JPH05270925A - Refractory material for ceramic burning - Google Patents

Refractory material for ceramic burning

Info

Publication number
JPH05270925A
JPH05270925A JP4064762A JP6476292A JPH05270925A JP H05270925 A JPH05270925 A JP H05270925A JP 4064762 A JP4064762 A JP 4064762A JP 6476292 A JP6476292 A JP 6476292A JP H05270925 A JPH05270925 A JP H05270925A
Authority
JP
Japan
Prior art keywords
base material
coating layer
refractory material
firing
zirconia
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4064762A
Other languages
Japanese (ja)
Other versions
JP2577157B2 (en
Inventor
Tatsuo Baba
龍夫 馬場
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Insulators Ltd
Original Assignee
NGK Insulators Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=13267524&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JPH05270925(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by NGK Insulators Ltd filed Critical NGK Insulators Ltd
Priority to JP4064762A priority Critical patent/JP2577157B2/en
Publication of JPH05270925A publication Critical patent/JPH05270925A/en
Application granted granted Critical
Publication of JP2577157B2 publication Critical patent/JP2577157B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To obtain the subject refractory material made inert to materials to be burnt, by providing the surface of a base material with a coating layer consisting of a specific stabilized zirconia. CONSTITUTION:Firstly, a base material with T-point average roughness of 15-100mum is prepared by burning a form produced by press molding or cast molding of a ceramic stock such as alumina powder, mullite powder, or cordierite powder. Thence, the surface of this base material is coated with a paste of stabilized zirconia 5-100mum in mean particle diameter to provide a coating layer 40-200mum thick, thus obtaining the objective refractory material with the base material firmly provided with the coating layer consisting of zirconia hard to react with functional parts such as ferrite.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、焼成用治具等の窯道具
の材料として使用されるセラミック焼成用耐火材に関す
るものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a refractory material for firing ceramics used as a material for a kiln tool such as a jig for firing.

【0002】[0002]

【従来の技術】最近、センサ、コンデンサー、IC基板
等の機能部品が、セラミック材料へと移行されつつあ
る。とりわけ、チタン酸バリウム等からなる誘電素子、
フェライト等の複合酸化物からなる磁性体等が、広範に
用いられている。こうしたセラミック製機能部品は、原
料を混合し、成形した後、この成形体を焼成用治具に載
せ、脱脂し、焼成することによって製造されている。こ
の焼成用治具の素材としては、ムライト質、アルミナ
質、コージェライト質等の耐火物が一般的である。
2. Description of the Related Art Recently, functional materials such as sensors, capacitors, IC substrates, etc. are being replaced with ceramic materials. In particular, a dielectric element made of barium titanate or the like,
Magnetic materials made of composite oxides such as ferrite are widely used. Such a ceramic functional component is manufactured by mixing raw materials, molding them, placing the molded body on a firing jig, degreasing and firing it. Refractory materials such as mullite, alumina and cordierite are generally used as the material for the firing jig.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、上述し
た従来のセラミック焼成用耐火物を基材とする焼成用治
具では、被焼成物を基材表面に接触させて載置して焼成
すると、基材表面と被焼成物との間で反応が生じ、良好
な焼成作業ができない問題が生じる場合があった。この
問題は、特に高温度で焼成する必要のあるフェライト等
の機能部品の焼成では、顕著であった。
However, in the above-described conventional firing jig using the refractory for firing ceramics as a base material, when the material to be fired is placed in contact with the surface of the base material and fired, In some cases, a reaction may occur between the surface of the material and the material to be fired, making it impossible to perform a good firing operation. This problem was particularly noticeable when firing functional parts such as ferrite, which needed to be fired at a high temperature.

【0004】この問題を解決するため、実開昭60ー1
18499号公報において、基材の表面にジルコニア粉
末層と共生地粉末層とを形成し、焼成して、薄膜状のセ
ッター層を形成した焼成用こう鉢が開示されている。し
かしながら、上述した実開昭60ー118499号公報
に開示された技術では、ジルコニアから薄膜セッターを
形成し、従来のセッターの使用をなくすことのみを開示
しているだけであるため、薄膜セッターを形成するジル
コニアの状態および基材の状態については何等開示がな
く、条件によっては薄膜セッターが基材表面から剥離し
てしまい、目的とする薄膜セッターの役目を果たさなく
なる問題があった。
[0004] In order to solve this problem
Japanese Patent No. 18499 discloses a baking mortar in which a zirconia powder layer and a co-dough powder layer are formed on the surface of a substrate and baked to form a thin film setter layer. However, the technique disclosed in Japanese Utility Model Laid-Open No. Sho 60-118499 described above only discloses forming a thin film setter from zirconia and eliminating the use of a conventional setter. There is no disclosure about the state of zirconia and the state of the base material, and there is a problem that the thin film setter peels from the surface of the base material depending on the conditions, and the intended function of the thin film setter cannot be fulfilled.

【0005】本発明の目的は上述した問題を解消して、
被焼成物との反応の無い表面層を有するセラミック焼成
用耐火材を提供しようとするものである。
The object of the present invention is to solve the above-mentioned problems,
An object of the present invention is to provide a refractory material for firing ceramics having a surface layer that does not react with the material to be fired.

【0006】[0006]

【課題を解決するための手段】本発明のセラミック焼成
用耐火材は、セラミック成形体を焼成する焼成用治具等
の材料として使用されるセラミック焼成用耐火材におい
て、基材の表面に、平均粒径5〜100μmの安定化ジ
ルコニアからなる40〜200μmの厚さのコーティン
グ層を有することを特徴とするものである。
The refractory material for firing ceramics according to the present invention is a refractory material for firing ceramics used as a material for a firing jig for firing a ceramic molded body. It is characterized by having a coating layer having a thickness of 40 to 200 μm made of stabilized zirconia having a particle size of 5 to 100 μm.

【0007】[0007]

【作用】上述した構成において、所定の平均粒径を有す
る安定化ジルコニアを所定の厚さとしたコーティング層
を基材表面に設けることにより、好ましくはその際の基
材表面の表面粗さを所定の範囲にすることにより、接着
性の良好な安定化ジルコニアからなるコーティング層を
基材表面に設けることができ、その結果フェライト等の
機能部品と反応しにくいジルコニアからなるコーティン
グ層を基材表面に強固に設けたセラミック焼成用耐火材
を得ることができる。
In the above-mentioned constitution, by providing a coating layer having a predetermined thickness of stabilized zirconia having a predetermined average particle diameter on the surface of the base material, it is preferable that the surface roughness of the base material surface at that time is predetermined. By setting the range, it is possible to provide a coating layer made of stabilized zirconia with good adhesiveness on the substrate surface, and as a result, a coating layer made of zirconia that does not easily react with functional components such as ferrite is firmly attached to the substrate surface. It is possible to obtain the refractory material for firing ceramics provided in the above.

【0008】ここで、ジルコニアの平均粒径を5〜10
0μmとするのは、粒径がこれより小さいと、焼結作業
中にクラックの発生があり、使用中の反応性ガスや反応
物質が基材の方へ移動し、焼成用耐火材として好ましく
ないとともに、粒径がこれより大きいと、コーティング
層のち密性がなくなり、クラックと同様に耐反応性が良
くないためである。また、コーティング層の厚みを40
〜200μmとしたのは、これより薄いと、反応性ガス
や反応物質を遮断できなくなるとともに、これより厚い
と、焼結中にクラックが発生し、耐反応性が良くないた
めである。
Here, the average particle size of zirconia is 5 to 10
If the particle size is smaller than 0 μm, cracks may be generated during the sintering work, and the reactive gas or reaction substance during use may move toward the base material, which is not preferable as a firing refractory material. At the same time, if the particle size is larger than this, the denseness of the coating layer is lost, and the reaction resistance is not good like cracks. In addition, the thickness of the coating layer is 40
The reason for setting the thickness to ˜200 μm is that if it is thinner than this, it becomes impossible to block the reactive gas and the reaction substance, and if it is thicker than this, cracking occurs during sintering and the reaction resistance is not good.

【0009】[0009]

【実施例】本発明のセラミック焼成用耐火材を製造する
には、まず、アルミナ粉末、ムライト粉末、コージェラ
イト粉末等のセラミック原料を、プレス成形や流し込み
成形等により成形体を得、これを焼成する等の一般的な
製造方法で基材を製造する。基材として、近年注目され
ている熱エネルギーの点で有利な多孔質の耐火物を用い
ることができる。その例として、例えば、特公平3ー1
9194号公報には、耐熱性無機質繊維と耐火粉末とを
焼結させる方法が、特開平3ー1090号公報には、熱
溶融型樹脂ビーズと高純度アルミナ質粉体とからなる顆
粒を製造し、この顆粒を乾式プレス成形する方法が、特
公昭61ー54752号公報には、セラミック原料を混
合したポリウレタン発泡体を得、これを焼成させる方法
が、それぞれ開示されている。
EXAMPLES In order to manufacture the refractory material for firing ceramics of the present invention, first, a ceramic raw material such as alumina powder, mullite powder, cordierite powder, etc. is obtained by press molding, cast molding, etc., and fired. The base material is manufactured by a general manufacturing method such as. As the base material, a porous refractory material which is advantageous in terms of thermal energy, which has been drawing attention in recent years, can be used. As an example, for example, Japanese Patent Publication 3-1
No. 9194 discloses a method of sintering heat-resistant inorganic fibers and refractory powder, and Japanese Laid-Open Patent Publication No. 3-1090 produces granules composed of hot-melt resin beads and high-purity alumina powder. Japanese Patent Publication No. 61-54752 discloses a method of dry press-molding the granules, and a method of obtaining a polyurethane foam mixed with a ceramic raw material and firing the same.

【0010】次に、この基材に安定化ジルコニア粉末を
コーティングする。コーティングにあたっては、まず平
均粒径が5〜100μm の安定化ジルコニアからなるペ
ースト等を準備し、このペーストから厚さ40〜200
μm のジルコニア層を設ける必要がある。コーティング
の方法は、従来から公知の例えばエアスプレーによる方
法、浸漬による方法などのいずれの方法でもかまわな
い。ここで、ジルコニアをコーティングする基材の表面
粗さが、耐反応性の点でおよび製品として重要である。
すなわち、基材の表面粗さは、十点平均粗さで15〜1
00μm が好ましく、それより平滑であると、コーティ
ング材を塗布した後のコーティング層の密着性が悪く、
数回の熱サイクルで剥離してしまう場合がある。また、
それより粗いときは、コーティング層の厚みが不均一と
なり、焼成したセラミックの電気的特性のバラツキが大
きくなる場合がある。これは、コーティング層に薄い部
分が生じ、そこが基材の影響を受け、セラミックの電気
的特性が悪くなるものと考える。そのため、基材の表面
粗さを十点平均粗さで15〜100μm に微細なセラミ
ック粉末で処理し、それからコーティング作業をするこ
とが望ましい。
Next, the substrate is coated with a stabilized zirconia powder. For coating, first prepare a paste or the like made of stabilized zirconia having an average particle size of 5 to 100 μm, and from this paste, a thickness of 40 to 200
It is necessary to provide a μm zirconia layer. The coating method may be any conventionally known method such as an air spray method or a dipping method. Here, the surface roughness of the base material coated with zirconia is important in terms of reaction resistance and as a product.
That is, the surface roughness of the substrate is 15 to 1 in terms of ten-point average roughness.
00 μm is preferable, and when it is smoother, the adhesion of the coating layer after applying the coating material is poor,
It may peel off after several heat cycles. Also,
If it is rougher than that, the thickness of the coating layer becomes non-uniform, and the variation in the electrical characteristics of the fired ceramic may increase. It is considered that this is because the coating layer has a thin portion, which is affected by the base material and deteriorates the electrical characteristics of the ceramic. Therefore, it is desirable that the surface roughness of the base material is treated with fine ceramic powder to have a ten-point average roughness of 15 to 100 μm, and then the coating operation is performed.

【0011】以下、実際の例について説明する。実施例1 平均粒径0.6μm の易焼結アルミナ50重量部、合成
ムライト50重量部のセラミック原料に水40重量部を
添加し、スラリー状にボールミル混合を行った。スラリ
ー状になったものに、親水性ウレタンポリマーを15重
量部添加し、強力攪拌機で混合し、200×200×1
0mmの金型に流し込み、発泡硬化させた。反応は、短
時間で終了するので、金型への流し込みはすばやく行う
必要がある。次に、発泡硬化したものを、80〜100
℃で30時間乾燥させ、次いで200〜400℃で40
時間で脱脂後、1500〜1650℃で焼成を行い、基
材を得た。得られた基材の表面粗さは、十点平均粗さで
50μm であった。なお、十点平均粗さは、JIS B
0601に従って求めた。コーティング材料としては、
23 安定化ジルコニアを使用し、以下の表1に示す
各粒径に配合調整し、コーティング厚みを120μm と
して耐火材を得た。
An actual example will be described below. Example 1 40 parts by weight of water was added to 50 parts by weight of easily sinterable alumina having an average particle size of 0.6 μm and 50 parts by weight of synthetic mullite, and ball mill mixing was performed in a slurry form. To the slurry, add 15 parts by weight of hydrophilic urethane polymer and mix with a strong stirrer to obtain 200 x 200 x 1
It was poured into a 0 mm mold and foam-cured. Since the reaction is completed in a short time, it is necessary to pour it into the mold quickly. Next, the foamed and cured product is
Dried for 30 hours at 40 ° C., then 40 at 200-400 ° C.
After degreasing for a period of time, baking was performed at 1500 to 1650 ° C. to obtain a base material. The surface roughness of the obtained substrate was 50 μm in terms of ten-point average roughness. The ten-point average roughness is JIS B
0601. As a coating material,
Using Y 2 O 3 stabilized zirconia, the particle size shown in Table 1 below was compounded and adjusted, and the coating thickness was 120 μm to obtain a refractory material.

【0012】得られた耐火材に対して、チタン酸バリウ
ムとの反応性とコーティング層の剥離性を調べて比較し
た。ここで、反応性は、チタン酸バリウムを上記耐火材
のジルコニアコーティング層上に200g載せ、140
0℃で1時間焼成を20回行い、コーティング層とチタ
ン酸バリウムとの反応性を確認するとともに、チタン酸
バリウムの電気特性を評価した。その結果、いずれも良
好なものを○、いずれか一方のみが良好なものを△、い
ずれも不良なものを×として表記した。また、剥離性
は、上記耐火材を1000℃の電気炉から大気中に30
回引き出し、コーティング層の剥離した回数を示した。
結果を表1に示す。なお、表1の結果から、コーティン
グ層の粒径が5〜100μm の本発明の実施例がそれ以
外の比較例よりも良好な結果を得ることができることが
わかる。
With respect to the obtained refractory material, the reactivity with barium titanate and the peelability of the coating layer were investigated and compared. Here, as for the reactivity, 200 g of barium titanate was placed on the zirconia coating layer of the above refractory material,
Firing was performed 20 times at 0 ° C. for 1 hour to confirm the reactivity between the coating layer and barium titanate and to evaluate the electrical characteristics of barium titanate. As a result, the good ones were marked with ◯, the good ones were marked with Δ, and the bad ones were marked with x. In addition, the peelability is 30% when the above refractory material is exposed to the atmosphere from an electric furnace at 1000 ° C.
The number of times the coating layer was peeled off and the coating layer was peeled off was shown.
The results are shown in Table 1. From the results of Table 1, it can be seen that the examples of the present invention in which the particle diameter of the coating layer is 5 to 100 μm can obtain better results than the other comparative examples.

【0013】[0013]

【表1】 [Table 1]

【0014】実施例2 実施例1と同様の方法により基材を製作し、得られた基
材の表面に、粒径が5〜75μm のCaO安定化ジルコ
ニアを使用し、以下の表2に示す各種の厚みにコーティ
ングして耐火材を得、得られた耐火材に対して実施例1
と同様の反応性と剥離性を測定して比較した。結果を表
2に示す。なお、表2の結果から、コーティング層の厚
みが40〜200μm の本発明の実施例は、それ以外の
比較例と比べて良好な結果を得られることがわかる。
Example 2 A base material was produced by the same method as in Example 1, and CaO-stabilized zirconia having a particle size of 5 to 75 μm was used on the surface of the obtained base material, and the results are shown in Table 2 below. A refractory material was obtained by coating in various thicknesses, and the obtained refractory material was used in Example 1
Similar reactivity and peelability were measured and compared. The results are shown in Table 2. From the results shown in Table 2, it can be seen that the examples of the present invention in which the thickness of the coating layer is 40 to 200 μm can provide better results than the other comparative examples.

【0015】[0015]

【表2】 [Table 2]

【0016】実施例3 平均粒径0.6μm の易焼結性アルミナ70重量部に、
合成ムライト30重量部、成形バインダー2.0重量
部、粒径200μm 以下のスチレンビーズを20重量部
添加したものを、ボールミルで乾式混合して原料を得
た。得られた原料を乾式プレスし、200×200×1
0mmの形状の成形体を得た。得られた成形体を、15
00〜1600℃の温度で焼結させ、以下の表3に示す
ように各種の表面粗さを有する基材を準備した。次ぎ
に、準備した基材の表面に、平均粒径1.5μm の電融
アルミナ(または粒径1.0μm の電融ムライト)をエ
アスプレーにより以下の表3に示す表面粗さにコーティ
ングする表面処理を行ったものおよび行わなかったもの
の上に、粒径5〜75μm のY23 安定化ジルコニア
を120μm コーティングを行って、耐火材を得た。得
られた耐火材に対し、実施例1と同様に、反応性および
剥離性を求めた比較した。結果を表3に示す。なお、表
3の結果から、表面粗さを15〜100μm の場合によ
り良好な結果が得られることがわかる。
Example 3 To 70 parts by weight of easily sinterable alumina having an average particle size of 0.6 μm,
30 parts by weight of synthetic mullite, 2.0 parts by weight of molding binder, and 20 parts by weight of styrene beads having a particle size of 200 μm or less were dry-mixed with a ball mill to obtain a raw material. The obtained raw material is dry-pressed to 200 × 200 × 1
A molded product having a shape of 0 mm was obtained. The obtained molded body is
Sintering was performed at a temperature of 00 to 1600 ° C. to prepare base materials having various surface roughness as shown in Table 3 below. Next, the surface of the prepared substrate is coated with fused alumina having an average particle size of 1.5 μm (or fused mullite having a particle size of 1.0 μm) to the surface roughness shown in Table 3 below. A 120 μm coating of Y 2 O 3 -stabilized zirconia having a particle size of 5 to 75 μm was applied onto the treated and untreated ones to obtain a refractory material. Similar to Example 1, the obtained refractory material was compared for obtaining reactivity and peeling property. The results are shown in Table 3. From the results of Table 3, it can be seen that good results can be obtained when the surface roughness is 15 to 100 μm.

【0017】[0017]

【表3】 [Table 3]

【0018】[0018]

【発明の効果】以上の説明から明かなように、本発明に
よれば、所定の平均粒径を有する安定化ジルコニアを所
定の厚さとしたコーティング層を基材表面に設け、好ま
しくはその際の基材表面の表面粗さを所定の範囲にして
いるため、接着性の良好な安定化ジルコニアからなるコ
ーティング層を基材表面に設けることができ、その結果
フェライト等の機能部品と反応しにくいジルコニアから
なるコーティング層を基材表面に強固に設けたセラミッ
ク焼成用耐火材を得ることができる。
As is apparent from the above description, according to the present invention, a coating layer having a predetermined thickness of stabilized zirconia having a predetermined average particle size is provided on the surface of a substrate, and preferably in that case. Since the surface roughness of the base material is within the specified range, a coating layer consisting of stabilized zirconia with good adhesiveness can be provided on the base material surface, and as a result, zirconia that does not easily react with functional parts such as ferrite. It is possible to obtain a refractory material for firing ceramics in which a coating layer made of is firmly provided on the surface of the base material.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 セラミック成形体を焼成する焼成用治具
等の材料として使用されるセラミック焼成用耐火材にお
いて、基材の表面に、平均粒径5〜100μmの安定化
ジルコニアからなる40〜200μmの厚さのコーティ
ング層を有することを特徴とするセラミック焼成用耐火
材。
1. A refractory material for firing ceramics, which is used as a material for a firing jig or the like for firing a ceramic molded body, comprising 40 to 200 μm of stabilized zirconia having an average particle diameter of 5 to 100 μm on the surface of a base material. A refractory material for firing ceramics, which has a coating layer having a thickness of.
【請求項2】 前記コーティング層を設ける基材表面の
十点平均粗さが、15〜100μmである請求項1記載
のセラミック焼成用耐火材。
2. The refractory material for firing ceramics according to claim 1, wherein the surface of the substrate on which the coating layer is provided has a ten-point average roughness of 15 to 100 μm.
JP4064762A 1992-03-23 1992-03-23 Fireproof material for ceramic firing Expired - Lifetime JP2577157B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4064762A JP2577157B2 (en) 1992-03-23 1992-03-23 Fireproof material for ceramic firing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4064762A JP2577157B2 (en) 1992-03-23 1992-03-23 Fireproof material for ceramic firing

Publications (2)

Publication Number Publication Date
JPH05270925A true JPH05270925A (en) 1993-10-19
JP2577157B2 JP2577157B2 (en) 1997-01-29

Family

ID=13267524

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4064762A Expired - Lifetime JP2577157B2 (en) 1992-03-23 1992-03-23 Fireproof material for ceramic firing

Country Status (1)

Country Link
JP (1) JP2577157B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004026791A1 (en) * 2002-09-18 2004-04-01 Mitsui Mining & Smelting Co., Ltd. Electronic component burning jig
JP2005041777A (en) * 2004-09-22 2005-02-17 Mitsui Mining & Smelting Co Ltd Electronic component firing tool
JP2015054812A (en) * 2013-09-13 2015-03-23 三井金属鉱業株式会社 Burning tool and method for producing the same

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6384011A (en) * 1986-09-27 1988-04-14 九州耐火煉瓦株式会社 Manufacture of baking jig for electronic component
JPS6445792A (en) * 1987-08-13 1989-02-20 Denki Kagaku Kogyo Kk Production of article coated with pyrolytic boron nitride
JPH01317173A (en) * 1988-06-15 1989-12-21 Isolite Kogyo Kk Refractory material for calcining ceramic
JPH0269381A (en) * 1988-08-31 1990-03-08 Ibiden Co Ltd Jig for calcining electronic parts
JPH02260602A (en) * 1989-03-31 1990-10-23 Ibiden Co Ltd Jig for firing electronic component
JPH0319194A (en) * 1989-05-31 1991-01-28 Siemens Ag Evaluation equipment circuit for integrated semiconductor memory and operating method thereof

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6384011A (en) * 1986-09-27 1988-04-14 九州耐火煉瓦株式会社 Manufacture of baking jig for electronic component
JPS6445792A (en) * 1987-08-13 1989-02-20 Denki Kagaku Kogyo Kk Production of article coated with pyrolytic boron nitride
JPH01317173A (en) * 1988-06-15 1989-12-21 Isolite Kogyo Kk Refractory material for calcining ceramic
JPH0269381A (en) * 1988-08-31 1990-03-08 Ibiden Co Ltd Jig for calcining electronic parts
JPH02260602A (en) * 1989-03-31 1990-10-23 Ibiden Co Ltd Jig for firing electronic component
JPH0319194A (en) * 1989-05-31 1991-01-28 Siemens Ag Evaluation equipment circuit for integrated semiconductor memory and operating method thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004026791A1 (en) * 2002-09-18 2004-04-01 Mitsui Mining & Smelting Co., Ltd. Electronic component burning jig
JP2005041777A (en) * 2004-09-22 2005-02-17 Mitsui Mining & Smelting Co Ltd Electronic component firing tool
JP2015054812A (en) * 2013-09-13 2015-03-23 三井金属鉱業株式会社 Burning tool and method for producing the same

Also Published As

Publication number Publication date
JP2577157B2 (en) 1997-01-29

Similar Documents

Publication Publication Date Title
EP0396240B1 (en) Ceramic meterial and method for producing the same
KR0153905B1 (en) Materials of tools usale for burning
JPH05270925A (en) Refractory material for ceramic burning
JP3653388B2 (en) Baking tool material
KR100439075B1 (en) Jig for firing electronic components
JPH0543660B2 (en)
JPH1179852A (en) Setter for baking and its production
JPH0798707B2 (en) Porous refractory molding for firing functional parts
JPH10195623A (en) Platinum-coating refractory
JP4116593B2 (en) Baking tool material
JPH0682166A (en) Jig for firing
US5863481A (en) Process for forming a high temperature resistant, flexible, pliable elements curable by false-melt technique
JPH05296671A (en) Baking jig
JP3055331B2 (en) Furnace material for ceramic firing furnace and method for producing the same
JPH04302992A (en) Refractory material for burning ceramics
JPH0269381A (en) Jig for calcining electronic parts
JP4054098B2 (en) Firing jig
JP3643022B2 (en) Electronic component firing jig
JP3949950B2 (en) Thermal shock resistant alumina / zirconia firing jig and manufacturing method thereof (normal firing)
JP2818113B2 (en) Firing jig
JP2524678B2 (en) Fireproof molding
JP2002362986A (en) Method of producing tool for firing electronic ceramic
JP2000159569A (en) Multi-layered structure refractory for sintering ceramic
JPH05186285A (en) Substrate for heat treatment and its production
JPH02260602A (en) Jig for firing electronic component