JP4228987B2 - Manufacturing method of silicon nitride honeycomb filter - Google Patents

Manufacturing method of silicon nitride honeycomb filter Download PDF

Info

Publication number
JP4228987B2
JP4228987B2 JP2004145111A JP2004145111A JP4228987B2 JP 4228987 B2 JP4228987 B2 JP 4228987B2 JP 2004145111 A JP2004145111 A JP 2004145111A JP 2004145111 A JP2004145111 A JP 2004145111A JP 4228987 B2 JP4228987 B2 JP 4228987B2
Authority
JP
Japan
Prior art keywords
temperature
silicon nitride
nitrogen gas
gas introduction
honeycomb filter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004145111A
Other languages
Japanese (ja)
Other versions
JP2005324138A (en
Inventor
完爾 荒井
恵一朗 鈴木
勝彦 松崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP2004145111A priority Critical patent/JP4228987B2/en
Publication of JP2005324138A publication Critical patent/JP2005324138A/en
Application granted granted Critical
Publication of JP4228987B2 publication Critical patent/JP4228987B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Filtering Materials (AREA)
  • Ceramic Products (AREA)
  • Porous Artificial Stone Or Porous Ceramic Products (AREA)

Description

本発明は、高温排気ガス中に含まれる粉塵等を除去するために好適な窒化ケイ素質ハニカムフィルタの製造法に関する。   The present invention relates to a method for manufacturing a silicon nitride honeycomb filter suitable for removing dust and the like contained in high-temperature exhaust gas.

窒化ケイ素は、耐熱性、耐食性、耐薬品性、機械的強度等に優れた特性を有しており、高温や腐食性環境下での集塵、脱塵用フィルタやディーゼルエンジンから排出される微粒子(以下、パティキュレートという)除去用フィルタ(以下、DPFという)として期待されている。このような窒化ケイ素質フィルタの製造法は、出発原料で大別すると窒化ケイ素粒子を出発原料とする製造法(特許文献1参照。)と金属ケイ素粒子を出発原料とする製造法(特許文献2〜6参照。)とに分けられる。金属ケイ素粒子を出発原料とし、直接窒化により窒化ケイ素とする製造法は、一般に、窒化ケイ素粒子を出発原料とする製造法に比べて原料費用が安価であるため製造原価の点で優れる特徴がある。   Silicon nitride has excellent properties such as heat resistance, corrosion resistance, chemical resistance, mechanical strength, etc., and particulates discharged from dust collection, dust removal filters and diesel engines under high temperature and corrosive environment It is expected as a removal filter (hereinafter referred to as particulate) (hereinafter referred to as DPF). The manufacturing method of such a silicon nitride filter is roughly divided into a starting material (see Patent Document 1) and a manufacturing method using metal silicon particles as a starting material (Patent Document 2). -6)). The production method using metal silicon particles as a starting material and silicon nitride by direct nitriding is generally superior in terms of production cost because the raw material cost is lower than that in the manufacturing method using silicon nitride particles as a starting material. .

一方、金属ケイ素粒子を出発原料とする方法は、熱処理過程で金属ケイ素を窒化ケイ素にする過程(以下、窒化という)を伴うため、熱処理制御がより重要となる。熱処理制御としては、温度とともに雰囲気を充分に制御することが必要である。本発明者らは、金属ケイ素を含むハニカム成形体を種々の条件下で熱処理する際に、金属ケイ素の窒化による発熱とその放熱との熱バランスが悪いと、ハニカム成形体内部で異常な温度上昇(以下、異常発熱という)が局所的に発生し、ハニカム成形体内部にクラックが発生したり、ハニカム成形体の外部に膨れ等の欠陥が発生すること、しかも、前記欠陥の発生はハニカム成形体のサイズが大きくなる程顕著となることを経験した。   On the other hand, since the method using metal silicon particles as a starting material involves a process of converting metal silicon into silicon nitride (hereinafter referred to as nitriding) in the heat treatment process, the heat treatment control becomes more important. As heat treatment control, it is necessary to sufficiently control the atmosphere together with the temperature. When heat treating a honeycomb molded body containing metal silicon under various conditions, if the heat balance between nitriding of the metal silicon and the heat dissipation is poor, an abnormal temperature rise occurs inside the honeycomb molded body. (Hereinafter referred to as abnormal heat generation) occurs locally, cracks occur inside the honeycomb molded body, and defects such as swelling occur outside the honeycomb molded body. I experienced that it became more noticeable as the size of.

特許文献2には、金属ケイ素を含むハニカム成形体を酸化性雰囲気で有機質を焼成除去後、窒素または窒素と水素の混合ガスを含む還元性雰囲気中で、1400〜1450℃まで窒化処理、加熱焼成して窒化ケイ素を主成分とするハニカム構造体の製造法が記載されている。   In Patent Document 2, a honeycomb formed body containing metal silicon is subjected to calcination and removal in an oxidizing atmosphere, followed by nitriding treatment to 1400 to 1450 ° C. in a reducing atmosphere containing nitrogen or a mixed gas of nitrogen and hydrogen, and heating and firing. A method for manufacturing a honeycomb structure mainly composed of silicon nitride is described.

特許文献3には、金属ケイ素を含む成形体を窒素ガス40〜95容量%、水素ガス60〜5容量%の雰囲気下で加熱窒化して網目状多孔質窒化ケイ素焼結体とする製造法が記載されている。   Patent Document 3 discloses a method for producing a reticulated porous silicon nitride sintered body by heating and nitriding a molded body containing metallic silicon in an atmosphere of nitrogen gas 40 to 95% by volume and hydrogen gas 60 to 5% by volume. Are listed.

特許文献4には、20〜800℃まで不活性雰囲気(例えばアルゴン、窒素)または酸化性雰囲気とし、約1500℃まで窒素をベースに工業用窒素またはアンモニアで処理してダイカスト用多孔質窒化ケイ素金型の製造法が記載されている。   In Patent Document 4, an inert atmosphere (for example, argon, nitrogen) or an oxidizing atmosphere is used up to 20 to 800 ° C., and the porous silicon nitride gold for die casting is treated with industrial nitrogen or ammonia based on nitrogen up to about 1500 ° C. A method for manufacturing the mold is described.

特許文献5には、金属ケイ素を含む成形体を窒素雰囲気下で1100〜1400℃で4〜12時間保持し、第2段の熱処理条件が窒素雰囲気下で1450〜1800℃で1〜12時間保持して窒化ケイ素フィルタとする製造法が記載されている。   In Patent Document 5, a compact containing metal silicon is held at 1100 to 1400 ° C. for 4 to 12 hours in a nitrogen atmosphere, and the second stage heat treatment condition is held at 1450 to 1800 ° C. for 1 to 12 hours in a nitrogen atmosphere. And a method for producing a silicon nitride filter is described.

特許文献6には、窒化ケイ素フィルタの製造法ではないが、金属ケイ素を含む成形体を約1000℃まで200℃/h〜1000℃/hの昇温速度で可燃性ガスを流して有機物を燃焼除去後、約1000℃〜1450℃までを約5℃/h〜約50℃/hの昇温速度で窒素約40〜60モル%、ヘリウム約40〜60モル%および水素約1〜4モル%の窒化ガス中で窒化し、約1450℃〜1850℃までを約250℃/h〜約1250℃/hの昇温速度で窒素、ヘリウムおよび水素を含む雰囲気下で窒化ケイ素を製造する方法が記載されている。   Patent Document 6 is not a method for producing a silicon nitride filter, but combusts organic matter by flowing a combustible gas up to about 1000 ° C. at a rate of temperature increase of 200 ° C./h to 1000 ° C./h. After removal, from about 1000 ° C. to 1450 ° C. at a rate of temperature increase of about 5 ° C./h to about 50 ° C./h, nitrogen about 40-60 mol%, helium about 40-60 mol% and hydrogen about 1-4 mol% A method for producing silicon nitride in an atmosphere containing nitrogen, helium and hydrogen at a temperature increase rate of about 250 ° C./h to about 1250 ° C./h from about 1450 ° C. to 1850 ° C. is described. Has been.

しかし、特許文献2〜6に提案された製造法では、金属ケイ素を窒化ケイ素とする窒化は発熱反応であるためハニカム成形体のサイズが大きくなった場合に、成形体内部での窒化率などの特性が不均一になりやすく、また最悪の場合、窒化による異常発熱により窒化段階でハニカム成形体にクラックなどの欠陥が発生するおそれがある。そこで、大型サイズの、特性の均質性が高い、しかも圧力損失(以下、圧損と略す)の低い、高品質な窒化ケイ素質フィルタの製造法が求められている。   However, in the manufacturing methods proposed in Patent Documents 2 to 6, when nitriding using metal silicon as silicon nitride is an exothermic reaction, when the size of the honeycomb formed body is increased, the nitridation rate inside the formed body, etc. The characteristics are likely to be non-uniform, and in the worst case, defects such as cracks may occur in the honeycomb formed body in the nitriding stage due to abnormal heat generation due to nitriding. Therefore, there is a demand for a method for producing a high-quality silicon nitride filter having a large size, high characteristic homogeneity, and low pressure loss (hereinafter abbreviated as pressure loss).

特開2002−121073号公報(第1〜5頁)JP 2002-121073 A (pages 1 to 5) 特公昭52−19207号公報(第1〜2頁)Japanese Patent Publication No. 52-19207 (pages 1 and 2) 特公平2−11555号公報(第1〜2頁)Japanese Patent Publication No. 2-11555 (pages 1 and 2) 特表昭64−500426号公報(6頁)JP-T 64-500426 (page 6) 国際公開第01/47833号パンフレット(4、5、7頁)International Publication No. 01/47833 pamphlet (4, 5, 7 pages) 特許第3321621号公報(2、3、6頁)Japanese Patent No. 3321621 (pages 2, 3, 6)

本発明の目的は、大型サイズのハニカムフィルタであっても、クラックや膨れなどの欠陥がない、内部の特性の均質性が高く、しかも低圧損な窒化ケイ素質ハニカムフィルタの製造法を提供する。   An object of the present invention is to provide a method for producing a silicon nitride honeycomb filter having no internal defects such as cracks and blisters, high homogeneity of internal characteristics, and low pressure loss even for a large size honeycomb filter.

本発明は、金属ケイ素粒子と気孔形成材とを含むハニカム成形体を主に窒化および焼結のため熱処理して金属ケイ素粒子を窒化ケイ素粒子とする窒化ケイ素質ハニカムフィルタの製造方法であって、該熱処理時のガス雰囲気を、順に
1)第1(窒化防止)段階;室温〜窒素ガス導入開始温度までは、酸素および窒素を実質的に含まない雰囲気とし、
2)第2(窒化)段階;窒素ガス導入開始温度から窒素ガス導入量制御終了温度までは窒素ガス導入量をハニカム成形体中の金属ケイ素1kg当たり0.05〜5L/min.とし、
3)第3(焼結)段階;窒素ガス導入量制御終了温度からは実質的に窒素ガスからなる雰囲気として、熱処理することを特徴とする窒化ケイ素質ハニカムフィルタの製造方法を提供する。
The present invention is a method for producing a silicon nitride honeycomb filter in which a honeycomb formed body containing metal silicon particles and a pore-forming material is heat-treated mainly for nitriding and sintering to convert the metal silicon particles into silicon nitride particles, The gas atmosphere at the time of the heat treatment is, in order: 1) first (nitriding prevention) stage; from room temperature to the nitrogen gas introduction start temperature, the atmosphere is substantially free of oxygen and nitrogen;
2) Second (nitriding) stage: From the nitrogen gas introduction start temperature to the nitrogen gas introduction amount control end temperature, the nitrogen gas introduction amount is set to 0.05 to 5 L / min. Per 1 kg of metal silicon in the honeycomb formed body. age,
3) Third (sintering) stage: Provided is a method for manufacturing a silicon nitride honeycomb filter, characterized in that heat treatment is performed as an atmosphere substantially composed of nitrogen gas from the temperature at which nitrogen gas introduction amount control ends.

本発明の窒化ケイ素質ハニカムフィルタの製造方法(以下、本製造法という)により、大型の窒化ケイ素質ハニカムフィルタで特に問題となる窒化反応の制御が容易となるため、クラックやふくれ等の欠陥がなく、しかもフィルタ内部の特性の均質性が高い、高品質の大型の窒化ケイ素質ハニカムフィルタを提供できる。したがって、本製造法で得られた窒化ケイ素質フィルタをディーゼルエンジンから排出されるパティキュレート除去用として採用することにより、信頼性の高い、耐久性に優れた、大型のDPFを提供できる。   The method for manufacturing a silicon nitride honeycomb filter of the present invention (hereinafter referred to as the present manufacturing method) facilitates control of the nitriding reaction, which is particularly problematic in large-sized silicon nitride honeycomb filters, so that defects such as cracks and blisters are eliminated. In addition, a high-quality large-sized silicon nitride honeycomb filter with high uniformity of characteristics inside the filter can be provided. Therefore, by adopting the silicon nitride filter obtained by this production method for removing particulates discharged from a diesel engine, a large DPF having high reliability and excellent durability can be provided.

また、本製造法では、熱処理過程で気孔形成材がその形態を保持し孤立した気孔を生成しやすいものであっても、窒化を制御することにより孤立した気孔の生成を抑制できるため、圧損の低い窒化ケイ素質ハニカムフィルタを提供できる。したがって、本製造法により圧損の要求水準が厳しいDPFに好適な窒化ケイ素質ハニカムフィルタを提供できる。   Further, in this manufacturing method, even if the pore forming material retains its shape during the heat treatment process and easily generates isolated pores, the generation of isolated pores can be suppressed by controlling nitriding, so that pressure loss is reduced. A low silicon nitride honeycomb filter can be provided. Therefore, the present manufacturing method can provide a silicon nitride honeycomb filter suitable for a DPF that requires severe pressure loss.

金属ケイ素を含む成形体を熱処理する際には、窒化反応を暴走させないように熱処理の温度条件や窒素ガス供給量制御を中心とする雰囲気制御が重要である。本製造法は、窒素ガス供給量制御を主とするものである。すなわち、本製造法は、金属ケイ素粒子と気孔形成材とを含むハニカム成形体を主に窒化および焼結のため熱処理して金属ケイ素粒子を窒化ケイ素粒子とする窒化ケイ素質ハニカムフィルタの製造方法であって、熱処理時の窒素ガス雰囲気を窒素ガス導入量で制御することを基本とする。   When heat-treating a compact containing metallic silicon, it is important to control the atmosphere centering on the temperature conditions of the heat treatment and the nitrogen gas supply amount control so as not to run away the nitriding reaction. This production method mainly controls nitrogen gas supply amount. That is, this manufacturing method is a method for manufacturing a silicon nitride honeycomb filter in which a honeycomb formed body including metal silicon particles and pore forming material is heat-treated mainly for nitriding and sintering to convert the metal silicon particles into silicon nitride particles. Therefore, the nitrogen gas atmosphere during the heat treatment is basically controlled by the amount of nitrogen gas introduced.

本製造法において、前記熱処理は以下の3段階に分けられる。すなわち、室温から窒素ガス導入開始温度までの主に窒化防止を目的とする第1段階、窒素ガス導入開始温度から窒素ガス導入量制御終了温度までの主に金属ケイ素粒子の窒化を目的とする第2段階、窒素ガス導入量制御終了温度から以降の主に窒化で生成した窒化ケイ素粒子の焼結を目的とする第3段階である。   In this manufacturing method, the heat treatment is divided into the following three stages. That is, the first stage mainly for the purpose of preventing nitriding from room temperature to the nitrogen gas introduction start temperature, and the first step mainly for nitriding metal silicon particles from the nitrogen gas introduction start temperature to the nitrogen gas introduction amount control end temperature. The third stage is intended to sinter silicon nitride particles produced mainly by nitriding from the second stage, the nitrogen gas introduction amount control end temperature.

なお、窒素ガス導入開始温度とは、窒素ガスの導入を開始する温度であり、窒素ガス導入量制御終了温度とは、窒素ガス導入量の制御を終了する温度をいう。概略、窒素ガス導入開始温度は窒化の始まる温度付近であり、窒素ガス導入量制御終了温度は窒化の終了する温度付近をいうが、これはあくまでも定性的な目安であり、これに限定されるものではない。   The nitrogen gas introduction start temperature is a temperature at which introduction of nitrogen gas is started, and the nitrogen gas introduction amount control end temperature is a temperature at which control of the nitrogen gas introduction amount is finished. In general, the nitrogen gas introduction start temperature is near the temperature at which nitriding starts, and the nitrogen gas introduction amount control end temperature is around the temperature at which nitriding ends, but this is only a qualitative measure and is limited to this. is not.

本製造法では、各段階での雰囲気を以下のように順に制御する。
1)第1(窒化防止)段階;酸素および窒素を実質的に含まない雰囲気とし、
2)第2(窒化)段階;窒素ガス導入量をハニカム成形体中の金属ケイ素1kg当たり0.05〜5L/min.とし、
3)第3(焼成)段階;実質的に窒素からなる雰囲気とする。
In this manufacturing method, the atmosphere in each stage is controlled in the following order.
1) First (nitridation prevention) stage; an atmosphere substantially free of oxygen and nitrogen;
2) Second (nitriding) stage: the amount of nitrogen gas introduced was set to 0.05 to 5 L / min. Per kg of metal silicon in the honeycomb formed body. age,
3) Third (firing) stage; an atmosphere consisting essentially of nitrogen.

上記熱処理の温度は、窒素ガス導入開始温度が、1000〜1380℃であると好ましく、1150〜1350℃であるとさらに好ましい。また、窒素ガス導入量制御終了温度が1350〜1550℃であると好ましく、1400〜1520℃であるとさらに好ましい。   As for the temperature of the heat treatment, the nitrogen gas introduction start temperature is preferably 1000 to 1380 ° C., and more preferably 1150 to 1350 ° C. Moreover, the nitrogen gas introduction amount control end temperature is preferably 1350 to 1550 ° C, and more preferably 1400 to 1520 ° C.

また、第3段階の最高温度は、窒化ケイ素粒子の焼結に最適な温度とするのが好ましく、具体的には、1550〜1800℃するのが好ましい。第3段階の最高温度が1650〜1780℃であるとより好ましく、1680〜1760℃であるとさらに好ましい。   In addition, the maximum temperature in the third stage is preferably set to an optimum temperature for sintering the silicon nitride particles, and specifically, 1550 to 1800 ° C. is preferable. The maximum temperature in the third stage is more preferably 1650 to 1780 ° C, and further preferably 1680 to 1760 ° C.

前記第1段階の雰囲気としては、窒化を防止するため、酸素および窒素を実質的に含まない雰囲気であれば特に制限はない。本明細書において酸素および窒素を実質的に含まないとは、酸素濃度、窒素濃度がそれぞれ約0.1%以下であることを意味する。このような雰囲気としては、Arおよび/またはHeを含む雰囲気などが好ましいものとして挙げられる。取扱い性、入手性、経済性などの点からArを含むものがより好ましい。   The atmosphere in the first stage is not particularly limited as long as it is an atmosphere that substantially does not contain oxygen and nitrogen in order to prevent nitriding. In the present specification, substantially free of oxygen and nitrogen means that the oxygen concentration and the nitrogen concentration are about 0.1% or less, respectively. As such an atmosphere, an atmosphere containing Ar and / or He is preferable. Those containing Ar are more preferable from the viewpoints of handleability, availability, and economical efficiency.

また、第1段階の温度範囲では真空(減圧)雰囲気としてもよい。ハニカム成形体中に含まれる有機物の分解ガスなどは炉外に排出する方がいいので、例えば800℃までは真空(減圧)雰囲気とし、その後、例えば800℃にて温度を保持しながらArを大気圧になるまで導入するのが好ましい。   Further, a vacuum (reduced pressure) atmosphere may be used in the temperature range of the first stage. Since it is better to discharge the organic decomposition gas contained in the honeycomb formed body to the outside of the furnace, for example, a vacuum (reduced pressure) atmosphere is used up to 800 ° C., and then Ar is increased while maintaining the temperature at 800 ° C., for example. It is preferable to introduce until atmospheric pressure is reached.

なお、窒素ガス導入開始温度は、窒素が存在するとしたら実際に窒化が始まる温度(以下、窒化開始温度という)と、必ずしも一致させる必要はなく、むしろ、気孔率の大きいハニカムフィルタや平均細孔直径の大きいハニカムフィルタを製造する場合には、窒素ガス導入開始温度を窒化開始温度より100〜200℃程度、高い温度に設定するのが好ましい。   The nitrogen gas introduction start temperature does not necessarily have to coincide with the temperature at which nitriding actually starts (hereinafter referred to as nitridation start temperature) if nitrogen is present. Rather, the honeycomb filter having a large porosity and the average pore diameter When manufacturing a honeycomb filter having a large size, it is preferable to set the nitrogen gas introduction start temperature to a temperature higher by about 100 to 200 ° C. than the nitridation start temperature.

窒素ガス導入開始温度を窒化開始温度より高い温度に設定すると、何故ハニカムフィルタの気孔率や平均細孔直径の大きいハニカムフィルタになるのか、その詳細なメカニズムは不明であるが、窒素導入開始温度を窒化開始温度より高い温度に設定すると、窒化される前に、金属ケイ素粒子自身が焼結し、金属ケイ素粒子多孔体となった段階で窒化されるためと推測している。   If the nitrogen gas introduction start temperature is set higher than the nitridation start temperature, the detailed mechanism of why the honeycomb filter has a large porosity and average pore diameter is unknown. It is presumed that if the temperature is set higher than the nitriding start temperature, the metal silicon particles themselves are sintered before being nitrided and are nitrided at the stage where the metal silicon particle porous body is formed.

一方、窒素ガス導入開始温度を窒化開始温度と同程度とすると、ハニカムフィルタ内での細孔特性の場所による差が少ない均質性の高いハニカムフィルタや機械的強度の高いハニカムフィルタを製造できるため好ましい。したがって、本製造法によれば、窒素ガス導入開始温度を適宜選択することにより所望の特性のハニカムフィルタを製造できる。   On the other hand, it is preferable to set the nitrogen gas introduction start temperature to the same level as the nitridation start temperature because a honeycomb filter with high homogeneity and a honeycomb filter with high mechanical strength can be manufactured with little difference depending on the location of pore characteristics in the honeycomb filter. . Therefore, according to this production method, a honeycomb filter having desired characteristics can be produced by appropriately selecting the nitrogen gas introduction start temperature.

前記第2段階の雰囲気としては、窒素ガス導入量をハニカム成形体中の金属ケイ素1kg当たり(以下、特に断りのない場合は、窒素ガス導入量はハニカム成形体中の金属ケイ素1kg当たりで表記する)0.05〜5L/min.とする。窒素ガス導入量が0.05L/min.未満であると、窒化の進行が遅すぎ窒化に時間がかかりすぎるおそれがある。一方、窒素ガス導入量が5L/min.を超えると窒化反応が途中で暴走して異常発熱しやすくなるほか。窒素ガス導入量が0.2〜3L/min.であると好ましく、窒素ガス導入量が0.3〜2L/min.であるとさらに好ましい。   As the atmosphere of the second stage, the amount of nitrogen gas introduced per kg of metal silicon in the honeycomb molded body (hereinafter, unless otherwise specified, the amount of nitrogen gas introduced is expressed per kg of metal silicon in the honeycomb molded body. ) 0.05-5 L / min. And The amount of nitrogen gas introduced is 0.05 L / min. If it is less than 1, the progress of nitriding is too slow and it may take too much time for nitriding. On the other hand, the amount of nitrogen gas introduced is 5 L / min. Exceeding this will cause the nitriding reaction to run out of control and cause abnormal heat generation. The amount of nitrogen gas introduced is 0.2 to 3 L / min. Preferably, the amount of nitrogen gas introduced is 0.3-2 L / min. Is more preferable.

窒化反応も一定速度で進行するわけではなく、約1200〜1450℃の温度では急速に反応が進行する。そこで、約1200〜1450℃の温度範囲までは窒化反応が暴走しないように窒素ガス導入量を少なくして反応を抑制させると異常発熱の防止および成形体中での場所による最終窒化率、細孔特性などの特性のばらつきを少なくでき均質性が向上するため好ましい。   The nitriding reaction does not proceed at a constant rate, and the reaction proceeds rapidly at a temperature of about 1200 to 1450 ° C. Accordingly, when the reaction is suppressed by reducing the amount of nitrogen gas introduced so that the nitriding reaction does not run out of temperature up to a temperature range of about 1200 to 1450 ° C., abnormal heat generation is prevented, and the final nitriding rate depending on the location in the molded body, pores It is preferable because variations in characteristics such as characteristics can be reduced and homogeneity is improved.

第2段階の雰囲気としては、約1200℃までは、窒素ガス導入量を1L/min.以下とするのが好ましい。約1200〜1450℃の温度範囲では窒素ガス導入量を2L/min.以下とするのが好ましく、1L/min.以下とするとより好ましい。約1450〜1550℃の温度範囲では2〜5L/min.とすると好ましい。   As the atmosphere of the second stage, up to about 1200 ° C., the amount of nitrogen gas introduced was 1 L / min. The following is preferable. In the temperature range of about 1200 to 1450 ° C., the amount of nitrogen gas introduced is 2 L / min. The following is preferable, and 1 L / min. The following is more preferable. In a temperature range of about 1450 to 1550 ° C., 2 to 5 L / min. This is preferable.

なお、前記第2段階での窒化率平均変化速度が0.05〜0.7%/min.であると窒化反応が制御された形で進行するので好ましい。窒化率平均変化速度は、第2段階の開始温度をT(℃)、第2段階の終了温度をT(>T)(℃)とすると、(Tでの窒化率−Tでの窒化率)/(TからTまでの所要時間(min.))で定義する。 The average rate of change in nitridation rate in the second stage is 0.05 to 0.7% / min. It is preferable that the nitriding reaction proceeds in a controlled manner. Nitride index average change rate, the starting temperature of the second stage T 1 (° C.), when the completion temperature of the second stage T 2 (> T 1) and (° C.), nitride ratio -T 1 at (T 2 Nitriding rate at (3) / (time required from T 1 to T 2 (min.)).

また、第2段階の終了温度での窒化率は80%以上が好ましく、第2段階の終了温度での窒化率が90%以上であるとより好ましく、第2段階の終了温度での窒化率が95%以上であると特に好ましい。   The nitriding rate at the end temperature of the second stage is preferably 80% or more, more preferably 90% or more at the end temperature of the second stage, and the nitriding rate at the end temperature of the second stage is Particularly preferred is 95% or more.

第3段階の雰囲気としては、実質的に窒素からなる雰囲気とする。窒素からなる雰囲気であれば圧力としては制限がないが、大気圧であると熱処理炉の構成も単純で、生産性、原価などの点で好ましい。第2段階終了時点で温度保持しながら大気圧まで窒素を導入してもよく、また温度保持せずに昇温しながら大気圧まで窒素を導入してもよい。   The atmosphere in the third stage is an atmosphere substantially composed of nitrogen. The pressure is not limited as long as the atmosphere is made of nitrogen. However, the atmospheric pressure is preferable in terms of productivity, cost, and the like because the configuration of the heat treatment furnace is simple. Nitrogen may be introduced to atmospheric pressure while maintaining the temperature at the end of the second stage, or nitrogen may be introduced to atmospheric pressure while raising the temperature without maintaining the temperature.

ただし、本明細書では窒化ケイ素の窒化率は質量変化から算出する。すなわち窒化ケイ素の生成反応は、式1で示されるように3モルの金属ケイ素が2モルの窒素と反応して1モルの窒化ケイ素となる。   However, in this specification, the nitridation rate of silicon nitride is calculated from the mass change. That is, in the formation reaction of silicon nitride, 3 moles of metal silicon react with 2 moles of nitrogen to form 1 mole of silicon nitride as shown in Formula 1.

3Si+2N→Si・・・式1
式1から、金属ケイ素が全て窒化ケイ素となるとその質量は、1.67倍となる((3×Si+4×N)/(3×Si)=(3×28+4×14)/(3×28)=1.67)。仮に質量変化がα倍であれば、窒化率は(α−1)/(1.67−1)=(α−1)/0.67で計算される。例えば、金属ケイ素の質量変化が1.37倍であれば窒化率は55%(0.37/0.67×100=55%)となる。
3Si + 2N 2 → Si 3 N 4 ... Formula 1
From Formula 1, when all the metal silicon is silicon nitride, its mass is 1.67 times ((3 × Si + 4 × N) / (3 × Si) = (3 × 28 + 4 × 14) / (3 × 28) = 1.67). If the mass change is α times, the nitriding rate is calculated as (α-1) / (1.67-1) = (α-1) /0.67. For example, if the mass change of metallic silicon is 1.37 times, the nitriding rate is 55% (0.37 / 0.67 × 100 = 55%).

本製造法において、前記第1〜第3段階の温度条件としては、ハニカム成形体中の金属ケイ素が充分に窒化されて窒化ケイ素となり、所望の窒化ケイ素質ハニカムフィルタを製造できるものであればよく、以下に挙げる条件はその一例である。   In the present manufacturing method, the temperature conditions of the first to third steps may be any as long as the metal silicon in the honeycomb formed body is sufficiently nitrided to form silicon nitride, and a desired silicon nitride honeycomb filter can be manufactured. The conditions listed below are examples.

前記第1段階、すなわち、室温から窒素ガス導入開始温度までの温度条件としては、昇温速度が2〜10℃/minであると好ましく、3〜6℃/min.であるとさらに好ましい。800℃までは3〜6℃/min.とし、800℃以上を2〜4℃/min.とすると特に好ましい。次の第2段階に進む前に、1000〜1350℃の特定温度で保持してもよい。保持時間としては1〜10時間が好ましい。   As the temperature condition from the first stage, that is, from the room temperature to the nitrogen gas introduction start temperature, the rate of temperature increase is preferably 2 to 10 ° C./min, and 3 to 6 ° C./min. Is more preferable. Up to 800 ° C, 3-6 ° C / min. And 800 ° C. or higher is 2 to 4 ° C./min. This is particularly preferable. You may hold | maintain at 1000-1350 degreeC specific temperature before progressing to the following 2nd step. The holding time is preferably 1 to 10 hours.

前記第2段階の温度条件としては、昇温速度が0.1〜3℃/minであると好ましい。1300℃までが1〜3℃/min.、1300〜1450℃が0.2〜1℃/min.1450〜1550℃が1〜3℃/min.であるとさらに好ましい。   As the temperature condition of the second stage, it is preferable that the heating rate is 0.1 to 3 ° C./min. Up to 1300 ° C is 1 to 3 ° C / min. 1300-1450 ° C., 0.2-1 ° C./min. 1450 to 1550 ° C is 1 to 3 ° C / min. Is more preferable.

前記第3段階の温度条件としては、昇温速度が2〜5℃/minであると好ましく、2〜3℃/min.であるとさらに好ましい。保持の最高温度は1550〜1800℃であると窒化ケイ素粒子が充分に焼結されるため好ましく、1650〜1780℃であるとさらに好ましい。最高温度の保持時間としては1〜5時間であると好ましく、2〜4時間であるとさらに好ましい。第3段階の雰囲気としては、大気圧の窒素とするのが好ましい。   As the temperature condition of the third stage, the rate of temperature increase is preferably 2 to 5 ° C./min, and 2 to 3 ° C./min. Is more preferable. The maximum holding temperature is preferably 1550 to 1800 ° C. because the silicon nitride particles are sufficiently sintered, and more preferably 1650 to 1780 ° C. The maximum temperature holding time is preferably 1 to 5 hours, and more preferably 2 to 4 hours. The atmosphere in the third stage is preferably nitrogen at atmospheric pressure.

また、熱処理の際には、ハニカム成形体をカーボン製や窒化ケイ素などの容器に入れて処理することが好ましい。カーボン製の容器の場合には、内表面に窒化ケイ素粒子、金属ケイ素粒子、または炭化ケイ素粒子からなる群から選ばれる1種以上を含む被覆層が形成されていることが好ましい。カーボン製容器の内表面に少なくとも窒化ケイ素粒子を含む被複層が形成されているとより好ましい。   In the heat treatment, it is preferable to treat the honeycomb formed body by placing it in a container made of carbon or silicon nitride. In the case of a carbon container, a coating layer containing at least one selected from the group consisting of silicon nitride particles, metal silicon particles, or silicon carbide particles is preferably formed on the inner surface. More preferably, a multi-layer containing at least silicon nitride particles is formed on the inner surface of the carbon container.

本製造法において、ハニカム成形体は、金属ケイ素粒子と気孔形成材とを含む。金属ケイ素粒子としては、特に制限されないが平均粒子直径(以下、粒子直径を粒径という)が1〜200μmのものが好適に使用される。金属ケイ素の純度としては、目的、用途に応じ適宜選択される。   In the present manufacturing method, the honeycomb formed body includes metal silicon particles and a pore forming material. The metal silicon particles are not particularly limited, but those having an average particle diameter (hereinafter referred to as particle diameter) of 1 to 200 μm are preferably used. The purity of the metal silicon is appropriately selected according to the purpose and application.

気孔形成材は気孔を形成するものであれば特に制限はないが、熱処理時に分解などして飛散し気孔を形成するもの(以下、飛散型気孔形成材という)や酸化物セラミックス中空粒子(以下、単に中空粒子と略す)が好適ものとして挙げられる。飛散型気孔形成材としては、熱分解性の有機高分子粒子などがある。中空粒子としては、熱処理時に気孔を形成し、しかも熱処理過程で生成する窒化ケイ素粒子に対して焼結助剤的な働きをするものであれば結晶質や非晶質のいずれも好適に使用される。中空粒子は、Al、Si、Ca、Sr、Ba、MgおよびYからなる群から選ばれる1種以上の金属の酸化物を主成分とすると、気孔形成以外に焼結助剤的な効果も得られフィルタの強度向上が図れるため好ましい。   The pore forming material is not particularly limited as long as it forms pores. However, the pore forming material is decomposed during heat treatment and scattered to form pores (hereinafter referred to as a scattering type pore forming material) or oxide ceramic hollow particles (hereinafter referred to as “pores”). (It is simply abbreviated as a hollow particle). Examples of the scattering type pore forming material include thermally decomposable organic polymer particles. As the hollow particles, crystalline or amorphous materials are preferably used as long as they form pores during heat treatment and also function as a sintering aid for the silicon nitride particles generated in the heat treatment process. The When the hollow particles are mainly composed of an oxide of one or more metals selected from the group consisting of Al, Si, Ca, Sr, Ba, Mg and Y, an effect as a sintering aid is obtained in addition to pore formation. This is preferable because the strength of the filter can be improved.

ハニカム成形体中、金属ケイ素粒子、気孔形成材の量に特に制限はないが、金属ケイ素粒子が40〜90質量%、気孔形成材が10〜60質量%であると好ましい。また、前記ハニカム成形体は、窒化ケイ素粒子、炭化ケイ素粒子、中実の酸化物粒子(例えば、アルミナ粒子、イットリア粒子)、メチルセルロース類などの有機バインダ、可塑剤、分散剤、粘性調整剤などの成形助剤、を含んでいてもよい。   There are no particular restrictions on the amount of the metal silicon particles and pore forming material in the honeycomb formed body, but the metal silicon particles are preferably 40 to 90% by mass and the pore forming material is 10 to 60% by mass. The honeycomb formed body includes silicon nitride particles, silicon carbide particles, solid oxide particles (for example, alumina particles and yttria particles), organic binders such as methylcelluloses, plasticizers, dispersants, viscosity modifiers, and the like. A molding aid may be included.

本製造法において、ハニカム成形体の製造法については特に制限がないが、押出成形などが生産性その他の点で好適である。具体的には、金属ケイ素粒子と気孔形成材に有機バインダ、成形助剤、イオン交換水等を必要に応じて適宜添加してニーダなどの混練機で混練して坏土とし、該坏土をハニカムの断面形状を有する金型を使用して押出成形して製造する。金型、押出成形機などはハニカム成形体のサイズ、断面形状等に応じて適宜設計・選択される。   In the present manufacturing method, the manufacturing method of the honeycomb formed body is not particularly limited, but extrusion molding or the like is preferable in terms of productivity and the like. Specifically, an organic binder, a molding aid, ion-exchanged water, etc. are appropriately added to the metal silicon particles and pore forming material as necessary, and kneaded with a kneader such as a kneader to form a clay. It is manufactured by extrusion using a mold having a honeycomb cross-sectional shape. A mold, an extrusion molding machine, and the like are appropriately designed and selected according to the size and cross-sectional shape of the honeycomb molded body.

以下に本発明の実施例を示す。   Examples of the present invention are shown below.

[成形体作製法]
平均粒径22μmの金属ケイ素粒子(ELKEM社製、Si純度99.5質量%)100質量部に対して、平均粒径75μmのAl成分65質量%、SiO成分35質量%からなるガラス質の中空粒子(太平洋セメント社製、商品名:SL75)30質量部を添加し、これにメチルセルロース15質量部、イオン交換水70質量部を添加し、ニーダで混練して坏土とし、真空押出成形機で押出成形して直径150mm、長さ180mm、セルピッチ1.8mm、壁厚0.35mmのハニカム成形体を得た。
[Molded article production method]
It consists of 65% by mass of Al 2 O 3 component and 35% by mass of SiO 2 component having an average particle size of 75 μm with respect to 100 parts by mass of metal silicon particles having an average particle size of 22 μm (ELKEM, Si purity 99.5% by mass). Add 30 parts by mass of glassy hollow particles (trade name: SL75, manufactured by Taiheiyo Cement Co., Ltd.), add 15 parts by mass of methylcellulose and 70 parts by mass of ion-exchanged water, knead with a kneader to form a clay, and vacuum A honeycomb molded body having a diameter of 150 mm, a length of 180 mm, a cell pitch of 1.8 mm, and a wall thickness of 0.35 mm was obtained by extrusion molding with an extruder.

[評価方法]
気孔率(%):アルキメデス法で算出した。
平均細孔直径(μm):水銀ポロシメータ(ユアサアイオニクス株式会社製、AUTOSCAN−33)で測定した。
結晶相:X線回折装置(リガク社製、商品名:ガイガーフレックスRAD−IIA)により同定した。
圧縮強度(MPa):試料より10mm×10mm×10mmサイズの試験片を切り出し、同試験片を押出方向に圧縮したときの破壊強度で測定。荷重印加速度は1mm/分とした。
[Evaluation methods]
Porosity (%): Calculated by Archimedes method.
Average pore diameter (μm): Measured with a mercury porosimeter (manufactured by Yuasa Ionics Co., Ltd., AUTOSCAN-33).
Crystal phase: Identified with an X-ray diffractometer (trade name: Geigerflex RAD-IIA, manufactured by Rigaku Corporation).
Compressive strength (MPa): A test piece having a size of 10 mm × 10 mm × 10 mm was cut out from the sample and measured by the breaking strength when the test piece was compressed in the extrusion direction. The load application speed was 1 mm / min.

気孔径分布比:ハニカムフィルタを半分の高さで切断し、その切断面の中心から半径25mm、高さ50mmの円柱状サンプルを切り出し、その中心部の平均細孔直径をdとし、また前記切断面の中心から半径50〜75mm、高さ50mmのリング状サンプルを切り出し、その一部分の扇状体の中心部の平均細孔直径をdとし、d/dで気孔径分布比とした。
スート漏れチェック:排気量3.6Lのディーゼルエンジン排気管内に両端を市松模様状に目封じしたハニカムフィルタをセットし、ハニカムフィルタ通過後のスモーク濃度をスモークメーター(AVL社製)にて測定。エンジン運転モードにかかわらず、スモーク濃度(FSN)が0.1以下であれば、スート漏れなしとした。
窒化率平均変化速度:第2段階の開始時、終了時のハニカムフィルタの質量の差を焼結前の金属Si質量の0.67倍で除した値を窒化率変化(%)とし、この窒化率変化を所要時間(min.)で除した値を窒化率平均変化速度(%/min.)とした。
Pore diameter distribution ratio: The honeycomb filter was cut at half height, a cylindrical sample having a radius of 25 mm and a height of 50 mm was cut from the center of the cut surface, and the average pore diameter at the center was d 1 , A ring-shaped sample having a radius of 50 to 75 mm and a height of 50 mm is cut out from the center of the cut surface, and the average pore diameter of the central portion of the fan-shaped body is d 2, and the pore diameter distribution ratio is d 2 / d 1 . .
Soot leak check: A honeycomb filter with both ends sealed in a checkered pattern in a 3.6L diesel engine exhaust pipe is set, and the smoke concentration after passing through the honeycomb filter is measured with a smoke meter (AVL). Regardless of the engine operation mode, if the smoke concentration (FSN) was 0.1 or less, no soot leakage occurred.
Nitriding rate average change rate: The value obtained by dividing the difference in the mass of the honeycomb filter at the start and end of the second stage by 0.67 times the mass of metal Si before sintering is defined as the nitriding rate change (%). The value obtained by dividing the rate change by the required time (min.) Was defined as the average rate of change in nitriding rate (% / min.).

[例1(実施例)]
得られたハニカム成形体を室温から800℃までは真空雰囲気(約100Pa)下で、5℃/min.で昇温し、800℃でArを大気圧まで導入後、800℃から1200℃までを3℃/min.で昇温し、続いてAr大気圧下で1200℃から1300℃までを2℃/min.で昇温して第1段階とした。
[Example 1 (Example)]
The obtained honeycomb formed body was heated from room temperature to 800 ° C. under a vacuum atmosphere (about 100 Pa) at 5 ° C./min. The temperature was raised at 800 ° C., Ar was introduced to atmospheric pressure at 800 ° C., and the temperature was raised from 800 ° C. to 1200 ° C. at 3 ° C./min. The temperature was then increased from 1200 ° C. to 1300 ° C. at 2 ° C./min. The temperature was raised to 1st stage.

第2段階は、窒素ガス導入量を1L/min.とし、昇温速度0.5℃/min.で1300℃から1400℃まで昇温した。第3段階は、窒素を大気圧まで導入後、1400℃から1700℃まで2℃/min.で昇温し、1700℃で2時間保持後、加熱をやめ室温近くまで自然放冷した。得られたハニカムフィルタの特性は、気孔率63(%)、中心部の平均細孔直径15μm、気孔径分布比0.9、圧縮強度10MPa、スート漏れ:なし、であった。第2段階(1300〜1400℃)の窒化率平均変化速度は0.4%/min.であった。   In the second stage, the amount of nitrogen gas introduced is 1 L / min. The rate of temperature increase is 0.5 ° C./min. The temperature was raised from 1300 ° C to 1400 ° C. In the third stage, nitrogen is introduced to atmospheric pressure and then from 1400 ° C. to 1700 ° C. at 2 ° C./min. After heating at 1700 ° C. for 2 hours, the heating was stopped and the mixture was naturally cooled to near room temperature. The characteristics of the obtained honeycomb filter were a porosity of 63 (%), an average pore diameter of 15 μm at the center, a pore size distribution ratio of 0.9, a compressive strength of 10 MPa, and a soot leak: none. The average rate of change in the nitridation rate in the second stage (1300 to 1400 ° C.) is 0.4% / min. Met.

[例2(実施例)]
得られたハニカム成形体を室温から800℃までは真空雰囲気(約100Pa)下で、5℃/min.で昇温し、800℃でArを大気圧まで導入後、800℃から1150℃までを3℃/min.で昇温して第1段階とした。
[Example 2 (Example)]
The obtained honeycomb formed body was heated from room temperature to 800 ° C. under a vacuum atmosphere (about 100 Pa) at 5 ° C./min. The temperature was raised at 800 ° C., Ar was introduced to atmospheric pressure at 800 ° C., and the temperature was raised from 800 ° C. to 1150 ° C. at 3 ° C./min. The temperature was raised to 1st stage.

第2段階は、1150℃から1250℃までを窒素ガス導入量0.2L/min.、昇温速度1℃/min.で昇温し、1250℃から1500℃までを窒素ガス導入量0.5L/min.、昇温速度1℃/min.で昇温した。第3段階は、窒素を大気圧まで導入後、1500℃から1700℃まで3℃/min.で昇温し、1700℃で3時間保持後、加熱をやめ室温近くまで自然放冷した。得られたハニカムフィルタの特性は、気孔率60(%)、中心部の平均細孔直径11μm、気孔径分布比0.85、圧縮強度17MPa、スート漏れ:なし、であった。第2段階(1150〜1500℃)の窒化率平均変化速度は0.26%/min.であった。   In the second stage, a nitrogen gas introduction rate of 0.2 L / min. Temperature rising rate 1 ° C./min. At 1250 ° C. to 1500 ° C., the amount of nitrogen gas introduced is 0.5 L / min. Temperature rising rate 1 ° C./min. The temperature was raised. In the third stage, nitrogen is introduced to atmospheric pressure and then from 1500 ° C. to 1700 ° C. at 3 ° C./min. After heating at 1700 ° C. for 3 hours, the heating was stopped and the mixture was naturally cooled to near room temperature. The characteristics of the obtained honeycomb filter were a porosity of 60 (%), an average pore diameter of 11 μm at the center, a pore size distribution ratio of 0.85, a compressive strength of 17 MPa, and a soot leak: none. The average rate of change in the nitriding rate in the second stage (1150 to 1500 ° C.) is 0.26% / min. Met.

[例3(実施例)]
得られたハニカム成形体を室温から1100℃までは真空雰囲気(約100Pa)下で、3℃/min.で昇温し、1100℃でArを大気圧まで導入して第1段階とした。
[Example 3 (Example)]
The obtained honeycomb formed body was heated at room temperature to 1100 ° C. under a vacuum atmosphere (about 100 Pa) at 3 ° C./min. The temperature was raised at 1100 ° C., and Ar was introduced to atmospheric pressure at 1100 ° C. to form the first stage.

第2段階は、1100℃から1250℃までを窒素ガス導入量0.3L/min.、昇温速度1℃/min.で昇温し、1250℃から1400℃までを窒素ガス導入量1L/min.、昇温速度0.3℃/min.で昇温し、1400℃から1500℃までを窒素ガス導入量3L/min.、昇温速度2℃/min.で昇温して第2段階とした。   In the second stage, the nitrogen gas introduction rate is 0.3 L / min. From 1100 ° C. to 1250 ° C. Temperature rising rate 1 ° C./min. At 1250 ° C. to 1400 ° C. with a nitrogen gas introduction rate of 1 L / min. Temperature rising rate 0.3 ° C./min. At 1400 ° C. to 1500 ° C., a nitrogen gas introduction rate of 3 L / min. Temperature rising rate 2 ° C./min. The temperature was raised to 2nd stage.

第3段階は、窒素を大気圧まで導入後、1500℃から1750℃まで3℃/min.で昇温し、1750℃で2時間保持後、加熱をやめ室温近くまで自然放冷した。得られたハニカムフィルタの特性は、気孔率58(%)、中心部の平均細孔直径8μm、気孔径分布比0.95、圧縮強度19MPa、スート漏れ:なし、であった。第2段階(1100〜1500℃)の窒化率平均変化速度は0.14%/min.であった。   In the third stage, nitrogen is introduced to atmospheric pressure and then from 1500 ° C. to 1750 ° C. at 3 ° C./min. The temperature was raised at 1750 ° C. and maintained at 1750 ° C. for 2 hours. The characteristics of the obtained honeycomb filter were a porosity of 58 (%), an average pore diameter of 8 μm at the center, a pore size distribution ratio of 0.95, a compressive strength of 19 MPa, and a soot leakage: none. The average rate of change in the nitriding rate in the second stage (1100 to 1500 ° C.) is 0.14% / min. Met.

[例4(比較例)]
例1において、1300℃から1400℃までの窒素ガス導入量を1L/min.から7L/min.に変更した以外は例1と同様にした。ハニカムフィルタにはクラックが発生した。
[Example 4 (comparative example)]
In Example 1, the amount of nitrogen gas introduced from 1300 ° C. to 1400 ° C. was 1 L / min. To 7 L / min. The procedure was the same as in Example 1 except that the change was made. Cracks occurred in the honeycomb filter.

本製造法により得られる窒化ケイ素質ハニカムフィルタは、耐熱性、耐食性、耐熱衝撃性に優れた、成形体内部の組織、特性等の均質性が高い、大型のDPFとして好適に使用される。
The silicon nitride honeycomb filter obtained by this production method is suitably used as a large-sized DPF having excellent heat resistance, corrosion resistance, and thermal shock resistance, and high homogeneity in the structure and characteristics inside the molded body.

Claims (7)

金属ケイ素粒子と気孔形成材とを含むハニカム成形体を主に窒化および焼結のため熱処理して金属ケイ素粒子を窒化ケイ素粒子とする窒化ケイ素質ハニカムフィルタの製造方法であって、該熱処理時のガス雰囲気を、順に
1)第1(窒化防止)段階;室温〜窒素ガス導入開始温度までは、酸素および窒素を実質的に含まない雰囲気とし、
2)第2(窒化)段階;窒素ガス導入開始温度から窒素ガス導入量制御終了温度までは窒素ガス導入量をハニカム成形体中の金属ケイ素1kg当たり0.05〜5L/min.とし、
3)第3(焼結)段階;窒素ガス導入量制御終了温度からは実質的に窒素ガスからなる雰囲気として、熱処理することを特徴とする窒化ケイ素質ハニカムフィルタの製造方法。
A method for producing a silicon nitride honeycomb filter, in which a honeycomb formed body including metal silicon particles and pore forming material is heat-treated mainly for nitriding and sintering to form metal silicon particles as silicon nitride particles, Gas atmosphere in order 1) 1st (anti-nitriding) stage; from room temperature to the nitrogen gas introduction start temperature, the atmosphere is substantially free of oxygen and nitrogen,
2) Second (nitriding) stage: From the nitrogen gas introduction start temperature to the nitrogen gas introduction amount control end temperature, the nitrogen gas introduction amount is set to 0.05 to 5 L / min. Per 1 kg of metal silicon in the honeycomb formed body. age,
3) Third (sintering) step: A method for producing a silicon nitride honeycomb filter, characterized in that heat treatment is performed as an atmosphere substantially composed of nitrogen gas from the temperature at which the nitrogen gas introduction amount control ends.
前記酸素および窒素を含まない雰囲気が、Arおよび/またはHeを含む雰囲気である請求項1記載の窒化ケイ素質ハニカムフィルタの製造方法。   The method for producing a silicon nitride honeycomb filter according to claim 1, wherein the atmosphere containing no oxygen and nitrogen is an atmosphere containing Ar and / or He. 前記窒素ガス導入開始温度が1000〜1380℃である請求項1または2記載の窒化ケイ素質ハニカムフィルタの製造方法。   The method for producing a silicon nitride honeycomb filter according to claim 1 or 2, wherein the nitrogen gas introduction start temperature is 1000 to 1380 ° C. 前記窒素ガス導入量制御終了温度が1380〜1550℃である請求項1、2または3記載の窒化ケイ素質ハニカムフィルタの製造方法。   The method for producing a silicon nitride honeycomb filter according to claim 1, 2, or 3, wherein the nitrogen gas introduction amount control end temperature is 1380 to 1550 ° C. 前記第2段階中、窒化率平均変化速度を0.05〜0.7%/min.とする請求項4記載の窒化ケイ素質ハニカムフィルタの製造方法。   During the second stage, the average rate of change in nitridation is 0.05 to 0.7% / min. A method for producing a silicon nitride honeycomb filter according to claim 4. 前記第3段階の最高温度が1550〜1800℃である請求項1〜5のいずれか記載の窒化ケイ素質ハニカムフィルタの製造方法。   The method for producing a silicon nitride honeycomb filter according to any one of claims 1 to 5, wherein a maximum temperature in the third stage is 1550 to 1800 ° C. 前記熱処理の温度条件が、室温から窒素ガス導入開始温度までは0.5〜10℃/min.で昇温し、窒素ガス導入開始温度から窒素ガス導入量制御終了温度までは0.1〜3℃/min.で昇温し、窒素ガス導入量制御終了温度以降は2〜5℃/min.で昇温することを特徴とする請求項1〜6のいずれか記載の窒化ケイ素質ハニカムフィルタの製造方法。
The temperature condition of the heat treatment is from 0.5 to 10 ° C./min. The temperature is increased from 0.1 to 3 ° C./min. From the nitrogen gas introduction start temperature to the nitrogen gas introduction amount control end temperature. At a temperature of 2 to 5 ° C./min. The method for producing a silicon nitride honeycomb filter according to any one of claims 1 to 6, wherein the temperature is raised at a temperature of 5 ° C.
JP2004145111A 2004-05-14 2004-05-14 Manufacturing method of silicon nitride honeycomb filter Expired - Fee Related JP4228987B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004145111A JP4228987B2 (en) 2004-05-14 2004-05-14 Manufacturing method of silicon nitride honeycomb filter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004145111A JP4228987B2 (en) 2004-05-14 2004-05-14 Manufacturing method of silicon nitride honeycomb filter

Publications (2)

Publication Number Publication Date
JP2005324138A JP2005324138A (en) 2005-11-24
JP4228987B2 true JP4228987B2 (en) 2009-02-25

Family

ID=35470906

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004145111A Expired - Fee Related JP4228987B2 (en) 2004-05-14 2004-05-14 Manufacturing method of silicon nitride honeycomb filter

Country Status (1)

Country Link
JP (1) JP4228987B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115551818A (en) * 2020-05-07 2022-12-30 Agc株式会社 Method for producing ceramic sintered body and ceramic sintered body

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5888107A (en) * 1981-11-16 1983-05-26 Denki Kagaku Kogyo Kk Continuous preparation of alpha-type silicon nitride
JP2636978B2 (en) * 1991-06-03 1997-08-06 シャープ株式会社 Conductive ceramic sintered body and method of manufacturing the same
GB9413267D0 (en) * 1994-07-01 1994-08-24 T & N Technology Ltd Sintered reaction-bonded silicon nitride components
JP3827459B2 (en) * 1998-12-14 2006-09-27 電気化学工業株式会社 Silicon nitride powder and method for producing the same
JP2003175307A (en) * 1999-12-24 2003-06-24 Asahi Glass Co Ltd Silicon nitride filter and method for manufacturing the same
JP4325824B2 (en) * 2000-07-14 2009-09-02 電気化学工業株式会社 Method for producing high thermal conductivity silicon nitride sintered body
JP4574044B2 (en) * 2001-03-26 2010-11-04 日本碍子株式会社 Porous silicon nitride and method for producing the same
JP2003002759A (en) * 2001-06-22 2003-01-08 Asahi Glass Co Ltd Ceramics porous body and production method therefor
US6699429B2 (en) * 2001-08-24 2004-03-02 Corning Incorporated Method of making silicon nitride-bonded silicon carbide honeycomb filters

Also Published As

Publication number Publication date
JP2005324138A (en) 2005-11-24

Similar Documents

Publication Publication Date Title
EP1364928B1 (en) Honeycomb structure
EP1493724B1 (en) Porous material and method for production thereof
US7947620B2 (en) Mullite bodies and methods of forming mullite bodies
EP1900709A1 (en) Method for manufacturing honeycomb structured body and material composition for honeycomb fired body
EP1754692B1 (en) Mullite bodies
WO2001079138A1 (en) Honeycomb structure and method for its manufacture
US20060192325A1 (en) Silicon nitride honeycomb filter and method for its production
JP4473463B2 (en) Porous silicon nitride and method for producing the same
US7368076B2 (en) Method for producing a silicon nitride filter
KR100666426B1 (en) Porous material and method for preparation thereof, and honeycomb structure
JP4228987B2 (en) Manufacturing method of silicon nitride honeycomb filter
JP4574044B2 (en) Porous silicon nitride and method for producing the same
JP2008012485A (en) Manufacturing method of silicon nitride based honeycomb filter
JP2005046743A (en) Method for producing honeycomb filter of silicon nitride
JPWO2004067147A1 (en) Manufacturing method of silicon nitride honeycomb filter
KR20120062088A (en) Porous silicon nitride ceramics composition having high density and high porous and method for fabricating silicon nitride ceramics using the same
JP5612149B2 (en) Silicon nitride-based porous body, silicon nitride-based porous body manufacturing method, honeycomb structure, and honeycomb filter
JP2005047796A (en) Method of manufacturing silicon nitride filter
JP2014148429A (en) Silicon nitride porous body and filter
JP2005059000A (en) Silicon nitride honeycomb filter and manufacturing method therefor
JP2002121073A (en) Method of producing silicon nitride filter
JP2002121074A (en) Method of producing silicon nitride filter
JP2007160256A (en) Production method of silicon nitride filter
JPWO2011071051A1 (en) Porous ceramic sintered body and method for producing porous ceramic sintered body

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070122

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081028

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081111

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081124

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111212

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees