaped baking container.
[0037]
A Mn—Zn ferrite compact (φ30 × 3 mm) was placed on this plate and fired at 1350 ° C. for 2 hours. When this operation was repeated 30 times, discoloration was observed on a part of the surface contacting the surface of the thermal spray coating of the Mn—Zn ferrite sample at the 30th time. When this part was magnified and observed, the surface crystal grains grew abnormally and became coarse. At this time, the surface of the sprayed coating on the plate was discolored due to the ferrite component adhering thereto, but it was not weakened. Further, the surface roughness of the coating surface was about Ra = 10 μm, and the surface roughness was sufficient for spraying. Therefore, the surface of the coating is 8% Y by water plasma spraying.2O3-ZrO2(Purity = 99.5%) was sprayed to form a 0.2 mm thick coating. When Mn-Zn ferrite is fired using this plate, no adhesion occurs, and it can be used 25 times (total 55 times), and the same phenomenon as described above occurs at the 26th time (total 56 times). As a result, 8% Y was again applied to the coating surface by water plasma spraying.2O3-ZrO2(Purity: 99.5%) was sprayed to form a coating having a thickness of 0.2 mm. Furthermore, since the same phenomenon as described above occurred at the time of using 24 times (80 times in total), re-spraying was performed under the same conditions as described above, and the test was continued. Finally, a total of 100 tests were conducted. During this time, re-spraying was performed four times.
[0038]
(Example 3) BaTiO 3 Dielectrics
After roughening the surface of an atmospheric pressure sintered SiC plate (200 × 200 × 4 mm) having an apparent porosity of 0% with the same SiC 97% as in Example 1 to Ra = 8 μm, a sprayed coating (intermediate layer) Coat: Mullite and surface layer coat: 4% Y2O3-ZrO2The film thickness was 0.1 mm each. Thermal spraying was performed by gas plasma spraying. BaTiO on this plate3A dielectric molded body (φ30 × 3 mm) having as a main component was placed and fired at 1350 ° C. for 2 hours. When this operation was repeated 20 times, it became attached to the sprayed coating at the 20th time. Therefore, 4% Y is applied to the surface of the coating by gas plasma spraying.2O3-ZrO2(Purity: 99.5%) was sprayed to form a 0.05 mm thick film. When the same baking was performed using this plate, adhesion did not occur, and it was possible to use 15 times (35 times in total), and the same phenomenon as described above occurred at the 16th time (36 times in total). Again 4% Y by gas plasma spraying on the coating surface2O3-ZrO2(Purity: 99.5%) was sprayed to form a 0.05 mm thick film. Furthermore, since the same phenomenon as described above occurred when it was used 17 times (the 53rd time in total), re-spraying was performed under the same conditions as described above, and the test was continued. Finally, the test was conducted up to 100 times in total, but no damage to the substrate was observed. Re-spraying was performed 6 times in total.
[0039]
(Comparative Example 1) (Recoating by baking method in the same application as Example 2)
Al2O3: 70%, SiO2: Al whose main component is alumlite with 28% and apparent porosity of 20%2O3-SiO2Alumina slurry (alumina purity 99.5%) was sprayed on the surface of a quality plate (200 × 200 × 10 mm) and then baked at 1450 ° C. to produce an alumina coating. A Mn—Zn ferrite molded body (φ30 × 3 mm) was placed on the plate and fired at 1350 ° C. for 2 hours. When this operation was repeated three times, the alumina particles of the alumina coating adhered to the Mn—Zn ferrite sample at the fourth time.
[0040]
At this time, since the alumina coating became brittle and particles dropped out, the alumina coating was once removed using shot blasting, and then the alumina slurry (alumina purity 99.5%) was sprayed, and then 1450 ° C. A film was prepared by baking. The film was discolored in green, and the film warped and peeled off at the end. Also, the furnace material used for baking (Al2O3The surface of the main component was green. For this reason, it was judged that recoating by the baking method was difficult for this application.
[0041]
(Comparative Example 2) (Recoating by the same baking method as in Example 3)
SiC: The surface of an atmospheric pressure sintered SiC plate (200 × 200 × 4 mm) having an apparent porosity of 0% or more with 97% or more is roughened by chemical etching, and then a thermal spray coating (intermediate layer coating: mullite, Surface layer coat: 4% Y2O3-ZrO2) Was formed. Thermal spraying was performed by gas plasma spraying. BaTiO on this plate3A dielectric molded body (φ30 × 3 mm) having as a main component was placed and fired at 1350 ° C. for 2 hours. When this operation was repeated 16 times, the dielectric sample came to adhere to the sprayed coating surface at the 16th time. Therefore, zirconia slurry (4% Y2O3-ZrO3) And then baked at 1450 ° C. to produce a coating. Cracks occurred in a part of the film, and the color of the film surface was uneven with yellow and orange parts depending on the location. When the same firing test as described above was performed using this plate, partial adhesion occurred between the dielectric and the coating from the first time.
[0042]
(Comparative Example 3) (Coat and base material different in the same manner as in Example 3)
The surface of a SiC plate (200 × 200 × 4 mm) with SiC: 90% and apparent porosity of 7% is roughened to Ra = 8 μm, and then sprayed coating (intermediate layer coat: mullite, surface layer coat: 4% Y2O3-ZrO2The film thickness was 0.1 mm each. Thermal spraying was performed by gas plasma spraying. In addition, when the oxidation test similar to Example 1 was done about this base material, the mass change per unit area was 1.5x10.-1g / cm2Met. BaTiO on this plate3A dielectric molded body (φ30 × 3 mm) having as a main component was placed and fired at 1350 ° C. for 2 hours. When this operation was repeated 5 times, the film was partially peeled off. When the old film was removed by blasting similar to Example 2, it was confirmed that a glass layer was formed on the surface of the substrate.
[0043]
【The invention's effect】
According to the method for regenerating a firing container according to the present invention, a method for regenerating a container for firing a SiC substrate can be provided.
[0044]
In other words, ceramic parts to be fired are placed and used, and the surface of the SiC substrate is made of Al.2O3, Mullite, ZrO2In the method for regenerating a firing container in which a ceramic film mainly composed of at least one or more of the spinels is formed, after the firing container is used several times, the ceramic film is formed on the surface of the SiC substrate by 30 to 500 μm. Since plasma spraying and regeneration are performed, the object to be fired is placed and used, and Al is applied to the surface of the SiC substrate.2O3It can be reused by forming a coating by thermal spraying on the surface of the container for firing that has become unusable due to problems such as adhesion to the mullite and the object to be baked, peeling of the coating, etc. The life can be extended by forming a new coating on the surface coating of the container for use by thermal spraying during use.
[0045]
Further, the SiC base material has a mass change of 1 × 10 per unit area due to surface oxidation when kept at 1400 ° C. in the atmosphere for 100 hours.-2g / cm2Since it is below, a material is excellent in oxidation resistance and is excellent also in the peeling resistance of a film.
[0046]
Further, the hardness of the SiC base material after use of the firing container several times is Vickers hardness of 1800 or more, and the surface roughness of the base material surface when the old film is removed as a pretreatment for re-spraying is Ra = Since it is 3-15 micrometers, the damage of a base material does not generate | occur | produce at the time of blasting for removing an old film, surface roughness is ensured, and a firm film can be formed.
[0047]
Further, in the firing container, the surface roughness before re-spraying of the old coating after several times of use is Ra = 3 to 15 μm, so that the strong coating on the old coating without removing the old coating. Can be formed.
[0048]
Moreover, the firing container is made of Al formed on the surface of the SiC substrate.2O3Or 3Al2O3・ 2SiO2On the surface of the sprayed coating of CaO, Y2O3, MgO, CeO stabilized zirconia layer or unstable ZrO2A layer, or a zirconate salt with an alkaline earth gold layer such as CaO or SrO, or a layer composed of a plurality of these layers, and each layer has a thickness of 30 to 500 μm, so that it has reactivity and durability. Excellent life expectancy.
[Brief description of the drawings]
FIG. 1 is an explanatory diagram illustrating a test method of an example.

Claims (2)

セラミックス部品の被焼成物を載置して用い、大気中1400℃で100時間保持した場合の表面酸化による単位面積当たりの質量変化が1×10−2g/cm以下であるSiC質基材の表面に、Al、ムライト、ZrO、スピネルの少なくとも1種または複数を主成分とするセラミックス被膜を形成た焼成用容器の再生方法であって、この焼成用容器を数回使用した後に、前記SiC質基材の表面の前記セラミックス被膜を除去し、新たに前記セラミックス被膜を30〜500μmプラズマ溶射し、再生することを特徴とする焼成用容器の再生方法。A SiC-based substrate having a mass change per unit area of 1 × 10 −2 g / cm 2 or less due to surface oxidation when the ceramic part firing object is placed and used in air at 1400 ° C. for 100 hours. A method for reclaiming a firing container in which a ceramic film mainly composed of at least one or more of Al 2 O 3 , mullite, ZrO 2 , and spinel is formed on the surface of the material, and this firing container is used several times Then, the ceramic coating on the surface of the SiC base material is removed, and the ceramic coating is newly sprayed with a plasma of 30 to 500 μm to regenerate the firing container. 上記焼成用容器の数回使用後においてもSiC質基材の硬度はビッカース硬度1800以上であり、かつ、再溶射の前処理として旧被膜を除去した時の基材表面の表面粗さがRa=3〜15μmであることを特徴とする請求項に記載の焼成用容器の再生方法。Even after the firing container is used several times, the SiC substrate has a Vickers hardness of 1800 or more, and the surface roughness of the substrate surface when the old coating is removed as a pretreatment for re-spraying is Ra = The method for regenerating a firing container according to claim 1 , wherein the method is 3 to 15 μm.
JP2000334593A 2000-11-01 2000-11-01 Recycling method for firing containers Expired - Fee Related JP3812715B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000334593A JP3812715B2 (en) 2000-11-01 2000-11-01 Recycling method for firing containers

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000334593A JP3812715B2 (en) 2000-11-01 2000-11-01 Recycling method for firing containers

Publications (2)

Publication Number Publication Date
JP2002145671A JP2002145671A (en) 2002-05-22
JP3812715B2 true JP3812715B2 (en) 2006-08-23

Family

ID=18810479

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000334593A Expired - Fee Related JP3812715B2 (en) 2000-11-01 2000-11-01 Recycling method for firing containers

Country Status (1)

Country Link
JP (1) JP3812715B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4975246B2 (en) * 2004-10-21 2012-07-11 コバレントマテリアル株式会社 Tool material for firing silicon carbide
JP4713981B2 (en) * 2005-08-08 2011-06-29 コバレントマテリアル株式会社 Ceramic electronic component firing container
JP6562914B2 (en) * 2014-06-27 2019-08-21 三井金属鉱業株式会社 Baking jig and method for manufacturing the baking jig
JP6628037B2 (en) * 2016-03-04 2020-01-08 株式会社村田製作所 Work firing method

Also Published As

Publication number Publication date
JP2002145671A (en) 2002-05-22

Similar Documents

Publication Publication Date Title
KR100787077B1 (en) Firing jig for electronic element
EP0702618A1 (en) Method and apparatus for producing ceramic-based electronic components
JP3812715B2 (en) Recycling method for firing containers
US20110220285A1 (en) Methods and systems for texturing ceramic components
US20080233403A1 (en) Method of Making Ceramic Reactor Components and Ceramic Reactor Component Made Therefrom
CN114430733A (en) Refractory article
JP2008137860A (en) Ceramics burning tool material for electronic components
JP2007076935A (en) Tool for firing electronic component and its production method
JP2009062243A (en) Method of regenerating firing vessel
JP2002192655A (en) Corrosion-resistant member
US6617017B2 (en) Firing jig for electronic element
KR20100015276A (en) Setter for firing
JP4057443B2 (en) Semiconductor manufacturing apparatus member and manufacturing method thereof
JP4743973B2 (en) Silicon carbide members for firing electronic components
JP2002060287A (en) Firing vessel
JP4161050B2 (en) Method for producing sintered silicon carbide member having non-reactive sprayed film
TWI383965B (en) A ceramic material for a ceramic ceramic container, a method for manufacturing the same, and a method for producing the same
JP4693196B2 (en) Firing jig
JP4136249B2 (en) Baking jig for electronic parts
JP4054098B2 (en) Firing jig
JP3613373B2 (en) Mortar for baking
JP2003306392A (en) Jig for heat-treating ceramic for electronic part and its manufacturing process
JP4522117B2 (en) Method for manufacturing processing container member used in semiconductor or liquid crystal manufacturing apparatus
JPH09286678A (en) Refractory coated with zirconia
JP4092122B2 (en) Semiconductor manufacturing apparatus member and manufacturing method thereof

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050914

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051115

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060113

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060307

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060421

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060523

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060524

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3812715

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090609

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090609

Year of fee payment: 3

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090609

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100609

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100609

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110609

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110609

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120609

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120609

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130609

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees