JP2020173088A - Ceramic tray, and heat treatment method and heat treatment device using the same - Google Patents

Ceramic tray, and heat treatment method and heat treatment device using the same Download PDF

Info

Publication number
JP2020173088A
JP2020173088A JP2020062658A JP2020062658A JP2020173088A JP 2020173088 A JP2020173088 A JP 2020173088A JP 2020062658 A JP2020062658 A JP 2020062658A JP 2020062658 A JP2020062658 A JP 2020062658A JP 2020173088 A JP2020173088 A JP 2020173088A
Authority
JP
Japan
Prior art keywords
ceramic tray
stepped surface
less
ceramic
diameter portion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2020062658A
Other languages
Japanese (ja)
Inventor
寅浩 今井
Torahiro Imai
寅浩 今井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Publication of JP2020173088A publication Critical patent/JP2020173088A/en
Pending legal-status Critical Current

Links

Landscapes

  • Furnace Charging Or Discharging (AREA)

Abstract

To provide a ceramic tray which can suppress influence of a step surface on a treatment body, and a heat treatment method using the ceramic tray.SOLUTION: A ceramic tray includes a plurality of through holes having a large diameter part and a small diameter part along a thickness direction. A step surface present between the large diameter part and the small diameter part represents a difference between a cut level in a load length ratio of 25% in a roughness curve of the step surface and a cut level in a load length ratio of 75% in the roughness curve. The cut level difference (Rδc) in the roughness curve is 4 μm or less.SELECTED DRAWING: Figure 3

Description

本開示は、厚さ方向に沿って大径部と小径部とを有する複数の貫通孔を備えたセラミックトレイ、これを用いる熱処理方法および熱処理装置に関する。 The present disclosure relates to a ceramic tray having a plurality of through holes having a large diameter portion and a small diameter portion along the thickness direction, a heat treatment method using the ceramic tray, and a heat treatment apparatus.

従来、センサ部品、モールド部品、各種基板等の電子部品やリードスイッチ等に用いられる小径のワイヤー、スパークプラグ等(以下、これらを被処理体ということがある。)を効率的に熱処理するために複数の貫通孔を備えたトレイが用いられている。すなわち、トレイに設けた複数の貫通孔に被処理体を挿入・保持させた後、トレイを加熱炉内に搬送し熱処理を行う。 Conventionally, in order to efficiently heat-treat sensor parts, molded parts, electronic parts such as various substrates, small-diameter wires used for reed switches, spark plugs, etc. (hereinafter, these may be referred to as objects to be processed). A tray with a plurality of through holes is used. That is, after inserting and holding the object to be processed into the plurality of through holes provided in the tray, the tray is conveyed into the heating furnace and heat-treated.

このようなトレイとして、特許文献1には、常温における熱伝導率が30W/(m・K)以上であるセラミックス製トレイが提案され、厚み方向に沿って、大径部と、大径部に接続する小径部とを有する貫通孔を備えたセラミックトレイが記載されている。 As such a tray, Patent Document 1 proposes a ceramic tray having a thermal conductivity of 30 W / (m · K) or more at room temperature, and forms a large-diameter portion and a large-diameter portion along the thickness direction. A ceramic tray with a through hole having a small diameter portion to be connected is described.

また、特許文献2には、内面が焼成肌からなる最小直径が1mm以下の孔を複数個設けたセラミックトレイが提案され、特に熱処理用の治具として適したものであることが記載されている。 Further, Patent Document 2 proposes a ceramic tray having a plurality of holes having a minimum diameter of 1 mm or less and whose inner surface is a fired skin, and describes that it is particularly suitable as a jig for heat treatment. ..

被処理体は、セラミックトレイの孔に装着して、加熱炉へ出し入れしたり、トレイごと搬送したりするため、セラミックトレイの孔内で振動したり、移動したりすることがある。 Since the object to be processed is attached to the hole of the ceramic tray and taken in and out of the heating furnace or transported together with the tray, it may vibrate or move in the hole of the ceramic tray.

このとき、被処理体がセラミックトレイの段差面に接触すると、この接触によってセラミックトレイの段差面から脱粒が生じるおそれがある。脱粒した粒子は、熱処理時に被処理体の表面に固着する等の弊害が生じやすい。
特に、昨今は、電子部品等は小型化が進められているため、被処理体がセラミックトレイの段差面に接触することによって惹き起こされる脱粒の影響が相対的に大きくなる。
At this time, if the object to be processed comes into contact with the stepped surface of the ceramic tray, this contact may cause shedding of grains from the stepped surface of the ceramic tray. The deflated particles are liable to cause adverse effects such as sticking to the surface of the object to be treated during heat treatment.
In particular, since electronic components and the like have been miniaturized in recent years, the effect of shedding caused by the contact of the object to be processed with the stepped surface of the ceramic tray becomes relatively large.

特開2005−132691号公報Japanese Unexamined Patent Publication No. 2005-132691 特開2003−261384号公報Japanese Unexamined Patent Publication No. 2003-261384

本開示の課題は、被処理体に対する段差面の影響を抑制することができるセラミックトレイおよびこれを用いる熱処理方法を提供することである。 An object of the present disclosure is to provide a ceramic tray capable of suppressing the influence of a stepped surface on an object to be treated and a heat treatment method using the same.

上記課題を解決するための本開示のセラミックトレイは、厚さ方向に沿って大径部と小径部とを有する複数の貫通孔を備え、前記大径部と小径部との間に存在する段差面は、該段差面の粗さ曲線における25%の負荷長さ率での切断レベルと、前記粗さ曲線における75%の負荷長さ率での切断レベルとの差を表す、前記粗さ曲線における切断レベル差(Rδc)が4μm以下である。 The ceramic tray of the present disclosure for solving the above problems is provided with a plurality of through holes having a large diameter portion and a small diameter portion along the thickness direction, and a step existing between the large diameter portion and the small diameter portion. The surface represents the difference between the cutting level at a load length ratio of 25% in the roughness curve of the stepped surface and the cutting level at a load length ratio of 75% in the roughness curve. The cutting level difference (Rδc) in the above is 4 μm or less.

上記セラミックトレイを用いる本開示の熱処理方法は、セラミックトレイの貫通孔内に被処理体を挿入し、貫通孔の大径部と小径部との間の段差面上に被処理体を載置する工程と、被処理体を装填したセラミックトレイを熱処理炉に収容して、被処理体を熱処理する工程と、を含む。
上記セラミックトレイを用いる本開示の熱処理装置は、セラミックトレイと、該セラミックトレイを収容する熱処理炉とを備える。
In the heat treatment method of the present disclosure using the ceramic tray, the object to be processed is inserted into the through hole of the ceramic tray, and the object to be processed is placed on the stepped surface between the large diameter portion and the small diameter portion of the through hole. The process includes a step of accommodating a ceramic tray loaded with the object to be processed in a heat treatment furnace and heat-treating the object to be processed.
The heat treatment apparatus of the present disclosure using the ceramic tray includes a ceramic tray and a heat treatment furnace for accommodating the ceramic tray.

本開示のセラミックトレイは、段差面の切断レベル差(Rδc)が4μm以下であるので、段差面の凹凸が小さく、比較的平坦である。そのため、段差面から脱粒が発生しにくくなり、脱粒によって生じる被処理体への固着等の悪影響を抑制することができる。 In the ceramic tray of the present disclosure, since the cutting level difference (Rδc) of the stepped surface is 4 μm or less, the unevenness of the stepped surface is small and relatively flat. Therefore, shedding is less likely to occur from the stepped surface, and adverse effects such as sticking to the object to be treated caused by threshing can be suppressed.

本開示の一実施形態に係るセラミックトレイを示す平面図である。It is a top view which shows the ceramic tray which concerns on one Embodiment of this disclosure. 図1のA部分の拡大図である。It is an enlarged view of the part A of FIG. 図2のX−X線断面図である。FIG. 2 is a cross-sectional view taken along line XX of FIG.

以下、本開示の一実施形態に係るセラミックトレイを説明する。図1および図2に示すように、本実施形態に係るセラミックトレイ1はセラミックの板体で構成されており、その板体に複数の貫通孔2が形成されている。複数の貫通孔2は縦方向および横方向に配列されている。セラミックトレイ1の厚さは特に限定されないが、5mm以上25mm以下、好ましくは8mm以上20mm以下であるのがよい。 Hereinafter, the ceramic tray according to the embodiment of the present disclosure will be described. As shown in FIGS. 1 and 2, the ceramic tray 1 according to the present embodiment is composed of a ceramic plate body, and a plurality of through holes 2 are formed in the plate body. The plurality of through holes 2 are arranged in the vertical direction and the horizontal direction. The thickness of the ceramic tray 1 is not particularly limited, but is preferably 5 mm or more and 25 mm or less, preferably 8 mm or more and 20 mm or less.

セラミックトレイ1の材質としては、高い耐熱性を有し、かつ熱サイクルの繰り返しで容易に変形や破壊を起こさない強度を有するものであるのが好ましく、例えば窒化ケイ素、酸化アルミニウム、炭化ケイ素等を主成分とするセラミック焼結体が挙げられる。 The material of the ceramic tray 1 is preferably one having high heat resistance and strength that does not easily deform or break due to repeated heat cycles. For example, silicon nitride, aluminum oxide, silicon carbide, etc. are used. Examples thereof include a ceramic sintered body as a main component.

図3に示すように、貫通孔2は、熱処理される被処理体3を挿入・保持するためのものであり、セラミックトレイ1の厚さ方向に沿って大径部2aと小径部2cとを有し、それらの間に段差面2bが介在する。大径部2aは径が10mm以上、25mm以下、好ましくは 13mm以上、20mm以下であるのがよい。隣接する大径部2a、2aの軸心間の距離(ピッチ)はできるだけ小さいのが好ましく、具体的には35mm以下であるのが
よい。
小径部2cの径は、大径部2aとの間に段差面2bを確保するうえで、大径部2aの径に対して約50%以上80%以下、好ましくは60%以上70%以下であるのがよい。
As shown in FIG. 3, the through hole 2 is for inserting and holding the heat-treated object 3 to be heat-treated, and the large-diameter portion 2a and the small-diameter portion 2c are inserted along the thickness direction of the ceramic tray 1. The stepped surface 2b is interposed between them. The large diameter portion 2a preferably has a diameter of 10 mm or more and 25 mm or less, preferably 13 mm or more and 20 mm or less. The distance (pitch) between the axes of the adjacent large diameter portions 2a and 2a is preferably as small as possible, and specifically, it is preferably 35 mm or less.
The diameter of the small diameter portion 2c is about 50% or more and 80% or less, preferably 60% or more and 70% or less with respect to the diameter of the large diameter portion 2a in order to secure a stepped surface 2b between the small diameter portion 2c and the large diameter portion 2a. It is good to have it.

段差面2bは、該段差面2bの粗さ曲線における25%の負荷長さ率での切断レベルと、前記粗さ曲線における75%の負荷長さ率での切断レベルとの差を表す、上記粗さ曲線における切断レベル差(Rδc)が4μm以下、好ましくは3.6μm以下である。また、段差面2bの切断レベル差(Rδc)は0.5μm以上であるのがよい。 The stepped surface 2b represents the difference between the cutting level at a load length rate of 25% on the roughness curve of the stepped surface 2b and the cutting level at a load length rate of 75% on the roughness curve. The cutting level difference (Rδc) in the roughness curve is 4 μm or less, preferably 3.6 μm or less. Further, the cutting level difference (Rδc) of the stepped surface 2b is preferably 0.5 μm or more.

切断レベル差(Rδc)が4μm以下であることにより、段差面2bは凹凸が小さく、比較的平坦である。そのため、貫通孔2内に挿入された被処理体3がトレイ1の搬送時に移動して、段差面2bに接触し擦れて、段差面2bからの脱粒が発生するのを抑制することができる。その結果、脱粒によって生じる被処理体3への固着等の悪影響を抑制することができる。一方、切断レベル差(Rδc)が0.5μm以上であると、段差面2bの純水に対する接触角が小さくなり、親水性が高くなるので、水溶性の溶液を用いて洗浄する場合、洗浄効率が向上する。 Since the cutting level difference (Rδc) is 4 μm or less, the stepped surface 2b has small irregularities and is relatively flat. Therefore, it is possible to prevent the object to be processed 3 inserted into the through hole 2 from moving during the transportation of the tray 1 and contacting and rubbing against the step surface 2b to cause shedding from the step surface 2b. As a result, adverse effects such as sticking to the object to be treated 3 caused by shedding can be suppressed. On the other hand, when the cutting level difference (Rδc) is 0.5 μm or more, the contact angle of the stepped surface 2b with respect to pure water becomes small and the hydrophilicity becomes high. Therefore, when cleaning with a water-soluble solution, the cleaning efficiency Is improved.

また、切断レベル差(Rδc)の変動係数は0.5以下、好ましくは0.48以下であるのが好ましい。変動係数は標準偏差を平均値で割った値であり、平均値に対するデータとばらつきの関係を相対的に評価する際に用いられる。変動係数が0.5以下であることにより、切断レベル差(Rδc)のばらつきが少なくなり、脱粒によって生じる被処理体3への固着等の影響をさらに抑制することができる。 The coefficient of variation of the cutting level difference (Rδc) is preferably 0.5 or less, preferably 0.48 or less. The coefficient of variation is the standard deviation divided by the mean value and is used to evaluate the relative relationship between the data and the variation with respect to the mean value. When the coefficient of variation is 0.5 or less, the variation in the cutting level difference (Rδc) is reduced, and the influence of sticking to the object to be processed 3 caused by shedding can be further suppressed.

段差面2bは、上記粗さ曲線における算術平均粗さ(Ra)が2.3μm以下、好ましくは2.2μm以下であるのが好ましい。算術平均粗さ(Ra)が2.3μm以下であることは、段差面2bの凹凸が小さく、比較的平坦であることを意味している。算術平均粗さ(Ra)の変動係数は0.5以下であるのがよい。また、段差面2bの算術平均粗さ(Ra)は0.3μm以上であるのが好ましい。算術平均粗さ(Ra)が0.3μm以上であると、段差面2bの純水に対する接触角が小さくなり、親水性がさらに高くなるので、水溶性の溶液を用いて洗浄する場合、洗浄効率がより向上する。 The stepped surface 2b preferably has an arithmetic mean roughness (Ra) of 2.3 μm or less, preferably 2.2 μm or less in the roughness curve. When the arithmetic mean roughness (Ra) is 2.3 μm or less, it means that the unevenness of the stepped surface 2b is small and relatively flat. The coefficient of variation of the arithmetic mean roughness (Ra) is preferably 0.5 or less. Further, the arithmetic mean roughness (Ra) of the stepped surface 2b is preferably 0.3 μm or more. When the arithmetic mean roughness (Ra) is 0.3 μm or more, the contact angle of the stepped surface 2b with respect to pure water becomes small and the hydrophilicity becomes further high. Therefore, when cleaning with a water-soluble solution, the cleaning efficiency Is improved.

上記粗さ曲線の切断レベル差(Rδc)および算術平均粗さ(Ra)は、JIS B 0601:2001に準拠し、超深度カラー3D形状測定顕微鏡(例えば、(株)キーエンス社製のVK−9500等)によって測定することができる。測定条件は、測定モードをカラー超深度、ゲイン:953、ND(減光)フィルタ:2、高さ方向の測定分解能(ピッチ):0.05μm、倍率:200倍、カットオフ値λs:2.5μm、カットオフ値λc:0.08mmである。
ここで、1箇所当りの測定範囲は、1300μm×1000μmとすればよい。
The cutting level difference (Rδc) and arithmetic mean roughness (Ra) of the roughness curve conform to JIS B 0601: 2001, and are ultra-deep color 3D shape measurement microscopes (for example, VK-9500 manufactured by KEYENCE CORPORATION). Etc.) can be measured. The measurement conditions are: color ultra-depth, gain: 953, ND (dimming) filter: 2, height measurement resolution (pitch): 0.05 μm, magnification: 200 times, cutoff value λ s : 2 .5 μm, cutoff value λ c : 0.08 mm.
Here, the measurement range per location may be 1300 μm × 1000 μm.

また、段差面2bは、上記粗さ曲線におけるスキューネス(Rsk)(歪度)の絶対値が0.6以下、上記粗さ曲線におけるクルトシス(Rku)(尖度)が2.5以下であるのが好ましい。スキューネス(Rsk)は、表面性状を表す指標の一種であり、表面に形成された凹凸形状の偏り度合いを示す。スキューネス(Rsk)が大きくなるほど、粗さ曲線における急峻な凸部および緩やかな凹部が多くなる。一方、スキューネス(Rsk)が小さくなるほど、粗さ曲線における急峻な凹部および緩やかな凸部が多くなる。 Further, the stepped surface 2b has an absolute value of skewness (Rsk) (skewness) of 0.6 or less in the roughness curve, and Kurtosis (Rku) (kurtosis) of 2.5 or less in the roughness curve. Is preferable. Skewness (Rsk) is a kind of index showing the surface texture, and shows the degree of bias of the uneven shape formed on the surface. The larger the skewness (Rsk), the more steep protrusions and gentle recesses in the roughness curve. On the other hand, the smaller the skewness (Rsk), the more steep concave portions and gentle convex portions in the roughness curve.

クルトシス(Rku)は、表面性状を表す指標の一種であり、表面に形成された凹凸形状の尖り度合いを示す。クルトシス(Rku)が大きくなるほど、粗さ曲線における凹凸形状はいずれも急峻になる。一方、クルトシス(Rku)が小さくなるほど、凹凸形状はいれも緩やかになる。 Kurtsis (Rku) is a kind of index showing the surface texture, and shows the degree of sharpness of the uneven shape formed on the surface. As the cultosis (Rku) becomes larger, the uneven shape on the roughness curve becomes steeper. On the other hand, the smaller the Kurtosis (Rku), the gentler the uneven shape.

スキューネス(Rsk)の絶対値は0.52以下、クルトシス(Rku)は2.2以下であるのがより好ましい。スキューネス(Rsk)およびクルトシス(Rku)は、切断レベル差(Rδc)および算術平均粗さ(Ra)の測定に使用する測定装置および測定条件にて測定することができる。 It is more preferable that the absolute value of skewness (Rsk) is 0.52 or less and that of Kurtosis (Rku) is 2.2 or less. Skewness (Rsk) and Kurtosis (Rku) can be measured with the measuring device and measuring conditions used to measure the cutting level difference (Rδc) and the arithmetic mean roughness (Ra).

本実施形態のトレイは、閉気孔を有し、隣り合う閉気孔の重心間距離から閉気孔の円相当径の平均値を差し引いた値(以下、この値を閉気孔間の間隔という。)が8μm以上18μmであるのが好ましい。
閉気孔間の間隔が8μm以上の場合、閉気孔が比較的分散された状態で存在するため、機械的強度が高くなる。一方、閉気孔間の間隔が12μm以下の場合、400℃程度までの昇温および昇温後の室温までの降温に繰り返し晒され、閉気孔の輪郭を起点とするマイクロクラックが発生したとしても、周囲の閉気孔により、その伸展が遮られる確率が高くなる。このことから、閉気孔間の間隔が8μm以上12μm以下であると、セラミックトレイを長期間に亘って用いることができる。
The tray of the present embodiment has closed pores, and a value obtained by subtracting the average value of the equivalent circle diameters of the closed pores from the distance between the centers of gravity of the adjacent closed pores (hereinafter, this value is referred to as an interval between the closed pores). It is preferably 8 μm or more and 18 μm.
When the distance between the closed pores is 8 μm or more, the closed pores exist in a relatively dispersed state, so that the mechanical strength becomes high. On the other hand, when the distance between the closed pores is 12 μm or less, even if microcracks originating from the contour of the closed pores are generated due to repeated exposure to a temperature rise to about 400 ° C. and a temperature decrease to the room temperature after the temperature rise. The surrounding air closures increase the likelihood that the extension will be blocked. From this, if the distance between the closed pores is 8 μm or more and 12 μm or less, the ceramic tray can be used for a long period of time.

閉気孔間の間隔を求めるには、まず、セラミックトレイの大径部が位置する側の主面から深さ方向に肉厚の10%〜50%の範囲まで、平均粒径D50が3μmのダイヤモンド砥粒を用いて銅盤にて研磨する。その後、平均粒径D50が0.5μmのダイヤモンド砥粒を用いて錫盤にて研磨することにより、粗さ曲線における算術平均粗さ(Ra)が0.2μm以下である研磨面を得る。 To determine the distance between the closed pores, first, the average particle size D 50 is 3 μm from the main surface on the side where the large diameter portion of the ceramic tray is located to the range of 10% to 50% of the wall thickness in the depth direction. Polish with a copper plate using diamond abrasive grains. Then, by polishing on a tin plate using diamond abrasive grains having an average particle size D 50 of 0.5 μm, a polished surface having an arithmetic mean roughness (Ra) of 0.2 μm or less in the roughness curve is obtained.

研磨面の算術平均粗さRaは、上述した測定方法と同じである。
研磨面を200倍の倍率で観察し、平均的な範囲を選択して、例えば、面積が7.2×10μm(横方向の長さが310μm、縦方向の長さが233μm)となる範囲をCCDカメラで撮影して、観察像を得る。
この観察像を対象として、画像解析ソフト「A像くん(ver2.52)」(登録商標、旭化成エンジニアリング(株)製)を用いて分散度計測の重心間距離法という手法で閉気孔の重心間距離を求めればよい。以下、画像解析ソフト「A像くん」と記載した場合、旭化成エンジニアリング(株)製の画像解析ソフトを示す。
この手法の設定条件としては、例えば、画像の明暗を示す指標であるしきい値を165、明度を暗、小図形除去面積を1μm、雑音除去フィルタを無とすればよい。なお、観察像の明るさに応じて、しきい値は調整すればよく、明度を暗、2値化の方法を手動とし、小図形除去面積を1μmおよび雑音除去フィルタを有とした上で、観察像に現れるマーカーが気孔の形状と一致するように、しきい値を調整すればよい。
The arithmetic mean roughness Ra of the polished surface is the same as the measurement method described above.
Observe the polished surface at a magnification of 200 times and select an average range, for example, an area of 7.2 x 10 4 μm 2 (horizontal length 310 μm, vertical length 233 μm). The area is photographed with a CCD camera to obtain an observation image.
For this observation image, the distance between the centers of gravity of the closed pores is measured by using the image analysis software "A image-kun (ver2.52)" (registered trademark, manufactured by Asahi Kasei Engineering Co., Ltd.). Just find the distance. Hereinafter, when the image analysis software "A image-kun" is described, the image analysis software manufactured by Asahi Kasei Engineering Co., Ltd. is shown.
As the setting conditions of this method, for example, the threshold value indicating the brightness of the image may be 165, the brightness may be dark, the small figure removal area may be 1 μm 2 , and the noise removal filter may be omitted. The threshold value may be adjusted according to the brightness of the observed image, the brightness is darkened, the binarization method is manual, the small figure removal area is 1 μm 2, and the noise removal filter is provided. , The threshold value may be adjusted so that the marker appearing in the observation image matches the shape of the pores.

閉気孔の円相当径は、以下の方法で求めることができる。
上記観察像を対象として、粒子解析という手法で閉気孔の円相当径を求めればよい。
この手法の設定条件も分散度計測の重心間距離法で用いた設定条件と同じにすればよい。
酸化アルミニウムを主成分とし、珪素を含むセラミック焼結体からなり、段差面2bを含む断面において、段差面2b上における珪素の濃度は、段差面と平行な仮想面上における珪素の濃度よりも高いのが好ましい。
純水に対する珪素の接触角は小さいため、段差面上における珪素の濃度が仮想面上における珪素の濃度よりも高くなると、水溶性の洗剤を用いて洗浄した場合、熱処理により汚れが付着しやすい段差面2bの汚れの除去効率を高くすることができる。
一方、仮想面上における珪素の濃度が段差面2b上における珪素の濃度よりも低くなると、酸化アルミニウムと線膨張率の異なるムライトの発生が内部で抑制されるので、内部と段差面を含む表層部との間で生じるひずみを低減することができる。
珪素の濃度は、段差面を含む研磨した断面を対象に、電子線マイクロアナライザ(EPMA)を用いた珪素のカラーマッピング像(横方向の長さが120μm、縦方向の長さが:90μm)を観察すればよい。
The equivalent circle diameter of the closed pores can be determined by the following method.
For the above observation image, the equivalent circle diameter of the closed pores may be obtained by a technique called particle analysis.
The setting conditions of this method may be the same as the setting conditions used in the distance between the centers of gravity of the dispersion measurement.
It is composed of a ceramic sintered body containing aluminum oxide as a main component and containing silicon. In the cross section including the stepped surface 2b, the concentration of silicon on the stepped surface 2b is higher than the concentration of silicon on the virtual surface parallel to the stepped surface. Is preferable.
Since the contact angle of silicon with pure water is small, if the concentration of silicon on the step surface is higher than the concentration of silicon on the virtual surface, the step where dirt easily adheres due to heat treatment when washed with a water-soluble detergent. The efficiency of removing dirt on the surface 2b can be increased.
On the other hand, when the concentration of silicon on the virtual surface is lower than the concentration of silicon on the stepped surface 2b, the generation of mullite having a linear expansion coefficient different from that of aluminum oxide is suppressed inside, so that the surface layer portion including the inside and the stepped surface is suppressed. It is possible to reduce the strain generated between and.
The concentration of silicon is a color mapping image of silicon using an electron probe microanalyzer (EPMA) (horizontal length: 120 μm, vertical length: 90 μm) for a polished cross section including a stepped surface. You just have to observe.

なお、セラミック焼結体における主成分とは、セラミック焼結体を構成する成分の合計100質量%のうちの80質量%以上を占める成分をいう。
セラミック焼結体を構成する成分の含有量については、蛍光X線分析装置またはICP発光分光分析装置を用いて金属元素の含有量を求め、例えば、アルミニウム(Al)は、Alに換算すればよい。構成する成分は、X線回折装置を用いて同定すればよい。
The main component in the ceramic sintered body means a component that accounts for 80% by mass or more of the total 100% by mass of the components constituting the ceramic sintered body.
Regarding the content of the components constituting the ceramic sintered body, the content of the metal element was determined using a fluorescent X-ray analyzer or an ICP emission spectroscopic analyzer, and for example, aluminum (Al) was converted to Al 2 O 3 . do it. The constituent components may be identified using an X-ray diffractometer.

次に、本開示のセラミックトレイの製造方法の一例について説明する。
セラミックトレイを構成するセラミック焼結体の主成分が酸化アルミニウムである場合について説明する。
Next, an example of the method for manufacturing the ceramic tray of the present disclosure will be described.
A case where the main component of the ceramic sintered body constituting the ceramic tray is aluminum oxide will be described.

主成分である酸化アルミニウム粉末(純度が99.9質量%以上)と、水酸化マグネシウム、酸化珪素および炭酸カルシウムの各粉末とを粉砕用ミルに溶媒(イオン交換水)とともに投入して、粉末の平均粒径(D50)が1.5μm以下になるまで粉砕した後、有機結合剤と、酸化アルミニウム粉末を分散させる分散剤とを添加、混合してスラリーを得る。 Aluminum oxide powder (purity of 99.9% by mass or more), which is the main component, and magnesium hydroxide, silicon oxide, and calcium carbonate powders are put into a crushing mill together with a solvent (ion-exchanged water) to prepare the powder. After pulverizing until the average particle size (D 50 ) becomes 1.5 μm or less, an organic binder and a dispersant for dispersing aluminum oxide powder are added and mixed to obtain a slurry.

ここで、上記粉末の合計100質量%における水酸化マグネシウム粉末の含有量は0.3〜0.42質量%、酸化珪素粉末の含有量は0.5〜0.8質量%、炭酸カルシウム粉末の含有量は0.06〜0.1質量%であり、残部が酸化アルミニウム粉末および不可避不純物である。
有機結合剤は、アクリルエマルジョン、ポリビニールアルコール、ポリエチレングリコール、ポリエチレンオキサイド等である。
Here, the content of magnesium hydroxide powder in a total of 100% by mass of the powder is 0.3 to 0.42% by mass, the content of silicon oxide powder is 0.5 to 0.8% by mass, and that of calcium carbonate powder. The content is 0.06 to 0.1% by mass, and the balance is aluminum oxide powder and unavoidable impurities.
The organic binder is an acrylic emulsion, polyvinyl alcohol, polyethylene glycol, polyethylene oxide and the like.

次に、スラリーを噴霧造粒して顆粒を得た後、1軸プレス成形装置あるいは冷間静水圧プレス成形装置を用いて、成形圧を78MPa以上98MPa以下として加圧することにより基板状の成形体を得る。
成形体には、切削加工により厚さ方向に、焼成後にそれぞれ大径部となる第1下穴および小径部となる第2下穴を形成する。ここで、第1下穴の第2下穴側の端面が形成され、この端面は焼成、研削加工後に段差面となる。
Next, after spray-granulating the slurry to obtain granules, a substrate-like molded body is formed by pressurizing the molding pressure to 78 MPa or more and 98 MPa or less using a uniaxial press molding device or a cold hydrostatic press molding device. To get.
In the molded body, a first pilot hole having a large diameter portion and a second pilot hole having a small diameter portion after firing are formed in the thickness direction by cutting. Here, an end face on the second pilot hole side of the first pilot hole is formed, and this end face becomes a stepped surface after firing and grinding.

次に、焼成温度を1580℃以上1780℃以下、保持時間を2時間以上4時間以下として焼成してセラミック焼結体を得る。
開気孔の間隔が8μm以上18μmであるセラミックトレイを得るには、焼成温度を1600℃以上1760℃以下、保持時間を2時間以上4時間以下として焼成すればよい。
段差面上における珪素の濃度が、段差面と平行な段差面上における珪素の濃度よりも高いセラミックトレイを得るには、酸化珪素を含み、その含有量が、例えば、0.1質量%以上0.5質量%以下である焼成用敷粉の上に成形体を載置して焼成すればよい。
第1下穴および第2下穴のそれぞれの内周面と、第1下穴の第2下穴側の端面とをそれぞれ研削加工することによって、大径部2a、段差部2bおよび小径部2cを有するセラミックトレイを得ることができる。
Next, a ceramic sintered body is obtained by firing at a firing temperature of 1580 ° C. or higher and 1780 ° C. or lower and a holding time of 2 hours or longer and 4 hours or lower.
In order to obtain a ceramic tray having a pore spacing of 8 μm or more and 18 μm, the firing temperature may be 1600 ° C. or higher and 1760 ° C. or lower, and the holding time may be 2 hours or longer and 4 hours or shorter.
In order to obtain a ceramic tray in which the concentration of silicon on the stepped surface is higher than the concentration of silicon on the stepped surface parallel to the stepped surface, silicon oxide is contained, and the content thereof is, for example, 0.1% by mass or more and 0. The molded product may be placed on a baking powder having a weight of 5.5% by mass or less and fired.
By grinding the inner peripheral surfaces of the first pilot hole and the second pilot hole and the end faces of the first pilot hole on the second pilot hole side, respectively, the large diameter portion 2a, the step portion 2b, and the small diameter portion 2c are ground. A ceramic tray having the above can be obtained.

ここで、段差面2bの切断レベル差(Rδc)が4μm以下であるセラミックトレイを得るには、ASTM E11−61に記載されている粒度番号が230以上400以下のダイヤモンドの砥粒が外周面に装着された円柱状のツールを用い、ツールの回転数を6000rpm以上10000rpm以下として、第1下穴の第2下穴側の端面を研削加工すればよい。 Here, in order to obtain a ceramic tray in which the cutting level difference (Rδc) of the stepped surface 2b is 4 μm or less, diamond abrasive grains having a particle size number of 230 or more and 400 or less described in ASTM E11-61 are placed on the outer peripheral surface. Using the mounted columnar tool, the rotation speed of the tool may be set to 6000 rpm or more and 10000 rpm or less, and the end face of the first pilot hole on the second pilot hole side may be ground.

また、切断レベル差(Rδc)の変動係数が0.5以下であるセラミックトレイを得るには、粒度番号が上記範囲のダイヤモンドの砥粒が装着されたツールを用い、ツールの回転数を6000rpm以上9500rpm以下として、第1下穴の第2下穴側の端面を研削加工すればよい。 Further, in order to obtain a ceramic tray having a coefficient of variation of the cutting level difference (Rδc) of 0.5 or less, a tool equipped with diamond abrasive grains having a particle size number in the above range is used, and the rotation speed of the tool is 6000 rpm or more. The end face of the first pilot hole on the second pilot hole side may be ground at 9500 rpm or less.

粗さ曲線における算術平均粗さ(Ra)が2.3μm以下であるセラミックトレイを得るには、粒度番号が上記範囲のダイヤモンドの砥粒が装着されたツールを用い、ツールの回転数を6000rpm以上9000rpm以下として、第1下穴の第2下穴側の端面を研削加工すればよい。 To obtain a ceramic tray with an arithmetic mean roughness (Ra) of 2.3 μm or less on the roughness curve, use a tool equipped with diamond abrasive grains with a particle size number in the above range, and rotate the tool at 6000 rpm or more. The end face of the first pilot hole on the second pilot hole side may be ground at 9000 rpm or less.

算術平均粗さ(Ra)の変動係数が0.4以下であるセラミックトレイを得るには、粒度番号が上記範囲のダイヤモンドの砥粒が装着されたツールを用い、ツールの回転数を6000rpm以上8500rpm以下として、第1下穴の第2下穴側の端面を研削加工すればよい。 To obtain a ceramic tray with a coefficient of variation of arithmetic mean roughness (Ra) of 0.4 or less, use a tool equipped with diamond abrasive grains with a particle size number in the above range, and rotate the tool at 6000 rpm or more and 8500 rpm. As follows, the end face of the first pilot hole on the second pilot hole side may be ground.

粗さ曲線におけるスキューネス(Rsk)の絶対値が0.9以下であるセラミックトレイを得るには、ASTM E11−61に記載されている粒度番号が270以上400以下のダイヤモンドの砥粒が外周面に装着された円柱状のツールを用い、ツールの回転数を6000rpm以上8500rpm以下として、第1下穴の第2下穴側の端面を研削加工すればよい。 In order to obtain a ceramic tray in which the absolute value of skewness (Rsk) on the roughness curve is 0.9 or less, diamond abrasive grains having a particle size number of 270 or more and 400 or less described in ASTM E11-61 are placed on the outer peripheral surface. Using the mounted columnar tool, the rotation speed of the tool may be set to 6000 rpm or more and 8500 rpm or less, and the end face of the first pilot hole on the second pilot hole side may be ground.

粗さ曲線におけるクルトシス(Rku)が2.5以下であるセラミックトレイを得るには、ASTM E11−61に記載されている粒度番号が325以上400以下のダイヤモンドの砥粒が270以上400以下のダイヤモンドの砥粒が外周面に装着された円柱状のツールを用い、ツールの回転数を6000rpm以上8500rpm以下として、第1下穴の第2下穴側の端面を研削加工すればよい。 In order to obtain a ceramic tray having a Kurtosis (Rku) of 2.5 or less in the roughness curve, a diamond having a particle size number of 325 or more and 400 or less and having an abrasive grain of 270 or more and 400 or less described in ASTM E11-61 is obtained. The end face of the first pilot hole on the second pilot hole side may be ground by using a columnar tool on which the abrasive grains of the above are mounted on the outer peripheral surface and setting the rotation speed of the tool to 6000 rpm or more and 8500 rpm or less.

上記のようにして得られた本実施形態のセラミックトレイ1を用いて被処理体3の熱処理を行うには、まず、セラミックトレイ1の貫通孔2内に被処理体3を挿入し、大径部2aと小径部2cとの間の段差面2bの表面上に被処理体3を載置する。ついで、被処理体3を装填したセラミックトレイ1を図示しない熱処理炉に収容して、被処理体3を熱処理する。熱処理温度は、対象となる被処理体3の種類等によって異なるが、例えば400〜1000℃程度である。熱処理は、例えば、圧力により撓むダイヤフラムと、ダイヤフラムの歪みに応じたセンサ信号を出力するセンサ素子とを接合用ガラスを溶かすことによって得られる圧力センサの製造で適用されるものである。 In order to heat-treat the object to be processed 3 using the ceramic tray 1 of the present embodiment obtained as described above, first, the object to be processed 3 is inserted into the through hole 2 of the ceramic tray 1 and has a large diameter. The object to be processed 3 is placed on the surface of the stepped surface 2b between the portion 2a and the small diameter portion 2c. Next, the ceramic tray 1 loaded with the object to be processed 3 is housed in a heat treatment furnace (not shown) to heat-treat the object to be processed 3. The heat treatment temperature varies depending on the type of the target object 3 and the like, but is, for example, about 400 to 1000 ° C. The heat treatment is applied, for example, in the manufacture of a pressure sensor obtained by melting a glass for joining a diaphragm that bends due to pressure and a sensor element that outputs a sensor signal corresponding to the distortion of the diaphragm.

本開示のセラミックトレイは、段差面2bの凹凸が小さく、比較的平坦であるので、この内周面からの脱粒が発生しにくくなり、脱粒した粒子が被処理体3へ固着する等の悪影響を抑制することができる。 Since the ceramic tray of the present disclosure has small irregularities on the stepped surface 2b and is relatively flat, it is difficult for shedding of particles from the inner peripheral surface to occur, and the shed particles have an adverse effect such as sticking to the object to be processed 3. It can be suppressed.

以下、実施例を挙げて本開示のセラミックトレイを詳細に説明する。なお、本開示のセラミックトレイは以下の実施例に限定されるものではない。 Hereinafter, the ceramic tray of the present disclosure will be described in detail with reference to examples. The ceramic tray of the present disclosure is not limited to the following examples.

まず、主成分である酸化アルミニウム粉末(純度が99.9質量%)と、水酸化マグネシウム、酸化珪素および炭酸カルシウムの各粉末とを粉砕用ミルに溶媒(イオン交換水)とともに投入して、粉末の平均粒径(D50)が1.5μm以下になるまで粉砕した後、有機結合剤と、酸化アルミニウム粉末を分散させる分散剤とを添加、混合してスラリーを得た。
ここで、上記粉末の合計100質量%における水酸化マグネシウム粉末の含有量は0.36質量%、酸化珪素粉末の含有量は0.65質量%、炭酸カルシウム粉末の含有量は0.08質量%であり、残部が酸化アルミニウム粉末および不可避不純物である。
有機結合剤は、アクリルエマルジョン、ポリビニールアルコール、ポリエチレングリコール、およびポリエチレンオキサイドである。
次に、スラリーを噴霧造粒して顆粒を得た後、冷間静水圧プレス成形装置を用いて、成形圧を88MPaとして加圧することにより基板状の成形体を得た。
成形体には、切削加工により厚さ方向に、焼成後にそれぞれ大径部となる第1下穴および小径部となる第2下穴を形成した。
次に、焼成温度を1700℃、保持時間を3時間として焼成してセラミック焼結体を得た。
第1下穴および第2下穴のそれぞれの内周面と、第1下穴の第2下穴側の端面とをそれぞれ研削加工することによって、大径部2a、段差面2bおよび小径部2cを有するセラミックトレイ1を得た。
ここで、第1下穴の段差面の研削加工は、ASTM E11−61に記載されている粒度番号が400のダイヤモンドの砥粒が外周面に装着された円柱状のツールを用い、ツールの回転数を6000rpm以上8500rpm以下とした。
First, aluminum oxide powder (purity: 99.9% by mass), which is the main component, and magnesium hydroxide, silicon oxide, and calcium carbonate powders are put into a crushing mill together with a solvent (ion-exchanged water) to form a powder. After pulverizing until the average particle size (D 50 ) of the above was 1.5 μm or less, an organic binder and a dispersant for dispersing aluminum oxide powder were added and mixed to obtain a slurry.
Here, the content of the magnesium hydroxide powder is 0.36% by mass, the content of the silicon oxide powder is 0.65% by mass, and the content of the calcium carbonate powder is 0.08% by mass in the total 100% by mass of the powder. The balance is aluminum oxide powder and unavoidable impurities.
Organic binders are acrylic emulsions, polyvinyl alcohols, polyethylene glycols, and polyethylene oxides.
Next, the slurry was spray-granulated to obtain granules, and then a substrate-like molded product was obtained by pressurizing the molding pressure to 88 MPa using a cold hydrostatic press molding apparatus.
In the molded body, a first pilot hole having a large diameter portion and a second pilot hole having a small diameter portion after firing were formed in the thickness direction by cutting.
Next, a ceramic sintered body was obtained by firing at a firing temperature of 1700 ° C. and a holding time of 3 hours.
By grinding the inner peripheral surfaces of the first pilot hole and the second pilot hole and the end faces of the first pilot hole on the second pilot hole side, respectively, the large diameter portion 2a, the stepped surface 2b, and the small diameter portion 2c are ground. A ceramic tray 1 having the above was obtained.
Here, the stepped surface of the first pilot hole is ground by using a cylindrical tool having diamond abrasive grains having a particle size number of 400 described in ASTM E11-61 mounted on the outer peripheral surface, and the tool is rotated. The number was set to 6000 rpm or more and 8500 rpm or less.

(表面性状測定)
得られたセラミックトレイ1について、超深度カラー3D形状測定顕微鏡(前出のVK−9500)を用いて、以下の測定条件で、段差面2bの粗さ曲線における25%の負荷長さ率での切断レベルと、前記粗さ曲線における75%の負荷長さ率での切断レベルとの差を表す、粗さ曲線の切断レベル差(Rδc)を測定した。また、この粗さ曲線における算術平均粗さ(Ra)、スキューネス(Rsk)およびクルトシス(Rku)も測定した。その結果を表1に示す。
測定位置は、セラミックトレイ1の縦方向(図1に示す矢印Y方向)に5つの貫通孔3について各2箇所ずつ、合計10箇所を測定した。
測定条件は以下の通りである。
ゲイン:953
ND(減光)フィルタ:2
倍率:200倍
カットオフ値λs:2.5μm
カットオフ値λc:0.08mm
高さ方向の測定分解能(ピッチ):0.05μm
また、1箇所当りの測定範囲は、1300μm×1000μmとした。
(Measurement of surface properties)
The obtained ceramic tray 1 was subjected to a load length ratio of 25% on the roughness curve of the stepped surface 2b under the following measurement conditions using an ultra-depth color 3D shape measuring microscope (VK-9500 described above). The cutting level difference (Rδc) of the roughness curve, which represents the difference between the cutting level and the cutting level at a load length rate of 75% in the roughness curve, was measured. Arithmetic mean roughness (Ra), skewness (Rsk) and kurtosis (Rku) in this roughness curve were also measured. The results are shown in Table 1.
As for the measurement positions, a total of 10 points were measured, 2 points each for 5 through holes 3 in the vertical direction (arrow Y direction shown in FIG. 1) of the ceramic tray 1.
The measurement conditions are as follows.
Gain: 953
ND (dimming) filter: 2
Magnification: 200 times Cutoff value λs: 2.5 μm
Cutoff value λc: 0.08 mm
Measurement resolution (pitch) in the height direction: 0.05 μm
The measurement range per location was 1300 μm × 1000 μm.

1 セラミックトレイ
2 貫通孔
2a 大径部
2b 段差面
2c 小径部
3 被処理体
1 Ceramic tray 2 Through hole 2a Large diameter part 2b Step surface 2c Small diameter part 3 Object to be processed

Claims (10)

厚さ方向に沿って大径部と小径部とを有する複数の貫通孔を備え、前記大径部と小径部との間に存在する段差面は、該段差面の粗さ曲線における25%の負荷長さ率での切断レベルと、前記粗さ曲線における75%の負荷長さ率での切断レベルとの差を表す、前記粗さ曲線における切断レベル差(Rδc)が4μm以下である、セラミックトレイ。 A plurality of through holes having a large diameter portion and a small diameter portion along the thickness direction are provided, and the stepped surface existing between the large diameter portion and the small diameter portion is 25% of the roughness curve of the stepped surface. Ceramic having a cutting level difference (Rδc) of 4 μm or less, which represents the difference between the cutting level at the load length rate and the cutting level at a load length rate of 75% in the roughness curve. tray. 前記切断レベル差(Rδc)の変動係数が0.5以下である、請求項1に記載のセラミックトレイ。 The ceramic tray according to claim 1, wherein the coefficient of variation of the cutting level difference (Rδc) is 0.5 or less. 前記段差面は、前記粗さ曲線における算術平均粗さ(Ra)が2.3μm以下である、請求項1または請求項2に記載のセラミックトレイ。 The ceramic tray according to claim 1 or 2, wherein the stepped surface has an arithmetic mean roughness (Ra) of 2.3 μm or less in the roughness curve. 前記算術平均粗さ(Ra)の変動係数が0.4以下である、請求項3に記載のセラミックトレイ。 The ceramic tray according to claim 3, wherein the coefficient of variation of the arithmetic mean roughness (Ra) is 0.4 or less. 前記段差面は、前記粗さ曲線におけるスキューネス(Rsk)の絶対値が0.9以下である、請求項1乃至請求項4のいずれかに記載のセラミックトレイ。 The ceramic tray according to any one of claims 1 to 4, wherein the stepped surface has an absolute value of skewness (Rsk) of 0.9 or less in the roughness curve. 前記段差面は、前記粗さ曲線におけるクルトシス(Rku)が2.5以下である、請求項1乃至請求項5のいずれかに記載のセラミックトレイ。 The ceramic tray according to any one of claims 1 to 5, wherein the stepped surface has a Kurtosis (Rku) of 2.5 or less in the roughness curve. 閉気孔を有し、隣り合う前記閉気孔の重心間距離から前記閉気孔の円相当径の平均値を差し引いた値が8μm以上18μmである、請求項1乃至請求項6のいずれかに記載のセラミックトレイ。 The invention according to any one of claims 1 to 6, wherein the value obtained by subtracting the average value of the equivalent circle diameters of the closed pores from the distance between the centers of gravity of the adjacent closed pores is 8 μm or more and 18 μm. Ceramic tray. 酸化アルミニウムを主成分とし、珪素を含むセラミック焼結体からなり、前記段差面を含む断面において、前記段差面上における珪素の濃度が、前記段差面と平行な仮想面上における珪素の濃度よりも高い、請求項1乃至請求項7のいずれかに記載のセラミックトレイ。 It is composed of a ceramic sintered body containing aluminum oxide as a main component and containing silicon. In the cross section including the stepped surface, the concentration of silicon on the stepped surface is higher than the concentration of silicon on the virtual surface parallel to the stepped surface. The high ceramic tray according to any one of claims 1 to 7. 請求項1乃至請求項8のいずれかに記載のセラミックトレイの前記貫通孔内に被処理体を挿入し、貫通孔内の大径部と小径部との間の段差面上に被処理体を載置する工程と、
前記被処理体を装填した前記セラミックトレイを熱処理炉に収容して、前記被処理体を熱処理する工程と、を含む、熱処理方法。
The object to be processed is inserted into the through hole of the ceramic tray according to any one of claims 1 to 8, and the object to be processed is placed on a stepped surface between the large diameter portion and the small diameter portion in the through hole. The process of mounting and
A heat treatment method comprising a step of accommodating the ceramic tray loaded with the object to be processed in a heat treatment furnace and heat-treating the object to be processed.
請求項1乃至請求項8のいずれかに記載のセラミックトレイと、該セラミックトレイを収容する熱処理炉とを備えた熱処理装置。
A heat treatment apparatus including the ceramic tray according to any one of claims 1 to 8 and a heat treatment furnace for accommodating the ceramic tray.
JP2020062658A 2019-04-05 2020-03-31 Ceramic tray, and heat treatment method and heat treatment device using the same Pending JP2020173088A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019073030 2019-04-05
JP2019073030 2019-04-05

Publications (1)

Publication Number Publication Date
JP2020173088A true JP2020173088A (en) 2020-10-22

Family

ID=72831220

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020062658A Pending JP2020173088A (en) 2019-04-05 2020-03-31 Ceramic tray, and heat treatment method and heat treatment device using the same

Country Status (1)

Country Link
JP (1) JP2020173088A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023063396A1 (en) * 2021-10-15 2023-04-20 京セラ株式会社 Joined body, housing for electronic components, diaphragm support, and method for producing joined body

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023063396A1 (en) * 2021-10-15 2023-04-20 京セラ株式会社 Joined body, housing for electronic components, diaphragm support, and method for producing joined body

Similar Documents

Publication Publication Date Title
JP2020173089A (en) Ceramic tray, and heat treatment method and heat treatment device using the same
JP5466831B2 (en) Yttria sintered body and member for plasma process equipment
TWI434370B (en) Electrostatic sucker
WO2012020832A1 (en) Electrostatic chuck and production method thereof
TW201942974A (en) Plasma processing device member, plasma processing device comprising said plasma processing device member, and method for manufacturing plasma processing device member
JP7022817B2 (en) Ceramic structure
JP2020173088A (en) Ceramic tray, and heat treatment method and heat treatment device using the same
JP2020173086A (en) Ceramic tray, and heat treatment method and heat treatment device using the same
TWI789770B (en) Breathable plug, substrate support assembly and shower plate
JP2020173087A (en) Tray, and heat treatment method and heat treatment device using the same
WO2018131600A1 (en) Mounting member for heat treatment
JPWO2019022244A1 (en) Components for plasma processing equipment
TWI770810B (en) Wafer boat
TWI706930B (en) Ceramic article
JP6441690B2 (en) Prober chuck and prober having the same
KR102573502B1 (en) Frame member for electron beam drawing device and electron beam drawing device
TWI760156B (en) Ceramic structure and member for liquid crystal penal manufacturing device or member for semiconductor manufacturing device
WO2020204085A1 (en) Corrosion-resistant ceramic
JP2021054677A (en) Ceramic structure
JP2012060107A (en) Surface evaluation method of attraction retainer
TW202114964A (en) Ceramic structure
JP2020164406A (en) Corrosion resistant member
WO2009104740A1 (en) Sputtering targets with adjusted proportion of pinholes and manufacturing method thereof
JP6419030B2 (en) Channel member, heat exchanger using the same, and semiconductor manufacturing apparatus
KR20240093736A (en) Height adjustment member, heat treatment device and electrostatic chuck device