JP2006115742A - 核酸増幅方法、核酸増幅装置及び核酸検知システム - Google Patents

核酸増幅方法、核酸増幅装置及び核酸検知システム Download PDF

Info

Publication number
JP2006115742A
JP2006115742A JP2004305784A JP2004305784A JP2006115742A JP 2006115742 A JP2006115742 A JP 2006115742A JP 2004305784 A JP2004305784 A JP 2004305784A JP 2004305784 A JP2004305784 A JP 2004305784A JP 2006115742 A JP2006115742 A JP 2006115742A
Authority
JP
Japan
Prior art keywords
nucleic acid
reaction
substrate
acid amplification
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004305784A
Other languages
English (en)
Inventor
Tadaaki Yabubayashi
忠顕 藪林
Sumiharu Noji
澄晴 野地
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Precision Products Co Ltd
University of Tokushima NUC
Original Assignee
Sumitomo Precision Products Co Ltd
University of Tokushima NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Precision Products Co Ltd, University of Tokushima NUC filed Critical Sumitomo Precision Products Co Ltd
Priority to JP2004305784A priority Critical patent/JP2006115742A/ja
Publication of JP2006115742A publication Critical patent/JP2006115742A/ja
Pending legal-status Critical Current

Links

Images

Abstract

【課題】 基板上でPCR等の核酸増幅反応を行い、核酸の増幅を行う核酸増幅方法に関するものであり、核酸増幅方法工程をより短時間で終了することができる核酸増幅方法を開発する。
【解決手段】 核酸増幅基板10は、第一層と第二層が積層されたものであり、両者の間で空隙が形成されて反応液溜部20が形成されている。本発明は、3種類のヒートブロックを使用して核酸増幅を行うものである。最初に核酸増幅基板10を第一反応を行う温度近傍に温調された第一ヒートブロック55で挟む。続いて核酸増幅基板10を第二反応を行う温度の近傍に温調された第二ヒートブロック57で挟む。さらに続いて第三反応を行う温度の近傍に温調された第三ヒートブロック56で挟む。本発明では、それぞれ別のヒートブロック55,56,57によって核酸増幅基板10を加熱するものであるから、ヒートブロック55,56,57の加熱に要する時間は皆無、あるいは極めて短時間で足る。
【選択図】 図7

Description

本発明は、基板を用いて行うPCR法等の核酸増幅方法に関するものである。また本発明は、PCR法等の核酸増幅方法を活用した核酸増幅装置及び核酸検知システムに関するものである。
近年、医学分野において、DNAを活用した診断が注目を集めている。また農業分野における遺伝子組み換え作物の判定や品種の判定にもDNA鑑定が活用されている。
上記した様な診断や品種の判定は、血液や作物の試料に目的とするDNAが存在するか否かによって行われるが、試料中の目的DNAは微量である場合が多い。そこでDNA診断やDNA鑑定に先立って、試料中に含まれる目的DNAを増幅することが必要である。 ここで試料中の目的DNAを特異的に増幅する方策として、各種の核酸増幅反応が提案されている。特にPCR(Polymerase Chain Reaction)法による核酸増幅反応は、バイオテクノロジー分野における基本技術となっている。
PCR法は、鋳型DNA、プライマー、基質、耐熱性ポリメラーゼ酵素等を混合した反応液を温度調節し、所定の3種類の温度に順次変化させ、これを繰り返すことによって目的とするDNAを増幅する方法である。
すなわち反応液を、二本鎖DNAを一本鎖DNAに解離させるディナチュレーション反応を行う温度に温調し、続いて一本鎖DNAにプライマーを会合させるアニーリング反応を行う温度に温調し、さらに続いて耐熱性ポリメラーゼ酵素による二本鎖伸長反応を行う温度に温調する。この様に、反応液を三段階の温度に順次温調することにより、DNAの増幅を行うことができる。
具体的には、反応液を各設定温度の条件の元に温調する工程を30回程度繰返すことで、多量のDNA複製生産物を得る。なお、ディナチュレーション温度、アニーリング温度、二本鎖伸長の各反応温度はそれぞれ、95℃、50〜55℃、72℃程度である。
旧来、PCR法はマイクロチューブを使用して行われ、当該マイクロチューブ内に試料やPCRプライマーを含む反応液を入れ、さらにこのマイクロチューブを所定の温度雰囲気とすることによって行われてきた。
しかしながらマイクロチューブを使用する方法は、相応の試料が必要であるが、微量の試料しか入手できない場合もあり、DNA鑑定等ができない場合もあった。
またマイクロチューブを使用する方法は、DNAの増幅に時間がかかるという問題もあった。すなわち、マイクロチューブを使用する方法によると、DNAの増幅に2時間もの長時間を要した。
さらに増幅されたDNAを分析するには、マイクロチューブから反応液を抜き出して別途分離装置にかける必要があり、さらに手間がかかるという不満もあった。
これに対してPCR法によるDNAの増幅を基板上で行い、さらに同一の基板上でDNAの分離を行う方策が提案されている。
下記の特許文献は、いずれもDNAの増幅と分離を一枚の基板上で行う技術を開示するものである。
特開2003−83965号公報 特開2002−306154号公報 特開2003−270204号公報
特許文献1に開示された基板は、ガラス板等の表面に窪みや溝を形成し、上面開放のPCR槽を設けたものである。
特許文献1に開示された技術では、前記したPCR槽に反応液等を充填する。そして上部に設置された熱源によってPCR槽中の反応液等を非接触状態で加熱してディナチュレーション反応を行わしめる。
続いて下部に設置された冷却装置でPCR槽中の反応液等を冷却してアニーリングを行う。
さらに続いて上部に設置された熱源によってPCR槽中の反応液等を非接触状態で加熱して二本鎖伸長反応を行わしめる。
そしてこれらを繰り返して試料のDNAを増幅する。
特許文献2に開示された基板についても、上面開放のPCR槽が設けられ、PCR槽に反応液等が充填されてPCRが行われる。
特許文献2に開示された技術では、基板は底面側からのみ温調される。
すなわち特許文献2に開示された装置は、昇降機能を備えた基板載置台を持つ。そして当該基板載置台の上面に板状の加熱手段が配置されている。また基板載置台の下部には冷却手段が設けられている。
特許文献2に開示された技術によると、基板は、基板載置台上の板状加熱手段に載置される。そして基板を加熱する際には板状加熱手段を昇温する。一方、基板を冷却する場合は、基板載置台上を降下させ、板状加熱手段の背面側に冷却手段の一部を押し当て、加熱手段上の基板を冷却する。
特許文献3に開示された基板についても、上面開放のPCR槽が設けられ、PCR槽に反応液等が充填されてPCRが行われる。
特許文献3に開示された技術では、基板載置台とシールヘッド昇降機構を持ち、基板載置台とシールヘッド昇降機構の双方に加熱・冷却手段を備えている。
DNAによる診断や鑑定は、今後ますます需要が増大するであろうと予想される。そのためDNAの増幅をより簡便な方法で行うことができる技術の開発が急務である。また微量の試料をもって所望の診断等が行われることが望ましい。
さらにDNAによる診断は、感染症の診断に利用される場合が多いので、DNAの増幅は迅速に行われなければならない。
ここで旧来のマイクロチューブを使用する方法によると、前記した様にDNAの増幅に2時間もの長時間を要してしまう。
これに対して前記した特許文献に記載された様に、基板を使用する方策は、マイクロチューブを使用する方法に比べると短時間でDNAの増幅を終えるが、それでも30分程度の時間を要する。
すなわち特許文献1に開示された方策は、PCR槽中の反応液等を非接触状態で加熱・冷却し、所望の反応を行わせるものであるから、基板に対する伝熱効率が悪く、基板が所望の温度に達するのに相当の時間が掛かってしまう。
これに対して特許文献2,3に記載された技術は、基板に加熱物等を直接接触させるものであるから、伝熱効率は高いものの、板状加熱手段の昇温や冷却に時間がかかってしまう。すなわち特許文献2に記載の方策では、基板を加熱する際に板状加熱手段を昇温する。そのため加熱手段の昇温自体に時間が掛かる。続いて基板を冷却することとなるが、特許文献2の方策によると、板状加熱手段の下部に設けた冷却手段を板状加熱手段を押し当てて板状加熱手段を冷却し、その冷熱をもって基板を冷却する。そのため板状加熱手段の冷却に時間が掛かることとなる。また基板を再度加熱する際には、一旦冷却された板状加熱手段を昇温することとなる。そのため特許文献2に記載の方策は、DNA増幅に要する総時間が長い。
特許文献3に開示された方策についても同様であり、加熱・冷却手段自体の温度を変化させて基板を冷却するものであり、加熱・冷却手段の昇温と冷却に相当の過渡時間を有し、DNA増幅に要する総時間が長いものとなってしまう。
特許文献2,3に共通する欠点は、一旦加熱状態にある加熱手段等を冷却して基板を冷却したり、一旦冷却状態にある加熱手段等を再加熱して基板を加熱するものであるから、加熱手段等が所望の温度に至るのに相当の時間が掛かってしまう点である。そのため特許文献2,3に開示された方策によると、DNA増幅に長時間を要さざるを得ない。
そこで本発明は、従来技術の上記した問題点に注目し、PCR等の核酸増幅反応工程をより短時間で終了することができる核酸増幅方法の開発を課題とする。また併せて本発明は、当該方法を実現するための装置及びシステムの開発を課題とするものである。
上記した課題を解決するための請求項1に記載の発明は、核酸増幅反応に必要な成分を含む反応液の温調を繰り返し、目的の核酸を増幅する核酸増幅方法において、前記反応液を基板の一部に充填し、当該基板を互いに異なる温度に温調された複数のヒートブロックに順次接触させることにより、反応液の温調を繰り返すことを特徴とする核酸増幅方法である。
本発明の核酸増幅方法は、基本的に複数のヒートブロックを使用して反応液の温調を繰り返し、核酸増幅反応を行うものである。
すなわち、本発明の核酸増幅方法では、互いに異なる温度に温調された複数のヒートブロックに順次接触させることにより、反応液の温調を繰り返す。前記した特許文献では、一旦昇温状態にあったヒートブロック等をわざわざ冷却して基板を冷却していたが、本発明では、複数のヒートブロックによって基板を加熱又は冷却するものであるから、ヒートブロックの昇温又は冷却に要する時間は皆無、あるいは極めて短時間で足る。
また本発明では、ヒートブロックを基板に接して基板を加熱又は冷却するものであるから、基板に対する伝熱効率が高く、基板は早期に所望の温度に達する。そのため本発明の核酸増幅方法によれば、核酸増幅のための所要時間が短い。
また請求項2に記載の発明は、前記複数のヒートブロックは、第一反応を行う温度近傍に温調された第一ヒートブロック、第二反応を行う温度近傍に温調された第二ヒートブロック、及び第三反応を行う温度近傍に温調された第三ヒートブロックからなり、前記基板を第一ヒートブロックに接触させ、続いて第二ヒートブロックに接触させ、さらに続いて第三ヒートブロックに接触させ、順次これを繰り返すことを特徴とする請求項1に記載の核酸増幅方法である。
本発明の核酸増幅方法では、3種類のヒートブロックを使用して核酸増幅反応を行う。そして、3種類のヒートブロックは3種類の反応、すなわち、第一反応、第二反応、及び第三反応を行うそれぞれの温度近傍に温調されている。
本発明の核酸増幅方法では、まず基板を第一反応を行う温度近傍に温調された第一ヒートブロックに接触させる。そのためヒートブロック自体を昇温又は冷却する時間は皆無あるいは極めて短時間で足る。
また続いて基板を第二反応を行う温度の近傍に温調された第二ヒートブロックに接触させる。前記した特許文献では、一旦昇温状態にあったヒートブロック等をわざわざ冷却して基板を冷却していたが、本発明では、第一ヒートブロックとは別のヒートブロックによって基板を加熱又は冷却するものであるから、ヒートブロックの昇温又は冷却に要する時間は皆無、あるいは極めて短時間で足る。
さらに本発明では、第三反応を行う温度の近傍に温調された第三ヒートブロックに接触させて基板を加熱又は冷却するが、本発明では、前記した第一ヒートブロック及び第二ヒートブロックとは別のヒートブロックによって基板を加熱又は冷却するものであるから、ヒートブロックの昇温又は冷却に要する時間は皆無、あるいは極めて短時間で足る。
本発明の核酸増幅方法に適用される核酸増幅反応の例としては、PCR法、LTR(Ligase Chain Reaction)法等が挙げられるが、PCR法が代表的である。PCR法の場合は、第一反応、第二反応、第三反応の各反応に、ディナチュレーション反応、アニーリング反応、及び二本鎖伸長反応を適宜割り振ればよい。また、LTR法の場合は、各反応にディナチュレーション反応、アニーリング反応、及び核酸連結反応を適宜割り振ればよい。また、核酸増幅反応に必要な成分としては、例えばPCR法の場合は、鋳型DNA、プライマー、デオキシヌクレオチド3リン酸類、耐熱性DNAポリメラーゼ等が挙げられる。同様に、LCR法の場合は、目的DNA、プローブ、耐熱性DNAリガーゼ等が挙げられる。
また請求項3に記載の発明は、第一反応が二本鎖核酸を一本鎖核酸に解離させるディナチュレーション反応であり、第二反応が一本鎖核酸にプライマーを会合させるアニーリング反応であり、第三反応がポリメラーゼ酵素による二本鎖伸長反応であることを特徴とする請求項2に記載の核酸増幅方法である。
本発明の核酸増幅方法では、ディナチュレーション反応、アニーリング反応、及び二本鎖伸長反応を繰り返す。すなわち、基板をディナチュレーション反応を行う温度近傍に温調された第一ヒートブロックに接触させて基板を昇温し、続いてアニーリング反応を行う温度の近傍に温調された第二ヒートブロックに接触させて基板を冷却し、続いて二本鎖伸長反応を行う温度の近傍に温調された第三ヒートブロックに接触させて基板を冷却する。冷却された基板は再び第一ヒートブロックと接触して昇温され、以下、同じサイクルを繰り返す。本発明の核酸増幅方法によれば、極めて短時間でPCR等の核酸増幅反応を行うことができる。
また請求項4に記載の発明は、ヒートブロックは、二片が一対となったものであり、当該二片の間に基板を挟むことを特徴とする請求項1乃至3のいずれかに記載の核酸増幅方法である。
本発明の核酸増幅方法では、二片の間に基板を挟んで基板を温調するから、基板内部の反応液は、早期に目的温度に達する。そのため本発明の核酸増幅方法によると、核酸増幅反応をさらに短時間で終了させることができる。
また請求項5に記載の発明は、基板は、反応液が充填される反応液溜部と、反応液を導入する反応液導入部と、前記反応液導入部と反応液溜部を繋ぐ反応液流路を備え、前記反応液溜部と反応液流路は、基板の内部に設けられた空隙によって形成されたものであることを特徴とする請求項1乃至4のいずれかに記載の核酸増幅方法である。
本発明の核酸増幅方法で使用する基板では、反応液溜部は、基板の内部に設けられた空隙によって構成されており、半密閉状態である。そのため基板の表面に物が触れても、反応液によって汚染されることはない。また基板が振動を受けても反応液が反応液溜部からこぼれることはない。
さらに本発明で採用する基板は、反応液を導入する反応液導入部を備え、反応液は反応液導入部から基板内に導入される。本発明で採用する基板では、反応液導入部と反応液溜部の間に反応液流路が設けられているので、反応液溜部と反応液導入部の間に相当の距離があり、反応液溜部の反応液が洩れにくい。
また請求項6に記載の発明は、核酸増幅反応に必要な成分を含む反応液が充填された基板を使用して、反応液の温調を繰り返し、目的の核酸の増幅を行う核酸増幅装置であって、互いに異なる温度に温調された複数のヒートブロックを有し、前記基板を各ヒートブロックに順次接触させる順次接触手段を備えたことを特徴とする核酸増幅装置である。
本発明の核酸増幅装置では、複数のヒートブロックを有し、これらが互いに異なる温度に温調されており、各ヒートブロックに基板を接触させる。そのため本発明の核酸増幅装置では、核酸増幅反応工程の最中にヒートブロックの温度を変化させる必要がない。したがって本発明の核酸増幅装置を使用すると、短時間で核酸増幅反応を行うことができる。
また請求項7に記載の発明は、前記複数のヒートブロックは、第一反応を行う温度近傍に温調された第一ヒートブロック、第二反応を行う温度近傍に温調された第二ヒートブロック、及び第三反応を行う温度近傍に温調された第三ヒートブロックからなることを特徴とする請求項6に記載の核酸増幅装置である。
本発明の核酸増幅装置では、3種類のヒートブロックを有し、これらがそれぞれ第一反応を行う温度の近傍温度、第二反応を行う温度の近傍温度、第三反応を行う温度の近傍温度に温調されており、それぞれの温度に調節されたヒートブロックに基板を接触させる。そのため本発明の核酸増幅装置では、第一反応〜第三反応を繰り返す工程で各ヒートブロックの温度を変化させる必要がない。したがって本発明の核酸増幅装置を使用すると、短時間で核酸増幅反応を行うことができる。
また請求項8に記載の発明は、第一反応が二本鎖核酸を一本鎖核酸に解離させるディナチュレーション反応であり、第二反応が一本鎖核酸にプライマーを会合させるアニーリング反応であり、第三反応がポリメラーゼ酵素による二本鎖伸長反応であることを特徴とする請求項7に記載の核酸増幅装置である。
本発明の核酸増幅装置においては、3種類のヒートブロックが、それぞれディナチュレーション反応を行う温度の近傍温度、アニーリング反応を行う温度の近傍温度、二本鎖伸長反応を行う温度の近傍温度に温調されており、それぞれの温度に調節されたヒートブロックに基板を接触させる。そのため本発明の核酸増幅装置では、核酸増幅反応工程の最中にヒートブロックの温度を変化させる必要がない。したがって本発明の核酸増幅装置を使用すると、短時間でPCR等の核酸増幅反応を行うことができる。
また請求項9に記載の発明は、ヒートブロックは、二片が一対となったものであり、当該二片の間に基板を挟むことを特徴とする請求項6乃至8のいずれかに記載の核酸増幅装置である。
本発明の核酸増幅装置では、二片の間に基板を挟んで基板を温調するから、基板内部の反応液は、早期に目的温度に達する。そのため、本発明の核酸増幅装置によると核酸増幅反応をさらに短時間で終了させることができる。
また順次接触手段は、基板を保持してこれを水平移動させるものであることが推奨される(請求項10)。
すなわち本発明では、基板を複数のヒートブロックに順次接触させて反応液を温度調節するものであるから、基板あるいはヒートブロックのいずれかを移動させる必要がある。ここで基板とヒートブロックの重量を比較すると、基板の方がはるかに軽い。そこで本発明の実施に際しては、基板を保持してこれを水平移動させることが推奨される。
また本発明者らの実験によると、基板内の反応液は、極めて短時間の内に所望の温度に達することが判明した。さらに、反応液は、相当の正確さで所望の温度となることも分かった。そのため反応液の温度制御は、ヒートブロックに接している時間を制御することによって行うことが推奨される。
この知見に基づいて完成された請求項10に記載の発明は、順次接触手段は、基板を保持してこれを水平移動させるものであることを特徴とする請求項6乃至9のいずれかに記載の核酸増幅装置である。
また、各ヒートブロックに基板を接触させる時間を設定するタイマを備えることが奨励される(請求項11)。
本発明の核酸増幅装置によると、基板と各ヒートブロックの接触時間を簡単に制御でき、より確実に核酸増幅反応を行うことができる。
また使用する基板は、当該基板内で核酸を電気泳動させる電気泳動部と、電気泳動のための電極を接触させる電極接続部を備え、核酸増幅装置は、前記電極接続部に接触させる電極を備えることが推奨される(請求項12)。
本発明の核酸増幅装置によると、核酸の増幅と分離を一つの装置で行うことができる。
また請求項13に記載の発明は、さらに蛍光検出手段を備えたことを特徴とする請求項12に記載の核酸増幅装置である。
本発明の核酸増幅装置によると、核酸の増幅と分離及び検出を一つの装置で行うことができる。
また請求項14に記載の発明は、使用する基板は、当該基板内で核酸を電気泳動させる電気泳動部を備えるものであり、請求項6乃至11のいずれかに記載の核酸増幅装置と、電気泳動・検出装置によって構成される核酸検知システムである。
本発明の核酸増幅装置によると、核酸の増幅と分離及び検出を一つのシステムで行うことができる。
本発明の核酸増幅方法及び核酸増幅装置によると、PCR等の核酸増幅反応による核酸の増幅を短時間で行うことができる。
また特に請求項12,13,14に記載の発明によると、核酸の分離や検出についても一つの装置やシステムによって行うことができる。
以下さらに本発明の実施形態について説明する。
本発明の実施形態の核酸増幅方法は、前記した様に反応液が充填された基板を使用し、当該基板内で核酸増幅反応を行うものである。
そこで、装置等の説明に先立って、本発明の実施形態で使用する基板について説明する。
図1は、本発明の実施形態で使用する核酸増幅基板の正面図である。図2は、図1の核酸増幅基板の斜視図である。図3は、図1の核酸増幅基板の二系統の核酸増幅・分離流路の正面図である。図4は、図1の核酸増幅基板の反応液溜部周辺の第一層と第二層の分解斜視図である。図5は、図1の核酸増幅基板の反応液溜部周辺の拡大断面図である。図6は、図1の核酸増幅基板の反応液導入口周辺の拡大斜視図である。
図において、10は、本発明の実施形態で使用する核酸増幅基板を示す。核酸増幅基板10は略長方形の板状であり、その大きさは、30×40mm〜70×100mm程度である。
核酸増幅基板10は、ガラス板からなる第一層11とシリコンゴムからなる第二層12が積層されたものである。第一層11は、主として全体の剛性を確保するために設けられた層であり、ガラスの他、石英、アクリル樹脂等の材質のものが使用可能である。
第二層12は、第一層11との界面に空隙を形成させるために設けられた層であり、微細な溝や凹部が形成可能な素材が選択される。シリコンゴムの例としては、PDMS(Polydimethylsiloxane)を挙げることができる。また、シリコンゴムの他、ポリメチルメタクリレート(PMMA)等のプラスチック、ガラス、石英等、様々の材質が使用可能である。
試料を光学的に検出する場合には、第一層11及び第二層12は、透明あるいは光透過性であることが望ましい。
本実施形態では、第一層11たるガラス板は、図4、図5に示すように表裏面とも平滑である。これに対して第二層12たるシリコンゴムには、図4、図5の様に第一層11との接触面側に微細な溝5が設けられ、第一層11と第二層12の間に空隙6が形成される。
また第二層12には図1、図2の様に複数の貫通孔が設けられており、当該貫通孔によって空隙と外部とが連通する。
上記した空隙内及び開口は、いずれも親水処理がなされており、その表面は、親水性である。
第一層11の厚さは、0.2〜5.0mm程度である。第一層11の厚さが、0.2mm未満の場合は、全体の剛性が低く、ヒートブロックで挟んで加熱するのには適しない。逆に第一層11の厚さが5.0mmを越えると、ヒートブロックから内部に熱が伝わり難い。第一層の厚さとして最も好適な範囲は、0,2〜0.6mm程度である。
第二層12の厚さは一様ではなく、後記する反応液溜部20が設けられたエリアDは、図2の様に他のエリアに比べて厚さが薄い。具体的には反応液溜部20の厚さが0.2〜1.0mmあり、他の部位の厚さは0.6〜3mmである。
第二層の反応液溜部20に相当する部位は、その厚さが0.2mm未満の場合は、全体の剛性が低く、撓みが大きくてヒートブロックで挟んで加熱するのには適しない。当該部位の厚さが1.0mmを越えると、ヒートブロックから内部に熱が伝わり難い。この点から最も推奨される範囲は、0.3mm〜0.6mm程度である。
後記する電気泳動部21は、外部から熱影響を受けないことが望ましく、第二層の厚さは、反応液溜部20よりも厚く設計されている。また電気泳動部21に電極を取り付ける関係上もある程度の厚さをもつことが望ましい。
本実施形態の核酸増幅基板10では、空隙6のパターン(溝パターン)によって図1の様に4系統の核酸増幅・分離流路15,16,17,18が形成されている。
上記した4系統の核酸増幅・分離流路15,16,17,18は、いずれも略同一形状であるので、図1の最下部に図示された核酸増幅・分離流路18をこれらの代表例として説明する。
核酸増幅・分離流路18は、図1,3に示す様な反応液溜部20と電気泳動部21を有し、これらの周辺に反応液往復流路22、反応液吸引路23、核酸供給路25が設けられたものである。
さらに核酸増幅・分離流路18には、反応液導入開口(反応液導入部)30、吸引用開口31、核酸供給路末端側開口33、泳動部始端側開口35、泳動部終端側開口36が設けられている。各開口30,31,33,35,36は、いずれも第二層12に設けられた貫通孔によって構成されており、第一層11と第二層12の間で形成される空隙6と外部とを連通するものである。
以下、順次説明する。
反応液溜部20は、内部に反応液を貯留することを目的として形成された空隙部分である。本実施形態では、反応液溜部20は、S字カーブ状に曲がった流路40を密状態に繋げて作られている。見方を変えると、反応液溜部20は、正面視が略正方形の空隙内に隔壁7(図5)が設けられ、ジグザクで迷路状の流路を設けたものであるとも言える。反応液溜部20内の流路は直列である。すなわち反応液溜部20内においては、略同一長さの8本の直線路41が平行に配され、隣接する直線路41の端部同士が曲路43で接続され、全体として直列状となっている。
曲路43は、図3(b)の様な円状の流路である。曲路は、図3(c)の様な角型の流路であってもよいが、角型の流路は角の部位に気泡が残留し易いので、図3(b)の様な円状の流路を採用することが推奨される。
反応液溜部20は、前記した様に内部に反応液を貯留する為に形成された部分であるため、内部の流路は、他の部位の流路に比べて幅、深さ、共に大きい。
すなわち反応液溜部20内の流路は、前記した様に第二層12の界面に形成された溝によって構成されているが、当該溝の幅は、100μm〜500μm、より好ましくは250〜450μmである。
また反応液溜部20の溝の深さは、100〜300μmである。なお他の部位における溝の深さは、10〜50μm程度である。
反応液溜部20の溝の断面積(流路の断面積)は、0.01〜0.15平方ミリであり、他の部位の溝に比べて3倍から50倍大きい。
反応液溜部20の全体の容積は、3〜10ミリリットル程度である。
反応液溜部20の一端側は、反応液往復流路22を介して反応液導入開口(反応液導入部)30と連通している。反応液導入開口30は、核酸増幅基板10の中央部近傍に設けられた開口である。反応液導入開口30と反応液溜部20を結ぶ反応液往復流路22は、直線を基調とするものであり、「U」路や「S」路は無い。
また反応液溜部20の他端側は、反応液吸引路23を介して吸引用開口31と連通している。吸引用開口31についても核酸増幅基板10に設けられた開口である。反応液吸引路23は、曲路を基調としたものであり、S字カーブ状に曲がった流路である。反応液吸引路23の曲路は、流路抵抗の増大を目的としたものであり、図3(c)の様な角型である。
反応液吸引路23の曲部は、「移動抑制手段」として機能する。
電気泳動部21は、泳動部始端側開口35から泳動部終端側開口36に至る流路であり、中途部分で核酸供給路25と交差する。泳動部始端側開口35から交差部50に至る間は、泳動準備路51であり、単に通電路として機能する。
泳動準備路51は、複数の曲路を有して相当量の距離が確保されている。
交差部50から泳動部終端側開口36に至る間は泳動路52であり、後記する様にゲルが充填され、増幅されたDNA等の核酸が実際に泳動され分離される部分である。
泳動路52は、一部が「く」の字状に折れているが、基本的には直線を基調としている。
核酸供給路25は、反応液導入開口30と核酸供給路末端側開口33を接続するものであり、その中間部分で前記した様に電気泳動部21と交差する。
反応液導入開口30は、前記した様に核酸増幅基板10の中央部近傍に設けられているので、交差部50に至る間は、反応液溜部20側に戻る方向に延びる流路となる。また反応液導入開口30から交差部50に至る間の流路には、「コ」の字状に曲げられた部位が設けられている。当該「コ」の字状に曲がった部位は、流路が平行に並ぶものであるが、平行に並ぶ流路同士の間には相当の距離があり、当該部位における圧力損失は少ない。すなわち前記した「コ」の字状部は、流路抵抗を増大するために設けられたものではなく、反応液導入開口30から交差部50に至る間の距離を所定長以上確保するために設けられたものである。
本実施形態では、交差部50から核酸供給路末端側開口33に至る流路のレイアウトは、反応液導入開口30から交差部50に至る流路のレイアウトと対称形である。
本実施形態では、前記した通り4系統の核酸増幅・分離流路15,16,17,18を有し、各流路のレイアウトは多少相違するが、いずれの核酸増幅・分離流路15,16,17,18も、電気泳動部21の流路の長さは同一である。すなわち各核酸増幅・分離流路15,16,17,18の、泳動部始端側開口35から泳動部終端側開口36に至る流路の距離はいずれも同一である。また泳動部始端側開口35から交差部50までの距離、及び交差部50から泳動部終端側開口36までの距離についても、各核酸増幅・分離流路15,16,17,18の間で相違はない。
核酸供給路25についても同様であり、反応液導入開口30と核酸供給路末端側開口33の長さはいずれの核酸増幅・分離流路15,16,17,18でも同一である。また反応液導入開口30から交差部50に至る間の長さ、及び交差部50から核酸供給路末端側開口33に至る長さも各核酸増幅・分離流路15,16,17,18の間で相違はない。
本実施形態では、図1の様に、核酸増幅反応を行う反応液溜部20のエリアAと電気泳動を行わしめるエリアBが分離されており、両者の間に相当の距離がある。この距離Cは、反応液溜部20の熱が電気泳動部21に伝わらない距離であり、核酸増幅基板10の板厚(最も厚い部分の厚み)の3倍以上、又はガラス板からなる第一層11の板厚の5倍以上である。
上記した電気泳動部21及び核酸供給路25には、核酸の電気泳動に一般的に使用される水性ポリマーからなるゲルが充填される。当該ゲルの例としては、アガロース、ポリアクリルアミド、ポリジメチルアクリルアミド、ポリメトキシセルロース等が挙げられる。
ゲルの濃度は、分離する核酸の大きさによって適宜選択される。核酸がDNAの場合を例にとると、数10〜数100塩基対程度の大きさのDNAであれば、5%程度のポリジメチルアクリルアミドを使用することができる。1000塩基対を越える様なDNAの場合は、0.5〜2.5%程度のアガロースゲルを使用することができる。
なお、ゲルには、あらかじめエチジウムブロマイドの様な蛍光を発するインターカレーターを含ませておくことが一般的である。そのようにすれば、電気泳動に供されたDNA等の核酸が泳動と同時にエチジウムブロマイド等で染色され、ただちに蛍光検出器で染色された核酸を検出することができる。
電気泳動部21及び核酸供給路25に対するゲルの充填は、核酸増幅基板10を使用する直前に行うことが望ましい。
ゲルの充填は、泳動部終端側開口36から圧入することにより行われる。
次に本実施形態の核酸増幅方法に使用する増幅・分離装置について図7乃至図13を参照しつつ説明する。
図7は、図1の核酸増幅基板を装着して核酸増幅及び分離を行う増幅・分離装置の斜視図である。図8は、図7に示す増幅・分離装置の温調装置の構成(反応液注入・吸引機構を除く)を示す斜視図である。図9は、さらに図8に示す温調装置の第一ヒートブロック(第三ヒートブロック)及びブロック昇降機構の斜視図である。図10は、第一ヒートブロック(第三ヒートブロック)の分解断面斜視図である。図11は、第二ヒートブロック及びその周辺部の断面斜視図である。図12は、第二ヒートブロックの分解断面斜視図である。図13は、図7に示す増幅・分離装置の温調装置の基板送り機構の要部の斜視図である。
図7に示す増幅・分離装置75は、大きく分けて核酸増幅を行う温調装置80と電気泳動・検出装置81及び制御装置が一つのベース上に設置されたものである。
温調装置80は、3組のヒートブロック55,56,57と、3基のブロック昇降機構69と、基板送り機構58と、反応液注入・吸引機構45(図7にのみ図示)及び3台の温度調節装置を備えたものである。
3組のヒートブロック55,56,57の内、右端に図示されたヒートブロック55は、第一反応を行う温度近傍に温度調節されるものであり、第一ヒートブロックとして機能する。左端のヒートブロック57は、第二反応を行う温度近傍に温度調節されるものであり、第二ヒートブロックとして機能する。中央のヒートブロック56は、第三反応を行う温度近傍に温度調節されるものであり、第三ヒートブロックとして機能する。核酸増幅反応がPCRの場合は、後述する様に、第一反応をディナチュレーション反応に、第二反応をアニーリング反応に、第三反応を二本鎖伸長反応に対応させ、ヒートブロック55,56,57を各反応に適した温度近傍に温度調節する。
装置の右端に図示された第一ヒートブロック55は、図8,9に示す様にそれぞれ上片55aと下片55bを有する。
第一ヒートブロック55の上片55a及び下片55bは、図10の様にそれぞれブロック本体63,64と、これを覆う断熱材65,66によって構成されている。
ブロック本体63,64は、いずれもアルミニウムや銅合金等の熱伝導性と蓄熱性に優れた金属によって作られている。ブロック本体63,64は略直方体であるが、下面側又は上面側に凸部67,68が設けられている。凸部67,68は、いずれもブロック本体63,64の中央にあり、長手方向に延びる。凸部67,68の先端部分は平滑であり、熱伝導性に優れたシート73,74が接着されている。当該シート73,74には例えばシリコンを素材とするものが採用される。
ヒートブロック本体63,64には、それぞれ電気ヒータ76,77と、温度センサー78,79が内蔵されている。
断熱部材65,66は、図10に示すような溝形形状をしており、前記したブロック本体63,64の凸部形成面以外の5面を覆う。逆に言えば、ブロック本体63,64の凸部67,68は、露出する。
次に第二ヒートブロック57について説明する。第二ヒートブロック57は、前記した第一ヒートブロックと同様に上片57aと下片57bを有する。
そして第二ヒートブロック57の上片57a及び下片57bについてもそれぞれブロック本体82,83を備える。ブロック本体82,83の素材、形状、構造は、前記した第一ヒートブロック55のブロック本体63,64と同一であり、アルミニウム等を素材とし、略直方体であって一つの面に凸部84,85が設けられている。また凸部84,85の先端部分にシート86,87が接着されている。
ヒートブロック本体82,83には、それぞれ電気ヒータ76,77と、温度センサー78,79が内蔵されている。
前記した第一ヒートブロック55では、ブロック本体63,64の周囲に断熱材65,66が設けられていたが、第二ヒートブロック57ではこれに代わって放熱部材95,96が設けられている。断熱部材95,96は、アルミニウム又は銅合金の様な熱伝導性に優れた素材で作られており、溝部97,98を有し、当該溝部97,98内にブロック本体82,83が挿入されている。
また放熱部材95,96には多数のフィン100が設けられている。
第二ヒートブロック57は図11の様に全体が通風室101によって覆われている。そして通風室101の一部に送風機102が取り付けられている。そのため第二ヒートブロック57は送風機102によって通風雰囲気に晒され、冷却機能を備えている。なお送風機102は、通風室101内の空気を排気する方向に回転する。送風機102を回転することにより、開口110から通風室101内に空気が導入され、ブロック本体63,64が冷却される。
第三ヒートブロック56は、前記した第一ヒートブロックと全く同一の構造であり、上片56aと下片56bを有する。第三ヒートブロック56の細部については、第一ヒートブロックと同一であるから説明を省略する。
ブロック昇降機構69は、いずれも同一の形状及び構造であるから、第一ヒートブロックが取り付けられる第一ブロック昇降機構69を代表例として説明する。
第一ブロック昇降機構69は、上部側昇降機構69aと下部側昇降機構69bによって構成されている。上部側昇降機構69aと下部側昇降機構69bは、多少形状が相違するものの、機構学的には同一である。
上部側昇降機構69aと下部側昇降機構69bは、いずれもカム104a,104bと、アーム部103a,103bを有する。
カム104a,104bには共通する軸105が挿通され、当該軸105は、図8に示すステップモータ107によって回転される。
アーム部103a,103bは、いずれも略「L」字状をしており、一方の端部にカムフォロー106a,106bが設けられている。
またアーム部103a,103bの他端側には、ヒートブロック取付バー108a,108bが設けられている。ヒートブロック取付バー108a,108bは板状であり、取付けられた状態では、図8,9に示すように水平姿勢となる。
アーム部103a,103bは、図示しないガイドによって保持されており、垂直方向にのみ移動可能に規制されている。またアーム部103a,103bのカムフォロー106a,106bは前記したカム104a,104bと常時接触している。そのためステップモータ107によってカム104a,104bが回転すると、カムフォロー106a,106bがカム104a,104bに追従して昇降し、カムフォロー106a,106bと一体のアーム部103a,103bも昇降する。本実施形態では、二つのカム104a,104bは、180°位相が異なる姿勢に取り付けられており、一方のアーム部103aが上昇すると他方のアーム部103bが下降する。また一方のアーム部103aが下降すると、他方のアーム部103bは上昇する。したがってステップモータ107によってカム104a,104bが回転すると、ヒートブロック取付バー108a,108bは互いに近接方向又は離反方向に移動する。
またアーム部103a,103bのヒートブロック取付バー108a,108bには、各二本のバネ109を介してヒートブロックの上片又は下片が取り付けられている。そのため前記した様にステップモータ107によってカム104a,104bが回転すると、ヒートブロックの上片及び下片が近接方向又は離反方向に移動する。
次に基板送り機構58について説明する。基板送り機構58は、核酸増幅基板10を保持して水平移動させ、核酸増幅基板10を各ヒートブロックに順次挟ませるものである。
基板送り機構58は、図8、図13に示すように、ガイド部59と駆動機構60と、基板載置台61によって構成されている。ガイド部59は具体的にはガイドレール62である。また駆動機構60は、一対の歯付きプーリ70a,70bに歯付きベルト71が懸架されたものである。歯付きプーリ70a,70bは、回転軸72が鉛直方向となる様に支持されている。そして一方の歯付きプーリ70aにはステップモータ54が接続されている。
ガイドレール62は、水平方向に延びるものであり、前記した歯付きベルト71の一方側の面に沿って固定されている。
基板載置台61は、略逆「L」字であり、取付状態を基準として水平部88及び垂直部89を有する。垂直部89の一面にはガイド受け部90が形成されており、前記したガイドレール62と嵌合している。
また基板載置台61の垂直部89は、前記した歯付きベルト71にも固定されている。したがってステップモータ107を回転して歯付きベルト71を走行させると、基板載置台61は、ガイドレール62に沿って水平方向に移動する。
基板載置台61の水平部88は、核酸増幅基板10を取り付ける部位である。基板載置台61の水平部88であって、その先端近傍には、長方形の開口91が形成されている。
本実施形態の温調装置80では、3基のブロック昇降機構69が並べて立設され、これに共通の軸105が挿通されている。そして第一ブロック昇降機構69には、第一ヒートブロック55が取り付けられ、第二ブロック昇降機構69には、第二ヒートブロック57が取り付けられ、第三ブロック昇降機構69には、第三ヒートブロック56が取り付けられている。
基板送り機構58は、前記した3基のブロック昇降機構69の前面側に配置されている。
前記した様に、基板載置台61の水平部88には核酸増幅基板10が取り付けられる。ここで基板載置台61の水平部88には前記した様に開口91が設けられており、当該開口91に核酸増幅基板10の反応液溜部20の領域が一致する様に取り付けられる。なお基板載置台61の水平部88には、図示しない基板押さえが設けられている。基板押さえは、板バネによって核酸増幅基板10を押圧するものであり、核酸増幅基板10の振動を防止する機能を持つ。
そして核酸増幅基板10は、基板送り機構58によって水平移動される。基板送り機構58は各ブロック昇降機構69の前面で停止される。またブロック昇降機構69によって、各ヒートブロックの上片55a,56a,57aと下片55b,56b,57bが昇降してその間に核酸増幅基板10を挟むことができる。ヒートブロック55,56,57が挟む位置は、核酸増幅基板10の反応液溜部20の領域だけであり、電気泳動部21は挟まない。即ちヒートブロック55,56,57の上片55a,56a,57aと下片55b,56b,57bには、それぞれ凸状部が設けられいるが、当該凸状部が基板載置台61の開口91と一致する状態で、基板送り機構58が位置決め停止され、その位置においてヒートブロックの上片55a,56a,57aと下片55b,56b,57bが昇降する。そのため前記した様に核酸増幅基板10の反応液溜部20の領域だけがヒートブロック55,56,57によって挟まれる。
ここで各ヒートブロック55,56,57は、バネ109を介してブロック昇降機構69に取り付けられており、さらにヒートブロック55,56,57の凸状部にはシート73,74が取り付けられているので、ヒートブロックの上片55a,56a,57aと下片55b,56b,57bは、核酸増幅基板10の反応液溜部20と密接する。
また3組のヒートブロック55,56,57は、正面の温度調節器92,93,94によって予め所定の温度に温度調節されている。すなわち各ヒートブロック55,56,57に取り付けられた温度センサーの信号は、それぞれ各温度調節器92,93,94に入力され、電気ヒータが温度調節器92,93,94によってPID制御される。また第二ヒートブロック57に関しては、送風機の送風量もPID制御される。
核酸増幅反応がPCRの場合は、、向かって右端の第一ヒートブロック55は、ディナチュレーション温度(95℃)近傍に温度調節される。左端の第二ヒートブロック57は、アニーリング温度(55℃)近傍に温度調節される。中央の第三ヒートブロック56は、二本鎖伸長の各反応温度(72℃)近傍に温度調節される。
反応液注入・吸引機構45は、小型の加圧装置と真空装置を備えたものである。
電気泳動・検出装置81の内部は図示しないが、電気泳動装置と蛍光検出装置を内蔵するものである。電気泳動装置は、増幅核酸移動用の電極と、増幅核酸泳動用の電極を備える。
制御装置99は、具体的にはコンピュータであり、電気泳動・検出装置81から出力された信号を解析するものである。また制御装置99の内蔵するタイマによって各ヒートブロック55,56,57が核酸増幅基板10を挟む時間が制御される。すなわち制御装置99は、内部に第1から第3タイマを備える。そして第1タイマによって第一ヒートブロック55が核酸増幅基板10を挟む時間が設定される。同様に、第2タイマによって第二ヒートブロック57が核酸増幅基板10を挟む時間が設定され、第3タイマによって第三ヒートブロック56が核酸増幅基板10を挟む時間が設定される。各タイマで設定される温度は、いずれも数秒である。
次に、本発明の実施形態の核酸増幅方法を増幅・分離装置75の動作を追って説明する。図14は、図7に示す増幅・分離装置75の温調装置の動作を説明するフローチャートである。図15は、反応液導入口30から反応液溜部20に反応液を送る際における反応液の挙動を示す説明図である。図16は、反応液溜部20から反応液導入口30側に反応液を戻す際における反応液の挙動を示す説明図である。図17は、核酸を分離する際における反応液の挙動を示す説明図である。
前述した核酸増幅基板10は、基板送り機構58に装着されて装置が起動される。そして基板送り機構58が駆動し、核酸増幅基板10はまず最初に反応液注入・吸引機構45の位置に移送される。
反応液注入・吸引機構45では、図15(a)に示すように、反応液導入開口30に反応液が注入される。
この反応液は、核酸増幅反応に必要な成分を全て含むものである。核酸増幅反応がPCRである場合は、鋳型DNA、プライマー、デオキシヌクレオチド3リン酸類、耐熱性DNAポリメラーゼ等が混合されたものが反応液となる。この場合、プライマーにあらかじめ蛍光標識がなされる場合もある。プライマーにあらかじめ蛍光標識がなされる場合は、増幅されたDNAはすでに蛍光標識されているので、電気泳動部21のゲルにインターカレーターを添加する必要はない。
本実施形態では、反応液導入開口30に注入された反応液は、毛細管現象によって反応液往復流路22に引き込まれ、反応液溜部20に充填される。この際、反応液往復流路22及び反応液溜部20が親水性であるから、試料が表面に馴染みやすく、反応液導入開口30への試料の導入が容易である。さらに、反応液溜部20において基板から試料への熱伝導がよい。
また必要に応じて吸引用開口31に真空源が接続される。その結果、反応液導入開口30に注入された反応液は、真空源の負圧によって吸引され、反応液往復流路22を流れて図15(b)の様に反応液溜部20に入る。
そして次に核酸増幅基板10内で核酸増幅反応が行われる。以下、核酸増幅反応がPCRである場合を例に温調装置80の動作を説明する。
この工程における温調装置80の動作は、図14のフローチャートの通りである。
具体的には、基板送り機構58を動作し(ステップ1)、最も右の第一ヒートブロック55に核酸増幅基板10を移送し(ステップ2)、ヒートブロックの上片55a及び下片55bで核酸増幅基板10の反応液溜部20を挟む(ステップ3)。
ステップ3で第一ヒートブロックを閉止する(上片55aと下片55bを近接させて両者の間隔を閉じ、核酸増幅基板10を挟む)と第一タイマが計時を開始する。そしてステップ4で第一タイマがアップしたことが確認されると、第一ヒートブロックを開く(上片55aと下片55bを離反させて両者の間隔を開き、核酸増幅基板10を開放する)。
ここで当該第一ヒートブロック55は、予めディナチュレーション温度の近傍に温度調節されている。また核酸増幅基板10は薄く、特にヒートブロック55で挟まれる反応液溜部20は厚さが薄い。そのため反応液溜部20の反応液は、第一タイマで設定された数秒の内にディナチュレーション温度に達し、ディナチュレーション反応が速やかに進む。
また本実施形態の核酸増幅基板10では、反応液溜部20は、核酸増幅基板10内の空隙6内に形成されており、上面側と下面側は完全に密閉されている。そのためヒートブロック55で核酸増幅基板10を挟んでも、反応液溜部20から反応液が洩れ出ることはなく、ヒートブロック55が汚染されることはない。
数秒間、ヒートブロック55で反応液溜部20を挟み続け、ディナチュレーション温度に維持した後(ステップ5)前記した様に核酸増幅基板10を開放し(ステップ6)、再度基板送り機構58を動作させる(ステップ7)。そして核酸増幅基板10を移動して左端に設けられた第二ヒートブロック57の位置に核酸増幅基板10を運ぶ(ステップ8)、この時、核酸増幅基板10は相当の振動や衝撃を受けるが、反応液溜部20から反応液が洩れ出ることはない。
そして左端に設けられたヒートブロック57によって核酸増幅基板10を挟む(ステップ9)。この場合も、反応液溜部20だけがヒートブロック57で挟まれ、反応液溜部20内の反応液は、ただちにアニーリング温度に達する(ステップ10)。
またこの場合についても、反応液溜部20から反応液が洩れ出ることはなく、ヒートブロック57が汚染されることはない。
そしてアニーリングが終了すると(ステップ11)、再度核酸増幅基板10を移動し(ステップ13)、中央のヒートブロック56で、核酸増幅基板10を挟み(ステップ15)、二本鎖伸長反応が行われる(ステップ16)。またこの場合についても、反応液溜部20から反応液が洩れ出ることはなく、ヒートブロック56が汚染されることはない。
二本鎖伸長反応が終了すると(ステップ17)、基板送り機構58によって核酸増幅基板10を移動させ(ステップ18)、最初のヒートブロック55で核酸増幅基板10を挟み、再度ディナチュレーション反応を行わしめる。
以後、先と同様の一連の工程を30回程度繰り返し、PCR法によって目的のDNAを増幅させる。
すなわちステップ19で一連の工程を終えると、制御装置内のカウンタが+1となる。そして続くステップ20でカウンタの数値が30であるか否かを確認する。ステップ20でカウンタの数値が30未満であるならばステップ1に戻り、前述した一連の動作を繰り返す。
ステップ20で30以上であるならば、核酸増幅工程を終える。
この様に、本実施形態では、反応液溜部20内の反応液は昇温と冷却が繰り返され、内部の反応液は、膨張と収縮が繰り返される。また本実施形態では、ヒートブロック55,56,57によって反応液溜部20を挟むので、反応液溜部20の表裏面側の壁は、繰り返し圧縮される。
しかしながら本実施形態の核酸増幅基板10では、反応液溜部20から反応液が流出することはない。
すなわち本実施形態の核酸増幅基板10では、反応液溜部20の内部に隔壁7(図5)が設けられてジグザグ状の流路が形成されており、全体の流路抵抗が高く、内部における反応液の移動が抑制されている。さらに本実施形態では、反応液溜部20の近傍に反応液吸引路23が設けられているが、反応液吸引路23は、曲路を基調とした流路であり、当該流路も「移動抑制手段」として機能する。
そのため本実施形態の核酸増幅基板10では、反応液溜部20の内外における反応液の移動が少なく、反応液の多くは反応液溜部20に残る。
さらに本実施形態では、前記した様に、反応液溜部20の内部に流路が形成されており、図5の様に流路の隔壁7の先端が第一層11の表面と接している。そのため反応液溜部20が圧縮力を受けたとき、当該圧縮力は、流路の隔壁7で負担され、反応液溜部20の表面側の撓みが少ない。
すなわち本実施形態では、流路の隔壁7が耐圧縮部として機能し、反応液溜部20の表面側を撓ませない。
そのため本実施形態では、反応液溜部20に負荷される圧力が小さく、反応液溜部20から反応液を排出させようとする力自体が小さい。
したがって本実施形態の核酸増幅基板10は、反応液溜部20内の反応液が昇温と冷却を繰り返し、且つ反応液溜部20が繰り返し圧縮されるにも係わらず、反応液の多くが反応液溜部20に残留する。逆に言えば、本実施形態の核酸増幅基板10は、少ない試料でPCR法等によるDNA増幅を行うことができる。
核酸増幅反応によって核酸増幅が終了すると、基板送り機構58によって核酸増幅基板10を再度反応液注入・吸引機構45の位置に移送する。
そして図16(a)の様に吸引用開口31に加圧源Pを接続し、吸引用開口31側を高圧雰囲気にして反応液溜部20内の反応液を押し出す。反応液は、図16(a)の様に反応液往復流路22を戻って反応液導入開口30に戻る(図16(b))。
この状態で、基板移載機構46によって核酸増幅基板10を電気泳動・検出装置81に移載する。
電気泳動・検出装置81内においては、最初に図17(a)に示すように反応液導入開口30と、核酸供給路末端側開口33に電極が接続され、核酸供給路末端側開口33を正、反応液導入開口30側を負として直流電流が通電される。
その結果、反応液導入開口30内の核酸が核酸供給路末端側開口33側に移動する。
そして続いて図17(b)の様に泳動部始端側開口35と泳動部終端側開口36に電極が接続され、泳動部終端側開口36を正、泳動部始端側開口35を負として直流電流が通電される。
その結果、交差部50に到達していた核酸が泳動部終端側開口36側に引き寄せられ、核酸は泳動路52において分子量の大きさに従って分離される。そして、図示しない蛍光検出装置によって蛍光分析が行われる。なおこの時、核酸供給路末端側開口33と反応液導入開口30側は、いずれも泳動部始端側開口35の電位と泳動部終端側開口36の電位に対して中間の電位となる様に制御することが望ましい。
以上説明した増幅・分離装置75では、3組のヒートブロック55,56,57を備え、基板送り機構58を往復移動させて各ヒートブロック55,56,57で順次核酸増幅基板10を挟む構成を開示した。しかし本発明はこの様な構成に限定されるものではなく、より多数のヒートブロックを備えたものであってもよい。たとえば、30組のヒートブロックを一列に並べ、核酸増幅基板10を一方通行に流してもよい。この場合は、核酸増幅基板10の核酸増幅反応を連続的に行うことができる。
また上記した増幅・分離装置75では、カム104によってヒートブロック55,56,57を動作させたが、ソレノイドや空気圧シリンダ等を採用することも可能である。
上記した実施形態では、ヒートブロックが固定位置にあって、核酸増幅基板10が水平移動する構成を例示したが、逆に核酸増幅基板10が固定位置にあり、ヒートブロック側が移動してもよい。
また上記した実施形態では、核酸増幅基板10では、反応液溜部20の内部にジグザグ状の流路40が形成したものを例に挙げた。本実施形態の様に内部に流路40を形成する構造を採用すると、前記した様に反応液溜部20の流路抵抗が高まり、且つ反応液溜部20の表面側の撓みが小さなものとなり、反応液溜部20の反応液が消失しにくく、推奨される構造である。しかしながら本発明は、単一室であり且つ内部が空洞状態の反応液溜部を持つ基板の使用を否定するものではない。
本実施形態の核酸増幅基板10では、4系統の核酸増幅・分離流路15,16,17,18を設けたが、核酸増幅・分離流路の数は任意であり、1系統でも5系統以上でもよい。
次に、本発明の効果を確認するために行った実施例について説明する。
本発明者らは、図1に示す核酸増幅基板10を試作し、実験を行った。実験に使用した鋳型DNAは、ブタゲノムから得た200塩基対の塩基断片であり、従来技術のPCR装置で増幅したPCR産物である。実験には、このPCR産物を希釈して使用した。
プライマーは、上記した鋳型DNAを得る際に使用したものと同一のフォワード、リバースのプライマーを使用した。
酵素、基質、バッファー等の他の試薬類は、タカラバイオ株式会社製の「TaKaRa Taq」を含むキットを用いた。
PCRに使用した反応液は、約8〜10ミリリットルであり、反応液導入開口30に供給し、吸引用開口31から吸引して反応液溜部20に導いた。
なお実験で試作した核酸増幅基板10は、反応液溜部20の容積が約5ミリリットルであり、残量は、吸引用開口31に残った。
そして図7に示す装置を使用してPCR及び電気泳動を行わしめた。
温調装置80のヒートブロック55は、反応液溜部20をディナチュレーション温度とするために、98.5℃に温調した。
またヒートブロック57は、反応液溜部20をアニーリング温度とするために、53.0℃に温調した。
さらにヒートブロック56は、反応液溜部20を二本鎖伸長の反応温度とするために74.5℃に温調した。
そしてヒートブロック55で核酸増幅基板10を5秒間挟んでディナチュレーション反応を行わしめ、続いてヒートブロック57で5秒間挟んでアニーリングを行い、さらに続いてヒートブロック56で5秒間挟んで二本鎖伸長の反応を行わしめた。これを30回繰り返した。
以上のPCR法に要した時間は、約10分であった。
そして核酸増幅基板10を電気泳動・検出装置81に移し、DNAの泳動実験を行ったところ、明らかに鋳型DNAが増幅されたものと見られるピークが出現した。
そのため、本実施例の核酸増幅基板10によって、DNAが増幅可能であることが実証された。
本発明の実施形態で使用する核酸増幅基板の正面図である。 図1の核酸増幅基板の斜視図である。 図1の核酸増幅基板の二系統の核酸増幅・分離流路の正面図である。 図1の核酸増幅基板の反応液溜部周辺の第一層と第二層の分解斜視図である。 図1の核酸増幅基板の反応液溜部周辺の拡大断面図である。 図1の核酸増幅基板の反応液導入口周辺の拡大斜視図である。 図1の核酸増幅基板を装着して核酸増幅及び分離を行う増幅・分離装置の斜視図である。 図7に示す増幅・分離装置の温調装置の構成(反応液注入・吸引機構を除く)を示す斜視図である。 さらに図8に示す温調装置の第一ヒートブロック(第三ヒートブロック)及びブロック昇降機構の斜視図である。 第一ヒートブロック(第三ヒートブロック)の分解断面斜視図である。 第二ヒートブロック及びその周辺部の断面斜視図である。 第二ヒートブロックの分解断面斜視図である。 図7に示す増幅・分離装置の温調装置の基板送り機構の要部の斜視図である。 図7に示す増幅・分離装置の温調装置の動作を説明するフローチャートである。 反応液導入口から反応液溜部に反応液を送る際における反応液の挙動を示す説明図である。 反応液溜部から反応液導入口側に反応液を戻す際における反応液の挙動を示す説明図である。 核酸を分離する際における反応液の挙動を示す説明図である。
符号の説明
6 空隙
10 核酸増幅基板(基板)
20 反応液溜部
21 電気泳動部
22 反応液往復流路(反応液流路)
30 反応液導入開口(反応液導入部、電極接続部)
33 核酸供給路末端側開口(電極接続部)
35 泳動路始端側開口(電極接続部)
36 泳動部終端側開口(電極接続部)
55 第一ヒートブロック(ヒートブロック)
56 第三ヒートブロック(ヒートブロック)
57 第二ヒートブロック(ヒートブロック)
58 基板送り機構(順次接触手段)
75 増幅・分離装置(核酸検知システム)
80 温調装置(核酸増幅装置)
81 電気泳動・検出装置

Claims (14)

  1. 核酸増幅反応に必要な成分を含む反応液の温調を繰り返し、目的の核酸を増幅する核酸増幅方法において、前記反応液を基板の一部に充填し、当該基板を互いに異なる温度に温調された複数のヒートブロックに順次接触させることにより、反応液の温調を繰り返すことを特徴とする核酸増幅方法。
  2. 前記複数のヒートブロックは、第一反応を行う温度近傍に温調された第一ヒートブロック、第二反応を行う温度近傍に温調された第二ヒートブロック、及び第三反応を行う温度近傍に温調された第三ヒートブロックからなり、前記基板を第一ヒートブロックに接触させ、続いて第二ヒートブロックに接触させ、さらに続いて第三ヒートブロックに接触させ、順次これを繰り返すことを特徴とする請求項1に記載の核酸増幅方法。
  3. 第一反応が二本鎖核酸を一本鎖核酸に解離させるディナチュレーション反応であり、第二反応が一本鎖核酸にプライマーを会合させるアニーリング反応であり、第三反応がポリメラーゼ酵素による二本鎖伸長反応であることを特徴とする請求項2に記載の核酸増幅方法。
  4. ヒートブロックは、二片が一対となったものであり、当該二片の間に基板を挟むことを特徴とする請求項1乃至3のいずれかに記載の核酸増幅方法。
  5. 基板は、反応液が充填される反応液溜部と、反応液を導入する反応液導入部と、前記反応液導入部と反応液溜部を繋ぐ反応液流路を備え、前記反応液溜部と反応液流路は、基板の内部に設けられた空隙によって形成されたものであることを特徴とする請求項1乃至4のいずれかに記載の核酸増幅方法。
  6. 核酸増幅反応に必要な成分を含む反応液が充填された基板を使用して、反応液の温調を繰り返し、目的の核酸の増幅を行う核酸増幅装置であって、互いに異なる温度に温調された複数のヒートブロックを有し、前記基板を各ヒートブロックに順次接触させる順次接触手段を備えたことを特徴とする核酸増幅装置。
  7. 前記複数のヒートブロックは、第一反応を行う温度近傍に温調された第一ヒートブロック、第二反応を行う温度近傍に温調された第二ヒートブロック、及び第三反応を行う温度近傍に温調された第三ヒートブロックからなることを特徴とする請求項6に記載の核酸増幅装置。
  8. 第一反応が二本鎖核酸を一本鎖核酸に解離させるディナチュレーション反応であり、第二反応が一本鎖核酸にプライマーを会合させるアニーリング反応であり、第三反応がポリメラーゼ酵素による二本鎖伸長反応であることを特徴とする請求項7に記載の核酸増幅装置。
  9. ヒートブロックは、二片が一対となったものであり、当該二片の間に基板を挟むことを特徴とする請求項6乃至8のいずれかに記載の核酸増幅装置。
  10. 順次接触手段は、基板を保持してこれを水平移動させるものであることを特徴とする請求項6乃至9のいずれかに記載の核酸増幅装置。
  11. 各ヒートブロックに基板を接触させる時間を設定するタイマを備えたことを特徴とする請求項6乃至10のいずれかに記載の核酸増幅装置。
  12. 使用する基板は、当該基板内で核酸を電気泳動させる電気泳動部と、電気泳動のための電極を接触させる電極接続部を備え、核酸増幅装置は、前記電極接続部に接触させる電極を備えることを特徴とする請求項5乃至11のいずれかに記載の核酸増幅装置。
  13. さらに蛍光検出手段を備えたことを特徴とする請求項12に記載の核酸増幅装置。
  14. 使用する基板は、当該基板内で核酸を電気泳動させる電気泳動部を備えるものであり、請求項6乃至11のいずれかに記載の核酸増幅装置と、電気泳動・検出装置によって構成される核酸検知システム。
JP2004305784A 2004-10-20 2004-10-20 核酸増幅方法、核酸増幅装置及び核酸検知システム Pending JP2006115742A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004305784A JP2006115742A (ja) 2004-10-20 2004-10-20 核酸増幅方法、核酸増幅装置及び核酸検知システム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004305784A JP2006115742A (ja) 2004-10-20 2004-10-20 核酸増幅方法、核酸増幅装置及び核酸検知システム

Publications (1)

Publication Number Publication Date
JP2006115742A true JP2006115742A (ja) 2006-05-11

Family

ID=36534212

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004305784A Pending JP2006115742A (ja) 2004-10-20 2004-10-20 核酸増幅方法、核酸増幅装置及び核酸検知システム

Country Status (1)

Country Link
JP (1) JP2006115742A (ja)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008146754A1 (ja) 2007-05-23 2008-12-04 Trust Co., Ltd. 反応液用容器、及びそれを用いる反応促進装置、並びにその方法
JP2009539411A (ja) * 2006-06-12 2009-11-19 パシフィック バイオサイエンシーズ オブ カリフォルニア, インコーポレイテッド 分析反応を行うための基板
US8047274B2 (en) 2007-01-17 2011-11-01 Denso Corporation Air conditioner for vehicle
JP2011247587A (ja) * 2010-05-21 2011-12-08 Enplas Corp 分析用具及びマイクロ分析システム
WO2012063736A1 (ja) 2010-11-10 2012-05-18 株式会社日立ハイテクノロジーズ 遺伝子検査方法及び検査装置
US9593367B2 (en) 2011-08-01 2017-03-14 Hitachi High-Technologies Corporation Genetic test system
JP2019207839A (ja) * 2018-05-30 2019-12-05 株式会社デンソー 加熱装置
JP2022058248A (ja) * 2020-09-30 2022-04-11 富佳生技股▲ふん▼有限公司 核酸検出キット及び核酸検出装置
JP2022058149A (ja) * 2020-09-30 2022-04-11 富佳生技股▲ふん▼有限公司 核酸検出箱及び核酸検出デバイス

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001149097A (ja) * 1999-11-29 2001-06-05 Olympus Optical Co Ltd 自動核酸検査装置
WO2003042410A1 (en) * 2001-11-10 2003-05-22 Samsung Electronics Co., Ltd. Apparatus for circulating carrier fluid
JP2004130219A (ja) * 2002-10-10 2004-04-30 Kawamura Inst Of Chem Res マイクロ流体素子、流体処理デバイス、および流体処理方法
JP2004154008A (ja) * 2002-11-01 2004-06-03 Eiken Chem Co Ltd 核酸の検出方法
JP2004194652A (ja) * 2002-12-06 2004-07-15 Dainippon Ink & Chem Inc 溶解性物質付着流路を有するマイクロ流体素子及びその使用方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001149097A (ja) * 1999-11-29 2001-06-05 Olympus Optical Co Ltd 自動核酸検査装置
WO2003042410A1 (en) * 2001-11-10 2003-05-22 Samsung Electronics Co., Ltd. Apparatus for circulating carrier fluid
JP2004130219A (ja) * 2002-10-10 2004-04-30 Kawamura Inst Of Chem Res マイクロ流体素子、流体処理デバイス、および流体処理方法
JP2004154008A (ja) * 2002-11-01 2004-06-03 Eiken Chem Co Ltd 核酸の検出方法
JP2004194652A (ja) * 2002-12-06 2004-07-15 Dainippon Ink & Chem Inc 溶解性物質付着流路を有するマイクロ流体素子及びその使用方法

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009539411A (ja) * 2006-06-12 2009-11-19 パシフィック バイオサイエンシーズ オブ カリフォルニア, インコーポレイテッド 分析反応を行うための基板
US8047274B2 (en) 2007-01-17 2011-11-01 Denso Corporation Air conditioner for vehicle
WO2008146754A1 (ja) 2007-05-23 2008-12-04 Trust Co., Ltd. 反応液用容器、及びそれを用いる反応促進装置、並びにその方法
JPWO2008146754A1 (ja) * 2007-05-23 2010-08-19 トラストメディカル株式会社 反応液用容器、及びそれを用いる反応促進装置、並びにその方法
US8619254B2 (en) 2010-05-21 2013-12-31 Enplas Corporation Analysis tool and microanalysis system
JP2011247587A (ja) * 2010-05-21 2011-12-08 Enplas Corp 分析用具及びマイクロ分析システム
WO2012063736A1 (ja) 2010-11-10 2012-05-18 株式会社日立ハイテクノロジーズ 遺伝子検査方法及び検査装置
US9440235B2 (en) 2010-11-10 2016-09-13 Hitachi High-Technologies Corporation Genetic testing method and testing apparatus
US9593367B2 (en) 2011-08-01 2017-03-14 Hitachi High-Technologies Corporation Genetic test system
JP2019207839A (ja) * 2018-05-30 2019-12-05 株式会社デンソー 加熱装置
JP7070100B2 (ja) 2018-05-30 2022-05-18 株式会社デンソー 加熱装置
JP2022058248A (ja) * 2020-09-30 2022-04-11 富佳生技股▲ふん▼有限公司 核酸検出キット及び核酸検出装置
JP2022058149A (ja) * 2020-09-30 2022-04-11 富佳生技股▲ふん▼有限公司 核酸検出箱及び核酸検出デバイス

Similar Documents

Publication Publication Date Title
CN107921399B (zh) 光腔pcr
JP6087293B2 (ja) アッセイカートリッジ及びその使用方法
JP2019047799A (ja) 試料導入から結果出力までのプロセス化を提供する単一構造バイオチップおよび製造方法
US20080241844A1 (en) Devices and Methods for the Performance of Miniaturized In Vitro Assays
US20050019902A1 (en) Miniaturized integrated nucleic acid processing and analysis device and method
CN106661533B (zh) 多重pcr芯片及包含其的多重pcr装置
US20080014615A1 (en) Instrument for heating and cooling
US9910012B2 (en) Methods for real-time sampling of reaction products
JP2006115742A (ja) 核酸増幅方法、核酸増幅装置及び核酸検知システム
JP2018500035A (ja) 繰り返し摺動駆動手段を備えるポリメラーゼ連鎖反応(pcr)装置及びこれを用いるポリメラーゼ連鎖反応(pcr)方法
US20200338562A1 (en) Integrated thermoplastic chip for rapid pcr and hrma
JP2007244389A (ja) 核酸増幅基板
JP6137301B2 (ja) マイクロチップ、dna解析方法及びdna解析システム
JP4581380B2 (ja) 核酸増幅反応容器およびその製造方法
KR101398956B1 (ko) 핵산 증폭 장치, 그 제조 방법 및 이를 이용하는 핵산 증폭방법
KR101983593B1 (ko) 히터 유닛이 반복 배치된 열 블록을 포함하는 전기화학적 신호를 검출하기 위한 pcr 칩, 이를 포함하는 pcr 장치, 및 이를 이용한 실시간 pcr 방법
TWI253435B (en) Loop micro fluid system
JP2022543213A (ja) 核酸増幅試験のためのシステムおよびモジュール
JP2006115741A (ja) 核酸増幅基板
KR101983580B1 (ko) 히터 유닛이 반복 배치된 열 블록을 포함하는 전기화학적 신호를 검출하기 위한 pcr 칩, 이를 포함하는 pcr 장치, 및 이를 이용한 실시간 pcr 방법
JP2015139379A (ja) 核酸増幅装置及び核酸増幅方法
Chien et al. A micro circulating PCR chip using a suction-type membrane for fluidic transport
CN103894247B (zh) 一种核酸多重扩增微流控芯片
WO2017210556A1 (en) System and method for optimizing heat transfer for target amplification within a diagnostic assay system
KR101950210B1 (ko) 히터 유닛이 반복 배치된 열 블록을 포함하는 전기화학적 신호를 검출하기 위한 실시간 pcr 장치, 및 이를 이용한 실시간 pcr 방법

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070827

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100812

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20101202