JP2003212665A - Setter for firing ceramic electronic component - Google Patents
Setter for firing ceramic electronic componentInfo
- Publication number
- JP2003212665A JP2003212665A JP2002013912A JP2002013912A JP2003212665A JP 2003212665 A JP2003212665 A JP 2003212665A JP 2002013912 A JP2002013912 A JP 2002013912A JP 2002013912 A JP2002013912 A JP 2002013912A JP 2003212665 A JP2003212665 A JP 2003212665A
- Authority
- JP
- Japan
- Prior art keywords
- setter
- layer
- firing
- surface roughness
- ceramic electronic
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/622—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/62222—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products obtaining ceramic coatings
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/01—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
- C04B35/10—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on aluminium oxide
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/01—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
- C04B35/48—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B41/00—After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
- C04B41/80—After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone of only ceramics
- C04B41/81—Coating or impregnation
- C04B41/85—Coating or impregnation with inorganic materials
- C04B41/87—Ceramics
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/70—Aspects relating to sintered or melt-casted ceramic products
- C04B2235/96—Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
- C04B2235/9607—Thermal properties, e.g. thermal expansion coefficient
- C04B2235/9623—Ceramic setters properties
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Ceramic Engineering (AREA)
- Materials Engineering (AREA)
- Structural Engineering (AREA)
- Organic Chemistry (AREA)
- Manufacturing & Machinery (AREA)
- Inorganic Chemistry (AREA)
- Composite Materials (AREA)
- Furnace Charging Or Discharging (AREA)
- Fixed Capacitors And Capacitor Manufacturing Machines (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】 本発明は、セラミックコン
デンサー、圧電素子、フェライト等のセラミックス電子
部品を焼成する際に使用するセッターに関するものであ
る。TECHNICAL FIELD The present invention relates to a setter used for firing a ceramic electronic component such as a ceramic capacitor, a piezoelectric element, or a ferrite.
【0002】[0002]
【従来の技術】 セラミックス電子部品焼成用セッター
は、焼成によりセラミックス質の電子部品を作製する際
に、被焼成体(焼成後に電子部品となるものである。以
下、同様である。)を載置する部材であり、焼成工程の
自動化が進んだ今日では、焼成後、当該セッターを傾斜
して、焼成後のセラミック電子部品を所定の位置に収集
することが行われている。2. Description of the Related Art In a ceramic electronic component firing setter, when a ceramic electronic component is produced by firing, a body to be fired (which becomes an electronic component after firing, the same applies hereinafter) is placed. Nowadays, when the firing process is automated, the setter is tilted after firing to collect the fired ceramic electronic components at a predetermined position.
【0003】 また、当該セッターにあっては、焼成の
際に、その構成成分が被焼成体に作用して製品を劣化さ
せないこと、更には、被焼成体中のバインダーが、当該
セッターの載置面によりその揮発を抑制されることで、
焼成ムラを生じさせないことが重要な特性として要求さ
れる。In addition, in the setter, the constituent components do not act on the object to be burned during firing so as not to deteriorate the product, and moreover, the binder in the object to be fired is placed on the setter. By suppressing the volatilization by the surface,
An important characteristic is that it does not cause uneven firing.
【0004】 従来、このような特性に着目したセッタ
ー等としては、基材表面に、溶射層を形成した治具(特
公平4−21330号公報)、更には、基材表面に、溶
射層を有し、被焼成体を載置する面の表面粗さを、十点
平均粗さで150〜1000μmとした電子部品焼成用
治具(特開2001−200378公報)が開示されて
いる。Conventionally, as a setter or the like focused on such characteristics, a jig having a sprayed layer formed on the surface of a base material (Japanese Patent Publication No. 4-21330), and further, a sprayed layer on the surface of the base material There is disclosed a jig for firing electronic parts (Japanese Patent Laid-Open No. 2001-200378), in which the surface roughness of the surface on which the object to be fired is placed has a ten-point average roughness of 150 to 1000 μm.
【0005】 これらの治具は、基材表面に形成された
溶射層により、被焼成体との反応が防止されるものであ
る。また、後者の治具は、所定の表面粗さを有する溶射
層により、被焼成体との接触面積が小さくなっているた
め、被焼成体中のバインダーが、治具の存在により何ら
抑制されずに揮発し、均一な焼成体が得られるものであ
る。In these jigs, the thermal sprayed layer formed on the surface of the base material prevents the reaction with the body to be fired. Further, in the latter jig, since the contact area with the object to be fired is small due to the sprayed layer having a predetermined surface roughness, the binder in the object to be fired is not suppressed by the presence of the jig. It is volatilized to give a uniform fired product.
【0006】 しかし、これらの治具は、表面粗さが比
較的粗いものにあっては、焼成後、当該セッターを傾斜
等しても、被焼成体が、治具表面の凹部に引っ掛かっ
て、そのままセッターに残存してしまうことがあった。
このため、一度焼成された電子部品が、更に焼成工程に
供されてしまう等、自動化にあたっての問題の一つとな
っていた。特に、近年、セラミックコンデンサーにあっ
ては、益々、微小化が進み、1.6mm×0.8mm、
1.0mm×0.5mmなどのものから0.6mm×
0.3mmのものへと主要サイズが移行してきており、
従来の治具を用いてこのサイズのセラミックコンデンサ
ーを焼成した場合には、高率で治具表面の凹部に引っ掛
かってしまうのが現状であった。However, in the case of these jigs whose surface roughness is relatively rough, even if the setter is tilted after firing, the body to be fired is caught in the concave portion of the jig surface, It sometimes remained in the setter.
Therefore, the electronic component once fired is further subjected to the firing process, which is one of the problems in automation. In particular, in recent years, ceramic capacitors have become more and more miniaturized, and 1.6 mm × 0.8 mm,
0.6mm x from 1.0mm x 0.5mm etc.
Main size is shifting to 0.3 mm,
When firing a ceramic capacitor of this size using a conventional jig, the current situation is that the concave portion on the jig surface is caught at a high rate.
【0007】[0007]
【発明が解決しようとする課題】 本発明は、上述の問
題に鑑みなされたものであり、焼成時に構成成分が被焼
成体と反応することがなく、かつ被焼成体中のバインダ
ーを、セッター載置面側からも容易に揮発して、均一な
焼成体を得ることができ、更に自動化された焼成工程
で、焼成後の製品を収集する際に、収集不良がないセラ
ミックス電子部品焼成用セッターを提供することを目的
とする。SUMMARY OF THE INVENTION The present invention has been made in view of the above problems, in which constituent components do not react with a body to be burned at the time of firing, and the binder in the body to be fired is set by a setter. A setter for firing ceramics electronic parts that does not have a collection failure when collecting products after firing in an automated firing process that can be easily volatilized from the placing side to obtain a uniform fired body The purpose is to provide.
【0008】[0008]
【課題を解決するための手段】 すなわち、本発明によ
れば、基材表面に、コート層を有するセラミックス電子
部品焼成用セッターであって、コート層が、算術平均粗
さ(Ra)で、被焼成体の厚さに対し、1/20〜1/
65の表面粗さを有することを特徴とするセラミックス
電子部品焼成用セッターが提供される。That is, according to the present invention, there is provided a ceramic electronic component baking setter having a coating layer on the surface of a base material, wherein the coating layer has an arithmetic mean roughness (Ra) 1/20 to 1 / of the thickness of the fired body
There is provided a setter for firing a ceramic electronic component, which has a surface roughness of 65.
【0009】 また、本発明によれば、基材表面に、コ
ート層を有するセラミックス電子部品焼成用セッターで
あって、コート層が、十点平均表面粗さ(Rz)で、被
焼成体の厚さに対して1/3.5〜1/11.0、かつ
凸凹の平均間隔(Sm)で、被焼成体の長さに対して1
/1.3〜1/10.0の表面粗さを有することを特徴
とするセラミックス電子部品焼成用セッターが提供され
る。Further, according to the present invention, there is provided a ceramic electronic component baking setter having a coating layer on the surface of a base material, wherein the coating layer has a ten-point average surface roughness (Rz) and a thickness of a body to be fired. 1 / 3.5 to 1 / 11.0, and the average interval (Sm) of irregularities, and 1 with respect to the length of the object to be fired.
Provided is a setter for firing a ceramic electronic component, which has a surface roughness of /1.3 to 1 / 10.0.
【0010】 ここで、算術平均粗さ(Ra)、及び十
点平均表面粗さ(Rz)は、いずれもJIS規格B06
01に準じて、評価長さ12.5mm、カットオフ値
2.5mmとして測定した値をいい、凸凹の平均間隔
(Sm)は、JIS規格B0601に準じて、評価長さ
4.0mm、基準長さ0.8mmとして測定した値をい
う。Here, the arithmetic average roughness (Ra) and the ten-point average surface roughness (Rz) are both JIS standard B06.
According to 01, the evaluation length is 12.5 mm and the cut-off value is 2.5 mm. The average interval (Sm) of the unevenness is 4.0 mm, the evaluation length is 4.0 mm, and the reference length is the standard length according to JIS B0601. A value measured as 0.8 mm.
【0011】 本発明において、0.6mm(長さ)×
0.3mm(厚さ)の被焼成体への対応を可能とするた
めには、前者のセラミックス電子部品焼成用セッターで
は、当該コート層の表面粗さが、算術平均粗さ(Ra)
で、5〜15μmであることが好ましく、後者のセラミ
ックス電子部品焼成用セッターでは、当該コート層の表
面粗さが、十点平均表面粗さ(Rz)で27〜86μ
m、かつ凸凹の平均間隔(Sm)で60〜461μmで
あることが好ましい。In the present invention, 0.6 mm (length) ×
In order to be able to cope with a body to be fired of 0.3 mm (thickness), in the former ceramic electronic component firing setter, the surface roughness of the coating layer is the arithmetic average roughness (Ra).
In the latter setter for firing ceramic electronic components, the surface roughness of the coat layer is 27 to 86 μ in terms of ten-point average surface roughness (Rz).
m, and the average spacing (Sm) of irregularities is preferably 60 to 461 μm.
【0012】 本発明においては、このような表面粗さ
のコート層を、表層単独で形成してもよいが、中間層と
表層とで構成し、実質的に、当該中間層の表面粗さによ
り、コート層の表面粗さを規定しているものが好まし
い。この際、中間層の表面粗さは、コート層の表面粗さ
に対して、算術平均粗さ(Ra)で、0.3〜2.4倍
の範囲で制御されていることが好ましい。また、中間層
の表面粗さは、算術平均粗さ(Ra)で、5〜20μm
であることが好ましく、特に、0.6mm(長さ)×
0.3mm(厚さ)の被焼成体への対応を可能とするた
めには、算術平均粗さ(Ra)で、5〜15μmとする
ことがより好ましい。In the present invention, the coating layer having such a surface roughness may be formed by the surface layer alone, but it is composed of the intermediate layer and the surface layer, and substantially depends on the surface roughness of the intermediate layer. It is preferable that the surface roughness of the coat layer is specified. At this time, the surface roughness of the intermediate layer is preferably controlled in the range of 0.3 to 2.4 times the arithmetic mean roughness (Ra) with respect to the surface roughness of the coat layer. The surface roughness of the intermediate layer is 5 to 20 μm in terms of arithmetic average roughness (Ra).
Is preferable, and in particular, 0.6 mm (length) x
In order to be able to deal with a body to be fired having a thickness of 0.3 mm (thickness), the arithmetic average roughness (Ra) is more preferably 5 to 15 μm.
【0013】 なお、このように中間層の表面粗さでコ
ート層の表面粗さを制御するには、表層の平均厚さが、
20〜200μmであることが好ましい。In order to control the surface roughness of the coat layer by the surface roughness of the intermediate layer as described above, the average thickness of the surface layer is
It is preferably 20 to 200 μm.
【0014】 本発明によるセラミックス電子部品焼成
用セッターは、上述の如く、コート層の表面粗さが、算
術平均粗さ(Ra)で、被焼成体の厚さの1/20〜1
/65であり、或いは、十点平均表面粗さ(Rz)で、
被焼成体の厚さの1/3.5〜1/11.0、かつ凸凹
の平均間隔(Sm)で、被焼成体の長さの1/1.3〜
1/10.0であるため、焼成時に当該セッターの構成
成分が被焼成体と反応することがないのは勿論、被焼成
体中のバインダーが、被焼成体の載置面から容易に揮発
され、均一な焼成体が得られるとともに、焼成後、当該
セッターを傾斜等してセラミックス電子部品を収集する
際に、総ての電子部品をセッター凹部に引っ掛けること
なくスムーズに収集することができる。As described above, in the setter for firing a ceramic electronic component according to the present invention, the surface roughness of the coating layer is the arithmetic average roughness (Ra) and is 1/20 to 1 of the thickness of the body to be fired.
/ 65, or the ten-point average surface roughness (Rz),
1 / 3.5 to 1 / 11.0 of the thickness of the object to be fired, and an average interval (Sm) of irregularities, and 1 / 1.3 to the length of the object to be fired.
Since it is 1 / 10.0, it goes without saying that the constituent components of the setter do not react with the body to be fired during firing, and the binder in the body to be fired is easily volatilized from the mounting surface of the body to be fired. A uniform fired body can be obtained, and after firing, when the ceramic electronic components are collected by inclining the setter, all the electronic components can be collected smoothly without being caught in the recesses of the setter.
【0015】[0015]
【発明の実施の形態】 以下、本発明の実施形態を具体
的に説明する。本発明のセラミックス電子部品焼成用セ
ッター(以下、単に「セッター」と省略することがあ
る。)は、基材表面に、コート層を有するものであり、
このコート層が、特定範囲の表面粗さを有するものであ
る。以下、各構成要素毎に、具体的に説明する。DETAILED DESCRIPTION OF THE INVENTION Embodiments of the present invention will be specifically described below. The ceramic electronic component firing setter of the present invention (hereinafter sometimes simply referred to as “setter”) has a coat layer on the surface of the base material,
This coat layer has a specific range of surface roughness. Hereinafter, each component will be specifically described.
【0016】 本発明における基材は、その材質につい
て特に制限はなく、セッターとして通常適用されるセラ
ミックスで構成させればよい。また、基材を作製する方
法についても特に制限はなく、例えば、セラミックス化
原料を、プレス等で成形後、焼成して作製することがで
きる。There is no particular limitation on the material of the base material in the present invention, and the base material may be made of ceramics which is usually applied as a setter. The method for producing the base material is also not particularly limited, and for example, it can be produced by molding a ceramizing raw material with a press or the like and then firing it.
【0017】 次に、本発明におけるコート層は、その
表面粗さが、算術平均粗さ(Ra)で、被焼成体の厚さ
の1/20〜1/65、好ましくは被焼成体の厚さの1
/25〜1/62である。Next, the surface roughness of the coat layer in the present invention is arithmetic average roughness (Ra) and is 1/20 to 1/65 of the thickness of the object to be fired, preferably the thickness of the object to be fired. Sano 1
/ 25 to 1/62.
【0018】 コート層の表面粗さが、算術平均粗さ
(Ra)で、被焼成体の厚さの1/65未満であると、
被焼成体中のバインダーの揮発を抑制して、均一な焼成
体が得られず、場合によっては、セッターの構成成分が
被焼成体と反応してしまうこともある。一方、コート層
の表面粗さが、算術平均粗さ(Ra)で、被焼成体の厚
さの1/20を超えると、焼成後の電子部品をセッター
の傾斜等で収集する際に、載置面の凹部に、電子部品が
引っ掛かり、そのまま残置されるものが多くなる。When the surface roughness of the coat layer is arithmetic average roughness (Ra) and is less than 1/65 of the thickness of the object to be fired,
Volatilization of the binder in the body to be fired is suppressed, and a uniform body to be fired cannot be obtained. In some cases, the constituent components of the setter may react with the body to be fired. On the other hand, when the surface roughness of the coat layer is arithmetic average roughness (Ra) and exceeds 1/20 of the thickness of the body to be fired, the electronic components after firing are mounted at the time of collecting with a setter inclination or the like. Many electronic parts are caught in the recesses of the mounting surface and left as they are.
【0019】 具体的には、例えば、1.6mm(長
さ)×0.8mm(厚さ)のサイズの電子部品を製造す
る場合には、コート層の表面粗さが、算術平均粗さ(R
a)で、12〜40μmであることが好ましい。また、
例えば、1.0mm(長さ)×0.5mm(厚さ)のサ
イズ等の如く、1.6mm(長さ)×0.8mm(厚
さ)未満のサイズの電子部品を製造する場合には、コー
ト層の表面粗さが、算術平均粗さ(Ra)で、5〜20
μmであることが好ましい。特に、最近、主要サイズに
移行しつつある0.6mm(長さ)×0.3mm(厚
さ)のサイズのセラミックスコンデンサーを製造する場
合にあっては、コート層の表面粗さが、算術平均粗さ
(Ra)で、5〜15μmであることが好ましい。因み
に、従来のセッターでは、このサイズの電子部品には全
く対応しておらず、焼成の自動化を妨げる要因となって
いたことは既に述べたところである。Specifically, for example, when manufacturing an electronic component having a size of 1.6 mm (length) × 0.8 mm (thickness), the surface roughness of the coat layer is the arithmetic average roughness ( R
In a), it is preferably 12 to 40 μm. Also,
For example, when manufacturing an electronic component having a size of less than 1.6 mm (length) × 0.8 mm (thickness), such as a size of 1.0 mm (length) × 0.5 mm (thickness), The surface roughness of the coat layer is 5 to 20 in terms of arithmetic average roughness (Ra).
It is preferably μm. In particular, when manufacturing a ceramic capacitor having a size of 0.6 mm (length) x 0.3 mm (thickness), which has recently been shifting to the main size, the surface roughness of the coating layer is an arithmetic average. The roughness (Ra) is preferably 5 to 15 μm. Incidentally, it has already been described that the conventional setter does not support electronic components of this size at all, which is a factor that hinders automation of firing.
【0020】 本発明におけるコート層は、その表面粗
さが、十点平均表面粗さ(Rz)で、被焼成体の厚さの
1/3.5〜1/11.0、かつ凸凹の平均間隔(S
m)で、被焼成体の長さの1/1.3〜1/10.0で
あることも好ましく、十点平均表面粗さ(Rz)で、被
焼成体の厚さの1/4.0〜1/10.0、かつ凸凹の
平均間隔(Sm)で、被焼成体の長さの1/1.5〜1
/8.5であることがより好ましい。The surface roughness of the coating layer in the present invention is a ten-point average surface roughness (Rz), which is 1 / 3.5 to 1 / 11.0 of the thickness of the object to be fired, and the average of unevenness. Interval (S
m) is preferably 1 / 1.3 to 1 / 10.0 of the length of the object to be fired, and is ten-point average surface roughness (Rz), which is 1/4. 0 to 1 / 10.0, and the average interval (Sm) of irregularities, 1 / 1.5 to 1 of the length of the object to be fired
It is more preferably /8.5.
【0021】 コート層の表面粗さが、十点平均表面粗
さ(Rz)で、被焼成体の厚さの1/11.0未満であ
ると、被焼成体とセッター間で、充分な空間が確保でき
ないため、バインダーの揮発が抑制され、焼成ムラを生
じ易くなる。一方、コート層の表面粗さが、十点平均表
面粗さ(Rz)で、被焼成体の厚さの1/3.5を超え
ると、焼成後の電子部品をセッターの傾斜等で収集する
際に、載置面の凹部に、電子部品が引っ掛かり、そのま
ま残置されるものが多くなる。When the surface roughness of the coating layer is ten-point average surface roughness (Rz) and is less than 1 / 11.0 of the thickness of the object to be fired, a sufficient space is provided between the object to be fired and the setter. Is not secured, the volatilization of the binder is suppressed, and firing unevenness is likely to occur. On the other hand, when the surface roughness of the coat layer is the ten-point average surface roughness (Rz) and exceeds 1 / 3.5 of the thickness of the body to be fired, the electronic components after firing are collected by the inclination of the setter or the like. At this time, many electronic components are caught in the recesses on the mounting surface and left as they are.
【0022】 また、コート層の表面粗さが、凸凹の平
均間隔(Sm)で、被焼成体の長さの1/10.0未
満、又は1/1.3超過であると、被焼成体とセッター
間で、充分な空間が確保できないため、バインダーの揮
発が抑制され、焼成ムラを生じ易くなる。If the surface roughness of the coating layer is less than 1 / 10.0 or more than 1 / 1.3 of the average length (Sm) of irregularities of the object to be fired, the object to be fired is Since a sufficient space cannot be secured between the setter and the setter, the volatilization of the binder is suppressed, and uneven firing is likely to occur.
【0023】 具体的には、例えば、最近、主要サイズ
に移行しつつある0.6mm(長さ)×0.3mm(厚
さ)のサイズのセラミックスコンデンサーを製造する場
合にあっては、コート層の表面粗さが、十点平均表面粗
さ(Rz)で、27〜86μmかつ凸凹の平均間隔(S
m)で、60〜461μmであることが好ましい。Specifically, for example, in the case of manufacturing a ceramic capacitor having a size of 0.6 mm (length) × 0.3 mm (thickness), which has recently been shifting to a main size, the coating layer Has a ten-point average surface roughness (Rz) of 27 to 86 μm and an average spacing (S).
m), it is preferably from 60 to 461 μm.
【0024】 次に、コート層は、基材の載置部分を被
覆するものであればよいが、焼成時に炉内のガスと基材
との反応が生じると、基材が変形する危険性があるの
で、その他の部分についてもコート層を形成しておくこ
とが好ましい。Next, the coating layer may be any layer as long as it coats the mounting portion of the base material, but if the reaction between the gas in the furnace and the base material occurs during firing, the base material may be deformed. Therefore, it is preferable to form the coat layer on other portions as well.
【0025】 また、コート層としては、表層単独から
なるもの、中間層と表層とからなるものいずれでもよ
い。もっとも、コート層を中間層と表層とで構成する場
合には、実質的に、中間層の表面粗さにより、コート層
の表面粗さを規定しているものが好ましい。このような
コート層では、上述した所望の表面粗さを得難いガスプ
ラズマ溶射等の方法で表層を形成することができる。The coat layer may be either a surface layer alone or an intermediate layer and a surface layer. However, when the coat layer is composed of the intermediate layer and the surface layer, it is preferable that the surface roughness of the coat layer is substantially defined by the surface roughness of the intermediate layer. With such a coat layer, the surface layer can be formed by a method such as gas plasma spraying which makes it difficult to obtain the desired surface roughness.
【0026】 また、この場合には、中間層の表面粗さ
を、コート層の表面粗さに対して、算術平均粗さ(R
a)で、0.3〜2.4倍とすることが好ましく、0.
5〜2.0倍とすることがより好ましい。Further, in this case, the surface roughness of the intermediate layer is calculated as the arithmetic average roughness (R
In a), it is preferably 0.3 to 2.4 times, and 0.
It is more preferable to set it to 5 to 2.0 times.
【0027】 中間層の表面粗さが、コート層の表面粗
さに対して、この範囲の算術平均粗さ(Ra)である
と、表層の厚さが略均一となり、コート層の劣化が均一
に発生するため、当該表層が剥離し難くなる。When the surface roughness of the intermediate layer is an arithmetic average roughness (Ra) within this range with respect to the surface roughness of the coat layer, the thickness of the surface layer becomes substantially uniform and the deterioration of the coat layer is uniform. Therefore, it is difficult for the surface layer to peel off.
【0028】 具体的には、被焼成体のサイズ毎に、前
述したコート層の表面粗さと略同一の表面粗さとするこ
とが好ましく、例えば、0.6mm(長さ)×0.3m
m(厚さ)より大きなサイズのセラミックスコンデンサ
ーを製造する場合にあっては、中間層の表面粗さを、算
術平均粗さ(Ra)で、5〜20μmとすることが好ま
しい。また、0.6mm(長さ)×0.3mm(厚さ)
のサイズのセラミックスコンデンサーを製造する場合に
あっては、中間層の表面粗さを、算術平均粗さ(Ra)
で、5〜15μmとすることが好ましい。Specifically, it is preferable that the size of the body to be fired is substantially the same as the surface roughness of the above-mentioned coat layer, for example, 0.6 mm (length) × 0.3 m.
In the case of manufacturing a ceramic capacitor having a size larger than m (thickness), the surface roughness of the intermediate layer is preferably 5 to 20 μm in terms of arithmetic average roughness (Ra). Also, 0.6 mm (length) x 0.3 mm (thickness)
In the case of manufacturing a ceramic capacitor of the size of, the surface roughness of the intermediate layer is calculated as the arithmetic mean roughness (Ra).
Therefore, the thickness is preferably 5 to 15 μm.
【0029】 また、コート層を中間層と表層とで構成
する場合には、表層の平均厚さを、20〜200μmと
することが好ましく、20〜100μmとすることがよ
り好ましい。表層の平均厚さが20μm未満では、中間
層の一部に表層が付着せずに、中間層が露出する場合が
あり、セッターの構成成分が被焼成体と反応し易くな
る。一方、表層の平均厚さが200μmを超えると、中
間層の表面粗さにより、コート層の表面粗さを制御する
ことが困難になる。なお、中間層の厚さについては、特
に制限はないが、70〜300μm程度で形成すること
が好ましい。When the coat layer is composed of the intermediate layer and the surface layer, the average thickness of the surface layer is preferably 20 to 200 μm, and more preferably 20 to 100 μm. When the average thickness of the surface layer is less than 20 μm, the surface layer may not be attached to a part of the intermediate layer and the intermediate layer may be exposed, and the constituent components of the setter may easily react with the body to be fired. On the other hand, when the average thickness of the surface layer exceeds 200 μm, it becomes difficult to control the surface roughness of the coat layer due to the surface roughness of the intermediate layer. The thickness of the intermediate layer is not particularly limited, but it is preferable to form the intermediate layer with a thickness of about 70 to 300 μm.
【0030】 本発明においてコート層を表層単独で構
成する場合には、当該表層を、例えば、スプレーコーテ
ィング、又は粗面化処理を伴う溶射により形成すればよ
い。この際、スプレーコーティングは、原料粒度、スラ
リー濃度、コート条件等を制御して所望の表面粗さとす
ればよく、粗面化処理を伴う溶射は、原料粒度、原料投
入条件を制御して所望の表面粗さとすればよい。In the present invention, when the coat layer is composed of the surface layer alone, the surface layer may be formed by, for example, spray coating or thermal spraying accompanied with a surface roughening treatment. At this time, the spray coating may be performed by controlling the raw material particle size, slurry concentration, coating conditions, etc. to obtain a desired surface roughness, and the thermal spraying accompanied by the surface roughening treatment is performed by controlling the raw material particle size and the raw material charging conditions. The surface roughness may be used.
【0031】 一方、コート層を中間層と表層とで構成
する場合でも、当該中間層については、上記と同様に、
例えば、スプレーコーティング、又は粗面化を伴う溶射
により形成すればよい。また、当該表層については、例
えば、スプレーコーティング、又は粗面化を伴わない溶
射により形成すればよい。On the other hand, even when the coat layer is composed of the intermediate layer and the surface layer, the intermediate layer is the same as above.
For example, it may be formed by spray coating or thermal spraying with surface roughening. The surface layer may be formed by, for example, spray coating or thermal spraying without roughening.
【0032】 また、スプレーコーティングにより表層
を形成する際には、原料粒度、スラリー濃度、コート条
件等を制御して所望の表面粗さとすればよく、溶射によ
り表層を形成する際には、溶射方法、原料粒度及び原料
投入位置等を選択及び制御して所望の表面粗さとすれば
よい。When forming the surface layer by spray coating, the raw material particle size, slurry concentration, coating conditions and the like may be controlled to obtain a desired surface roughness. When forming the surface layer by thermal spraying, a thermal spraying method may be used. The raw material particle size and raw material charging position may be selected and controlled to obtain a desired surface roughness.
【0033】 溶射としては、例えば、加熱の方法によ
り燃焼炎を用いるガス溶射、アークを用いるアーク溶
射、プラズマジェットを用いるプラズマ溶射等を挙げる
ことができるが、精度よく平均厚さ20〜250μmの
層が形成できる点で、プラズマ溶射により表層を形成す
ることが好ましい。また、プラズマ溶射としては、水安
定化プラズマ溶射、ガスプラズマ溶射等を挙げることが
でき、水安定化プラズマ溶射は、中間層に対して密着性
の高い表層を形成することができる点で好ましく、ガス
プラズマ溶射は、平均厚さ20〜50μm程度まで、表
層を薄層化でき、中間層の表面粗さを、載置面の表面粗
さに、より直接的に反映できる点で好ましい。As the thermal spraying, for example, gas thermal spraying using a combustion flame depending on the heating method, arc thermal spraying using an arc, plasma thermal spraying using a plasma jet, and the like can be mentioned, but a layer having an average thickness of 20 to 250 μm can be accurately formed. It is preferable that the surface layer is formed by plasma spraying because it can be formed. Further, as the plasma spraying, water-stabilized plasma spraying, gas plasma spraying and the like can be mentioned, and water-stabilized plasma spraying is preferable in that a surface layer having high adhesion to the intermediate layer can be formed, Gas plasma spraying is preferable because the surface layer can be thinned to an average thickness of about 20 to 50 μm and the surface roughness of the intermediate layer can be more directly reflected on the surface roughness of the mounting surface.
【0034】 なお、本発明において、中間層及び表層
の材質については特に制限はなく、セッターに通常コー
トされるもので構成させればよい。In the present invention, the materials of the intermediate layer and the surface layer are not particularly limited and may be those which are normally coated on the setter.
【0035】[0035]
【実施例】 以下、本発明を実施例に基づいて、より具
体的に説明する。但し、本発明はこれらの実施例に何ら
限定されるものではない。EXAMPLES Hereinafter, the present invention will be described more specifically based on examples. However, the present invention is not limited to these examples.
【0036】(評価方法)
表面粗さ
算術平均粗さ(Ra)、十点平均表面粗さ(Rz)、凸
凹の平均間隔(Sm)について評価した。評価は、JI
S規格B0601に準じて行い、算術平均粗さ(R
a)、及び十点平均表面粗さ(Rz)は、いずれも、評
価長さ12.5mm、カットオフ値2.5mmとして測
定し、凸凹の平均間隔(Sm)は、評価長さ4.0m
m、基準長さ0.8mmとして測定した。(Evaluation method) Surface roughness Arithmetic average roughness (Ra), ten-point average surface roughness (Rz), and average spacing of irregularities (Sm) were evaluated. Evaluation is JI
Performed according to S Standard B0601, and calculated the arithmetic mean roughness (R
a) and ten-point average surface roughness (Rz) are both measured with an evaluation length of 12.5 mm and a cut-off value of 2.5 mm, and the average interval (Sm) of irregularities is an evaluation length of 4.0 m.
m, and the standard length was 0.8 mm.
【0037】 厚み比率(1)
寸法が0.6mm(長さ)×0.3mm(厚さ)のもの
を被焼成体とした際の、被焼成体の厚さに対する各実施
例及び各比較例におけるセッターの算術平均粗さ(R
a)の比を示した。Thickness ratio (1) Each example and each comparative example with respect to the thickness of the body to be fired when the size of the body to be fired is 0.6 mm (length) × 0.3 mm (thickness) Arithmetic mean roughness of setter (R
The ratio of a) is shown.
【0038】 厚み比率(2)
寸法が0.6mm(長さ)×0.3mm(厚さ)のもの
を被焼成体とした際の、被焼成体の厚さに対する各実施
例及び各比較例におけるセッターの十点平均表面粗さ
(Rz)の比を示した。Thickness ratio (2) Each example and each comparative example with respect to the thickness of the object to be fired when the object to be fired has a dimension of 0.6 mm (length) × 0.3 mm (thickness) The ratio of the ten-point average surface roughness (Rz) of the setter is shown.
【0039】 長さ比率
寸法が0.6mm(長さ)×0.3mm(厚さ)のもの
を被焼成体とした際の、被焼成体の長さに対する各実施
例及び比較例におけるセッターの凸凹の平均間隔(S
m)の比を示した。When the length ratio dimension of 0.6 mm (length) × 0.3 mm (thickness) is used as the object to be fired, the setters of the respective Examples and Comparative Examples with respect to the length of the object to be fired Average spacing of irregularities (S
The ratio of m) is shown.
【0040】 引っ掛かり頻度
チタン酸バリウムを原料として、寸法が0.6mm(長
さ)×0.3mm(厚さ)で、市販のセラミックスコン
デンサーと同形状の試料を作製した。そして、この試料
を、5000個、各実施例及び各比較例で得られたセッ
ターに載置した後、当該セッターを30°傾斜させた状
態で振動を加え、試料の移動、収集状態を観察して評価
した。評価は、総ての試料が、コート層の凹部に引っ掛
かることなく、すべて収集された場合を○、一部の試料
で、引っ掛かりながらもすべて収集された場合を△、引
っ掛かりがありすべての試料が収集できなかった場合を
×として評価した。Catch Frequency Using barium titanate as a raw material, a sample having dimensions of 0.6 mm (length) × 0.3 mm (thickness) and the same shape as a commercially available ceramic capacitor was prepared. Then, after placing 5000 of this sample on the setters obtained in each of the examples and the comparative examples, vibration was applied while the setter was tilted at 30 ° to observe the movement and collection state of the sample. Evaluated. The evaluation was ○ when all the samples were collected without being caught in the concave portion of the coat layer, and Δ when some samples were collected while being caught, and all the samples were caught and were caught. When it could not be collected, it was evaluated as x.
【0041】 バインダー揮発性
チタン酸バリウムを主原料とし、バインダーとしてアク
リル系バインダー30%を含有する原料を用い、ドクタ
ーブレード法にてシートを作製し、次いで、圧着、切断
して、0.6mm(長さ)×0.3mm(厚さ)のサイ
ズで、市販のセラミックスコンデンサーと同形状とした
ものを試料として作製した。そして、この試料を、各実
施例及び比較例で得られたセッターに載置し、N2雰囲
気下で、300℃で2時間加熱し、加熱前後で減量した
重量にて、揮発したバインダー量を評価した。評価は、
理論上の重量減量を100%として、100〜80%を
○、80〜50%を△、50%以下を×として評価し
た。Binder A volatile barium titanate is used as a main raw material, and a raw material containing 30% of an acrylic binder is used as a binder to prepare a sheet by a doctor blade method. A sample having a size of (length) × 0.3 mm (thickness) and the same shape as a commercially available ceramic capacitor was prepared. Then, this sample was placed on the setters obtained in each Example and Comparative Example, heated at 300 ° C. for 2 hours under N 2 atmosphere, and the amount of volatilized binder was determined by the weight reduced before and after heating. evaluated. Evaluation,
The theoretical weight loss was evaluated as 100%, 100-80% was evaluated as O, 80-50% was evaluated as Δ, and 50% or less was evaluated as x.
【0042】 剥離性
各実施例及び各比較例で得られたセッターに誘電体であ
るチタン酸バリウム溶液を塗布した後、1350℃、2
時間の焼成を5回繰り返し、基材からコート層が剥離し
ているかを確認した。評価は、まったくコート層の剥離
が認められないものを○、コート層の20%以下の部分
に剥離が認められるのものを△、コート層の20%以上
の部分で剥離が認められるのものを×として評価した。Peelability A barium titanate solution, which is a dielectric, was applied to the setters obtained in each of the examples and each of the comparative examples, and then 1350 ° C. and 2
It was confirmed that the coating layer was peeled from the substrate by repeating the firing for 5 times. The evaluation is as follows: No peeling of the coat layer was observed, Peeling was observed in 20% or less of the coat layer, and Peeling was observed in 20% or more of the coat layer. It was evaluated as x.
【0043】 表層付着性
中間層及び表層を形成した各実施例及び各比較例のセッ
ターを切断して、切断面を顕微鏡で観察し、未着部分の
無い場合を○、未着部分の有る場合を×として評価し
た。When the setters of Examples and Comparative Examples in which the surface-adhesive intermediate layer and the surface layer are formed are cut and the cut surfaces are observed with a microscope, the case where there is no unattached portion is ○, the case where there is an unattached portion Was evaluated as x.
【0044】 中間層によるコート層の表面粗さに対
する制御性
中間層と、コート層(表層)とについて、算術平均算術
平均粗さ(Ra)を測定し、中間層の算術平均算術平均
粗さ(Ra)が、コート層(表層)の算術平均算術平均
粗さ(Ra)に対して、0.3〜2.4倍である場合を
○、それ以外の場合を×として評価した。Controllability of Surface Roughness of Coat Layer by Intermediate Layer Arithmetic Average Arithmetic Average Roughness (Ra) of the intermediate layer and the coat layer (surface layer) was measured to obtain the arithmetic average arithmetic mean roughness (Ra) of the intermediate layer. When Ra) was 0.3 to 2.4 times the arithmetic average roughness (Ra) of the coat layer (surface layer), it was evaluated as ◯, and the other cases were evaluated as x.
【0045】(実施例1)基材としては、Al2O3含有
量が80質量%、SiO2が19質量%、その他の材料
が1質量%からなる材料をプレス成形した後、焼成し
て、Al2O3−SiO2質で、サイズが縦150mm×
横150mm×厚さ5mmの板状体のものを作製した。Example 1 As a base material, a material having an Al 2 O 3 content of 80% by mass, SiO 2 of 19% by mass and other materials of 1% by mass was press-molded and then fired. , Al 2 O 3 -SiO 2 quality, size 150 mm long ×
A plate-shaped body having a width of 150 mm and a thickness of 5 mm was prepared.
【0046】 次いで、平均粒径2μmのAl2O360
質量%と、平均粒径20μmのAl2O340質量%とを
混合して固形成分を調製した後、水30質量部に対し
て、この固形成分67質量部と、バインダー3質量部と
を含有させてスラリーを調製した。そして、このスラリ
ーを、基材の表面に、スプレーガンを用いて、空気圧5
kg/cm2でスプレーコーティングした後、1450
℃で2時間焼付け処理を行い、Al2O3質で、厚さ10
0μm、算術平均算術平均粗さ(Ra)5μmの中間層
を形成した。Then, Al 2 O 3 60 having an average particle diameter of 2 μm is used.
After mass% and 40 mass% of Al 2 O 3 having an average particle diameter of 20 μm are mixed to prepare a solid component, 67 mass parts of this solid component and 3 mass parts of the binder are added to 30 mass parts of water. A slurry was prepared by incorporating it. Then, this slurry is applied to the surface of the base material with a spray gun at an air pressure of 5
After the spray coating in kg / cm 2, 1450
After baking for 2 hours at ℃, Al 2 O 3 quality, thickness 10
An intermediate layer having a thickness of 0 μm and an arithmetic mean arithmetic mean roughness (Ra) of 5 μm was formed.
【0047】 次いで、この基材の表面に、平均粒径8
0μmのジルコニア粒子を用いてプラズマ溶射し、Zr
O2質で、厚さ100μm、算術平均算術平均粗さ(R
a)15μmの表層を形成して、セラミックス電子部品
用セッターを製造した。特性及び評価については、表1
にまとめて示す。Then, on the surface of this base material, an average particle size of 8
Plasma spraying using 0 μm zirconia particles
O 2 quality, thickness 100 μm, arithmetic average arithmetic average roughness (R
a) A surface layer having a thickness of 15 μm was formed to manufacture a ceramic electronic component setter. Table 1 shows the characteristics and evaluation.
Are shown together.
【0048】(実施例2〜4及び比較例1〜3)それぞ
れ、平均粒径60μm、50μm、40μm、110μ
m、80μm、又は30μmのジルコニア粒子を用いて
プラズマ溶射を行い、それぞれ、算術平均算術平均粗さ
(Ra)12μm、8μm、5μm、20μm、16μ
m、又は4μmの表層を形成したこと以外は、実施例1
と同様にして、セッターを製造した。特性及び評価につ
いては、表1にまとめて示す。(Examples 2 to 4 and Comparative Examples 1 to 3) Average particle diameters of 60 μm, 50 μm, 40 μm and 110 μ, respectively.
Plasma spraying was performed using zirconia particles of m, 80 μm, or 30 μm, and the arithmetic mean arithmetic mean roughness (Ra) was 12 μm, 8 μm, 5 μm, 20 μm, 16 μ, respectively.
m or 4 μm except that a surface layer was formed.
A setter was manufactured in the same manner as in. The characteristics and evaluation are summarized in Table 1.
【0049】(評価)表1に示すように、算術平均粗さ
(Ra)が、5〜15μmの範囲で、厚み比率(1)
が、1/20.0〜1/60.0の実施例1〜4のセラ
ミックス電子部品用セッターでは、当該セッターを30
°傾斜させると、載置した試料が総てスムーズに収集さ
れ、バインダーの揮発性も良好であった。(Evaluation) As shown in Table 1, when the arithmetic average roughness (Ra) is in the range of 5 to 15 μm, the thickness ratio (1) is set.
However, in the ceramic electronic component setters of Examples 1 to 4 of 1 / 20.0 to 1 / 60.0, the setter is 30
When tilted, all the mounted samples were collected smoothly and the volatility of the binder was good.
【0050】 これに対して、算術平均粗さ(Ra)
が、それぞれ20μm、16μmで、厚み比率(1)
が、それぞれ1/15.0、1/18.8と大きな比較
例1、2のセラミックス電子部品用セッターでは、バイ
ンダーの揮発性がいずれも良好であったものの、当該セ
ッターを30°傾斜させると、載置した試料が高率で引
っ掛かった。また、算術平均粗さ(Ra)が4μmで、
厚み比率(1)が1/75.0と小さな比較例3のセラ
ミックス電子部品用セッターでは、当該セッターを30
°傾斜させると、載置した試料が総てスムーズに収集さ
れるものの、バインダーの揮発性については、重量減量
が80%未満のものが認められた。On the other hand, arithmetic mean roughness (Ra)
Are 20 μm and 16 μm respectively, and the thickness ratio (1)
However, in the ceramic electronic component setters of Comparative Examples 1 and 2 which have large values of 1 / 15.0 and 1 / 18.8, respectively, the volatility of the binder was good, but when the setter was inclined by 30 °. , The placed sample was caught at a high rate. Also, the arithmetic mean roughness (Ra) is 4 μm,
In the ceramic electronic component setter of Comparative Example 3 in which the thickness ratio (1) is as small as 1 / 75.0, the setter is 30
When the sample was tilted, all the mounted samples were collected smoothly, but the volatility of the binder was found to be less than 80% by weight loss.
【0051】[0051]
【表1】 [Table 1]
【0052】(実施例5〜10及び比較例4〜7)それ
ぞれ、平均粒径50μmのジルコニア粒子を用いて、溶
射ガンと基材との距離を調整してプラズマ溶射を行うこ
とにより、それぞれ所定の表面粗さの表層としたこと以
外は、実施例1と同様にして、セッターを製造した。(Examples 5 to 10 and Comparative Examples 4 to 7) Using zirconia particles having an average particle size of 50 μm, plasma spraying was performed by adjusting the distance between the spray gun and the base material. A setter was produced in the same manner as in Example 1 except that the surface layer having the surface roughness of 1 was used.
【0053】(評価)表2に示すように、厚み比率
(2)が、1/4.0〜1/10.0であり、長さ比率
が、1/1.5〜1/8.0である実施例5〜10のセ
ラミックス電子部品用セッターでは、当該セッターを3
0°傾斜させると、載置した試料が総てスムーズに収集
され、バインダーの揮発性も良好であった。(Evaluation) As shown in Table 2, the thickness ratio (2) is 1 / 4.0 to 1 / 10.0 and the length ratio is 1 / 1.5 to 1 / 8.0. In the ceramic electronic component setters of Examples 5 to 10, which are
When the sample was tilted at 0 °, all the mounted samples were collected smoothly and the volatility of the binder was good.
【0054】 これに対して、厚み比率(2)が、1/
7.0であるものの、長さ比率が、1/1.2と大きな
比較例4、及び長さ比率が、1/12.0と小さな比較
例5のセラミックス電子部品用セッターでは、いずれ
も、当該セッターを30°傾斜させると、載置した試料
が総てスムーズに収集されたものの、バインダーの揮発
性については、殆どの試料で重量減量が50%以下であ
った。On the other hand, the thickness ratio (2) is 1 /
Although the length ratio is 7.0, the setter for ceramic electronic parts of Comparative Example 4 having a large length ratio of 1 / 1.2 and the setter for a ceramic electronic component having a small length ratio of 1 / 12.0 have both: When the setter was tilted at 30 °, all the mounted samples were collected smoothly, but the volatility of the binder was 50% or less in weight loss in most of the samples.
【0055】 また、長さ比率が、1/3.0であるも
のの、厚み比率(2)が、1/3.0と大きな比較例6
のセラミックス電子部品用セッターでは、バインダーの
揮発性が良好であったものの、当該セッターを30°傾
斜させると、載置した試料が高率で引っ掛かった。ま
た、長さ比率が、1/3.0であるものの、厚み比率
が、1/12.0と小さな比較例7のセラミックス電子
部品用セッターでは、当該セッターを30°傾斜させる
と、載置した試料が総てスムーズに収集されたものの、
バインダーの揮発性については、殆どの試料で重量減量
が50%以下であった。Further, although the length ratio is 1 / 3.0, the thickness ratio (2) is as large as 1 / 3.0. Comparative Example 6
In the ceramic electronic component setter, the binder had good volatility, but when the setter was tilted at 30 °, the mounted sample was caught at a high rate. Further, although the length ratio is 1 / 3.0, the thickness ratio is as small as 1 / 12.0, and the ceramic electronic component setter of Comparative Example 7 is mounted when the setter is inclined by 30 °. Although all samples were collected smoothly,
Regarding the volatility of the binder, the weight loss was 50% or less in most of the samples.
【0056】[0056]
【表2】 [Table 2]
【0057】(実施例11〜14及び比較例8〜10)
中間層を形成した基材に、それぞれ、平均粒径30μ
m、50μm、60μm、90μm、25μm、120
μm、又は150μmのジルコニア粒子を用いて、プラ
ズマ溶射し、それぞれ、算術平均粗さ(Ra)2.5μ
m、8.0μm、10.0μm、16μm、1.5μ
m、17.0μm、又は20.0μmの表層を形成し
て、セラミックス電子部品用セッターを製造したこと以
外は、実施例1と同様にして、セッターを製造した。(Examples 11 to 14 and Comparative Examples 8 to 10)
The average particle size is 30μ on the base material on which the intermediate layer is formed.
m, 50 μm, 60 μm, 90 μm, 25 μm, 120
Plasma spraying was performed using zirconia particles of μm or 150 μm, and the arithmetic mean roughness (Ra) was 2.5 μm, respectively.
m, 8.0 μm, 10.0 μm, 16 μm, 1.5 μ
A setter was produced in the same manner as in Example 1 except that a setter having a thickness of m, 17.0 μm, or 20.0 μm was formed to produce a setter for ceramic electronic components.
【0058】(評価)表3に示すように、表面粗さ比
が、0.313〜2.381である実施例11〜14の
セラミックス電子部品用セッターでは、コート層の剥離
がまったく認められなかった。(Evaluation) As shown in Table 3, in the ceramic electronic component setters of Examples 11 to 14 having a surface roughness ratio of 0.313 to 2.381, no peeling of the coating layer was observed. It was
【0059】 これに対して、表面粗さ比が、3.33
3と大きな比較例8及び表面粗さ比が、0.294と比
較的小さな比較例9のセラミックス電子部品用セッター
では、コート層の一部に剥離が認められた。また、表面
粗さ比が、0.250と更に小さな比較例10のセラミ
ックス電子部品用セッターでは、コート層の殆どの部分
で剥離が認められた。On the other hand, the surface roughness ratio is 3.33.
In Comparative Example 8 having a large value of 3 and Comparative Example 9 having a relatively small surface roughness ratio of 0.294, a part of the coat layer was peeled off in the setter for ceramic electronic parts of Comparative Example 9. Further, in the ceramic electronic component setter of Comparative Example 10 in which the surface roughness ratio was as small as 0.250, peeling was recognized in most of the coat layer.
【0060】[0060]
【表3】 [Table 3]
【0061】(実施例15〜18及び比較例11、1
2)まず、平均粒径2μmのAl2O360質量%と、平
均粒径20μmのAl2O340質量%とを混合して固形
成分を調製した後、水25質量部に対して、この固形成
分72質量部と、バインダー3質量部とを含有させてス
ラリーを調製した。次いで、実施例1と同様にして作製
した基材表面に、このスラリーを、実施例1と同様にし
て、スプレーコーティング、更には焼付け処理を行い、
算術平均算術平均粗さ(Ra)20.0μmの中間層を
形成した。次いで、この基材の表面に、平均粒径110
μmのジルコニア粒子を用いて、プラズマ溶射し、Zr
O2質の表層を、それぞれ厚さ20.0μm、50.0
μm、100.0μm、200.0μm、15.0μ
m、又は250.0μmで形成して、セラミックス電子
部品用セッターを製造した。(Examples 15 to 18 and Comparative Examples 11 and 1)
2) First, 60% by mass of Al 2 O 3 having an average particle size of 2 μm and 40% by mass of Al 2 O 3 having an average particle size of 20 μm are mixed to prepare a solid component, and then, with respect to 25 parts by mass of water, 72 parts by mass of this solid component and 3 parts by mass of a binder were contained to prepare a slurry. Then, on the surface of the base material prepared in the same manner as in Example 1, this slurry was subjected to spray coating and further baking treatment in the same manner as in Example 1,
Arithmetic Mean An intermediate layer having an arithmetic average roughness (Ra) of 20.0 μm was formed. Then, on the surface of this substrate, an average particle size of 110
Plasma spraying with Zr
O 2 quality surface layer, thickness 20.0 μm, 50.0
μm, 100.0 μm, 200.0 μm, 15.0 μ
m or 250.0 μm to produce a ceramic electronic component setter.
【0062】(評価)表4に示すように、表層厚さが、
20.0〜200.0μmである実施例15〜18のセ
ラミックス電子部品用セッターでは、中間層と表層との
間に、未着部分はまったく認められず、中間層の算術平
均算術平均粗さ(Ra)が、コート層(表層)の算術平
均算術平均粗さ(Ra)に対して、0.3〜2.4倍の
範囲内にあった。(Evaluation) As shown in Table 4, the surface layer thickness is
In the ceramic electronic component setters of Examples 15 to 18 having a thickness of 20.0 to 200.0 μm, no unattached portion was observed between the intermediate layer and the surface layer, and the arithmetic mean arithmetic mean roughness of the intermediate layer ( Ra) was in the range of 0.3 to 2.4 times the arithmetic average roughness (Ra) of the coat layer (surface layer).
【0063】 これに対して、表層厚さが、15.0μ
mである比較例11のセラミックス電子部品用セッター
では、中間層と表層との間に、一部で未着部分が認めら
れた。また、表層厚さが、250.0μmである比較例
12のセラミックス電子部品用セッターでは、コート層
(表層)と中間層との算術平均算術平均粗さ(Ra)の
較差が大きく、中間層によるコート層の表面粗さの制御
が不充分であった。On the other hand, the surface layer has a thickness of 15.0 μm.
In the ceramic electronic component setter of Comparative Example 11 with m, some unattached portions were observed between the intermediate layer and the surface layer. Further, in the ceramic electronic component setter of Comparative Example 12 having a surface layer thickness of 250.0 μm, there is a large difference in the arithmetic mean arithmetic mean roughness (Ra) between the coat layer (surface layer) and the intermediate layer. The control of the surface roughness of the coat layer was insufficient.
【0064】[0064]
【表4】 [Table 4]
【0065】[0065]
【発明の効果】 以上説明した通り、本発明のセラミッ
クス電子部品焼成用セッターによれば、焼成時に構成成
分が被焼成体と反応することがないばかりか、被焼成体
中のバインダーの揮発を抑制することがなく、均一な焼
成体を得ることができる。加えて、自動化された焼成工
程で、焼成後の製品を収集する際に、何ら収集不良がな
く、焼成自動化への対応が可能となる。As described above, according to the ceramic electronic component firing setter of the present invention, not only the constituents do not react with the body to be fired during firing, but also volatilization of the binder in the body to be fired is suppressed. Without doing so, it is possible to obtain a uniform fired body. In addition, in the automated baking process, when collecting the products after baking, there is no collection failure, and it is possible to cope with the automation of baking.
───────────────────────────────────────────────────── フロントページの続き (72)発明者 二本松 浩明 岐阜県可児郡御嵩町美佐野3040番地 エヌ ジーケイ・アドレック株式会社内 (72)発明者 森笹 真司 岐阜県可児郡御嵩町美佐野3040番地 エヌ ジーケイ・アドレック株式会社内 ─────────────────────────────────────────────────── ─── Continued front page (72) Inventor Hiroaki Nihonmatsu 3040 Misano, Mitake-cho, Kani-gun, Gifu Prefecture CG Adrec Co., Ltd. (72) Inventor Shinji Morasasa 3040 Misano, Mitake-cho, Kani-gun, Gifu Prefecture CG Adrec Co., Ltd.
Claims (8)
クス電子部品焼成用セッターであって、 該コート層が、算術平均粗さ(Ra)で、被焼成体の厚
さに対し、1/20〜1/65の表面粗さを有すること
を特徴とするセラミックス電子部品焼成用セッター。1. A setter for firing a ceramic electronic component, comprising a coating layer on the surface of a substrate, wherein the coating layer has an arithmetic mean roughness (Ra) and is 1/20 of the thickness of a body to be fired. A setter for firing a ceramic electronic component, which has a surface roughness of about 1/65.
で、5〜15μmの表面粗さを有する請求項1に記載の
セラミックス電子部品焼成用セッター。2. The coating layer has an arithmetic mean roughness (Ra).
2. The setter for firing ceramic electronic components according to claim 1, having a surface roughness of 5 to 15 μm.
クス電子部品焼成用セッターであって、 該コート層が、十点平均表面粗さ(Rz)で、被焼成体
の厚さに対して1/3.5〜1/11.0、かつ凸凹の
平均間隔(Sm)で、被焼成体の長さに対して1/1.
3〜1/10.0の表面粗さを有することを特徴とする
セラミックス電子部品焼成用セッター。3. A ceramic electronic component firing setter having a coating layer on the surface of a base material, wherein the coating layer has a ten-point average surface roughness (Rz) and is 1 with respect to the thickness of the article to be fired. /3.5 to 1 / 11.0, and the average interval of irregularities (Sm) is 1/1.
A setter for firing a ceramic electronic component, which has a surface roughness of 3 to 1 / 10.0.
z)で、27〜86μm、かつ凸凹の平均間隔(Sm)
で、60〜461μmの表面粗さを有する請求項3に記
載のセラミックス電子部品焼成用セッター。4. The ten-point average surface roughness (R
z), 27 to 86 μm, and the average interval of irregularities (Sm)
4. The setter for firing ceramic electronic components according to claim 3, having a surface roughness of 60 to 461 μm.
クス電子部品焼成用セッターであって、 該コート層が、中間層と表層とからなり、実質的に、該
中間層の表面粗さにより、該コート層の表面粗さを規定
していることを特徴とするセラミックス電子部品焼成用
セッター。5. A ceramic electronic component baking setter having a coat layer on the surface of a base material, wherein the coat layer comprises an intermediate layer and a surface layer, and substantially by the surface roughness of the intermediate layer, A setter for firing a ceramic electronic component, wherein the surface roughness of the coat layer is defined.
(Ra)で、前記コート層の表面粗さに対して、0.3
〜2.4倍である請求項5に記載のセラミックス電子部
品焼成用セッター。6. The surface roughness of the intermediate layer is an arithmetic average roughness (Ra) and is 0.3 with respect to the surface roughness of the coat layer.
It is about 2.4 times, The setter for ceramic electronic component baking of Claim 5 which is.
mである請求項5又は6に記載のセラミックス電子部品
焼成用セッター。7. The average thickness of the surface layer is 20 to 200 μm.
The setter for firing a ceramic electronic component according to claim 5 or 6, wherein m is m.
(Ra)で、5〜20μmである請求項7に記載のセラ
ミックス電子部品焼成用セッター。8. The setter for firing ceramic electronic components according to claim 7, wherein the surface roughness of the intermediate layer is 5 to 20 μm in terms of arithmetic average roughness (Ra).
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002013912A JP4024544B2 (en) | 2002-01-23 | 2002-01-23 | Ceramic electronic parts firing setter |
CNB021462968A CN1235246C (en) | 2002-01-23 | 2002-10-21 | Holding frame for ceramic electric part baking |
TW091125182A TWI225042B (en) | 2002-01-23 | 2002-10-25 | Setter for firing ceramic electronic component |
KR10-2002-0080582A KR100491805B1 (en) | 2002-01-23 | 2002-12-17 | Setter for firing ceramic electronic parts |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002013912A JP4024544B2 (en) | 2002-01-23 | 2002-01-23 | Ceramic electronic parts firing setter |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2003212665A true JP2003212665A (en) | 2003-07-30 |
JP4024544B2 JP4024544B2 (en) | 2007-12-19 |
Family
ID=27650753
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2002013912A Expired - Lifetime JP4024544B2 (en) | 2002-01-23 | 2002-01-23 | Ceramic electronic parts firing setter |
Country Status (4)
Country | Link |
---|---|
JP (1) | JP4024544B2 (en) |
KR (1) | KR100491805B1 (en) |
CN (1) | CN1235246C (en) |
TW (1) | TWI225042B (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007045641A (en) * | 2005-08-08 | 2007-02-22 | Toshiba Ceramics Co Ltd | Container for firing |
CN107195490A (en) * | 2017-06-22 | 2017-09-22 | 刘奇美 | It is a kind of to produce the drying unit added for capacitor case |
CN108088263A (en) * | 2018-02-05 | 2018-05-29 | 江苏三恒高技术窑具有限公司 | The high temperature load bearing board that a kind of surface topography accurately controls |
JP2020073432A (en) * | 2019-10-23 | 2020-05-14 | 三井金属鉱業株式会社 | Ceramic lattice body |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011046562A (en) * | 2009-08-27 | 2011-03-10 | Nec Tokin Corp | Setter for firing ceramic green sheet |
-
2002
- 2002-01-23 JP JP2002013912A patent/JP4024544B2/en not_active Expired - Lifetime
- 2002-10-21 CN CNB021462968A patent/CN1235246C/en not_active Expired - Lifetime
- 2002-10-25 TW TW091125182A patent/TWI225042B/en not_active IP Right Cessation
- 2002-12-17 KR KR10-2002-0080582A patent/KR100491805B1/en active IP Right Grant
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007045641A (en) * | 2005-08-08 | 2007-02-22 | Toshiba Ceramics Co Ltd | Container for firing |
JP4713981B2 (en) * | 2005-08-08 | 2011-06-29 | コバレントマテリアル株式会社 | Ceramic electronic component firing container |
CN107195490A (en) * | 2017-06-22 | 2017-09-22 | 刘奇美 | It is a kind of to produce the drying unit added for capacitor case |
CN108088263A (en) * | 2018-02-05 | 2018-05-29 | 江苏三恒高技术窑具有限公司 | The high temperature load bearing board that a kind of surface topography accurately controls |
JP2020073432A (en) * | 2019-10-23 | 2020-05-14 | 三井金属鉱業株式会社 | Ceramic lattice body |
Also Published As
Publication number | Publication date |
---|---|
KR100491805B1 (en) | 2005-05-27 |
CN1235246C (en) | 2006-01-04 |
KR20030064267A (en) | 2003-07-31 |
CN1434470A (en) | 2003-08-06 |
TWI225042B (en) | 2004-12-11 |
JP4024544B2 (en) | 2007-12-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2005516117A5 (en) | ||
JP2003212665A (en) | Setter for firing ceramic electronic component | |
CN114430733B (en) | Refractory material | |
JP3139962B2 (en) | Firing jig and method of manufacturing the same | |
US6617017B2 (en) | Firing jig for electronic element | |
JP2004323306A (en) | Burning-down sheet and method for manufacturing ceramic laminate using the same | |
JP5005012B2 (en) | Ceramic capacitor firing method and firing setter | |
JP3812715B2 (en) | Recycling method for firing containers | |
WO2019092894A1 (en) | Firing setter and production method therefor | |
JPH1012481A (en) | Conductive paste and manufacturing method for ceramics electronic component | |
JP4800990B2 (en) | Electrostatic chuck | |
JP4460815B2 (en) | Setter for firing | |
JP2004262712A (en) | Burning tool | |
JP2002333282A (en) | Sintering setter and its producing method | |
JP2980029B2 (en) | Method for firing ceramic molded body | |
JP2001220248A (en) | Baking jig for electronic part | |
JP2000074571A (en) | Calcination jig | |
JP4071922B2 (en) | Coating agent for firing jig | |
JP5100726B2 (en) | Setter | |
JPH02164093A (en) | Manufacture of circuit board | |
JP3165416B2 (en) | Porous SiC heating element | |
RU2219145C1 (en) | Method for metallic coating of ceramics under soldering | |
JP2003332020A (en) | Manufacturing method of spark plug | |
JPH0826860A (en) | Jig for baking | |
JPH1012484A (en) | Manufacture of electronic component |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20040713 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20070226 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20070306 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20070501 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20071002 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20071003 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4024544 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101012 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101012 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111012 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121012 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121012 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131012 Year of fee payment: 6 |
|
EXPY | Cancellation because of completion of term |