JP5612149B2 - Silicon nitride-based porous body, silicon nitride-based porous body manufacturing method, honeycomb structure, and honeycomb filter - Google Patents

Silicon nitride-based porous body, silicon nitride-based porous body manufacturing method, honeycomb structure, and honeycomb filter Download PDF

Info

Publication number
JP5612149B2
JP5612149B2 JP2013070491A JP2013070491A JP5612149B2 JP 5612149 B2 JP5612149 B2 JP 5612149B2 JP 2013070491 A JP2013070491 A JP 2013070491A JP 2013070491 A JP2013070491 A JP 2013070491A JP 5612149 B2 JP5612149 B2 JP 5612149B2
Authority
JP
Japan
Prior art keywords
silicon nitride
particles
silicon
porous body
based porous
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2013070491A
Other languages
Japanese (ja)
Other versions
JP2014193783A (en
Inventor
山口 宏
宏 山口
宏昭 岡野
宏昭 岡野
理沙 片山
理沙 片山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kubota Corp
Original Assignee
Kubota Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kubota Corp filed Critical Kubota Corp
Priority to JP2013070491A priority Critical patent/JP5612149B2/en
Priority to PCT/JP2014/057493 priority patent/WO2014156866A1/en
Publication of JP2014193783A publication Critical patent/JP2014193783A/en
Application granted granted Critical
Publication of JP5612149B2 publication Critical patent/JP5612149B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/584Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on silicon nitride
    • C04B35/587Fine ceramics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/584Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on silicon nitride
    • C04B35/591Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on silicon nitride obtained by reaction sintering
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/638Removal thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • C04B38/0006Honeycomb structures
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • C04B38/06Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof by burning-out added substances by burning natural expanding materials or by sublimating or melting out added substances
    • C04B38/0615Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof by burning-out added substances by burning natural expanding materials or by sublimating or melting out added substances the burned-out substance being a monolitic element having approximately the same dimensions as the final article, e.g. a porous polyurethane sheet or a prepreg obtained by bonding together resin particles
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00474Uses not provided for elsewhere in C04B2111/00
    • C04B2111/00793Uses not provided for elsewhere in C04B2111/00 as filters or diaphragms
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3217Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
    • C04B2235/3222Aluminates other than alumino-silicates, e.g. spinel (MgAl2O4)
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3817Carbides
    • C04B2235/3826Silicon carbides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/42Non metallic elements added as constituents or additives, e.g. sulfur, phosphor, selenium or tellurium
    • C04B2235/428Silicon
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/48Organic compounds becoming part of a ceramic after heat treatment, e.g. carbonising phenol resins
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/602Making the green bodies or pre-forms by moulding
    • C04B2235/6021Extrusion moulding
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/658Atmosphere during thermal treatment
    • C04B2235/6583Oxygen containing atmosphere, e.g. with changing oxygen pressures
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/66Specific sintering techniques, e.g. centrifugal sintering
    • C04B2235/661Multi-step sintering
    • C04B2235/662Annealing after sintering
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/77Density
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/80Phases present in the sintered or melt-cast ceramic products other than the main phase
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/80Phases present in the sintered or melt-cast ceramic products other than the main phase
    • C04B2235/85Intergranular or grain boundary phases

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Filtering Materials (AREA)
  • Ceramic Products (AREA)
  • Porous Artificial Stone Or Porous Ceramic Products (AREA)

Description

本発明は、排気ガスの処理に使用される窒化ケイ素系多孔体およびその製造方法、並びにそれを用いたハニカム構造体、ハニカムフィルタに関する。   The present invention relates to a silicon nitride-based porous body used for exhaust gas treatment, a method for manufacturing the same, a honeycomb structure using the same, and a honeycomb filter.

セラミックスの多孔体は、内燃機関の排気ガス処理部材に使用されている。特に、排ガスに含まれる粒状物質を捕集浄化するDPF(Diesel Particulate Filter)用として利用されている。このような多孔体の材質としては、材料の耐熱性・耐熱衝撃性の観点から、コージェライトやチタン酸アルミニウム、炭化ケイ素などが既に実用化され、窒化ケイ素(Si)も実用化が検討されている。 Ceramic porous bodies are used in exhaust gas treatment members of internal combustion engines. In particular, it is used as a DPF (Diesel Particulate Filter) for collecting and purifying particulate matter contained in exhaust gas. As such a porous material, cordierite, aluminum titanate, silicon carbide, etc. have already been put into practical use from the viewpoint of heat resistance and thermal shock resistance of the material, and silicon nitride (Si 3 N 4 ) has also been put into practical use. It is being considered.

このようなセラミックスの多孔体は、まず、無機原料に、バインダー物質(メチルセルロースや有機バインダー樹脂など)を添加して、押出成形が可能な杯土とする。杯土には、気孔量を調整する造孔材なども添加される。次に、形成した杯土を押出成形して所望の形状とし、これを乾燥後、脱脂、焼結する。脱脂は、バインダー物質などの有機分を除去する工程であり、焼結は、無機原料を焼き固める工程である。これらの工程を経ることで、所望の形状の多孔体を得ることができる。   Such a ceramic porous body is first made into a clay that can be extruded by adding a binder material (such as methylcellulose or an organic binder resin) to an inorganic raw material. A pore-forming material for adjusting the amount of pores is also added to the clay. Next, the formed clay is extruded to obtain a desired shape, which is dried, degreased and sintered. Degreasing is a process of removing organic components such as a binder substance, and sintering is a process of baking and solidifying an inorganic raw material. By passing through these steps, a porous body having a desired shape can be obtained.

ところで、脱脂工程においては、有機分を全て除去するのではなく、少し残した状態で脱脂を終了することが一般的に行われている。これは、完全に有機分を除去すると、無機原料同士を結び付けておく物質がなくなってしまって、焼結前に成型物が崩壊するためである。   By the way, in the degreasing process, it is generally performed that the degreasing is not completed but all the organic components are removed. This is because if the organic component is completely removed, the substance that binds the inorganic raw materials disappears, and the molded product collapses before sintering.

また、従来、炭化ケイ素(SiC)を含む窒化ケイ素系多孔体も提案されている。例えば、特許文献1には、酸化ケイ素粒子、炭素粒子、金属ケイ素粒子からなる原料を窒素雰囲気下で熱処理して製造される窒化ケイ素系多孔体において、製造段階で炭化ケイ素(SiC)が形成され、多孔体内に含まれることが記載されている。特許文献1によれば、窒化ケイ素系多孔体に炭化ケイ素が含まれることは好ましくないと記載されている。   Conventionally, a silicon nitride based porous material containing silicon carbide (SiC) has also been proposed. For example, Patent Document 1 discloses that silicon carbide (SiC) is formed at the manufacturing stage in a silicon nitride-based porous body manufactured by heat-treating raw materials composed of silicon oxide particles, carbon particles, and metal silicon particles in a nitrogen atmosphere. It is described that it is contained in a porous body. According to Patent Document 1, it is described that silicon carbide is not preferable in the silicon nitride based porous body.

特開2001−206775号公報(2001年7月31日公開)JP 2001-206775 A (released July 31, 2001)

しかしながら、窒化ケイ素粒子を原料とし、窒化ケイ素粒子同士をガラスで接合する窒化ケイ素系多孔体の場合、脱脂工程で残存させた有機分によって、多孔体の機械的強度が低下するといった問題があることがわかった。   However, in the case of a silicon nitride-based porous body in which silicon nitride particles are used as raw materials and silicon nitride particles are bonded to each other by glass, there is a problem in that the mechanical strength of the porous body decreases due to the organic component remaining in the degreasing process. I understood.

これについて詳しく説明する。窒化ケイ素系多孔体の場合、焼結工程は窒素雰囲気下で実施されるため、残存する有機分である炭素が酸素と反応してガス化消失することはなく、炭素は、窒化ケイ素粒子の表面の酸化膜(SiO)と反応してガス化消失する(SiO+C→SiO+CO)。 This will be described in detail. In the case of a silicon nitride-based porous body, since the sintering process is performed in a nitrogen atmosphere, carbon, which is the remaining organic component, does not react with oxygen and disappear by gasification. It reacts with the oxide film (SiO 2 ) and disappears by gasification (SiO 2 + C → SiO + CO).

窒化ケイ素粒子を原料とした窒化ケイ素系多孔体では、窒化ケイ素粒子の表面の酸化膜(SiO)と助剤として原料に添加されるマグネシアスピネル等とが反応してガラスを形成し、このガラスが粘着剤となって窒化ケイ素粒子同士を接合している。そのため、残留した炭素と反応して、窒化ケイ素粒子の表面の酸化膜がSiOからSiOとなると、助剤と反応しなくなり、形成されるガラスの量が不足してしまう。その結果、窒化ケイ素粒子同士の接合が脆くなってしまい、多孔体としての機械的強度が低下することとなる。なお、特許文献1は、窒化ケイ素粒子を原料として用いるものではなく、上記問題点については何ら記載されていない。 In a silicon nitride-based porous body using silicon nitride particles as a raw material, an oxide film (SiO 2 ) on the surface of the silicon nitride particles reacts with magnesia spinel or the like added to the raw material as an auxiliary agent to form glass. Acts as an adhesive to bond the silicon nitride particles together. Therefore, when the oxide film on the surface of the silicon nitride particles changes from SiO 2 to SiO by reacting with the remaining carbon, it does not react with the auxiliary agent, and the amount of glass formed is insufficient. As a result, the bonding between the silicon nitride particles becomes brittle, and the mechanical strength of the porous body is reduced. Patent Document 1 does not use silicon nitride particles as a raw material, and does not describe any of the above problems.

本発明は、上記課題に鑑み成されたもので、その目的は、窒化ケイ素粒子を原料とし、窒化ケイ素粒子同士がガラスによって接合された窒化ケイ素系多孔体であって、製造の容易性を阻害することなく、機械的強度に優れ、かつ高い熱伝導性を有する窒化ケイ素系多孔体およびその製造方法、ハニカム構造体およびハニカムフィルタを提供することにある。   The present invention has been made in view of the above problems, and its purpose is a silicon nitride based porous body in which silicon nitride particles are joined together by glass using silicon nitride particles as a raw material, and obstructs ease of production. Accordingly, an object of the present invention is to provide a silicon nitride-based porous body having excellent mechanical strength and high thermal conductivity, a method for manufacturing the same, a honeycomb structure, and a honeycomb filter.

本願発明者らは、脱脂工程で残さざるを得ない有機物の有効利用に的を絞り、鋭意検討を行った。その結果、従来、窒化ケイ素系多孔体に含まれることは好ましくないとされていた炭化ケイ素の状態で、予め定められた量の範囲内での存在させることで、上記問題点を解決して、機械的強度に優れ、かつ、熱伝導性まで上げることができることを見出し、本願発明を行うに至った。   The inventors of the present application focused on effective use of organic substances that must be left in the degreasing process, and conducted intensive studies. As a result, in the state of silicon carbide, which has conventionally been considered unfavorable to be included in the silicon nitride-based porous body, by making it exist within a predetermined amount range, The present inventors have found that it is excellent in mechanical strength and can be increased to thermal conductivity, and have come to carry out the present invention.

本発明の窒化ケイ素系多孔体は、窒化ケイ素粒子とケイ素粒子とを原料とし、窒化ケイ素粒子同士がガラスによって接合された窒化ケイ素系多孔体であって、ケイ素粒子が炭化された炭化ケイ素粒子を5〜22wt%の範囲で含み、気孔率が40〜70%であることを特徴としている。   The silicon nitride based porous material of the present invention is a silicon nitride based porous material in which silicon nitride particles and silicon particles are used as raw materials, and the silicon nitride particles are bonded to each other by glass. It is characterized by being included in a range of 5 to 22 wt% and having a porosity of 40 to 70%.

上記構成によれば、脱脂工程において残さざるを得ない有機物成分である炭素を、原料のケイ素粒子と反応させて炭化ケイ素として窒化ケイ素系多孔体に含めているので、残存した有機物成分が窒化ケイ素粒子の表面の酸化膜であるSiOと反応してガラスの生成量が不足する事態は生じず、多孔体の機械的強度を保持できる。 According to the above configuration, carbon, which is an organic component that must be left in the degreasing process, is reacted with the silicon particles of the raw material and included as silicon carbide in the silicon nitride-based porous body, so that the remaining organic component is silicon nitride. It does not occur that the amount of glass produced is insufficient due to reaction with SiO 2 which is an oxide film on the surface of the particles, and the mechanical strength of the porous body can be maintained.

但し、ガラスの生成量は確保できても、炭化ケイ素粒子の含有量が22wt%を超えると、多孔体の機械的強度が低下することが確認されている。また、炭化ケイ素粒子の含有量が5wt%未満となると、焼結前の成型物が崩壊し易くなり製造し難くなる。そのため、含める炭化ケイ素粒子は、5〜22wt%の範囲としている。   However, even if the amount of glass produced can be secured, it has been confirmed that when the content of silicon carbide particles exceeds 22 wt%, the mechanical strength of the porous body decreases. On the other hand, when the content of the silicon carbide particles is less than 5 wt%, the molded product before sintering is easily collapsed and is difficult to manufacture. Therefore, the silicon carbide particles to be included are in the range of 5 to 22 wt%.

また、炭化ケイ素は、窒化ケイ素よりも高い熱伝導性を有する物質である。そのため、炭化ケイ素粒子を含有させることで、窒化ケイ素を主体とした窒化ケイ素系多孔体の熱伝導性を高めることもできる。   Silicon carbide is a substance having higher thermal conductivity than silicon nitride. Therefore, the thermal conductivity of the silicon nitride based porous body mainly composed of silicon nitride can be increased by containing silicon carbide particles.

これにより、窒化ケイ素粒子を原料とし、窒化ケイ素粒子同士がガラスによって接合された窒化ケイ素系多孔体であって、製造の容易性を確保しながら、機械的強度に優れ、かつ、高い熱伝導性を有する窒化ケイ素系多孔体を得ることができる。   As a result, the silicon nitride porous body is made of silicon nitride particles and the silicon nitride particles are bonded to each other by glass, and has excellent mechanical strength and high thermal conductivity while ensuring ease of manufacture. It is possible to obtain a silicon nitride-based porous body having

本発明の窒化ケイ素系多孔体の製造方法は、上記課題を解決するために、原料の窒化ケイ素粒子と、ケイ素粒子と、前記窒化ケイ素粒子の表面のSiOと反応してガラスを生成する焼結助剤と、有機バインダー物質と、造孔材とを混合する混合工程と、前記混合工程で得た混合物を成型する成型工程と、前記成型工程で得た成型物を、雰囲気下に混合する酸素量を調整して、有機物成分を一部残して脱脂する脱脂工程と、前記脱脂工程で得た脱脂後の成型物を窒素雰囲気下で焼結する焼結工程とを有し、前記脱脂工程では、脱脂後に含まれる有機物成分と前記ケイ素粒子とが前記焼結工程で反応して生成される炭化ケイ素粒子が5〜22wt%(重量%)となるように、雰囲気下に混合する酸素量を調整し、前記焼結工程では、前記ケイ素粒子を脱脂後に含まれる有機物成分にて炭化ケイ素粒子とする一方、前記ケイ素粒子を窒化して窒化ケイ素粒子とし、その後、原料の窒化ケイ素粒子および窒化した形成された窒化ケイ素粒子の各表面のSiOと焼結助剤とを反応させてガラスを生成して前記窒化ケイ素粒子同士をガラスで接合することを特徴としている。 In order to solve the above problems, the method for producing a silicon nitride based porous material of the present invention is a method of producing glass by reacting raw material silicon nitride particles, silicon particles, and SiO 2 on the surface of the silicon nitride particles. A mixing step of mixing a binder, an organic binder substance, and a pore former, a molding step of molding the mixture obtained in the mixing step, and a molding obtained in the molding step are mixed in an atmosphere. A degreasing step of adjusting the amount of oxygen and degreasing to leave a part of the organic component, and a sintering step of sintering the degreased molding obtained in the degreasing step in a nitrogen atmosphere, the degreasing step Then, the amount of oxygen to be mixed in the atmosphere is adjusted so that the silicon carbide particles produced by the reaction between the organic component contained after degreasing and the silicon particles in the sintering step are 5 to 22 wt% (wt%). Adjusting, in the sintering step, the silicon While the particles are converted to silicon carbide particles with organic components contained after degreasing, the silicon particles are nitrided to form silicon nitride particles, and then the raw silicon nitride particles and the nitrided silicon nitride particles formed on the respective surfaces of SiO 2 and a sintering aid are reacted to produce glass, and the silicon nitride particles are bonded together by glass.

上記方法によれば、脱脂工程において残さざるを得ない有機物成分である炭素と反応させるためのケイ素粒子を予め原料に混合しているので、焼結工程において、残存した有機物成分はケイ素粒子と反応して炭化ケイ素粒子を生成する。これにより、残存した有機物成分が窒化ケイ素粒子の表面の酸化膜であるSiOと反応してガラスの生成量が不足する事態は生じず、多孔体の機械的強度を保持できる。 According to the above method, since silicon particles to be reacted with carbon, which is an organic component that must be left in the degreasing step, are mixed with the raw material in advance, the remaining organic component reacts with the silicon particles in the sintering step. As a result, silicon carbide particles are produced. As a result, the remaining organic component does not react with SiO 2 that is the oxide film on the surface of the silicon nitride particles to cause a shortage of the amount of glass produced, and the mechanical strength of the porous body can be maintained.

但し、ガラスの生成量は確保できても、炭化ケイ素粒子の含有量が22wt%を超えると、多孔体の機械的強度が低下することが確認されている。また、炭化ケイ素粒子の含有量が5wt%未満となると、焼結前の成型物が崩壊し易くなり製造し難くなる。そのため、脱脂工程においては、雰囲気下に混合する酸素量を調整して、脱脂後に残る有機物成分の量を、焼結工程でケイ素と反応して5〜22wt%の炭化ケイ素粒子が生成されるように調整している。炭素と反応しなかったケイ素粒子は焼結工程で窒化して窒化ケイ素粒子となり、もとからある窒化ケイ素粒子と混ざり合って、ガラスにて接合される。   However, even if the amount of glass produced can be secured, it has been confirmed that when the content of silicon carbide particles exceeds 22 wt%, the mechanical strength of the porous body decreases. On the other hand, when the content of the silicon carbide particles is less than 5 wt%, the molded product before sintering is easily collapsed and is difficult to manufacture. Therefore, in the degreasing step, the amount of oxygen to be mixed in the atmosphere is adjusted, and the amount of organic components remaining after degreasing reacts with silicon in the sintering step so that 5 to 22 wt% silicon carbide particles are generated. It is adjusted to. Silicon particles that have not reacted with carbon are nitrided into silicon nitride particles in the sintering process, mixed with the original silicon nitride particles, and bonded with glass.

また、炭化ケイ素は、窒化ケイ素よりも高い熱伝導性を有する物質である。そのため、炭化ケイ素粒子を含有させることで、窒化ケイ素を主体とした窒化ケイ素系多孔体の熱伝導性を高めることもできる。   Silicon carbide is a substance having higher thermal conductivity than silicon nitride. Therefore, the thermal conductivity of the silicon nitride based porous body mainly composed of silicon nitride can be increased by containing silicon carbide particles.

これにより、製造の容易性を確保しながら、機械的強度に優れ、かつ、高い熱伝導性を有する窒化ケイ素系多孔体を得ることができる。   Thereby, it is possible to obtain a silicon nitride based porous body having excellent mechanical strength and high thermal conductivity while ensuring ease of manufacture.

本発明の窒化ケイ素系多孔体の製造方法は、さらに、前記脱脂工程は、200〜350℃の温度範囲で、酸素10%以下にて実施する構成としてもよい。これによれば、脱脂工程における有機物成分の残存量の調整を容易に行える。   In the method for producing a silicon nitride-based porous body of the present invention, the degreasing step may be performed in a temperature range of 200 to 350 ° C. with oxygen of 10% or less. According to this, it is possible to easily adjust the remaining amount of the organic component in the degreasing step.

本発明の窒化ケイ素系多孔体は、本発明の窒化ケイ素系多孔体の製造方法で作製され、気孔率が40〜70%であることを特徴としている。   The silicon nitride based porous material of the present invention is produced by the method for producing a silicon nitride based porous material of the present invention, and has a porosity of 40 to 70%.

上述したように、本発明の製造方法で作製された窒化ケイ素系多孔体は、機械的強度に優れ、かつ、高い熱伝導性を有する。本発明の窒化ケイ素系多孔体は、これらの特徴に加えて、さらに上記気孔率を有しているので、DPFとして安定して機能させることができる。気孔率を上記範囲とするのは、気孔率が40%を下回ると、粒状物質を捕集する性能を保証できず、圧力損失も大きくなる。逆に、気孔率が70%を超えると、使用に耐えうる強度を得ることができないためである。   As described above, the silicon nitride-based porous body produced by the production method of the present invention is excellent in mechanical strength and has high thermal conductivity. In addition to these characteristics, the silicon nitride based porous body of the present invention has the above porosity, and can function stably as a DPF. When the porosity is less than 40%, the porosity is in the above range, and the performance of collecting the particulate matter cannot be guaranteed, and the pressure loss also increases. Conversely, if the porosity exceeds 70%, it is not possible to obtain a strength that can withstand use.

また、本発明は、本発明の窒化ケイ素系多孔体よりなり、セル壁によって区画されることで形成された一方向に延伸する複数のセルを有するハニカム構造体、および該ハニカム構造体を備え、該ハニカム構造体における前記複数のセルにおける延伸方向の一方側の端部が隣接するセル同士交互に封止部にて封止されてなるハニカムフィルタもその範疇としている。   Further, the present invention comprises a honeycomb structure having a plurality of cells extending in one direction formed by the silicon nitride based porous body of the present invention and partitioned by cell walls, and the honeycomb structure, The honeycomb filter in which the end portions on one side in the extending direction of the plurality of cells in the honeycomb structure are alternately sealed by the sealing portions is also included in the category.

本発明により、製造の容易性を阻害することなく、機械的強度に優れ、かつ高い熱伝導性を有する窒化ケイ素系多孔体およびその製造方法、ハニカム構造体およびハニカムフィルタを提供できるという効果を奏する。   According to the present invention, there is an effect that it is possible to provide a silicon nitride-based porous body having excellent mechanical strength and high thermal conductivity, a manufacturing method thereof, a honeycomb structure, and a honeycomb filter without hindering the ease of manufacturing. .

本発明の実施の一形態に係るハニカムフィルタの概観を示す斜視図である。1 is a perspective view showing an overview of a honeycomb filter according to an embodiment of the present invention. 上記ハニカムフィルタの軸方向に平行な面の模式断面図である。It is a schematic cross section of a plane parallel to the axial direction of the honeycomb filter.

[実施の形態1]
以下、本発明を実施の形態により説明する。本実施の形態に係る窒化ケイ素系多孔体は、例えば、内燃機関の排気ガス処理部材に使用することができる。ガソリンエンジン用の排ガス触媒担持用としてや、ディーゼルエンジン用の排ガス処理の酸化触媒担持用として、あるいは排ガスに含まれる粒状物質を捕集浄化するDPF(Diesel Particulate Filter)用として使用することができる。
[Embodiment 1]
Hereinafter, the present invention will be described with reference to embodiments. The silicon nitride based porous body according to the present embodiment can be used, for example, as an exhaust gas processing member of an internal combustion engine. It can be used as an exhaust gas catalyst support for gasoline engines, as an oxidation catalyst support for exhaust gas treatment for diesel engines, or as a DPF (Diesel Particulate Filter) for collecting and purifying particulate matter contained in exhaust gas.

本実施の形態に係る窒化ケイ素系多孔体は、窒化ケイ素粒子(Si)を主成分とし、窒化ケイ素粒子同士は間に存在するガラスによって接合されている。また、窒化ケイ素粒子間には、炭化ケイ素粒子(SiC)が5〜22wt%で含まれ、窒化ケイ素粒子の表面のSiOと反応してガラスを生成する焼結助剤としてのAl,Mg,Fe,Zr,または希土類からなる群のうちの少なくとも一種を含んでいてもよい。また、窒化ケイ素系多孔体には、窒化ケイ素のケイ素と窒素の一部をそれぞれアルミニウムと酸素で置換したサイアロンも窒化ケイ素系多孔体に含まれる。 The silicon nitride based porous material according to the present embodiment is mainly composed of silicon nitride particles (Si 3 N 4 ), and the silicon nitride particles are bonded to each other by glass existing between them. Further, between silicon nitride particles, silicon carbide particles (SiC) are contained in an amount of 5 to 22 wt%, and Al, Mg, as a sintering aid that reacts with SiO 2 on the surface of the silicon nitride particles to generate glass. At least one of the group consisting of Fe, Zr, or rare earth may be included. The silicon nitride based porous material also includes sialon in which a part of silicon and nitrogen of silicon nitride is replaced with aluminum and oxygen, respectively.

上述したように、脱脂工程においては、成型体の崩壊を防止するために、有機バインダー等の有機分(有機物成分)を全て除去するのではなく、少し残した状態で脱脂を終了する。そのため、その後の焼結工程に残存した有機分である炭素(C)が持ち込まれ、これが、焼結工程で、窒化ケイ素粒子の表面の酸化膜(SiO)と反応してガス化消失すると、窒化ケイ素粒子同士を結合するガラスの生成量が少なくなり、窒化ケイ素系多孔体としての機械的強度が低下する。 As described above, in the degreasing step, in order to prevent the molded body from collapsing, not all the organic components (organic components) such as the organic binder are removed, but the degreasing is finished with a little left. Therefore, carbon (C) which is an organic component remaining in the subsequent sintering process is brought in, and when this reacts with the oxide film (SiO 2 ) on the surface of the silicon nitride particles in the sintering process, gasification disappears. The amount of glass that bonds silicon nitride particles is reduced, and the mechanical strength of the silicon nitride porous body is reduced.

そこで、本実施の形態に係る窒化ケイ素系多孔体では、窒化ケイ素粒子と共に、原料にケイ素(Si)粒子を含めておき、焼結工程において、脱脂工程後に残存する有機分とケイ素粒子と反応させて炭化ケイ素粒子を生成させている。   Therefore, in the silicon nitride based porous material according to the present embodiment, silicon (Si) particles are included in the raw material together with the silicon nitride particles, and the organic components remaining after the degreasing step are reacted with the silicon particles in the sintering step. Thus, silicon carbide particles are produced.

これにより、窒化ケイ素粒子の表面の酸化膜(SiO)と反応してガス化消失する炭素量が少なくなり、窒化ケイ素粒子の表面の酸化膜(SiO)は、焼結助剤と反応して十分な量のガラスを生成し、窒化ケイ素粒子同士を堅固に結合することができる。 Thus, the less the amount of carbon lost gasified by reaction with the oxide film on the surface of silicon nitride particles (SiO 2), the oxide film on the surface of the silicon nitride particles (SiO 2) is reacted with sintering aids A sufficient amount of glass can be produced, and the silicon nitride particles can be firmly bonded to each other.

但し、ガラスの生成量は確保できても、炭化ケイ素粒子の含有量が22wt%を超えると、多孔体の機械的強度が低下することが確認されている。また、炭化ケイ素粒子の含有量が5wt%未満となると、焼結前の成型物が崩壊し易くなり製造し難くなる。そのため、脱脂工程においては、雰囲気下に混合する酸素量を調整して、脱脂後に残る有機物成分の量を、焼結工程でケイ素粒子と反応して5〜22wt%の炭化ケイ素粒子が生成されるように調整する。   However, even if the amount of glass produced can be secured, it has been confirmed that when the content of silicon carbide particles exceeds 22 wt%, the mechanical strength of the porous body decreases. On the other hand, when the content of the silicon carbide particles is less than 5 wt%, the molded product before sintering is easily collapsed and is difficult to manufacture. Therefore, in the degreasing step, the amount of oxygen mixed in the atmosphere is adjusted, and the amount of organic components remaining after degreasing reacts with the silicon particles in the sintering step to produce 5 to 22 wt% silicon carbide particles. Adjust as follows.

また、炭化ケイ素は、窒化ケイ素よりも高い熱伝導性を有する物質である。そのため、脱脂工程で残さざるを得ない有機分を積極的に炭化ケイ素の状態で残して含有させることで、窒化ケイ素を主体とした窒化ケイ素系多孔体の熱伝導性を高めることもできる。   Silicon carbide is a substance having higher thermal conductivity than silicon nitride. Therefore, the thermal conductivity of the silicon nitride-based porous body mainly composed of silicon nitride can be increased by positively containing an organic component that must be left in the degreasing step in the form of silicon carbide.

本実施の形態の窒化ケイ素系多孔体を、DPF用のフィルタとして使用する場合は、気孔率を40〜70%とすることが好ましい。このような気孔率とすることで、DPFとして安定して機能させることができる。気孔率を上記範囲とするのは、気孔率が40%を下回ると、粒状物質を捕集する性能を保証できず、圧力損失も大きくなり、逆に、気孔率が70%を超えると、使用に耐えうる強度を得ることができないためである。   When the silicon nitride based porous body of the present embodiment is used as a DPF filter, the porosity is preferably 40 to 70%. By setting it as such a porosity, it can be functioned stably as DPF. The porosity is in the above range because if the porosity is less than 40%, the performance of collecting the particulate matter cannot be guaranteed and the pressure loss becomes large. On the contrary, if the porosity exceeds 70%, it is used. This is because it is impossible to obtain a strength that can withstand the above.

原料の窒化ケイ素粒子としては、粒子径60〜90μmのものを用いる。粒子径をこのような範囲とするのは、粒子径が60μmを下回ると圧力損失が大きくなり、逆に90μmよりも大きくなると捕集性能が落ちるためである。   As the raw material silicon nitride particles, those having a particle diameter of 60 to 90 μm are used. The reason why the particle diameter is in such a range is that when the particle diameter is less than 60 μm, the pressure loss increases, and conversely, when the particle diameter is greater than 90 μm, the collection performance decreases.

原料のケイ素粒子としては、窒化ケイ素粒子と同じ粒子径のものを用いる。ケイ素粒子は、炭素と反応して炭化ケイ素粒子を生成するが、窒素雰囲気下での焼結工程において、窒素とも反応して窒化ケイ素粒子を生成する。そのため、ケイ素粒子の粒子径は、窒化ケイ素粒子と同等とすることが好ましい。ケイ素粒子の量は、窒化ケイ素粒子+ケイ素粒子の合計重量に対して、10〜50wt%とする。ケイ素の量をこのような範囲とするのは、10wt%を下回ると、残存する有機分である炭素と反応する量が足りず、窒化ケイ素粒子の表面の酸化膜(SiO)と反応するためであり、逆に50wt%よりも大きくなると、焼結工程で窒化される際の異常発熱を避けるために、低速な焼結が必要となり、製造性が低下するためである。 As the raw material silicon particles, those having the same particle size as the silicon nitride particles are used. The silicon particles react with carbon to produce silicon carbide particles, but in the sintering process under a nitrogen atmosphere, the silicon particles also react with nitrogen to produce silicon nitride particles. Therefore, it is preferable that the particle diameter of the silicon particles is equal to that of the silicon nitride particles. The amount of silicon particles is 10 to 50 wt% with respect to the total weight of silicon nitride particles + silicon particles. The reason why the amount of silicon is within such a range is that when the amount is less than 10 wt%, the amount of the remaining organic component reacts with carbon and reacts with the oxide film (SiO 2 ) on the surface of the silicon nitride particles. Conversely, if it exceeds 50 wt%, low-speed sintering is required to avoid abnormal heat generation during nitriding in the sintering process, and productivity is reduced.

無機原料を押出成型が可能な杯土とするためのバインダー物質(有機バインダー物質)としては、例えば、メチルセルロースと水との組み合わせが使用できる。メチルセルロースを用いた場合、その添加量は、窒化ケイ素粒子とケイ素粒子と造孔材との合計重量に対して、10〜20wt%とする。添加量をこのような範囲とするのは、添加量が10wt%を下回ると押出成型ができなくなるためであり、逆に20wt%よりも大きくなると、次工程の脱脂が難しくなるためである。   For example, a combination of methylcellulose and water can be used as a binder material (organic binder material) for making an inorganic raw material into a clay that can be extruded. When methylcellulose is used, the addition amount is 10 to 20 wt% with respect to the total weight of the silicon nitride particles, the silicon particles, and the pore former. The reason why the amount of addition is in such a range is that when the amount of addition is less than 10 wt%, extrusion molding cannot be performed, and conversely, when it exceeds 20 wt%, it is difficult to degrease the next step.

また、気孔率40〜70%の多孔質焼結体を安定して得るために、原料に造孔材を添加するが、造孔材としては、例えば、デンプンが使用できる。造孔材の添加量は、窒化ケイ素粒子とケイ素粒子と造孔材との合計重量に対して、20〜40wt%とする。添加量をこのような範囲とすることで、上記気孔率に安定して制御できる。造孔材の粒子径は、ケイ素の粒子径とほぼ同じ、70〜100μmとすることが好ましい。   In addition, in order to stably obtain a porous sintered body having a porosity of 40 to 70%, a pore former is added to the raw material, and as the pore former, for example, starch can be used. The addition amount of the pore former is 20 to 40 wt% with respect to the total weight of the silicon nitride particles, the silicon particles, and the pore former. By setting the addition amount in such a range, the porosity can be stably controlled. The pore diameter of the pore former is preferably 70 to 100 μm, which is substantially the same as the particle diameter of silicon.

焼結助剤としては、窒化ケイ素粒子の表面のSiOと反応してガラスを生成するものであればよく、例えば、Al,Mg,Fe,Zr,または希土類を用いることができる。このとき、窒化ケイ素粒子の一部はガラスに溶け込んでいる場合もある。 Any sintering aid may be used as long as it generates glass by reacting with SiO 2 on the surface of the silicon nitride particles. For example, Al, Mg, Fe, Zr, or rare earth can be used. At this time, some of the silicon nitride particles may be dissolved in the glass.

次いで、本実施の形態に係る窒化ケイ素系多孔体の製造方法について説明する。まずは、窒化ケイ素粒子、ケイ素粒子、造孔材および焼結助剤を、バインダー物質に混合して混合物を得る(混合工程)。次に、押出用金型を用いて押出し、ハニカム構造体などの所望の形状に成型し(成型工程)、その後、成型物を乾燥させる。   Next, a method for producing a silicon nitride based porous material according to the present embodiment will be described. First, silicon nitride particles, silicon particles, a pore former and a sintering aid are mixed with a binder substance to obtain a mixture (mixing step). Next, extrusion is performed using an extrusion die, and the honeycomb structure or the like is molded into a desired shape (molding process), and then the molded product is dried.

次に、乾燥させた成型物を、窒素雰囲気下で混合する酸素量を調整して、脱脂工程で残存されたバインダー物質および造孔材等の有機分が焼結工程でケイ素粒子と反応して、炭化ケイ素が5〜22wt%生成されるように脱脂する(脱脂工程)。焼結工程で残存した有機物である炭素とケイ素粒子とが反応して5〜22wt%の炭化ケイ素粒子が生成されるべく、脱脂工程で残存させる炭素量の目安としては1.5〜6.6wt%である。   Next, the amount of oxygen mixed in the dried molding is adjusted in a nitrogen atmosphere, and the organic matter such as the binder substance and pore former remaining in the degreasing process reacts with the silicon particles in the sintering process. And degreasing so that 5 to 22 wt% of silicon carbide is produced (degreasing step). As a guideline of the amount of carbon remaining in the degreasing step, 1.5 to 6.6 wt. %.

具体的には、窒素雰囲気に酸素を添加した状態で脱脂を行い、その際に、窒素(N)に添加する酸素(O)の量を調整することで、残存させる有機分である炭素の量を調整する。酸素の添加量を多くすると、酸素と反応してガス化消失する炭素量が増えて、残存する炭素量は少なくなる。逆に、酸素の添加量を少なくすると、酸素と反応してガス化消失する炭素量が減り、残存する炭素量は増える。より具体的には、200〜350℃、酸素10%以下で行うことが好ましい。 Specifically, degreasing is performed in a state where oxygen is added to a nitrogen atmosphere, and at that time, the amount of oxygen (O 2 ) to be added to nitrogen (N 2 ) is adjusted, thereby remaining carbon that is an organic component. Adjust the amount. When the amount of oxygen added is increased, the amount of carbon that reacts with oxygen and disappears by gasification increases, and the amount of remaining carbon decreases. Conversely, when the amount of oxygen added is reduced, the amount of carbon that reacts with oxygen and disappears by gasification decreases, and the amount of remaining carbon increases. More specifically, it is preferably performed at 200 to 350 ° C. and oxygen of 10% or less.

次に、脱脂した形成物を、窒素雰囲気下で、ポスト反応焼結する。具体的には、1200〜1400℃でケイ素粒子を窒化し、最終的には1700〜1800℃で焼成して焼結させる。最終の焼結工程で、窒化ケイ素粒子の表面の酸化膜(SiO)が助剤と反応してガラスを生成し、窒化ケイ素粒子同士がガラスにて接合される。 Next, the degreased product is post-reaction sintered in a nitrogen atmosphere. Specifically, silicon particles are nitrided at 1200 to 1400 ° C., and finally fired and sintered at 1700 to 1800 ° C. In the final sintering step, the oxide film (SiO 2 ) on the surface of the silicon nitride particles reacts with the auxiliary agent to generate glass, and the silicon nitride particles are bonded to each other by the glass.

[実施の形態2]
以下、本発明を実施の形態により説明する。図1は、本発明の実施の一形態であるハニカムフィルタの概観を示す斜視図である。図2は、ハニカムフィルタの軸方向に平行な面の模式断面図である。
[Embodiment 2]
Hereinafter, the present invention will be described with reference to embodiments. FIG. 1 is a perspective view showing an overview of a honeycomb filter according to an embodiment of the present invention. FIG. 2 is a schematic cross-sectional view of a plane parallel to the axial direction of the honeycomb filter.

図1、図2に示すように、ハニカムフィルタ1は、本発明に係る窒化ケイ素系多孔体よりなる円柱状のハニカム構造体10を有する。ハニカム構造体10における円柱状の本体の内部には、一方向に延伸する複数のセル11が形成されている。各セル11は、軸方向(セルの延伸方向)に垂直な方向の断面形状が略正方形をなし、多孔性のセル壁12に区画されることによって形成されている。多孔性のセル壁12が粒子状物質(以下、PM)の捕集部材となる。   As shown in FIGS. 1 and 2, the honeycomb filter 1 has a columnar honeycomb structure 10 made of a silicon nitride porous body according to the present invention. A plurality of cells 11 extending in one direction are formed inside the cylindrical main body of the honeycomb structure 10. Each cell 11 has a cross-sectional shape that is substantially square in a direction perpendicular to the axial direction (cell extending direction) and is defined by a porous cell wall 12. The porous cell wall 12 serves as a particulate matter (hereinafter, PM) collecting member.

ハニカム構造体10に設けられている各セル11は、軸方向(延伸方向)の一方側の端部に充填材が封入されることで封止(目封じ)され、封止部21が形成されている。封止部21は、ハニカム構造体10の軸方向の両端部で、複数のセル11が交互に設けられている。   Each cell 11 provided in the honeycomb structure 10 is sealed (sealed) by sealing a filler at one end in the axial direction (stretching direction), and a sealing portion 21 is formed. ing. The sealing part 21 is provided with a plurality of cells 11 alternately at both ends in the axial direction of the honeycomb structure 10.

ハニカム構造体10の外周部は、外周被覆層15にて被覆されている。外周被覆層15はセラミック層からなり、ハニカム構造体10の外周部に塗布された外周被覆材が焼成されることで形成されている。外周被覆層15は必ずしも必要なものではない。なお、図2においては、外周被覆層15の記載を省略している。   The outer peripheral portion of the honeycomb structure 10 is covered with an outer peripheral coating layer 15. The outer periphery covering layer 15 is made of a ceramic layer, and is formed by firing an outer periphery covering material applied to the outer periphery of the honeycomb structure 10. The outer peripheral coating layer 15 is not necessarily required. In addition, in FIG. 2, description of the outer periphery coating layer 15 is abbreviate | omitted.

このような構成を有するハニカムフィルタ1は、図2に示すように、セル11の延伸方向でもある軸方向が排気ガスの流れと平行となるように配置される。排気ガスは、流れの上流側に位置する、セル端部が封止されていないセル(流入側セル)11より流入する。セル11内に流入した排気ガスは、多孔性のセル壁12の微細孔を通過して、流れの下流側に位置する、セル端部が封止されていない隣接セル(流出側セル)11へと移動し、そこから流出する。   As shown in FIG. 2, the honeycomb filter 1 having such a configuration is arranged such that the axial direction, which is also the extending direction of the cells 11, is parallel to the flow of exhaust gas. The exhaust gas flows in from a cell (inflow side cell) 11 that is located upstream of the flow and whose cell end is not sealed. The exhaust gas that has flowed into the cell 11 passes through the micropores of the porous cell wall 12 and is located on the downstream side of the flow to the adjacent cell (outflow side cell) 11 where the cell end is not sealed. And move out of it.

排気ガスがセル壁12の微細孔を通過することにより、排気ガスに含まれるPMがセル壁12に捕集される。捕集されたPMは、ハニカムフィルタ1を再生加熱処理することでセル壁12より除去され、これにより、ハニカムフィルタ1が再生される。   As the exhaust gas passes through the fine holes in the cell wall 12, PM contained in the exhaust gas is collected in the cell wall 12. The collected PM is removed from the cell wall 12 by regenerating and heating the honeycomb filter 1, thereby regenerating the honeycomb filter 1.

なお、図1においては、ハニカム構造体10として、ハニカムフィルタ1の軸方向に垂直な面の断面形状が円形をなす円柱状のものを例示したが、該断面形状は特に限定されるものではなく、例えば、楕円形、正方形、長方形、多角形であってもよい。このようなハニカム構造体10の成型は、押出機を用いることで、所望する形状に予め成型することができる。また、ハニカムフィルタ1の軸方向に垂直な面の断面の大きさは、エンジンの排気量によって最適値が決定されるものである。   In FIG. 1, the honeycomb structure 10 is exemplified as a columnar shape in which the cross-sectional shape of the surface perpendicular to the axial direction of the honeycomb filter 1 is circular, but the cross-sectional shape is not particularly limited. For example, it may be oval, square, rectangular, or polygonal. Such a honeycomb structure 10 can be molded in advance into a desired shape by using an extruder. Further, the optimum value of the cross-sectional size of the plane perpendicular to the axial direction of the honeycomb filter 1 is determined by the engine displacement.

一方、セル11の断面形状は、略正方形であることが好ましい。しかしながら、必ずしもこれに限定されるものではなく、他の形状であってもよい。セル壁12の厚さも特に限定されるものではなく、例えば、0.2〜0.4mmとすればよい。また、単位面積中のセル数も特に限定されるものではなく、例えば、200〜300cpsiとすればよい。外周被覆層15の厚さも特には限定されないが、概して0.3mm〜1.0mmに設定される。   On the other hand, the cross-sectional shape of the cell 11 is preferably substantially square. However, it is not necessarily limited to this, and other shapes may be used. The thickness of the cell wall 12 is not particularly limited, and may be 0.2 to 0.4 mm, for example. Further, the number of cells in the unit area is not particularly limited, and may be, for example, 200 to 300 cpsi. Although the thickness of the outer peripheral coating layer 15 is not particularly limited, it is generally set to 0.3 mm to 1.0 mm.

ハニカムフィルタ1における各部の材料は、本発明に係る窒化ケイ素系多孔体を用いるハニカム構造体10を除き、従来からある既存の材料を用いることができる。   As the material of each part in the honeycomb filter 1, existing conventional materials can be used except for the honeycomb structure 10 using the silicon nitride porous body according to the present invention.

例えば、セル端部を封止する充填材としては、酸化アルミニウム(アルミナ)、チタン酸アルミニウム、炭化珪素、窒化珪素、コーディエライト、ムライト、アパタイトなどのセラミック坏土、またはセメント材料を使用することができる。これらは単独で使用してもよいし、複数種類を併用してもよい。中でもセメント材料としての汎用性の観点から、酸化アルミニウムを材料とすることが特に好ましい。   For example, as a filler for sealing the cell end, ceramic clay such as aluminum oxide (alumina), aluminum titanate, silicon carbide, silicon nitride, cordierite, mullite, apatite, or cement material should be used. Can do. These may be used alone or in combination. Among these, aluminum oxide is particularly preferable from the viewpoint of versatility as a cement material.

外周被覆層15はセラミック層よりなり、上記したハニカム構造体10の材料に、無機バルーン、コロイダルシリカ、ベントナイト等の無機粒子や無機バインダー等を配合した材料が用いられる。   The outer peripheral coating layer 15 is made of a ceramic layer, and a material obtained by blending inorganic particles such as inorganic balloon, colloidal silica, bentonite, an inorganic binder, or the like with the material of the honeycomb structure 10 described above is used.

なお、ハニカムフィルタ1は、ハニカム構造体10が1つの多孔質セラミック焼成体よりなる、いわゆる一体型を例示した。しかしながら、角柱状に形成された複数の多孔質セラミック焼成体であるハニカムセグメント体を、接合部を介して貼り合わせてハニカム構造体とした分割型であってもよい。   The honeycomb filter 1 is a so-called integral type in which the honeycomb structure 10 is formed of one porous ceramic fired body. However, a divided type in which a honeycomb segment body, which is a plurality of porous ceramic fired bodies formed in a prismatic shape, is bonded to each other through a joint portion may be used.

本発明は上述した各実施形態に限定されるものではなく、請求項に示した範囲で種々の変更が可能であり、異なる実施形態にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。   The present invention is not limited to the above-described embodiments, and various modifications are possible within the scope shown in the claims, and embodiments obtained by appropriately combining technical means disclosed in different embodiments. Is also included in the technical scope of the present invention.

本発明を、実施例を挙げてより詳細に説明する。   The present invention will be described in more detail with reference to examples.

♯200アンダーのケイ素の粉末37重量部に対して、マグネシアスピネル3重量部、♯200アンダーのβ窒化ケイ素粒子34重量部、造孔材であるデンプンを26重量部、バインダー物質となるメチルセルロース15重量部、および水を30重量部加えて混合し、押出杯土(混合物)を調整した。押出杯土を、押出用金型を用いて押出して、成型物である35mm×35mm×100mmのハニカム構造体を形成した。   # 200 under silicon powder 37 parts by weight, magnesia spinel 3 parts by weight, # 200 under β silicon nitride particles 34 parts by weight, pore forming material starch 26 parts by weight, methyl cellulose 15 parts by weight as binder material 30 parts by weight of water and 30 parts by weight of water were added and mixed to prepare an extruded goblet (mixture). Extruded goblet was extruded using an extrusion die to form a honeycomb structure of 35 mm × 35 mm × 100 mm as a molded product.

このように形成したハニカム構造体を乾燥後、N+5%Oの気流中で300℃まで加熱して脱脂を行い、メチルセルロースを一部残して除去した。次に、焼結炉に脱脂した成型物(脱脂成型物)を入れ、窒素雰囲気中で1200〜1400℃の温度で焼成してケイ素を窒化し、最終的には1700℃で6時間焼成して、実施例1のサンプルを得た。 The honeycomb structure thus formed was dried and then degreased by heating to 300 ° C. in a stream of N 2 + 5% O 2 to remove a part of methylcellulose. Next, the degreased molded product (degreasing molded product) is put in a sintering furnace, and baked at a temperature of 1200 to 1400 ° C. in a nitrogen atmosphere to nitride silicon, and finally fired at 1700 ° C. for 6 hours. A sample of Example 1 was obtained.

その他、実施例1と同じ原料を用いて、脱脂工程における窒素雰囲気に追加する酸素量のみ調整して、実施例2〜5、比較例1〜3のサンプルを得た。   In addition, only the oxygen amount added to the nitrogen atmosphere in the degreasing process was adjusted using the same raw materials as in Example 1, and samples of Examples 2 to 5 and Comparative Examples 1 to 3 were obtained.

このように作製した実施例のハニカム構造体の圧縮強度、熱伝導率、気孔率を測定した。   The honeycomb structure of the example manufactured as described above was measured for compressive strength, thermal conductivity, and porosity.

気孔率はアルキメデス法の密度計を用いて測定した。圧縮強度は、35mm角のハニカム成形体を貫通穴に平行な方向に圧縮して多孔体の強度を測定した。熱伝導率は、京都電子工業(株)製ホットディスク法熱伝導率測定装置を用いて測定を実施した。試料サイズ35mm×35mm×10mmtとした。   The porosity was measured using an Archimedes density meter. The compressive strength was measured by compressing a 35 mm square honeycomb molded body in a direction parallel to the through hole. The thermal conductivity was measured using a hot disk method thermal conductivity measuring device manufactured by Kyoto Electronics Industry Co., Ltd. The sample size was set to 35 mm × 35 mm × 10 mmt.

表1に測定した結果を示す。   Table 1 shows the measurement results.

Figure 0005612149
Figure 0005612149

表1より分るように、SiC含有量が5wt%以上の炭素(C)含有量となるように脱脂すると崩壊せず、使用強度レベル5MPaを超える材料が作製できたが(実施例1〜5)、SiC含有量が5wt%未満のカーボン含有量となると(比較例1、3)、脱脂時に成形物が崩壊した。また、SiC含有量が増加する材料の熱伝導率が向上するメリットがあるが、SiC含有量が22wt%を超えると(比較例2)、圧縮強度が5Mpaを切ってしまった。   As can be seen from Table 1, when degreasing so that the SiC content is 5 wt% or more of carbon (C) content, the material does not collapse and a material exceeding the use strength level of 5 MPa can be produced (Examples 1 to 5). ), When the SiC content was less than 5 wt% (Comparative Examples 1 and 3), the molded product collapsed during degreasing. Moreover, although there exists a merit which the heat conductivity of the material which SiC content increases improves, when SiC content exceeds 22 wt% (comparative example 2), the compressive strength cut | disconnected 5 Mpa.

本発明は、ディーゼルエンジンの排気ガスに含まれる粒子状物質を捕集するための排気ガス浄化用フィルタとして好適に利用することができる。   The present invention can be suitably used as an exhaust gas purification filter for collecting particulate matter contained in exhaust gas of a diesel engine.

1 ハニカムフィルタ
10 ハニカム構造体
11 セル
12 セル壁
15 外周被覆層
21 封止部
DESCRIPTION OF SYMBOLS 1 Honeycomb filter 10 Honeycomb structure 11 Cell 12 Cell wall 15 Perimeter coating layer 21 Sealing part

Claims (5)

窒化ケイ素粒子とケイ素粒子とを原料とし、窒化ケイ素粒子同士がガラスによって接合された窒化ケイ素系多孔体であって、ケイ素粒子が炭化された炭化ケイ素粒子を5〜22wt%の範囲で含み、気孔率が40〜70%であることを特徴とする窒化ケイ素系多孔体。   A silicon nitride-based porous body in which silicon nitride particles and silicon particles are used as raw materials and the silicon nitride particles are bonded to each other by glass, the silicon carbide particles obtained by carbonizing the silicon particles are included in the range of 5 to 22 wt%, and the pores A silicon nitride-based porous body having a rate of 40 to 70%. 請求項1に記載の窒化ケイ素系多孔体よりなり、セル壁によって区画されることで形成された一方向に延伸する複数のセルを有することを特徴とするハニカム構造体。   A honeycomb structure comprising a plurality of cells extending in one direction formed by being divided by cell walls, comprising the silicon nitride based porous body according to claim 1. 請求項2に記載のハニカム構造体を備え、該ハニカム構造体における前記複数のセルにおける延伸方向の一方側の端部が隣接するセル同士交互に封止部にて封止されてなるハニカムフィルタ。   A honeycomb filter comprising the honeycomb structure according to claim 2, wherein one end in the extending direction of the plurality of cells in the honeycomb structure is alternately sealed by adjacent cells. 主たる原料の窒化ケイ素粒子と、ケイ素粒子と、前記窒化ケイ素粒子の表面のSiOと反応してガラスを生成する焼結助剤と、有機バインダー物質と、造孔材とを混合する混合工程と、
前記混合工程で得た混合物を成型する成型工程と、
前記成型工程で得た成型物を、雰囲気下に混合する酸素量を調整して、有機物成分を一部残して脱脂する脱脂工程と、
前記脱脂工程で得た脱脂後の成型物を窒素雰囲気下で焼結する焼結工程とを有し、
前記脱脂工程では、脱脂後に含まれる有機物成分と前記ケイ素粒子とが前記焼結工程で反応して生成される炭化ケイ素粒子が5〜22wt%となるように、雰囲気下に混合する酸素量を調整し、
前記焼結工程では、前記ケイ素粒子を脱脂後に含まれる有機物成分にて炭化して炭化ケイ素粒子とする一方、前記ケイ素粒子を窒化して窒化ケイ素粒子とし、その後、原料の窒化ケイ素粒子および窒化した形成された窒化ケイ素粒子の各表面のSiOと焼結助剤とを反応させてガラスを生成して前記窒化ケイ素粒子同士をガラスで接合することを特徴とする窒化ケイ素系多孔体の製造方法。
Mixing step of mixing main material silicon nitride particles, silicon particles, a sintering aid that reacts with SiO 2 on the surface of the silicon nitride particles to produce glass, an organic binder material, and a pore former. ,
A molding step of molding the mixture obtained in the mixing step;
A degreasing step of adjusting the amount of oxygen to be mixed in the atmosphere of the molding obtained in the molding step, leaving a part of the organic component, and degreasing;
A sintering step of sintering the degreased molding obtained in the degreasing step in a nitrogen atmosphere,
In the degreasing step, the amount of oxygen to be mixed in the atmosphere is adjusted so that the silicon carbide particles produced by the reaction between the organic component and the silicon particles contained in the degreasing step are 5 to 22 wt%. And
In the sintering step, the silicon particles are carbonized with organic components contained after degreasing to form silicon carbide particles, while the silicon particles are nitrided to form silicon nitride particles, and then the silicon nitride particles and the raw material are nitrided A method for producing a silicon nitride-based porous body, characterized in that SiO 2 on each surface of the formed silicon nitride particles reacts with a sintering aid to produce glass, and the silicon nitride particles are bonded to each other with glass. .
前記脱脂工程は、200〜350℃の温度範囲で、酸素10%以下にて実施することを特徴とする請求項4に記載の窒化ケイ素系多孔体の製造方法。   5. The method for producing a silicon nitride based porous material according to claim 4, wherein the degreasing step is performed in a temperature range of 200 to 350 ° C. with oxygen of 10% or less.
JP2013070491A 2013-03-28 2013-03-28 Silicon nitride-based porous body, silicon nitride-based porous body manufacturing method, honeycomb structure, and honeycomb filter Expired - Fee Related JP5612149B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2013070491A JP5612149B2 (en) 2013-03-28 2013-03-28 Silicon nitride-based porous body, silicon nitride-based porous body manufacturing method, honeycomb structure, and honeycomb filter
PCT/JP2014/057493 WO2014156866A1 (en) 2013-03-28 2014-03-19 Silicon nitride porous body, method for producing silicon nitride porous body, honeycomb structure, and honeycomb filter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013070491A JP5612149B2 (en) 2013-03-28 2013-03-28 Silicon nitride-based porous body, silicon nitride-based porous body manufacturing method, honeycomb structure, and honeycomb filter

Publications (2)

Publication Number Publication Date
JP2014193783A JP2014193783A (en) 2014-10-09
JP5612149B2 true JP5612149B2 (en) 2014-10-22

Family

ID=51623845

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013070491A Expired - Fee Related JP5612149B2 (en) 2013-03-28 2013-03-28 Silicon nitride-based porous body, silicon nitride-based porous body manufacturing method, honeycomb structure, and honeycomb filter

Country Status (2)

Country Link
JP (1) JP5612149B2 (en)
WO (1) WO2014156866A1 (en)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06116038A (en) * 1992-09-30 1994-04-26 Mitsubishi Gas Chem Co Inc Production of silicon nitride-silicon carbide composite sintered compact
JP3691536B2 (en) * 1995-02-08 2005-09-07 東京窯業株式会社 Method for producing porous conductive silicon carbide sintered body
JP3570676B2 (en) * 2000-12-28 2004-09-29 独立行政法人産業技術総合研究所 Porous ceramic body and method for producing the same
US6555032B2 (en) * 2001-08-29 2003-04-29 Corning Incorporated Method of making silicon nitride-silicon carbide composite filters
JP5341597B2 (en) * 2009-03-31 2013-11-13 独立行政法人産業技術総合研究所 Manufacturing method of silicon nitride filter and silicon nitride filter

Also Published As

Publication number Publication date
WO2014156866A1 (en) 2014-10-02
JP2014193783A (en) 2014-10-09

Similar Documents

Publication Publication Date Title
JP6654085B2 (en) Porous material, method for producing porous material, and honeycomb structure
JP6622134B2 (en) Honeycomb structure and method for manufacturing honeycomb structure
JP6912412B2 (en) Silicon Carbide Porous and Its Manufacturing Method
JP5095215B2 (en) Porous body manufacturing method, porous body and honeycomb structure
WO2001079138A1 (en) Honeycomb structure and method for its manufacture
JP6285225B2 (en) Honeycomb structure
JPWO2005094967A1 (en) Honeycomb structure and manufacturing method thereof
WO2003062611A1 (en) HONEYCOMB STRUCTURE CONTAINING Si AND METHOD FOR MANUFACTURE THEREOF
WO2009118862A1 (en) Process for producing honeycomb structure
JP5193804B2 (en) Silicon carbide based porous material and method for producing the same
JP2014087743A (en) Honeycomb filter
JP5292070B2 (en) Silicon carbide based porous material and method for producing the same
JP5193805B2 (en) Silicon carbide based porous material and method for producing the same
JP2020049428A (en) Honeycomb filter
JP4900820B2 (en) Ceramic honeycomb filter
JP2009143763A (en) Silicon carbide-based porous body
JP4465435B2 (en) Ceramic filter and manufacturing method thereof
JP2013202532A (en) Honeycomb filter
JP2014194172A (en) Ceramic filter
JP5612149B2 (en) Silicon nitride-based porous body, silicon nitride-based porous body manufacturing method, honeycomb structure, and honeycomb filter
JP2015193489A (en) Silicon nitride based porous body and method for producing the same
JP5053981B2 (en) Silicon carbide based porous material and method for producing the same
JP2009269763A (en) Honeycomb structure
JP2014193782A (en) Porous sintered body, production method of porous sintered body, honeycomb structure, and honeycomb filter
JP6084497B2 (en) Honeycomb filter

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140710

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20140710

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20140729

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140819

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140903

R150 Certificate of patent or registration of utility model

Ref document number: 5612149

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees