JP4024544B2 - Ceramic electronic parts firing setter - Google Patents

Ceramic electronic parts firing setter Download PDF

Info

Publication number
JP4024544B2
JP4024544B2 JP2002013912A JP2002013912A JP4024544B2 JP 4024544 B2 JP4024544 B2 JP 4024544B2 JP 2002013912 A JP2002013912 A JP 2002013912A JP 2002013912 A JP2002013912 A JP 2002013912A JP 4024544 B2 JP4024544 B2 JP 4024544B2
Authority
JP
Japan
Prior art keywords
layer
setter
roughness
ceramic electronic
firing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2002013912A
Other languages
Japanese (ja)
Other versions
JP2003212665A (en
Inventor
博 森
浩明 二本松
真司 森笹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Insulators Ltd
NGK Adrec Co Ltd
Original Assignee
NGK Insulators Ltd
NGK Adrec Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Insulators Ltd, NGK Adrec Co Ltd filed Critical NGK Insulators Ltd
Priority to JP2002013912A priority Critical patent/JP4024544B2/en
Priority to CNB021462968A priority patent/CN1235246C/en
Priority to TW091125182A priority patent/TWI225042B/en
Priority to KR10-2002-0080582A priority patent/KR100491805B1/en
Publication of JP2003212665A publication Critical patent/JP2003212665A/en
Application granted granted Critical
Publication of JP4024544B2 publication Critical patent/JP4024544B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/62222Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products obtaining ceramic coatings
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/10Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on aluminium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/48Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/80After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone of only ceramics
    • C04B41/81Coating or impregnation
    • C04B41/85Coating or impregnation with inorganic materials
    • C04B41/87Ceramics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/9607Thermal properties, e.g. thermal expansion coefficient
    • C04B2235/9623Ceramic setters properties

Description

【0001】
【発明の属する技術分野】
本発明は、セラミックコンデンサー、圧電素子、フェライト等のセラミックス電子部品を焼成する際に使用するセッターに関するものである。
【0002】
【従来の技術】
セラミックス電子部品焼成用セッターは、焼成によりセラミックス質の電子部品を作製する際に、被焼成体(焼成後に電子部品となるものである。以下、同様である。)を載置する部材であり、焼成工程の自動化が進んだ今日では、焼成後、当該セッターを傾斜して、焼成後のセラミック電子部品を所定の位置に収集することが行われている。
【0003】
また、当該セッターにあっては、焼成の際に、その構成成分が被焼成体に作用して製品を劣化させないこと、更には、被焼成体中のバインダーが、当該セッターの載置面によりその揮発を抑制されることで、焼成ムラを生じさせないことが重要な特性として要求される。
【0004】
従来、このような特性に着目したセッター等としては、基材表面に、溶射層を形成した治具(特公平4−21330号公報)、更には、基材表面に、溶射層を有し、被焼成体を載置する面の表面粗さを、十点平均粗さで150〜1000μmとした電子部品焼成用治具(特開2001−200378公報)が開示されている。
【0005】
これらの治具は、基材表面に形成された溶射層により、被焼成体との反応が防止されるものである。また、後者の治具は、所定の表面粗さを有する溶射層により、被焼成体との接触面積が小さくなっているため、被焼成体中のバインダーが、治具の存在により何ら抑制されずに揮発し、均一な焼成体が得られるものである。
【0006】
しかし、これらの治具は、表面粗さが比較的粗いものにあっては、焼成後、当該セッターを傾斜等しても、被焼成体が、治具表面の凹部に引っ掛かって、そのままセッターに残存してしまうことがあった。このため、一度焼成された電子部品が、更に焼成工程に供されてしまう等、自動化にあたっての問題の一つとなっていた。特に、近年、セラミックコンデンサーにあっては、益々、微小化が進み、1.6mm×0.8mm、1.0mm×0.5mmなどのものから0.6mm×0.3mmのものへと主要サイズが移行してきており、従来の治具を用いてこのサイズのセラミックコンデンサーを焼成した場合には、高率で治具表面の凹部に引っ掛かってしまうのが現状であった。
【0007】
【発明が解決しようとする課題】
本発明は、上述の問題に鑑みなされたものであり、焼成時に構成成分が被焼成体と反応することがなく、かつ被焼成体中のバインダーを、セッター載置面側からも容易に揮発して、均一な焼成体を得ることができ、更に自動化された焼成工程で、焼成後の製品を収集する際に、収集不良がないセラミックス電子部品焼成用セッターを提供することを目的とする。
【0008】
【課題を解決するための手段】
すなわち、本発明によれば、基材表面に、コート層を有するセラミックス電子部品焼成用セッターであって、コート層が、算術平均粗さ(Ra)で、被焼成体の厚さに対し、1/20〜1/65の表面粗さを有するとともに、コート層が中間層と表層とで構成され、表層が溶射により形成されたZrO 質層であることを特徴とするセラミックス電子部品焼成用セッターが提供される。
【0009】
また、本発明によれば、基材表面に、コート層を有するセラミックス電子部品焼成用セッターであって、コート層が、十点平均表面粗さ(Rz)で、被焼成体の厚さに対して1/3.5〜1/11.0、かつ凸凹の平均間隔(Sm)で、被焼成体の長さに対して1/1.3〜1/10.0の表面粗さを有するとともに、コート層が中間層と表層とで構成され、表層が溶射により形成されたZrO 質層であることを特徴とするセラミックス電子部品焼成用セッターが提供される。
【0010】
ここで、算術平均粗さ(Ra)、及び十点平均表面粗さ(Rz)は、いずれもJIS規格B0601に準じて、評価長さ12.5mm、カットオフ値2.5mmとして測定した値をいい、凸凹の平均間隔(Sm)は、JIS規格B0601に準じて、評価長さ4.0mm、基準長さ0.8mmとして測定した値をいう。
【0011】
本発明において、0.6mm(長さ)×0.3mm(厚さ)の被焼成体への対応を可能とするためには、前者のセラミックス電子部品焼成用セッターでは、当該コート層の表面粗さが、算術平均粗さ(Ra)で、5〜15μmであることが好ましく、後者のセラミックス電子部品焼成用セッターでは、当該コート層の表面粗さが、十点平均表面粗さ(Rz)で27〜86μm、かつ凸凹の平均間隔(Sm)で60〜461μmであることが好ましい。
【0012】
本発明においては、このような表面粗さのコート層を、表層単独で形成してもよいが、中間層と表層とで構成し、実質的に、当該中間層の表面粗さにより、コート層の表面粗さを規定しているものが好ましい。この際、中間層の表面粗さは、コート層の表面粗さに対して、算術平均粗さ(Ra)で、0.3〜2.4倍の範囲で制御されていることが好ましい。また、中間層の表面粗さは、算術平均粗さ(Ra)で、5〜20μmであることが好ましく、特に、0.6mm(長さ)×0.3mm(厚さ)の被焼成体への対応を可能とするためには、算術平均粗さ(Ra)で、5〜15μmとすることがより好ましい。
【0013】
なお、このように中間層の表面粗さでコート層の表面粗さを制御するには、表層の平均厚さが、20〜200μmであることが好ましい。
【0014】
本発明によるセラミックス電子部品焼成用セッターは、上述の如く、コート層の表面粗さが、算術平均粗さ(Ra)で、被焼成体の厚さの1/20〜1/65であり、或いは、十点平均表面粗さ(Rz)で、被焼成体の厚さの1/3.5〜1/11.0、かつ凸凹の平均間隔(Sm)で、被焼成体の長さの1/1.3〜1/10.0であるため、焼成時に当該セッターの構成成分が被焼成体と反応することがないのは勿論、被焼成体中のバインダーが、被焼成体の載置面から容易に揮発され、均一な焼成体が得られるとともに、焼成後、当該セッターを傾斜等してセラミックス電子部品を収集する際に、総ての電子部品をセッター凹部に引っ掛けることなくスムーズに収集することができる。
【0015】
【発明の実施の形態】
以下、本発明の実施形態を具体的に説明する。
本発明のセラミックス電子部品焼成用セッター(以下、単に「セッター」と省略することがある。)は、基材表面に、コート層を有するものであり、このコート層が、特定範囲の表面粗さを有するとともに、コート層が中間層と表層とで構成され、表層が溶射により形成されたZrO 質層であるものである。以下、各構成要素毎に、具体的に説明する。
【0016】
本発明における基材は、その材質について特に制限はなく、セッターとして通常適用されるセラミックスで構成させればよい。また、基材を作製する方法についても特に制限はなく、例えば、セラミックス化原料を、プレス等で成形後、焼成して作製することができる。
【0017】
次に、本発明におけるコート層は、その表面粗さが、算術平均粗さ(Ra)で、被焼成体の厚さの1/20〜1/65、好ましくは被焼成体の厚さの1/25〜1/62である。
【0018】
コート層の表面粗さが、算術平均粗さ(Ra)で、被焼成体の厚さの1/65未満であると、被焼成体中のバインダーの揮発を抑制して、均一な焼成体が得られず、場合によっては、セッターの構成成分が被焼成体と反応してしまうこともある。一方、コート層の表面粗さが、算術平均粗さ(Ra)で、被焼成体の厚さの1/20を超えると、焼成後の電子部品をセッターの傾斜等で収集する際に、載置面の凹部に、電子部品が引っ掛かり、そのまま残置されるものが多くなる。
【0019】
具体的には、例えば、1.6mm(長さ)×0.8mm(厚さ)のサイズの電子部品を製造する場合には、コート層の表面粗さが、算術平均粗さ(Ra)で、12〜40μmであることが好ましい。また、例えば、1.0mm(長さ)×0.5mm(厚さ)のサイズ等の如く、1.6mm(長さ)×0.8mm(厚さ)未満のサイズの電子部品を製造する場合には、コート層の表面粗さが、算術平均粗さ(Ra)で、5〜20μmであることが好ましい。特に、最近、主要サイズに移行しつつある0.6mm(長さ)×0.3mm(厚さ)のサイズのセラミックスコンデンサーを製造する場合にあっては、コート層の表面粗さが、算術平均粗さ(Ra)で、5〜15μmであることが好ましい。因みに、従来のセッターでは、このサイズの電子部品には全く対応しておらず、焼成の自動化を妨げる要因となっていたことは既に述べたところである。
【0020】
本発明におけるコート層は、その表面粗さが、十点平均表面粗さ(Rz)で、被焼成体の厚さの1/3.5〜1/11.0、かつ凸凹の平均間隔(Sm)で、被焼成体の長さの1/1.3〜1/10.0であることも好ましく、十点平均表面粗さ(Rz)で、被焼成体の厚さの1/4.0〜1/10.0、かつ凸凹の平均間隔(Sm)で、被焼成体の長さの1/1.5〜1/8.5であることがより好ましい。
【0021】
コート層の表面粗さが、十点平均表面粗さ(Rz)で、被焼成体の厚さの1/11.0未満であると、被焼成体とセッター間で、充分な空間が確保できないため、バインダーの揮発が抑制され、焼成ムラを生じ易くなる。一方、コート層の表面粗さが、十点平均表面粗さ(Rz)で、被焼成体の厚さの1/3.5を超えると、焼成後の電子部品をセッターの傾斜等で収集する際に、載置面の凹部に、電子部品が引っ掛かり、そのまま残置されるものが多くなる。
【0022】
また、コート層の表面粗さが、凸凹の平均間隔(Sm)で、被焼成体の長さの1/10.0未満、又は1/1.3超過であると、被焼成体とセッター間で、充分な空間が確保できないため、バインダーの揮発が抑制され、焼成ムラを生じ易くなる。
【0023】
具体的には、例えば、最近、主要サイズに移行しつつある0.6mm(長さ)×0.3mm(厚さ)のサイズのセラミックスコンデンサーを製造する場合にあっては、コート層の表面粗さが、十点平均表面粗さ(Rz)で、27〜86μmかつ凸凹の平均間隔(Sm)で、60〜461μmであることが好ましい。
【0024】
次に、コート層は、基材の載置部分を被覆するものであればよいが、焼成時に炉内のガスと基材との反応が生じると、基材が変形する危険性があるので、その他の部分についてもコート層を形成しておくことが好ましい。
【0025】
また、コート層としては中間層と表層とからなるもの好ましい。
もっとも、コート層を中間層と表層とで構成する場合には、実質的に、中間層の表面粗さにより、コート層の表面粗さを規定しているものが好ましい。
このようなコート層では、コート層の表層が溶射により形成されたZrO 質層であることが重要であり、例えば、溶射として、上述した所望の表面粗さを得難いガスプラズマ溶射を用いることがより好ましい。
【0026】
また、この場合には、中間層の表面粗さを、コート層の表面粗さに対して、算術平均粗さ(Ra)で、0.3〜2.4倍とすることが好ましく、0.5〜2.0倍とすることがより好ましい。
【0027】
中間層の表面粗さが、コート層の表面粗さに対して、この範囲の算術平均粗さ(Ra)であると、表層の厚さが略均一となり、コート層の劣化が均一に発生するため、当該表層が剥離し難くなる。
【0028】
具体的には、被焼成体のサイズ毎に、前述したコート層の表面粗さと略同一の表面粗さとすることが好ましく、例えば、0.6mm(長さ)×0.3mm(厚さ)より大きなサイズのセラミックスコンデンサーを製造する場合にあっては、中間層の表面粗さを、算術平均粗さ(Ra)で、5〜20μmとすることが好ましい。また、0.6mm(長さ)×0.3mm(厚さ)のサイズのセラミックスコンデンサーを製造する場合にあっては、中間層の表面粗さを、算術平均粗さ(Ra)で、5〜15μmとすることが好ましい。
【0029】
また、コート層を中間層と表層とで構成する場合には、表層の平均厚さを、20〜200μmとすることが好ましく、20〜100μmとすることがより好ましい。表層の平均厚さが20μm未満では、中間層の一部に表層が付着せずに、中間層が露出する場合があり、セッターの構成成分が被焼成体と反応し易くなる。一方、表層の平均厚さが200μmを超えると、中間層の表面粗さにより、コート層の表面粗さを制御することが困難になる。なお、中間層の厚さについては、特に制限はないが、70〜300μm程度で形成することが好ましい。
【0031】
本発明においてコート層を中間層と表層とで構成する場合当該表層については、粗面化を伴わない溶射により形成することが、精度よく平均厚さ20〜200μmの層を形成させるために、重要である。また、当該中間層については、例えば、スプレーコーティング、又は粗面化を伴う溶射により形成すればよい。
【0033】
溶射としては、例えば、加熱の方法により燃焼炎を用いるガス溶射、アークを用いるアーク溶射、プラズマジェットを用いるプラズマ溶射等を挙げることができるが、精度よく平均厚さ20〜250μmの層が形成できる点で、プラズマ溶射により表層を形成することが好ましい。また、プラズマ溶射としては、水安定化プラズマ溶射、ガスプラズマ溶射等を挙げることができ、水安定化プラズマ溶射は、中間層に対して密着性の高い表層を形成することができる点で好ましく、ガスプラズマ溶射は、平均厚さ20〜50μm程度まで、表層を薄層化でき、中間層の表面粗さを、載置面の表面粗さに、より直接的に反映できる点で好ましい。
【0034】
なお、本発明において、中間層及び表層の材質については特に制限はなく、セッターに通常コートされるもので構成させればよい。
【0035】
【実施例】
以下、本発明を実施例に基づいて、より具体的に説明する。但し、本発明はこれらの実施例に何ら限定されるものではない。
【0036】
(評価方法)
▲1▼ 表面粗さ
算術平均粗さ(Ra)、十点平均表面粗さ(Rz)、凸凹の平均間隔(Sm)について評価した。評価は、JIS規格B0601に準じて行い、算術平均粗さ(Ra)、及び十点平均表面粗さ(Rz)は、いずれも、評価長さ12.5mm、カットオフ値2.5mmとして測定し、凸凹の平均間隔(Sm)は、評価長さ4.0mm、基準長さ0.8mmとして測定した。
【0037】
▲2▼ 厚み比率(1)
寸法が0.6mm(長さ)×0.3mm(厚さ)のものを被焼成体とした際の、被焼成体の厚さに対する各実施例及び各比較例におけるセッターの算術平均粗さ(Ra)の比を示した。
【0038】
▲3▼ 厚み比率(2)
寸法が0.6mm(長さ)×0.3mm(厚さ)のものを被焼成体とした際の、被焼成体の厚さに対する各実施例及び各比較例におけるセッターの十点平均表面粗さ(Rz)の比を示した。
【0039】
▲4▼ 長さ比率
寸法が0.6mm(長さ)×0.3mm(厚さ)のものを被焼成体とした際の、被焼成体の長さに対する各実施例及び比較例におけるセッターの凸凹の平均間隔(Sm)の比を示した。
【0040】
▲5▼ 引っ掛かり頻度
チタン酸バリウムを原料として、寸法が0.6mm(長さ)×0.3mm(厚さ)で、市販のセラミックスコンデンサーと同形状の試料を作製した。そして、この試料を、5000個、各実施例及び各比較例で得られたセッターに載置した後、当該セッターを30°傾斜させた状態で振動を加え、試料の移動、収集状態を観察して評価した。
評価は、総ての試料が、コート層の凹部に引っ掛かることなく、すべて収集された場合を○、一部の試料で、引っ掛かりながらもすべて収集された場合を△、引っ掛かりがありすべての試料が収集できなかった場合を×として評価した。
【0041】
▲6▼ バインダー揮発性
チタン酸バリウムを主原料とし、バインダーとしてアクリル系バインダー30%を含有する原料を用い、ドクターブレード法にてシートを作製し、次いで、圧着、切断して、0.6mm(長さ)×0.3mm(厚さ)のサイズで、市販のセラミックスコンデンサーと同形状としたものを試料として作製した。そして、この試料を、各実施例及び比較例で得られたセッターに載置し、N2雰囲気下で、300℃で2時間加熱し、加熱前後で減量した重量にて、揮発したバインダー量を評価した。
評価は、理論上の重量減量を100%として、100〜80%を○、80〜50%を△、50%以下を×として評価した。
【0042】
▲7▼ 剥離性
各実施例及び各比較例で得られたセッターに誘電体であるチタン酸バリウム溶液を塗布した後、1350℃、2時間の焼成を5回繰り返し、基材からコート層が剥離しているかを確認した。
評価は、まったくコート層の剥離が認められないものを○、コート層の20%以下の部分に剥離が認められるのものを△、コート層の20%以上の部分で剥離が認められるのものを×として評価した。
【0043】
▲8▼ 表層付着性
中間層及び表層を形成した各実施例及び各比較例のセッターを切断して、切断面を顕微鏡で観察し、未着部分の無い場合を○、未着部分の有る場合を×として評価した。
【0044】
▲9▼ 中間層によるコート層の表面粗さに対する制御性
中間層と、コート層(表層)とについて、算術平均算術平均粗さ(Ra)を測定し、中間層の算術平均算術平均粗さ(Ra)が、コート層(表層)の算術平均算術平均粗さ(Ra)に対して、0.3〜2.4倍である場合を○、それ以外の場合を×として評価した。
【0045】
(実施例1)
基材としては、Al23含有量が80質量%、SiO2が19質量%、その他の材料が1質量%からなる材料をプレス成形した後、焼成して、Al23−SiO2質で、サイズが縦150mm×横150mm×厚さ5mmの板状体のものを作製した。
【0046】
次いで、平均粒径2μmのAl2360質量%と、平均粒径20μmのAl2340質量%とを混合して固形成分を調製した後、水30質量部に対して、この固形成分67質量部と、バインダー3質量部とを含有させてスラリーを調製した。そして、このスラリーを、基材の表面に、スプレーガンを用いて、空気圧5kg/cm2でスプレーコーティングした後、1450℃で2時間焼付け処理を行い、Al23質で、厚さ100μm、算術平均算術平均粗さ(Ra)5μmの中間層を形成した。
【0047】
次いで、この基材の表面に、平均粒径80μmのジルコニア粒子を用いてプラズマ溶射し、ZrO2質で、厚さ100μm、算術平均算術平均粗さ(Ra)15μmの表層を形成して、セラミックス電子部品用セッターを製造した。特性及び評価については、表1にまとめて示す。
【0048】
(実施例2〜4及び比較例1〜3)
それぞれ、平均粒径60μm、50μm、40μm、110μm、80μm、又は30μmのジルコニア粒子を用いてプラズマ溶射を行い、それぞれ、算術平均算術平均粗さ(Ra)12μm、8μm、5μm、20μm、16μm、又は4μmの表層を形成したこと以外は、実施例1と同様にして、セッターを製造した。特性及び評価については、表1にまとめて示す。
【0049】
(評価)
表1に示すように、算術平均粗さ(Ra)が、5〜15μmの範囲で、厚み比率(1)が、1/20.0〜1/60.0の実施例1〜4のセラミックス電子部品用セッターでは、当該セッターを30°傾斜させると、載置した試料が総てスムーズに収集され、バインダーの揮発性も良好であった。
【0050】
これに対して、算術平均粗さ(Ra)が、それぞれ20μm、16μmで、厚み比率(1)が、それぞれ1/15.0、1/18.8と大きな比較例1、2のセラミックス電子部品用セッターでは、バインダーの揮発性がいずれも良好であったものの、当該セッターを30°傾斜させると、載置した試料が高率で引っ掛かった。また、算術平均粗さ(Ra)が4μmで、厚み比率(1)が1/75.0と小さな比較例3のセラミックス電子部品用セッターでは、当該セッターを30°傾斜させると、載置した試料が総てスムーズに収集されるものの、バインダーの揮発性については、重量減量が80%未満のものが認められた。
【0051】
【表1】

Figure 0004024544
【0052】
(実施例5〜10及び比較例4〜7)
それぞれ、平均粒径50μmのジルコニア粒子を用いて、溶射ガンと基材との距離を調整してプラズマ溶射を行うことにより、それぞれ所定の表面粗さの表層としたこと以外は、実施例1と同様にして、セッターを製造した。
【0053】
(評価)
表2に示すように、厚み比率(2)が、1/4.0〜1/10.0であり、長さ比率が、1/1.5〜1/8.0である実施例5〜10のセラミックス電子部品用セッターでは、当該セッターを30°傾斜させると、載置した試料が総てスムーズに収集され、バインダーの揮発性も良好であった。
【0054】
これに対して、厚み比率(2)が、1/7.0であるものの、長さ比率が、1/1.2と大きな比較例4、及び長さ比率が、1/12.0と小さな比較例5のセラミックス電子部品用セッターでは、いずれも、当該セッターを30°傾斜させると、載置した試料が総てスムーズに収集されたものの、バインダーの揮発性については、殆どの試料で重量減量が50%以下であった。
【0055】
また、長さ比率が、1/3.0であるものの、厚み比率(2)が、1/3.0と大きな比較例6のセラミックス電子部品用セッターでは、バインダーの揮発性が良好であったものの、当該セッターを30°傾斜させると、載置した試料が高率で引っ掛かった。また、長さ比率が、1/3.0であるものの、厚み比率が、1/12.0と小さな比較例7のセラミックス電子部品用セッターでは、当該セッターを30°傾斜させると、載置した試料が総てスムーズに収集されたものの、バインダーの揮発性については、殆どの試料で重量減量が50%以下であった。
【0056】
【表2】
Figure 0004024544
【0057】
(実施例11〜14及び比較例8〜10)
中間層を形成した基材に、それぞれ、平均粒径30μm、50μm、60μm、90μm、25μm、120μm、又は150μmのジルコニア粒子を用いて、プラズマ溶射し、それぞれ、算術平均粗さ(Ra)2.5μm、8.0μm、10.0μm、16μm、1.5μm、17.0μm、又は20.0μmの表層を形成して、セラミックス電子部品用セッターを製造したこと以外は、実施例1と同様にして、セッターを製造した。
【0058】
(評価)
表3に示すように、表面粗さ比が、0.313〜2.381である実施例11〜14のセラミックス電子部品用セッターでは、コート層の剥離がまったく認められなかった。
【0059】
これに対して、表面粗さ比が、3.333と大きな比較例8及び表面粗さ比が、0.294と比較的小さな比較例9のセラミックス電子部品用セッターでは、コート層の一部に剥離が認められた。また、表面粗さ比が、0.250と更に小さな比較例10のセラミックス電子部品用セッターでは、コート層の殆どの部分で剥離が認められた。
【0060】
【表3】
Figure 0004024544
【0061】
(実施例15〜18及び比較例11、12)
まず、平均粒径2μmのAl2360質量%と、平均粒径20μmのAl2340質量%とを混合して固形成分を調製した後、水25質量部に対して、この固形成分72質量部と、バインダー3質量部とを含有させてスラリーを調製した。次いで、実施例1と同様にして作製した基材表面に、このスラリーを、実施例1と同様にして、スプレーコーティング、更には焼付け処理を行い、算術平均算術平均粗さ(Ra)20.0μmの中間層を形成した。
次いで、この基材の表面に、平均粒径110μmのジルコニア粒子を用いて、プラズマ溶射し、ZrO2質の表層を、それぞれ厚さ20.0μm、50.0μm、100.0μm、200.0μm、15.0μm、又は250.0μmで形成して、セラミックス電子部品用セッターを製造した。
【0062】
(評価)
表4に示すように、表層厚さが、20.0〜200.0μmである実施例15〜18のセラミックス電子部品用セッターでは、中間層と表層との間に、未着部分はまったく認められず、中間層の算術平均算術平均粗さ(Ra)が、コート層(表層)の算術平均算術平均粗さ(Ra)に対して、0.3〜2.4倍の範囲内にあった。
【0063】
これに対して、表層厚さが、15.0μmである比較例11のセラミックス電子部品用セッターでは、中間層と表層との間に、一部で未着部分が認められた。また、表層厚さが、250.0μmである比較例12のセラミックス電子部品用セッターでは、コート層(表層)と中間層との算術平均算術平均粗さ(Ra)の較差が大きく、中間層によるコート層の表面粗さの制御が不充分であった。
【0064】
【表4】
Figure 0004024544
【0065】
【発明の効果】
以上説明した通り、本発明のセラミックス電子部品焼成用セッターによれば、焼成時に構成成分が被焼成体と反応することがないばかりか、被焼成体中のバインダーの揮発を抑制することがなく、均一な焼成体を得ることができる。加えて、自動化された焼成工程で、焼成後の製品を収集する際に、何ら収集不良がなく、焼成自動化への対応が可能となる。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a setter for use in firing ceramic electronic components such as ceramic capacitors, piezoelectric elements, and ferrite.
[0002]
[Prior art]
The setter for firing a ceramic electronic component is a member on which a body to be fired (which becomes an electronic component after firing. The same applies hereinafter.) When producing a ceramic electronic component by firing. In today's automating firing process, after firing, the setter is tilted and the fired ceramic electronic components are collected at a predetermined position.
[0003]
Further, in the setter, during firing, its constituent components do not act on the body to be fired to deteriorate the product, and further, the binder in the body to be fired may be lowered by the mounting surface of the setter. By suppressing volatilization, it is required as an important characteristic not to cause firing unevenness.
[0004]
Conventionally, as a setter or the like focusing on such characteristics, a jig (Japanese Patent Publication No. 4-21330) in which a thermal spray layer is formed on the surface of the base material, and further, a thermal spray layer is provided on the base material surface, An electronic component firing jig (Japanese Patent Laid-Open No. 2001-200378) is disclosed in which the surface roughness of the surface on which the body to be fired is placed has a 10-point average roughness of 150 to 1000 μm.
[0005]
These jigs prevent the reaction with the object to be fired by the sprayed layer formed on the surface of the substrate. Moreover, since the latter jig | tool has a contact area with a to-be-fired body by the thermal spray layer which has predetermined | prescribed surface roughness, the binder in a to-be-fired body is not suppressed at all by presence of a jig | tool. It is volatilized to obtain a uniform fired body.
[0006]
However, if these jigs have a relatively rough surface, even if the setter is tilted after firing, the object to be fired is caught in the recesses on the jig surface, and the setter is used as it is. Sometimes it remained. For this reason, the electronic component once fired has been one of the problems in automation, such as being further subjected to a firing process. In particular, in recent years, ceramic capacitors have been increasingly miniaturized, and major sizes from 1.6 mm x 0.8 mm, 1.0 mm x 0.5 mm, etc. to 0.6 mm x 0.3 mm. However, when a ceramic capacitor of this size is fired using a conventional jig, it has been caught at a recess on the jig surface at a high rate.
[0007]
[Problems to be solved by the invention]
The present invention has been made in view of the above-described problems. The component does not react with the object to be fired during firing, and the binder in the object to be fired easily volatilizes from the setter mounting surface side. An object of the present invention is to provide a ceramic electronic component firing setter that can obtain a uniform fired body and has no collection failure when the fired product is collected by an automated firing process.
[0008]
[Means for Solving the Problems]
That is, according to the present invention, a ceramic electronic component firing setter having a coating layer on the surface of the substrate, the coating layer having an arithmetic average roughness (Ra) of 1 to the thickness of the body to be fired. A setter for firing a ceramic electronic component having a surface roughness of / 20 to 1/65 , a coating layer comprising an intermediate layer and a surface layer, and the surface layer being a ZrO 2 layer formed by thermal spraying Is provided.
[0009]
Further, according to the present invention, there is provided a setter for firing a ceramic electronic component having a coat layer on the surface of the substrate, the coat layer having a ten-point average surface roughness (Rz) with respect to the thickness of the object to be fired. in Te 1 / 3.5 to 1 / 11.0 and an average interval of irregularities, (Sm), and has a surface roughness of 1 / 1.3 to / 10.0 with respect to the length of the object to be fired There is provided a setter for firing a ceramic electronic component, characterized in that the coat layer is composed of an intermediate layer and a surface layer, and the surface layer is a ZrO 2 layer formed by thermal spraying .
[0010]
Here, the arithmetic average roughness (Ra) and the ten-point average surface roughness (Rz) are both values measured as an evaluation length of 12.5 mm and a cutoff value of 2.5 mm in accordance with JIS standard B0601. The average irregularity spacing (Sm) is a value measured as an evaluation length of 4.0 mm and a reference length of 0.8 mm in accordance with JIS standard B0601.
[0011]
In the present invention, in order to make it possible to cope with a fired body of 0.6 mm (length) × 0.3 mm (thickness), the former setter for firing ceramic electronic parts uses the surface roughness of the coat layer. The arithmetic average roughness (Ra) is preferably 5 to 15 μm. In the latter ceramic electronic component firing setter, the surface roughness of the coating layer is the ten-point average surface roughness (Rz). It is preferable that it is 60-461 micrometers by 27-86 micrometers and the average space | interval (Sm) of unevenness.
[0012]
In the present invention, the coating layer having such a surface roughness may be formed as a single surface layer. However, the coating layer is composed of an intermediate layer and a surface layer, and substantially depends on the surface roughness of the intermediate layer. It is preferable to define the surface roughness. Under the present circumstances, it is preferable that the surface roughness of an intermediate | middle layer is controlled in the range of 0.3-2.4 times by arithmetic mean roughness (Ra) with respect to the surface roughness of a coating layer. Further, the surface roughness of the intermediate layer is preferably an arithmetic average roughness (Ra) of 5 to 20 μm, and particularly to a fired body of 0.6 mm (length) × 0.3 mm (thickness). In order to enable this, it is more preferable that the arithmetic average roughness (Ra) is 5 to 15 μm.
[0013]
In addition, in order to control the surface roughness of the coat layer by the surface roughness of the intermediate layer, the average thickness of the surface layer is preferably 20 to 200 μm.
[0014]
In the ceramic electronic component firing setter according to the present invention, as described above, the surface roughness of the coating layer is an arithmetic average roughness (Ra) and is 1/20 to 1/65 of the thickness of the body to be fired, or The ten-point average surface roughness (Rz) is 1 / 3.5 to 1 / 11.0 of the thickness of the body to be fired, and the unevenness average interval (Sm) is 1 / of the length of the body to be fired. Since it is 1.3 to 1 / 10.0, the component of the setter does not react with the body to be fired during firing, and the binder in the body to be fired is from the mounting surface of the body to be fired. Easily volatilized and a uniform fired body can be obtained, and after firing, when collecting ceramic electronic parts by tilting the setter, etc., all electronic parts should be collected smoothly without being caught in the setter recess. Can do.
[0015]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be specifically described.
The setter for firing ceramic electronic parts of the present invention (hereinafter sometimes simply referred to as “setter”) has a coating layer on the surface of the substrate, and this coating layer has a surface roughness within a specific range. The coating layer is composed of an intermediate layer and a surface layer, and the surface layer is a ZrO 2 layer formed by thermal spraying . Hereinafter, each component will be specifically described.
[0016]
There is no restriction | limiting in particular about the base material in this invention, What is necessary is just to comprise with the ceramics normally applied as a setter. Moreover, there is no restriction | limiting in particular also about the method of producing a base material, For example, after forming a ceramic raw material with a press etc., it can produce by baking.
[0017]
Next, the surface roughness of the coat layer in the present invention is an arithmetic average roughness (Ra) and is 1/20 to 1/65 of the thickness of the body to be fired, preferably 1 of the thickness of the body to be fired. / 25 to 1/62.
[0018]
When the surface roughness of the coat layer is an arithmetic average roughness (Ra) and less than 1/65 of the thickness of the body to be fired, volatilization of the binder in the body to be fired is suppressed, and a uniform fired body is obtained. In some cases, the components of the setter may react with the object to be fired. On the other hand, when the surface roughness of the coat layer is an arithmetic average roughness (Ra) and exceeds 1/20 of the thickness of the object to be fired, when the electronic parts after firing are collected by the inclination of the setter, etc. An electronic component is caught in the concave portion of the placement surface, and many of the electronic components are left as they are.
[0019]
Specifically, for example, when an electronic component having a size of 1.6 mm (length) × 0.8 mm (thickness) is manufactured, the surface roughness of the coat layer is expressed by an arithmetic average roughness (Ra). It is preferable that it is 12-40 micrometers. In addition, for example, when manufacturing an electronic component having a size of less than 1.6 mm (length) x 0.8 mm (thickness) such as a size of 1.0 mm (length) x 0.5 mm (thickness) The surface roughness of the coat layer is preferably 5 to 20 μm in terms of arithmetic average roughness (Ra). In particular, when manufacturing a ceramic capacitor having a size of 0.6 mm (length) × 0.3 mm (thickness), which has recently been shifted to the main size, the surface roughness of the coat layer is an arithmetic average. The roughness (Ra) is preferably 5 to 15 μm. Incidentally, it has already been described that the conventional setters do not support electronic components of this size at all, and hinder the automation of firing.
[0020]
The coating layer in the present invention has a surface roughness of 10-point average surface roughness (Rz), 1 / 3.5 to 1 / 11.0 of the thickness of the object to be fired, and an uneven spacing (Sm ) Is preferably 1 / 1.3-1 to 10.0 of the length of the body to be fired, and the ten-point average surface roughness (Rz) is 1/4 of the thickness of the body to be fired. It is more preferable that the average interval (Sm) of the unevenness is 1 / 1.5 to 1 / 8.5 of the length of the object to be fired.
[0021]
If the surface roughness of the coat layer is a ten-point average surface roughness (Rz) and is less than 1 / 11.0 of the thickness of the body to be fired, sufficient space cannot be secured between the body to be fired and the setter. For this reason, volatilization of the binder is suppressed, and firing unevenness is likely to occur. On the other hand, when the surface roughness of the coat layer is 10-point average surface roughness (Rz) and exceeds 1 / 3.5 of the thickness of the object to be fired, the fired electronic components are collected by the inclination of the setter or the like. At this time, an electronic component is caught in the concave portion of the mounting surface, and many of the electronic components are left as they are.
[0022]
In addition, when the surface roughness of the coat layer is an average interval (Sm) of unevenness and is less than 1 / 10.0 or more than 1 / 1.3 of the length of the body to be fired, between the body to be fired and the setter In addition, since a sufficient space cannot be secured, volatilization of the binder is suppressed and firing unevenness is likely to occur.
[0023]
Specifically, for example, in the case of manufacturing a ceramic capacitor having a size of 0.6 mm (length) × 0.3 mm (thickness), which has recently been shifted to the main size, However, the ten-point average surface roughness (Rz) is preferably 27 to 86 μm and the average unevenness (Sm) is preferably 60 to 461 μm.
[0024]
Next, the coating layer only needs to cover the mounting portion of the base material, but if the reaction between the gas in the furnace and the base material occurs during firing, there is a risk that the base material will be deformed. It is preferable to form a coat layer also for other portions.
[0025]
Moreover, as a coating layer, what consists of an intermediate | middle layer and a surface layer is preferable.
However, when the coat layer is composed of an intermediate layer and a surface layer, it is preferable that the surface roughness of the coat layer is substantially defined by the surface roughness of the intermediate layer.
In such a coating layer, it is important that the surface layer of the coating layer is a ZrO 2 layer formed by thermal spraying. For example, as the thermal spraying , it is possible to use gas plasma thermal spraying that is difficult to obtain the desired surface roughness described above. More preferred.
[0026]
In this case, the surface roughness of the intermediate layer is preferably 0.3 to 2.4 times the arithmetic surface roughness (Ra) relative to the surface roughness of the coat layer. More preferably, it is 5 to 2.0 times.
[0027]
When the surface roughness of the intermediate layer is the arithmetic average roughness (Ra) within this range relative to the surface roughness of the coat layer, the thickness of the surface layer becomes substantially uniform, and the deterioration of the coat layer occurs uniformly. Therefore, the surface layer is difficult to peel off.
[0028]
Specifically, it is preferable that the surface roughness is substantially the same as the surface roughness of the coat layer described above for each size of the body to be fired. For example, from 0.6 mm (length) × 0.3 mm (thickness) When manufacturing a ceramic capacitor of a large size, it is preferable that the surface roughness of the intermediate layer is 5 to 20 μm in terms of arithmetic average roughness (Ra). Further, in the case of producing a ceramic capacitor having a size of 0.6 mm (length) × 0.3 mm (thickness), the surface roughness of the intermediate layer is 5 to 5 in terms of arithmetic average roughness (Ra). The thickness is preferably 15 μm.
[0029]
Moreover, when comprising a coat layer with an intermediate | middle layer and a surface layer, it is preferable that the average thickness of a surface layer shall be 20-200 micrometers, and it is more preferable to set it as 20-100 micrometers. If the average thickness of the surface layer is less than 20 μm, the intermediate layer may be exposed without the surface layer adhering to a part of the intermediate layer, and the components of the setter easily react with the body to be fired. On the other hand, when the average thickness of the surface layer exceeds 200 μm, it becomes difficult to control the surface roughness of the coat layer due to the surface roughness of the intermediate layer. In addition, although there is no restriction | limiting in particular about the thickness of an intermediate | middle layer, It is preferable to form by about 70-300 micrometers.
[0031]
When configuring the coating layer in the present invention in the intermediate layer and the surface layer, for the surface layer, it is formed by a thermal spraying without roughening, in order to form a layer of high accuracy average thickness 20~200μm ,is important. The intermediate layer may be formed by spray coating or thermal spraying with roughening, for example.
[0033]
Examples of thermal spraying include gas spraying using a combustion flame, arc spraying using an arc, plasma spraying using a plasma jet, etc., depending on the heating method, but a layer with an average thickness of 20 to 250 μm can be formed with high accuracy. In this respect, it is preferable to form the surface layer by plasma spraying. Moreover, examples of the plasma spraying include water-stabilized plasma spraying, gas plasma spraying, and the like, and water-stabilized plasma spraying is preferable in that a surface layer having high adhesion to the intermediate layer can be formed. Gas plasma spraying is preferable in that the surface layer can be thinned to an average thickness of about 20 to 50 μm, and the surface roughness of the intermediate layer can be more directly reflected on the surface roughness of the mounting surface.
[0034]
In the present invention, the material of the intermediate layer and the surface layer is not particularly limited, and may be configured to be normally coated on a setter.
[0035]
【Example】
Hereinafter, the present invention will be described more specifically based on examples. However, the present invention is not limited to these examples.
[0036]
(Evaluation methods)
(1) Surface roughness Arithmetic average roughness (Ra), ten-point average surface roughness (Rz), and uneven spacing (Sm) were evaluated. The evaluation is performed according to JIS standard B0601, and the arithmetic average roughness (Ra) and the ten-point average surface roughness (Rz) are both measured with an evaluation length of 12.5 mm and a cutoff value of 2.5 mm. The average spacing (Sm) of the unevenness was measured with an evaluation length of 4.0 mm and a reference length of 0.8 mm.
[0037]
(2) Thickness ratio (1)
Arithmetic average roughness of setters in each example and each comparative example with respect to the thickness of the fired body when the dimension is 0.6 mm (length) × 0.3 mm (thickness) as the fired body The ratio of Ra) is shown.
[0038]
(3) Thickness ratio (2)
Ten-point average surface roughness of setters in each Example and each Comparative Example with respect to the thickness of the body to be fired when the dimension is 0.6 mm (length) × 0.3 mm (thickness) The ratio of (Rz) is shown.
[0039]
(4) When the length ratio dimension is 0.6 mm (length) × 0.3 mm (thickness) as the body to be fired, the setters in the respective examples and comparative examples with respect to the length of the body to be fired The ratio of the average spacing (Sm) of the unevenness is shown.
[0040]
(5) Hatch frequency Using barium titanate as a raw material, a sample having a size of 0.6 mm (length) × 0.3 mm (thickness) and the same shape as a commercially available ceramic capacitor was prepared. Then, after placing 5000 samples on the setters obtained in each example and each comparative example, vibration was applied with the setter tilted by 30 °, and the movement and collection state of the samples were observed. And evaluated.
The evaluation is ○ when all samples are collected without being caught in the concave part of the coat layer, △ when all samples are collected while being caught, and all samples are caught. The case where it was not able to collect was evaluated as x.
[0041]
(6) Binder Using volatile barium titanate as the main raw material and using a raw material containing 30% acrylic binder as the binder, a sheet was prepared by the doctor blade method, then crimped and cut to 0.6 mm ( A sample having a length of 0.3 mm (thickness) and the same shape as a commercially available ceramic capacitor was prepared. Then, this sample was placed on the setter obtained in each example and comparative example, heated in an N 2 atmosphere at 300 ° C. for 2 hours, and the amount of the volatilized binder was reduced by the weight reduced before and after heating. evaluated.
Evaluation was made by assuming that the theoretical weight loss was 100%, 100 to 80% as ○, 80 to 50% as Δ, and 50% or less as ×.
[0042]
(7) Peelability After applying the barium titanate solution, which is a dielectric material, to the setters obtained in each Example and each Comparative Example, firing at 1350 ° C. for 2 hours was repeated 5 times, and the coating layer was peeled off from the substrate. I confirmed that I was doing.
The evaluation is ○ when no peeling of the coating layer is observed, Δ when peeling is observed at 20% or less of the coating layer, and when peeling is recognized at 20% or more of the coating layer. It evaluated as x.
[0043]
(8) Cut off the setters of the Examples and Comparative Examples on which the surface layer adhesive intermediate layer and the surface layer were formed, and observed the cut surface with a microscope. Was evaluated as x.
[0044]
(9) Controllability with respect to the surface roughness of the coating layer by the intermediate layer For the intermediate layer and the coating layer (surface layer), the arithmetic average arithmetic average roughness (Ra) is measured, and the arithmetic average arithmetic average roughness ( The case where Ra) was 0.3 to 2.4 times the arithmetic average arithmetic mean roughness (Ra) of the coat layer (surface layer) was evaluated as ◯, and the other cases were evaluated as ×.
[0045]
Example 1
As the base material, a material comprising Al 2 O 3 content of 80% by mass, SiO 2 of 19% by mass, and other materials of 1% by mass was press-molded and then fired to obtain Al 2 O 3 —SiO 2. A plate-shaped body having a size of 150 mm in length, 150 mm in width, and 5 mm in thickness was produced.
[0046]
Next, 60% by mass of Al 2 O 3 having an average particle diameter of 2 μm and 40% by mass of Al 2 O 3 having an average particle diameter of 20 μm were mixed to prepare a solid component, and then this solid was added to 30 parts by mass of water. A slurry was prepared by containing 67 parts by mass of the component and 3 parts by mass of the binder. Then, this slurry was spray-coated on the surface of the base material with a spray gun at an air pressure of 5 kg / cm 2 , and then baked at 1450 ° C. for 2 hours, and made of Al 2 O 3 with a thickness of 100 μm, An intermediate layer having an arithmetic average arithmetic average roughness (Ra) of 5 μm was formed.
[0047]
Next, plasma spraying is performed on the surface of the base material using zirconia particles having an average particle diameter of 80 μm to form a surface layer of ZrO 2 with a thickness of 100 μm and an arithmetic average arithmetic average roughness (Ra) of 15 μm. A setter for electronic parts was manufactured. The characteristics and evaluation are summarized in Table 1.
[0048]
(Examples 2 to 4 and Comparative Examples 1 to 3)
Plasma spraying is performed using zirconia particles having an average particle size of 60 μm, 50 μm, 40 μm, 110 μm, 80 μm, or 30 μm, respectively, and arithmetic average arithmetic average roughness (Ra) is 12 μm, 8 μm, 5 μm, 20 μm, 16 μm, or A setter was manufactured in the same manner as in Example 1 except that a surface layer of 4 μm was formed. The characteristics and evaluation are summarized in Table 1.
[0049]
(Evaluation)
As shown in Table 1, the ceramic electrons of Examples 1 to 4 having an arithmetic average roughness (Ra) in the range of 5 to 15 μm and a thickness ratio (1) of 1 / 20.0 to 1 / 60.0. In the setter for parts, when the setter was inclined by 30 °, all the placed samples were collected smoothly, and the volatility of the binder was also good.
[0050]
On the other hand, the ceramic electronic components of Comparative Examples 1 and 2 having large arithmetic average roughness (Ra) of 20 μm and 16 μm and a thickness ratio (1) of 1 / 15.0 and 1 / 18.8, respectively. In the setter, the volatility of the binder was good, but when the setter was tilted by 30 °, the placed sample was caught at a high rate. Moreover, in the ceramic electronic component setter of Comparative Example 3 having a small arithmetic average roughness (Ra) of 4 μm and a thickness ratio (1) of 1 / 75.0, a sample placed when the setter is inclined by 30 ° Were collected smoothly, but the binder volatility was found to be less than 80% weight loss.
[0051]
[Table 1]
Figure 0004024544
[0052]
(Examples 5 to 10 and Comparative Examples 4 to 7)
Example 1 with the exception that each surface layer had a predetermined surface roughness by using plasma spraying by adjusting the distance between the spray gun and the base material using zirconia particles having an average particle diameter of 50 μm. Similarly, a setter was produced.
[0053]
(Evaluation)
As shown in Table 2, the thickness ratio (2) is 1 / 4.0 to 1 / 10.0, and the length ratio is 1 / 1.5 to 1 / 8.0. In the setter for ceramic electronic parts of No. 10, when the setter was inclined by 30 °, all the placed samples were collected smoothly and the volatility of the binder was also good.
[0054]
On the other hand, although the thickness ratio (2) is 1 / 7.0, the length ratio is as large as 1 / 1.2, and the length ratio is as small as 1 / 12.0. In all of the setters for ceramic electronic parts of Comparative Example 5, when the setter was tilted by 30 °, all of the placed samples were collected smoothly, but with regard to the volatility of the binder, most of the samples lost weight. Was 50% or less.
[0055]
Further, although the length ratio was 1 / 3.0, the setter for ceramic electronic component of Comparative Example 6 having a large thickness ratio (2) of 1 / 3.0 had good binder volatility. However, when the setter was tilted by 30 °, the placed sample was caught at a high rate. Moreover, although the length ratio was 1 / 3.0, the setter for ceramic electronic parts of Comparative Example 7 having a small thickness ratio of 1 / 12.0 was placed when the setter was inclined by 30 °. Although all the samples were collected smoothly, most of the samples had a weight loss of 50% or less with respect to the volatility of the binder.
[0056]
[Table 2]
Figure 0004024544
[0057]
(Examples 11-14 and Comparative Examples 8-10)
Plasma spraying is performed on the base material on which the intermediate layer is formed using zirconia particles having an average particle diameter of 30 μm, 50 μm, 60 μm, 90 μm, 25 μm, 120 μm, or 150 μm, respectively, and arithmetic mean roughness (Ra) 2. Except that a surface layer of 5 μm, 8.0 μm, 10.0 μm, 16 μm, 1.5 μm, 17.0 μm, or 20.0 μm was formed to produce a ceramic electronic component setter, the same as in Example 1. The setter was manufactured.
[0058]
(Evaluation)
As shown in Table 3, in the ceramic electronic component setters of Examples 11 to 14 having a surface roughness ratio of 0.313 to 2.381, no peeling of the coating layer was observed.
[0059]
On the other hand, in the ceramic electronic component setter of Comparative Example 8 having a comparatively small surface roughness ratio of 3.333 and Comparative Example 9 having a comparatively small surface roughness ratio of 0.294, a part of the coat layer was used. Peeling was observed. Moreover, in the setter for ceramic electronic parts of Comparative Example 10 having a smaller surface roughness ratio of 0.250, peeling was observed in most parts of the coat layer.
[0060]
[Table 3]
Figure 0004024544
[0061]
(Examples 15 to 18 and Comparative Examples 11 and 12)
First, 60% by mass of Al 2 O 3 having an average particle diameter of 2 μm and 40% by mass of Al 2 O 3 having an average particle diameter of 20 μm were mixed to prepare a solid component, and then this solid was added to 25 parts by mass of water. A slurry was prepared by containing 72 parts by mass of a component and 3 parts by mass of a binder. Subsequently, this slurry was spray coated and further baked in the same manner as in Example 1 on the surface of the base material produced in the same manner as in Example 1, and the arithmetic average arithmetic average roughness (Ra) was 20.0 μm. An intermediate layer was formed.
Next, plasma spraying is performed on the surface of the base material using zirconia particles having an average particle diameter of 110 μm, and the surface layer of ZrO 2 has a thickness of 20.0 μm, 50.0 μm, 100.0 μm, 200.0 μm, A setter for ceramic electronic parts was manufactured by forming at 15.0 μm or 250.0 μm.
[0062]
(Evaluation)
As shown in Table 4, in the ceramic electronic component setters of Examples 15 to 18 having a surface layer thickness of 20.0 to 200.0 μm, no unattached portion was observed between the intermediate layer and the surface layer. First, the arithmetic average arithmetic roughness (Ra) of the intermediate layer was within the range of 0.3 to 2.4 times the arithmetic average arithmetic average roughness (Ra) of the coat layer (surface layer).
[0063]
In contrast, in the ceramic electronic component setter of Comparative Example 11 having a surface layer thickness of 15.0 μm, a non-attached portion was observed between the intermediate layer and the surface layer. Moreover, in the setter for ceramic electronic parts of Comparative Example 12 having a surface layer thickness of 250.0 μm, the difference in the arithmetic average arithmetic average roughness (Ra) between the coat layer (surface layer) and the intermediate layer is large and depends on the intermediate layer. Control of the surface roughness of the coat layer was insufficient.
[0064]
[Table 4]
Figure 0004024544
[0065]
【The invention's effect】
As described above, according to the setter for firing a ceramic electronic component of the present invention, the component does not react with the body to be fired at the time of firing, and without suppressing the volatilization of the binder in the body to be fired, A uniform fired body can be obtained. In addition, when collecting the products after baking in an automated baking process, there is no collection failure and it is possible to cope with baking automation.

Claims (10)

基材表面に、コート層を有するセラミックス電子部品焼成用セッターであって、
該コート層が、算術平均粗さ(Ra)で、被焼成体の厚さに対し、1/20〜1/65の表面粗さを有するとともに、該コート層が中間層と表層とで構成され、該表層が溶射により形成されたZrO 質層であることを特徴とするセラミックス電子部品焼成用セッター。
A ceramic electronic component firing setter having a coat layer on a substrate surface,
The coat layer has an arithmetic average roughness (Ra) and a surface roughness of 1/20 to 1/65 with respect to the thickness of the object to be fired , and the coat layer is composed of an intermediate layer and a surface layer. A setter for firing a ceramic electronic component , wherein the surface layer is a ZrO 2 layer formed by thermal spraying .
前記コート層が、算術平均粗さ(Ra)で、5〜15μmの表面粗さを有する請求項1に記載のセラミックス電子部品焼成用セッター。  The ceramic electronic component firing setter according to claim 1, wherein the coating layer has an arithmetic average roughness (Ra) and a surface roughness of 5 to 15 μm. 前記中間層の表面粗さが、算術平均粗さ(Ra)で、前記コート層の表面粗さに対して、0.3〜2.4倍である請求項1又2に記載のセラミックス電子部品焼成用セッター。3. The ceramic electronic component according to claim 1, wherein the surface roughness of the intermediate layer is an arithmetic average roughness (Ra) and is 0.3 to 2.4 times the surface roughness of the coat layer. Setter for firing. 前記表層の平均厚さが、20〜200μmである請求項1〜3のいずれか1項に記載のセラミックス電子部品焼成用セッター。The average thickness of the said surface layer is 20-200 micrometers, The setter for ceramic electronic component baking of any one of Claims 1-3. 前記中間層の表面粗さが、算術平均粗さ(Ra)で、5〜20μmである請求項1〜4のいずれか1項に記載のセラミックス電子部品焼成用セッター。The setter for firing a ceramic electronic component according to any one of claims 1 to 4, wherein the surface roughness of the intermediate layer is an arithmetic average roughness (Ra) of 5 to 20 µm. 基材表面に、コート層を有するセラミックス電子部品焼成用セッターであって、
該コート層が、十点平均表面粗さ(Rz)で、被焼成体の厚さに対して1/3.5〜1/11.0、かつ凸凹の平均間隔(Sm)で、被焼成体の長さに対して1/1.3〜1/10.0の表面粗さを有するとともに、該コート層が中間層と表層とで構成され、該表層が溶射により形成されたZrO 質層であることを特徴とするセラミックス電子部品焼成用セッター。
A ceramic electronic component firing setter having a coat layer on a substrate surface,
The coated layer has a ten-point average surface roughness (Rz), 1 / 3.5 to 1 / 11.0 with respect to the thickness of the body to be fired, and an average spacing (Sm) of unevenness to be fired. and has a surface roughness of 1 / 1.3 to / 10.0 with respect to the length of, the coated layer is formed by the intermediate layer and the surface layer, ZrO 2 quality layers surface layer is formed by spraying A setter for firing ceramic electronic parts, wherein
前記コート層が、十点平均表面粗さ(Rz)で、27〜86μm、かつ凸凹の平均間隔(Sm)で、60〜461μmの表面粗さを有する請求項に記載のセラミックス電子部品焼成用セッター。7. The ceramic electronic component firing according to claim 6 , wherein the coating layer has a ten-point average surface roughness (Rz) of 27 to 86 μm and an uneven average interval (Sm) of 60 to 461 μm. Setter. 前記中間層の表面粗さが、算術平均粗さ(Ra)で、前記コート層の表面粗さに対して、0.3〜2.4倍である請求項6又は7に記載のセラミックス電子部品焼成用セッター。The ceramic electronic component according to claim 6 or 7 , wherein the surface roughness of the intermediate layer is an arithmetic average roughness (Ra) and is 0.3 to 2.4 times the surface roughness of the coat layer. Setter for firing. 前記表層の平均厚さが、20〜200μmである請求項6〜8のいずれか1項に記載のセラミックス電子部品焼成用セッター。The setter for firing a ceramic electronic component according to any one of claims 6 to 8 , wherein an average thickness of the surface layer is 20 to 200 µm. 前記中間層の表面粗さが、算術平均粗さ(Ra)で、5〜20μmである請求項6〜9のいずれか1項に記載のセラミックス電子部品焼成用セッター。The setter for firing a ceramic electronic component according to any one of claims 6 to 9, wherein the surface roughness of the intermediate layer is an arithmetic average roughness (Ra) of 5 to 20 µm.
JP2002013912A 2002-01-23 2002-01-23 Ceramic electronic parts firing setter Expired - Lifetime JP4024544B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2002013912A JP4024544B2 (en) 2002-01-23 2002-01-23 Ceramic electronic parts firing setter
CNB021462968A CN1235246C (en) 2002-01-23 2002-10-21 Holding frame for ceramic electric part baking
TW091125182A TWI225042B (en) 2002-01-23 2002-10-25 Setter for firing ceramic electronic component
KR10-2002-0080582A KR100491805B1 (en) 2002-01-23 2002-12-17 Setter for firing ceramic electronic parts

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002013912A JP4024544B2 (en) 2002-01-23 2002-01-23 Ceramic electronic parts firing setter

Publications (2)

Publication Number Publication Date
JP2003212665A JP2003212665A (en) 2003-07-30
JP4024544B2 true JP4024544B2 (en) 2007-12-19

Family

ID=27650753

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002013912A Expired - Lifetime JP4024544B2 (en) 2002-01-23 2002-01-23 Ceramic electronic parts firing setter

Country Status (4)

Country Link
JP (1) JP4024544B2 (en)
KR (1) KR100491805B1 (en)
CN (1) CN1235246C (en)
TW (1) TWI225042B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011046562A (en) * 2009-08-27 2011-03-10 Nec Tokin Corp Setter for firing ceramic green sheet

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4713981B2 (en) * 2005-08-08 2011-06-29 コバレントマテリアル株式会社 Ceramic electronic component firing container
CN107195490B (en) * 2017-06-22 2018-09-21 刘奇美 A kind of drying unit for capacitor case production and processing
CN108088263A (en) * 2018-02-05 2018-05-29 江苏三恒高技术窑具有限公司 The high temperature load bearing board that a kind of surface topography accurately controls
JP2020073432A (en) * 2019-10-23 2020-05-14 三井金属鉱業株式会社 Ceramic lattice body

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011046562A (en) * 2009-08-27 2011-03-10 Nec Tokin Corp Setter for firing ceramic green sheet

Also Published As

Publication number Publication date
JP2003212665A (en) 2003-07-30
TWI225042B (en) 2004-12-11
KR100491805B1 (en) 2005-05-27
CN1235246C (en) 2006-01-04
KR20030064267A (en) 2003-07-31
CN1434470A (en) 2003-08-06

Similar Documents

Publication Publication Date Title
JP3330836B2 (en) Manufacturing method of laminated electronic components
US4863658A (en) Aluminum nitride ceramic substrate for copper and method for production thereof
JP4024544B2 (en) Ceramic electronic parts firing setter
KR100725083B1 (en) Jig for baking electronic component
JPH09295872A (en) Coating agent for sintering jig
US6617017B2 (en) Firing jig for electronic element
JPH1012481A (en) Conductive paste and manufacturing method for ceramics electronic component
JP3812715B2 (en) Recycling method for firing containers
JPH0218480Y2 (en)
JP2004262712A (en) Burning tool
EP1354978B1 (en) Glass lining application method
JP2001200378A (en) Jig for baking electronic parts
JP2001220248A (en) Baking jig for electronic part
JP2980029B2 (en) Method for firing ceramic molded body
JP4071922B2 (en) Coating agent for firing jig
JP2000074571A (en) Calcination jig
JPH09202666A (en) Repair of sagger for baking electronic part
KR100815102B1 (en) Glass lining application method
KR100525665B1 (en) Manufacturing method of setter used for sintering electric parts by using two step spray coating
JP2002167679A (en) Thermal spray coating on surface of ceramic base material
JP2560930B2 (en) Surface treatment method for ceramics substrate
JPH05270925A (en) Refractory material for ceramic burning
JP2000111265A (en) Ceramic calcinating roller and manufacture of ceramic sintered structure using the same
JP2003313077A (en) Silicon carbide member and method for manufacturing the same
JP2002362986A (en) Method of producing tool for firing electronic ceramic

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040713

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070226

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070306

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070501

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071002

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071003

R150 Certificate of patent or registration of utility model

Ref document number: 4024544

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101012

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101012

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111012

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121012

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121012

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131012

Year of fee payment: 6

EXPY Cancellation because of completion of term