JP4713981B2 - Ceramic electronic component firing container - Google Patents

Ceramic electronic component firing container Download PDF

Info

Publication number
JP4713981B2
JP4713981B2 JP2005229369A JP2005229369A JP4713981B2 JP 4713981 B2 JP4713981 B2 JP 4713981B2 JP 2005229369 A JP2005229369 A JP 2005229369A JP 2005229369 A JP2005229369 A JP 2005229369A JP 4713981 B2 JP4713981 B2 JP 4713981B2
Authority
JP
Japan
Prior art keywords
firing container
surface roughness
mgo
fired
zro
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005229369A
Other languages
Japanese (ja)
Other versions
JP2007045641A (en
Inventor
裕 岡田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Coorstek KK
Original Assignee
Covalent Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Covalent Materials Corp filed Critical Covalent Materials Corp
Priority to JP2005229369A priority Critical patent/JP4713981B2/en
Publication of JP2007045641A publication Critical patent/JP2007045641A/en
Application granted granted Critical
Publication of JP4713981B2 publication Critical patent/JP4713981B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Furnace Charging Or Discharging (AREA)

Description

本発明は焼成用容器に係り、特にソフトフェライト、低温焼成多層基板等の電子部品用セラミック材料の焼成、熱処理工程での使用に適し、基材に被覆される溶射膜を改良した焼成用容器に関する。   The present invention relates to a firing container, and more particularly to a firing container having an improved sprayed coating coated on a base material, suitable for use in firing and heat treatment processes of ceramic materials for electronic components such as soft ferrite and low-temperature fired multilayer substrates. .

電子部品用セラミックの焼成は、一般に1000〜1600℃の温度域で行われるため焼成用容器としては耐熱性に優れるAl−SiO質、Al−SiO−MgO質、MgO−Al−ZrO質、SiC質等のセラッミクスが使用される。焼成用容器上に直接被焼成物を搭載すると、焼成用容器成分との反応が起きるおそれがある場合には、難反応性のZrO等の素材からなるセッターもしくは棚板表面に同様の難反応性の素材で被覆した焼成用容器が使用される。 Since firing of ceramics for electronic parts is generally performed in a temperature range of 1000 to 1600 ° C., Al 2 O 3 —SiO 2 quality, Al 2 O 3 —SiO 2 —MgO quality, MgO excellent in heat resistance as a firing container. Ceramics such as —Al 2 O 3 —ZrO 2 and SiC are used. If the product to be fired is mounted directly on the firing container, if there is a risk of reaction with the firing container components, the same difficult reaction on the setter or shelf surface made of a material such as hardly reactive ZrO 2 A firing container coated with a material of the nature is used.

この難反応性の素材の被覆方法としては、1)セラミックススラリーを塗布した後、高温で焼き付ける方法 2)溶射法 3)CVD法等がある。耐久性、反応性に優れることから、近年溶射法によるコート品が多く使用されるようになっている。 This as a method of coating the flame reactive material, 1) after the application of the cell laminate Kkususurari, there is a method 2) spraying method 3) CVD method or the like baked at high temperatures. In recent years, coating products obtained by a thermal spraying method have been frequently used because of their excellent durability and reactivity.

そこで被焼成物が直接搭載される焼成用容器の表面には、次のような性質が要求される。1)焼成温度で被焼成物と反応しない。2)バインダーの揮発を抑制し焼成ムラ、反りを生じさせない。3)被焼成体(焼成前の成形体、焼成後の焼成体)の搭載あるいは降ろし時に、被焼成体を焼成用容器表面上でスライドさせても傷付けずにスムーズに移動が可能なこと。   Therefore, the following properties are required for the surface of the firing container on which the object to be fired is directly mounted. 1) Does not react with the object to be fired at the firing temperature. 2) Binder volatilization is suppressed and firing unevenness and warpage are not caused. 3) When a body to be fired (formed body before firing, fired body after firing) is loaded or unloaded, even if the body to be fired is slid on the surface of the firing container, it can move smoothly without being damaged.

これらの要求に応えるために、いくつかの提案がなされている。   Several proposals have been made to meet these demands.

特許文献1には、ジルコニア表面層の表面粗さを中心線平均値で10〜40μmとすることで、ガスの抜けを良好にして、脱バインダーを円滑に進めると共に、被焼成体との密着を避け、ジルコニア表面と被焼成物との反応を抑制する焼成用容器が提案されている。   Patent Document 1 discloses that the surface roughness of the zirconia surface layer is 10 to 40 μm in terms of the center line average value, so that gas escape is improved and debindering is facilitated, and adhesion with the object to be fired is improved. A firing container that avoids the reaction between the surface of the zirconia and the material to be fired has been proposed.

しかし、特許文献1に記載の焼成用容器は、成形体を焼成用容器上に搭載し整列させるためにジルコニア表面上でスライドさせると被膜表面が粗いために製品が破損したり、傷付いてしまうという問題がある。   However, in the baking container described in Patent Document 1, when the molded body is slid on the surface of the zirconia in order to mount and align the molded body on the baking container, the coating surface is rough and the product is damaged or damaged. There is a problem.

また、特許文献2には、被膜表面粗さが算術平均粗さ(Ra)で被焼成体の厚さに対して1/20〜1/65、5〜15μmの表面粗さを有するかあるいは、被膜表面粗さが10点平均表面粗さ(Rz)で被焼成体の厚さに対して1/3.5〜1/11.0、27〜86μmかつ凹凸の平均間隔(Sm)が被焼成体長さに対して1/1.3〜1/10.0、60〜461μmの表面粗さを有する焼成用容器が提案され、この範囲に表面粗さを調整することでバインダーのセッター搭載面側からの揮発性も確保し、かつ焼成後の製品の収集時に被膜表面の凹部に引っかかることなく被焼成体の収集を可能にしている。   Further, in Patent Document 2, the coating surface roughness is arithmetic average roughness (Ra) and has a surface roughness of 1/20 to 1/65, 5 to 15 μm with respect to the thickness of the object to be fired, or The film surface roughness is 10-point average surface roughness (Rz), and the average spacing of irregularities (Sm) is 1 / 3.5 to 1 / 11.0, 27 to 86 μm with respect to the thickness of the object to be fired. A firing container having a surface roughness of 1 / 1.3-1 to 10.0 and 60 to 461 μm with respect to the body length is proposed, and the setter mounting surface side of the binder is adjusted by adjusting the surface roughness within this range. The volatilization of the product to be fired is also ensured, and the product to be fired can be collected without being caught by the concave portions on the surface of the coating film when collecting the product after firing.

しかし、特許文献2に記載の焼成用容器は、被膜を溶射法で形成する場合に溶射原料の粒子径を変化させて表面粗さを調整しており、Ra=5〜15μmとするには平均粒子径が40〜60μmの原料を使用している。溶射膜の寿命は溶射原料の粒子径に左右され、本発明者らの評価結果では平均粒子径55〜110μmが良好であることが判明しており、Ra=5〜15μmの表面状態を得るためにはコート層(溶射膜)の寿命を犠牲にしなければならないという問題がある。
特開2002−128583号公報 特開2003−212665号公報
However, in the firing container described in Patent Document 2, the surface roughness is adjusted by changing the particle diameter of the thermal spray raw material when the coating is formed by a thermal spraying method, and an average of Ra = 5 to 15 μm. The raw material whose particle diameter is 40-60 micrometers is used. The lifetime of the sprayed film depends on the particle diameter of the sprayed raw material, and the evaluation results of the present inventors have shown that an average particle diameter of 55 to 110 μm is good, and a surface state of Ra = 5 to 15 μm is obtained. However, there is a problem that the life of the coating layer (sprayed film) must be sacrificed.
JP 2002-128583 A JP 2003-212665 A

本発明は上述した事情を考慮してなされたもので、耐剥離性に優れかつ適度な表面粗さを有し溶射面上での製品のスライド作業も支障なく行える溶射膜を有する焼成容器を提供することを目的とする。   The present invention has been made in view of the above-described circumstances, and provides a firing container having a thermal spray film that has excellent peel resistance and has an appropriate surface roughness and can also slide a product on the thermal spray surface without hindrance. The purpose is to do.

上述した目的を達成するため、本発明に係るセラミック電子部品焼成用容器は、Al−SiO質、Al−SiO−MgO質、MgO−Al−ZrO質、SiC質のいずれかからなる基材と、この基材の表面を溶射により単層もしくは複層に被覆し、Al、ZrO質、Al−MgO質の単独もしくは混合原料からなる溶射膜を有し、この溶射膜は気孔率が12〜17%、表面粗さの算術平均粗さRaが5〜15μm、スキューネスRskが0以下であることを特徴とする。 In order to achieve the above-described object, the ceramic electronic component firing container according to the present invention includes Al 2 O 3 —SiO 2 material, Al 2 O 3 —SiO 2 —MgO material, MgO—Al 2 O 3 —ZrO 2 material. A base material made of any of SiC and a surface of the base material is coated with a single layer or a plurality of layers by thermal spraying, and Al 2 O 3 , ZrO 2 , Al 2 O 3 —MgO singular or mixed raw material The thermal spray film is characterized by having a porosity of 12 to 17%, an arithmetic average roughness Ra of the surface roughness of 5 to 15 μm, and a skewness Rsk of 0 or less.

本発明に係る焼成用容器によれば、耐剥離性に優れかつ適度な表面粗さを有し溶射面上での製品のスライド作業も支障なく行える溶射膜を有する焼成用容器を提供することができる。   According to the firing container according to the present invention, it is possible to provide a firing container having a thermal spray film that has excellent peeling resistance and has an appropriate surface roughness, and that can slide a product on the thermal spray surface without any hindrance. it can.

以下、本発明に係る焼成用容器の一実施形態について説明する。   Hereinafter, an embodiment of a firing container according to the present invention will be described.

本発明に係る焼成用容器は、Al−SiO質、Al−SiO−MgO質、MgO−Al−ZrO質、SiC質のいずれかからなる基材と、この基材の表面を溶射により単層もしくは複層に被覆し、Al質、ZrO質、Al−MgO質の単独もしくは混合原料からなる溶射膜を有し、この溶射膜は気孔率が12〜17%、表面粗さの算術平均粗さRaが5〜15μm、スキューネスRskが0以下である。 The firing container according to the present invention includes a base material made of any of Al 2 O 3 —SiO 2 , Al 2 O 3 —SiO 2 —MgO, MgO—Al 2 O 3 —ZrO 2 , and SiC. The surface of this substrate is coated with a single layer or multiple layers by thermal spraying, and has a thermal spray film made of Al 2 O 3 quality, ZrO 2 quality, Al 2 O 3 —MgO quality alone or mixed raw material. The membrane has a porosity of 12 to 17%, an arithmetic average roughness Ra of the surface roughness of 5 to 15 μm, and a skewness Rsk of 0 or less.

ここでスキューネスRskはトライボロジー(摩擦)と関係が深いパラメータであり、ひずみ度を表わしており、山と谷の対象性を見て、正規分布なら0、摩擦面ならマイナスになる。   Here, the skewness Rsk is a parameter deeply related to tribology (friction), and represents the degree of distortion. Looking at the target of peaks and valleys, the skewness Rsk is 0 for a normal distribution and negative for a friction surface.

上記基材としては、耐熱衝撃性、耐熱温度、雰囲気、被焼成物成分に対する耐食性、要求される製品形状より考慮して、Al−SiO質、Al−SiO−MgO質、MgO−Al−ZrO質、SiC質のいずれかが選択される。溶射膜が形成される面の表面粗さが粗いほど溶射膜との接触面積が大きくなり溶射膜の耐剥離性の点で有利になる。表面粗さが不足する基材は、溶射前にショットブラストやケミカル処理による粗面化処理により表面粗さをRa7〜15に調整することが好ましい。 In consideration of the thermal shock resistance, the heat resistant temperature, the atmosphere, the corrosion resistance to the components to be fired, and the required product shape, the base material is Al 2 O 3 —SiO 2 quality, Al 2 O 3 —SiO 2 —MgO. Quality, MgO—Al 2 O 3 —ZrO 2 quality, or SiC quality is selected. The rougher the surface roughness of the surface on which the sprayed film is formed, the larger the contact area with the sprayed film, which is advantageous in terms of the peel resistance of the sprayed film. The base material with insufficient surface roughness is preferably adjusted to Ra7 to 15 by surface roughening by shot blasting or chemical treatment before spraying.

上記溶射膜の材質は、被焼成物との反応性、耐久性、コストを考慮すると、Al質、ZrO質、Al−MgO質のいずれかの単独、あるいはこれらの複数の混合品が選択される。ZrOについては反応性では安定化成分が固溶していない未安定ZrOが好ましいが、耐久性の点で問題があるため、CaO、Y等で安定化された安定化ZrO、部分安定化ZrOが使用されることが多い。被焼成物にアルカリが多い場合は、Al−MgO質が反応面、耐久性の点で優れる。 The material of the sprayed film may be any one of Al 2 O 3 , ZrO 2 , Al 2 O 3 —MgO, or a plurality of these in consideration of reactivity with the object to be fired, durability, and cost. Are selected. While unstabilized ZrO 2 is preferably stabilized component is not dissolved in the reactive for ZrO 2, because of a problem in terms of durability, CaO, Y 2 O 3 stabilized stabilized with such ZrO 2 Partially stabilized ZrO 2 is often used. When the material to be fired contains a large amount of alkali, the Al 2 O 3 —MgO quality is excellent in terms of reaction surface and durability.

上記溶射膜の耐久性については、溶射材の材料種以外に溶射原料の粒子径が大きく影響する。溶射材の粒子径によって溶射後の溶射膜組織の気孔率、比表面積は左右される。溶射膜の耐久性は、1)基材と溶射膜との熱膨張差、2)溶射膜と被焼成成分との反応に起因する体積変化、熱膨張の変化に影響される。   Regarding the durability of the thermal sprayed film, the particle size of the thermal spraying material has a great influence in addition to the material type of the thermal spray material. The porosity and specific surface area of the sprayed coating structure after spraying depend on the particle size of the sprayed material. The durability of the sprayed film is affected by 1) a difference in thermal expansion between the substrate and the sprayed film, and 2) a change in volume and a change in thermal expansion caused by the reaction between the sprayed film and the component to be fired.

基材と溶射膜の熱膨張差の影響を低減するには、溶射膜と基材との中間の熱膨張を持つ中間層を設けるという手法が取られる。このような構造としても熱膨張差に起因する応力は少なからず発生するためさらに耐久性を上げるには、溶射膜の組織をホーラスなラメラ(積層)構造とし熱膨張差に起因する応力を緩和させる必要がある。このような組織を得るには、適度な粒度の溶射原料を選択する必要がある。平均粒子径が50μm以下になると、形成される溶射膜の気孔率は小さくなり応力の緩和効果が不十分となり剥離が発生しやすくなる。また、溶射膜と被焼成物との反応という点でも溶射原料の粒度の影響は大きく、細かい原料で形成された溶射膜は気孔率が小さいが、それぞれの気孔径が小さく、比表面積が大きくなる傾向があり(粒界が多い)、実際に使用した場合に被焼成物との反応に伴う溶射膜の体積膨張等の組織変化が大きく、早期に剥離が発生する傾向がある。   In order to reduce the influence of the thermal expansion difference between the base material and the sprayed film, a method of providing an intermediate layer having an intermediate thermal expansion between the sprayed film and the base material is taken. Even in such a structure, stress due to the difference in thermal expansion is generated, so in order to further increase the durability, the structure of the sprayed film is made a holus lamella (laminated) structure to relieve the stress due to the difference in thermal expansion. There is a need. In order to obtain such a structure, it is necessary to select a thermal spray material having an appropriate particle size. When the average particle diameter is 50 μm or less, the porosity of the formed sprayed coating becomes small, the stress relaxation effect becomes insufficient, and peeling tends to occur. In addition, the influence of the particle size of the thermal spray material is also large in terms of the reaction between the thermal spray film and the material to be fired, and although the thermal spray film formed from fine raw materials has a low porosity, each pore diameter is small and the specific surface area is large. There is a tendency (there are many grain boundaries), and when it is actually used, there is a large change in the structure such as volume expansion of the sprayed film due to the reaction with the object to be fired, and there is a tendency that peeling occurs early.

発明者らの検討によれば、プラズマ溶射法の場合剥離が起こりにくく耐久性に優れる溶射膜を得るためには平均粒子径で55〜110μmの原料が好ましい。この時の溶射膜の気孔率は12〜17%程度である。これらの気孔が基材と溶射膜の熱膨張差により発生するストレスを緩和するために耐剥離性に優れると考えている。しかし、この粒度範囲の原料を用いて形成された溶射膜の表面粗さはRaで10〜20μm程度になる。この表面粗さでは、焼成容器上で製品(成形体、焼成体)をスライドさせる場合、溶射面との摩耗面に傷が付いたり、スライドがスムーズに行えないという問題点がある。これを避けるために平均粒子径の小さい原料(30〜50μm)を用いれば、表面粗さとしては滑らかな(Ra:2〜10μm)溶射膜が得られるが、上述のように溶射膜の気孔率が小さく(2〜8%)、熱膨張差に起因するストレスの緩和が不十分、比表面積が大きくなり反応の影響が大きくなるため剥離が起こりやすくなり耐久性が低下してしまう。   According to the study by the inventors, a raw material having an average particle diameter of 55 to 110 μm is preferable in order to obtain a sprayed film that is less likely to be peeled off and excellent in durability in the case of the plasma spraying method. At this time, the porosity of the sprayed film is about 12 to 17%. It is considered that these pores are excellent in peeling resistance in order to relieve stress generated due to a difference in thermal expansion between the base material and the sprayed film. However, the surface roughness of the sprayed film formed using the raw material in this particle size range is about 10 to 20 μm in Ra. With this surface roughness, when the product (molded body, fired body) is slid on the firing container, there is a problem that the wear surface with the sprayed surface is damaged or the sliding cannot be performed smoothly. In order to avoid this, if a raw material having a small average particle diameter (30 to 50 μm) is used, a sprayed film having a smooth surface roughness (Ra: 2 to 10 μm) can be obtained. As described above, the porosity of the sprayed film is obtained. Is small (2 to 8%), stress relaxation due to a difference in thermal expansion is insufficient, the specific surface area becomes large, and the influence of the reaction increases, so that peeling easily occurs and durability is lowered.

溶射膜の耐久性、適度な表面粗さを両立させるためには、耐久性に好ましい粒度の溶射原料を用いて溶射膜を形成した後、後加工により表面粗さを調整する製造方法が好ましい。溶射後の溶射膜の表面には溶融が不十分な粒子の付着、急速凝固で形成された鋭角な突起がありこれらが表面粗さを粗くし、溶射膜上で製品をスライドする際に製品に傷を付けたり、移動の抵抗となる原因となっている。後加工では、これらの付着物や鋭角な突起は比較的軽度の衝撃で除去できる。例えば、サンドペーパーを用いた手加工でも除去は可能であり、グラインダー等の装置を用いれば短時間の加工で表面粗さの調整が可能である。最適な表面粗さは被焼成物の形状、硬さ、バインダー量等で異なるが、一般的なセラミックスの成形体が傷付くことなくスムーズにスライド可能な表面粗さの目安は算術平均粗さRaで15μm以下、好ましくは10μm以下である。下限については5μm以下になると研摩に要する時間、研削量が増加し後加工によるコスト増加が大きくなり好ましくない。このような製法により得られた表面の特徴は、表面のひずみ度(山と谷の対象性)を示すパラメータであるスキューネスが0以下になる。山部と谷部が非対称になっており研摩により摩耗時の障害となる突起部は除去されるが、バインダー成分の蒸発の際に必要となる谷部の空間はそのまま維持されている。従って、原料粒度の調整等によって得られる平滑面に比較して本発明による表面はバインダーの除去に有利である。   In order to achieve both the durability of the thermal spray film and an appropriate surface roughness, a production method is preferred in which after the thermal spray film is formed using a thermal spray material having a particle size preferable for durability, the surface roughness is adjusted by post-processing. The surface of the sprayed film after spraying has particles that are not sufficiently melted, and sharp protrusions formed by rapid solidification, which roughen the surface and make the product as it slides on the sprayed film. It can cause scratches and resistance to movement. In post-processing, these deposits and sharp protrusions can be removed with a relatively light impact. For example, it can be removed by manual processing using sandpaper, and surface roughness can be adjusted in a short time by using an apparatus such as a grinder. The optimum surface roughness varies depending on the shape, hardness, binder amount, etc. of the object to be fired, but the standard of surface roughness that can be smoothly slid without damaging a general ceramic molded body is the arithmetic average roughness Ra. 15 μm or less, preferably 10 μm or less. As for the lower limit, if it is 5 μm or less, the time required for polishing and the amount of grinding increase, and the cost increase by post-processing increases, which is not preferable. The surface characteristics obtained by such a manufacturing method have a skewness of 0 or less, which is a parameter indicating the degree of surface distortion (objectivity of peaks and valleys). The peaks and valleys are asymmetrical, and the protrusions that become obstacles during wear are removed by polishing, but the valley spaces required for evaporation of the binder component are maintained as they are. Therefore, the surface according to the present invention is more advantageous for removing the binder than the smooth surface obtained by adjusting the raw material particle size.

上述した実施形態に係る焼成用容器によれば、耐剥離性に優れかつ適度な表面粗さを有し溶射面上での製品のスライド作業も支障なく行える溶射膜を有する焼成用容器が実現される。   According to the firing container according to the above-described embodiment, a firing container having a thermal spray film that has excellent peeling resistance and has an appropriate surface roughness and that can easily slide a product on the thermal spray surface. The

(実施例1) 表1に示し、形状が300×300×10mmのAl−SiO質(Al;78%、SiO;20%)からなる棚板の表面を、溶射の前処理としてアルミナ砥粒を用いたショットブラストで算術平均粗さ(Ra)が平均でRa=10μmとなるように粗面化した。この基材に水プラズマ溶射により電融Al(平均粒子径:70μm)を溶射し、さらに8wt%Yで安定化された電融ZrO(平均粒子径=80μm)を溶射した。 (Example 1) shown in Table 1, the shape of 300 × 300 × 10mm Al 2 O 3 -SiO 2 quality (Al 2 O 3; 78% , SiO 2; 20%) of the surface of the shelf plate made of, spraying As a pretreatment, the surface was roughened by shot blasting using alumina abrasive grains so that the arithmetic average roughness (Ra) was Ra = 10 μm on average. This base material was sprayed with electrofused Al 2 O 3 (average particle size: 70 μm) by water plasma spraying, and further was sprayed with electrofused ZrO 2 (average particle size = 80 μm) stabilized with 8 wt% Y 2 O 3. did.

それぞれの膜厚は150μmとした。得られた溶射膜の表面をダイヤモンドが電着されたグラインダーを用いて研摩して表面粗さが平均でRa=9μmとなる様に調整した。表面粗さの測定条件は評価長さ:40mm、測定速度=1.5mm/s、カットオフ値=8.0mmで行った。溶射膜の気孔率を断面組織観察より算出したところ14%であった。   Each film thickness was 150 μm. The surface of the obtained sprayed film was polished using a grinder with electrodeposited diamond so that the average surface roughness was Ra = 9 μm. The measurement conditions for the surface roughness were as follows: evaluation length: 40 mm, measurement speed = 1.5 mm / s, cut-off value = 8.0 mm. It was 14% when the porosity of the sprayed film was computed from cross-sectional structure | tissue observation.

こうして得られた焼成用容器に市販のセラミックコンデンサ用原料を用いて作製した試験片を積載し加熱試験を実施した。加熱試験条件としては、400〜1400℃での昇降温を繰り返した。5回おきに溶射膜の剥離発生状況を観察した。加熱処理を50回繰り返したが剥離は発生しなかった。   A test piece prepared using a commercially available ceramic capacitor raw material was loaded on the firing container thus obtained, and a heating test was performed. As heating test conditions, heating and cooling at 400 to 1400 ° C. was repeated. The state of occurrence of peeling of the sprayed film was observed every 5 times. The heat treatment was repeated 50 times, but no peeling occurred.

また各焼成用容器上で上記の試験片(焼成前成形体)をスライドさせ(n=10)、この時の試験片摩耗面の傷の発生状況を調査した。表面粗さRaが9μmと本発明に範囲であれば、スキューネスRskは−0.15とマイナスとなり、試験片の摩耗面に傷がつくことなくスムーズにスライドが可能で傷がつく試験片はなかった。   Further, the test piece (molded body before firing) was slid on each firing container (n = 10), and the occurrence of scratches on the wear surface of the test piece was investigated. If the surface roughness Ra is 9 μm and within the range of the present invention, the skewness Rsk becomes minus 0.15, and there is no test piece that can be smoothly slid without being damaged on the wear surface of the test piece. It was.

(実施例2〜4、参考例) 表1に示す各種の基材、溶射原料を用いて作製した焼成容器について実施例1と同様の評価を行った結果を表1に示す。表面粗さRaが6〜14μmと本発明に範囲であれば、スキューネスRskは−0.12〜−0.34といずれもマイナスとなり、試験片の摩耗面に傷がつくことなくスムーズにスライドが可能で傷がつく試験片はなかった。 (Examples 2 to 4, Reference Example ) Table 1 shows the results of the same evaluation as in Example 1 performed on the firing containers prepared using various base materials and thermal spray raw materials shown in Table 1. If the surface roughness Ra is in the range of 6 to 14 μm and within the range of the present invention, the skewness Rsk is −0.12 to −0.34, both of which are negative, and the slide surface smoothly slides without scratching the wear surface. None of the specimens were possible and scratched.

溶射膜の厚さは2層の場合は各150μm、1層の場合は300μmとした。   The thickness of the sprayed film was 150 μm for two layers and 300 μm for one layer.

(比較例1) 実施例1と同様の基材、溶射原料を用いたが溶射後の研摩は行わず、Raが18と本発明の範囲を超え、スキューネスRskが0.11とプラスであり、耐久性は問題ないが表面粗さが粗いため、溶射面上で試験片をスライドさせたところと試験片3個に傷がついた。   (Comparative example 1) Although the base material and the thermal spray raw material similar to Example 1 were used, polishing after thermal spraying was not performed, Ra exceeded 18 and the scope of the present invention, and skewness Rsk was 0.11 and positive, Although there was no problem in durability, the surface roughness was rough, so that the specimen was slid on the sprayed surface and three specimens were damaged.

(比較例2、3) 平均粒子径の小さい原料(30、50μm)を用いて溶射膜を形成した。表面粗さはRaが5、8と滑らかなものが得られたが、スキューネスRskが0.23、0.18とプラスであり、加熱試験では早期に剥離が発生した。なお、表面層の溶射方法は比較例2のみガスプラズマで行った。

Figure 0004713981
Comparative Examples 2 and 3 A sprayed film was formed using a raw material (30, 50 μm) having a small average particle diameter. The surface roughness was smooth with Ra of 5 and 8, but the skewness Rsk was plus with 0.23 and 0.18, and peeling occurred early in the heating test. In addition, the thermal spraying method of the surface layer was performed only by the comparative example 2 by gas plasma.
Figure 0004713981

Claims (1)

Al−SiO質、Al−SiO−MgO質、MgO−Al−ZrO質、SiC質のいずれかからなる基材と、
この基材の表面を溶射により単層もしくは複層に被覆し、Al質、ZrO質、Al−MgO質の単独もしくは混合原料からなる溶射膜を有し、
この溶射膜は気孔率が12〜17%、表面粗さの算術平均粗さRaが5〜15μm、スキューネスRskが0以下であることを特徴とするセラミック電子部品焼成用容器。
A substrate made of any of Al 2 O 3 —SiO 2 , Al 2 O 3 —SiO 2 —MgO, MgO—Al 2 O 3 —ZrO 2 , SiC,
The surface of this base material is coated with a single layer or a plurality of layers by thermal spraying, and has a thermal spray film made of Al 2 O 3 quality, ZrO 2 quality, Al 2 O 3 —MgO quality alone or mixed raw material,
This sprayed coating has a porosity of 12 to 17%, an arithmetic average roughness Ra of surface roughness of 5 to 15 μm, and a skewness Rsk of 0 or less, and a ceramic electronic component firing container.
JP2005229369A 2005-08-08 2005-08-08 Ceramic electronic component firing container Active JP4713981B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005229369A JP4713981B2 (en) 2005-08-08 2005-08-08 Ceramic electronic component firing container

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005229369A JP4713981B2 (en) 2005-08-08 2005-08-08 Ceramic electronic component firing container

Publications (2)

Publication Number Publication Date
JP2007045641A JP2007045641A (en) 2007-02-22
JP4713981B2 true JP4713981B2 (en) 2011-06-29

Family

ID=37848795

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005229369A Active JP4713981B2 (en) 2005-08-08 2005-08-08 Ceramic electronic component firing container

Country Status (1)

Country Link
JP (1) JP4713981B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4858507B2 (en) * 2008-07-31 2012-01-18 トーカロ株式会社 Carrier for holding an object to be polished
KR101223032B1 (en) 2011-03-08 2013-01-17 주식회사 우진 Sagger and composition of sagger containing silicon carbide for manufacturing positive, negative electrode active material of secondary battery
JP5990083B2 (en) * 2012-10-19 2016-09-07 株式会社フジコー Manufacturing method of dental medical equipment
JP6811196B2 (en) * 2018-01-10 2021-01-13 日本碍子株式会社 Baking setter
JP6876635B2 (en) 2018-01-10 2021-05-26 日本碍子株式会社 Baking setter
JP7431642B2 (en) 2019-04-05 2024-02-15 京セラ株式会社 Ceramic tray, heat treatment method using the same, and heat treatment equipment

Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0269381A (en) * 1988-08-31 1990-03-08 Ibiden Co Ltd Jig for calcining electronic parts
JPH02260602A (en) * 1989-03-31 1990-10-23 Ibiden Co Ltd Jig for firing electronic component
JPH11263671A (en) * 1998-03-13 1999-09-28 Toshiba Ceramics Co Ltd Firing tool material
JP2000281427A (en) * 1999-03-26 2000-10-10 Toshiba Corp Ceramic sintered compact and wear-proofing member and member for electronic part using the sintered compact
JP2000327433A (en) * 1999-05-14 2000-11-28 Toshiba Ceramics Co Ltd Tool for firing
JP2002060287A (en) * 2000-06-07 2002-02-26 Toshiba Ceramics Co Ltd Firing vessel
JP2002128583A (en) * 2000-10-20 2002-05-09 Mitsui Mining & Smelting Co Ltd Tool for calcinating electronic part
JP2002145671A (en) * 2000-11-01 2002-05-22 Toshiba Ceramics Co Ltd Method of regenerating firing vessel
JP2002265282A (en) * 2001-03-08 2002-09-18 Toshiba Ceramics Co Ltd Vessel for calcination
JP2002333282A (en) * 2001-05-14 2002-11-22 Tokyo Yogyo Co Ltd Sintering setter and its producing method
JP2003081676A (en) * 2000-12-04 2003-03-19 Toshiba Corp Aluminum nitride substrate and thin-film substrate using the same and method of manufacturing the same
JP2003212665A (en) * 2002-01-23 2003-07-30 Ngk Insulators Ltd Setter for firing ceramic electronic component
JP2003306392A (en) * 2002-04-12 2003-10-28 Toshiba Ceramics Co Ltd Jig for heat-treating ceramic for electronic part and its manufacturing process
JP2004262712A (en) * 2003-02-28 2004-09-24 Toshiba Ceramics Co Ltd Burning tool
JP2005170729A (en) * 2003-12-10 2005-06-30 Toshiba Ceramics Co Ltd Container for firing

Patent Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0269381A (en) * 1988-08-31 1990-03-08 Ibiden Co Ltd Jig for calcining electronic parts
JPH02260602A (en) * 1989-03-31 1990-10-23 Ibiden Co Ltd Jig for firing electronic component
JPH11263671A (en) * 1998-03-13 1999-09-28 Toshiba Ceramics Co Ltd Firing tool material
JP2000281427A (en) * 1999-03-26 2000-10-10 Toshiba Corp Ceramic sintered compact and wear-proofing member and member for electronic part using the sintered compact
JP2000327433A (en) * 1999-05-14 2000-11-28 Toshiba Ceramics Co Ltd Tool for firing
JP2002060287A (en) * 2000-06-07 2002-02-26 Toshiba Ceramics Co Ltd Firing vessel
JP2002128583A (en) * 2000-10-20 2002-05-09 Mitsui Mining & Smelting Co Ltd Tool for calcinating electronic part
JP2002145671A (en) * 2000-11-01 2002-05-22 Toshiba Ceramics Co Ltd Method of regenerating firing vessel
JP2003081676A (en) * 2000-12-04 2003-03-19 Toshiba Corp Aluminum nitride substrate and thin-film substrate using the same and method of manufacturing the same
JP2002265282A (en) * 2001-03-08 2002-09-18 Toshiba Ceramics Co Ltd Vessel for calcination
JP2002333282A (en) * 2001-05-14 2002-11-22 Tokyo Yogyo Co Ltd Sintering setter and its producing method
JP2003212665A (en) * 2002-01-23 2003-07-30 Ngk Insulators Ltd Setter for firing ceramic electronic component
JP2003306392A (en) * 2002-04-12 2003-10-28 Toshiba Ceramics Co Ltd Jig for heat-treating ceramic for electronic part and its manufacturing process
JP2004262712A (en) * 2003-02-28 2004-09-24 Toshiba Ceramics Co Ltd Burning tool
JP2005170729A (en) * 2003-12-10 2005-06-30 Toshiba Ceramics Co Ltd Container for firing

Also Published As

Publication number Publication date
JP2007045641A (en) 2007-02-22

Similar Documents

Publication Publication Date Title
JP4713981B2 (en) Ceramic electronic component firing container
US11779989B2 (en) Coated metal mold and method for manufacturing same
KR100801913B1 (en) Good plasma corrosion resistant spray-coated member, and production method thereof
TW201621001A (en) Substrate having antifouling film
KR101455142B1 (en) Process for production of coated article having excellent corrosion resistance, and coated article
CN106086766A (en) A kind of preparation method of high wear-resistant low-friction coefficient thermal Sperayed Ceramic Coatings
TWI386378B (en) Floating plate glass transfer roller, manufacturing method thereof, and method for manufacturing floating flat glass using the same
KR101862526B1 (en) Method for manufacturing coated mold for die casting
JP2014189887A (en) Rolling bearing for prevention of electric corrosion
US6617017B2 (en) Firing jig for electronic element
JP6067394B2 (en) Firing jig
KR20190085482A (en) Setter for firing
JP2011127205A (en) Coated die having excellent lubricant adhesiveness and durability, and method for producing the same
JP4632692B2 (en) Surface-coated ceramic sintered body
JP2003048273A (en) Composite resin film and method for forming composite resin film
JP5199599B2 (en) Yttria sintered body and member for plasma process equipment
KR100465389B1 (en) SiC-BASED JIG FOR HEAT TREATMENT
JP2020173088A (en) Ceramic tray, and heat treatment method and heat treatment device using the same
JP2020173086A (en) Ceramic tray, and heat treatment method and heat treatment device using the same
JP2009084100A (en) Fused silica roll for glass transfer and method for producing the same
JP6562914B2 (en) Baking jig and method for manufacturing the baking jig
JP2014006031A (en) Electronic component burning tool and method of manufacturing the same
JP7420600B2 (en) Corrosion resistant parts
US11976350B2 (en) Covering member and method for manufacturing the same
JP2000154033A (en) Production of conveying roll

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20070711

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080306

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101224

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101228

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110228

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110322

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110325

R150 Certificate of patent or registration of utility model

Ref document number: 4713981

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250