TWI253435B - Loop micro fluid system - Google Patents
Loop micro fluid system Download PDFInfo
- Publication number
- TWI253435B TWI253435B TW094119509A TW94119509A TWI253435B TW I253435 B TWI253435 B TW I253435B TW 094119509 A TW094119509 A TW 094119509A TW 94119509 A TW94119509 A TW 94119509A TW I253435 B TWI253435 B TW I253435B
- Authority
- TW
- Taiwan
- Prior art keywords
- loop
- type
- type microfluidic
- microfluidic channel
- temperature
- Prior art date
Links
- 239000012530 fluid Substances 0.000 title claims abstract description 26
- 230000033001 locomotion Effects 0.000 claims description 60
- 239000011148 porous material Substances 0.000 claims description 12
- 239000000758 substrate Substances 0.000 claims description 7
- 230000003287 optical effect Effects 0.000 claims description 2
- 238000003752 polymerase chain reaction Methods 0.000 abstract description 25
- 238000006243 chemical reaction Methods 0.000 abstract description 24
- 238000000034 method Methods 0.000 abstract description 13
- 238000005842 biochemical reaction Methods 0.000 abstract description 8
- 239000007789 gas Substances 0.000 description 38
- 235000012431 wafers Nutrition 0.000 description 25
- 238000013461 design Methods 0.000 description 7
- 108020004414 DNA Proteins 0.000 description 5
- 238000013481 data capture Methods 0.000 description 5
- 238000000018 DNA microarray Methods 0.000 description 4
- 238000010438 heat treatment Methods 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- 230000001965 increasing effect Effects 0.000 description 3
- 102000004190 Enzymes Human genes 0.000 description 2
- 108090000790 Enzymes Proteins 0.000 description 2
- 230000003321 amplification Effects 0.000 description 2
- 238000007796 conventional method Methods 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 238000002474 experimental method Methods 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- 238000003199 nucleic acid amplification method Methods 0.000 description 2
- 108020004707 nucleic acids Proteins 0.000 description 2
- 102000039446 nucleic acids Human genes 0.000 description 2
- 150000007523 nucleic acids Chemical class 0.000 description 2
- 230000010076 replication Effects 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 102000053602 DNA Human genes 0.000 description 1
- 230000006820 DNA synthesis Effects 0.000 description 1
- 241000276498 Pollachius virens Species 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 238000005251 capillar electrophoresis Methods 0.000 description 1
- 230000000295 complement effect Effects 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 238000005530 etching Methods 0.000 description 1
- 230000001939 inductive effect Effects 0.000 description 1
- 238000007689 inspection Methods 0.000 description 1
- 238000001499 laser induced fluorescence spectroscopy Methods 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000006116 polymerization reaction Methods 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000005382 thermal cycling Methods 0.000 description 1
- 229940095676 wafer product Drugs 0.000 description 1
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04B—POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
- F04B19/00—Machines or pumps having pertinent characteristics not provided for in, or of interest apart from, groups F04B1/00 - F04B17/00
- F04B19/006—Micropumps
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04F—PUMPING OF FLUID BY DIRECT CONTACT OF ANOTHER FLUID OR BY USING INERTIA OF FLUID TO BE PUMPED; SIPHONS
- F04F1/00—Pumps using positively or negatively pressurised fluid medium acting directly on the liquid to be pumped
- F04F1/06—Pumps using positively or negatively pressurised fluid medium acting directly on the liquid to be pumped the fluid medium acting on the surface of the liquid to be pumped
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Apparatus Associated With Microorganisms And Enzymes (AREA)
- Automatic Analysis And Handling Materials Therefor (AREA)
Abstract
Description
1253435 九、發明說明: 【發明所屬之技術領域】 本發明係關於一種微流體運動系統,特別是關於一 種利用迴圈式微流體通道之迴圈式微流體運動系統。 【先前技術】 科技之發展一日千里,以往必須依賴人類操作之各 種生化實驗,已能夠由生物晶片(b i 〇 c h i p )配合電腦 操控來進行,甚至亦可完成複雜之微流體 (micro fluid )運動。BACKGROUND OF THE INVENTION 1. Field of the Invention This invention relates to a microfluidic motion system, and more particularly to a loop-type microfluidic motion system utilizing a loop-type microfluidic channel. [Prior Art] The development of science and technology has to rely on various biochemical experiments of human operations in the past. It has been able to be carried out by biochips (b i 〇 c h i p ) with computer manipulation, and even complete micro fluid movements.
聚合酶連鎖反應(Polymerase Chain Reaction; PCR) 為微流體運動常見之應用,其能夠於長達數千萬鹼基 對(basepair)的核酸分子中,精確地搜索出長度達 數百 bp之特定鹼基序列,並將此段序列複製一百萬 倍以上。PCR主要以三個不斷依序重複之步驟進行, 首先為雙股分離(denature),將溫度升至攝氏九十四 度,藉此打開 D N A模板(t e m p 1 a t e )之雙股結構。接 著進行引子配對(annealing),將溫度降至攝氏五十 至六十五度,使一對引子(primer) 進入雙股 DNA 分子中,並結合於 DNA模板上之互補鹼基的位置。 此循環中最後一個步驟為DNA合成(extension),將 溫度升高至攝氏六十五至七十五度,使聚合酶活化, 以兩個引子為起點,合成新的雙股核酸分子鏈。Polymerase Chain Reaction (PCR) is a common application for microfluidic movement. It can accurately search for specific bases up to hundreds of bp in lengths of tens of millions of base pairs of nucleic acid molecules. Base sequence, and copy this sequence of sequences more than a million times. The PCR is carried out mainly in three successively repeated steps, starting with a double stranding and raising the temperature to ninety-four degrees Celsius, thereby opening the double-strand structure of the D N A template (t e m p 1 a t e ). Inductive pairing is then performed to reduce the temperature to fifty to sixty-five degrees Celsius, allowing a pair of primers to enter the double stranded DNA molecule and bind to the position of the complementary base on the DNA template. The last step in this cycle is DNA synthesis, which raises the temperature to sixty-five to seventy-five degrees Celsius, activates the polymerase, and uses the two primers as a starting point to synthesize a new double-stranded nucleic acid molecular chain.
藉由不斷依序重複進行上述三個變溫步驟,使DNA 5DNA 5 is carried out by continuously repeating the above three temperature-changing steps in sequence
1253435 發生解鏈、黏合與鏈延伸反應而完成複製,便可 所謂之聚合酶連鎖反應。傳統之 PCR機器所進 PCR需時兩三個小時,近年來隨著微機電製程技 發展,已能夠於玻璃基板上蝕刻出微流道,並利 個恆溫銅塊作為熱源,製作可形成連續流動之 生物晶片。此生物晶片不但體積小、循環速度快 體用量少,更可與毛細管電泳晶片連接,形成 分析系統。 近年來之研究僅著重於改變 PCR 晶片之加熱 料、微流道尺寸、晶片材料或者循環之次數等等 主要設計原理大致相同,依然採用單一方向之連 動。此種連續流動方式須配合反應次數來增加或 流道長度,一般而言PCR反應最佳之循環次數約 十至三十次,如此一來不僅需要較長之微流道, 法任意選擇循環次數,使微流體達最佳反應時輪 # 習知技術中,用於PCR之微流體運動裝置皆以 方向之前進及後退作為微流體之運動方向。例如 民國專利公告號第 4 9 9 3 9 2號專利所揭露之「氣 微流體驅動系統及方法」即以氣體驅動微流體, 進氣與排氣之適當操作來使微流體不斷地前進 退,達成往復運動之效果。又例如中華民國專利 號 5 2 8 8 3 6之「,微流體驅動方法及裝置」,提供應 生化反應之氣動式流體往復導引系統以及溫度 裝置。此一類方式若僅適用於單純之生化反應, 形成 行之 術之 用數 PCR ,檢 DN A 源材 ,其 續流 縮減 為二 更無 出。 單一 中華 動式 利用 與後 公告 用於 控制 而無 61253435 The so-called polymerase chain reaction occurs when the melting, binding and chain extension reactions occur to complete the replication. It takes two to three hours for PCR to be carried out in a conventional PCR machine. In recent years, with the development of microelectromechanical process technology, it has been possible to etch a microchannel on a glass substrate and use a constant temperature copper block as a heat source to form a continuous flow. Biochip. The biochip is not only small in size, but also has a low circulation speed and can be connected to a capillary electrophoresis wafer to form an analysis system. In recent years, research has focused only on changing the heating material of the PCR wafer, the size of the microchannel, the material of the wafer, or the number of cycles. The main design principles are roughly the same, and the single direction is still used. This continuous flow mode must be increased in accordance with the number of reactions or the length of the flow path. Generally, the optimal number of cycles for the PCR reaction is about ten to thirty times, so that not only a longer microchannel is required, but also the number of cycles is arbitrarily selected. In the conventional technique, the microfluidic motion device for PCR uses the direction forward and backward as the direction of movement of the microfluid. For example, the "gas microfluidic drive system and method" disclosed in the Patent No. 4 9 9 3 2 of the Republic of China is to drive the microfluids by gas, and the proper operation of the intake and exhaust gases to continuously advance and retreat the microfluids. Reach the effect of reciprocating motion. For example, the Republic of China Patent No. 5 2 8 8 3 6 "Microfluidic Driving Method and Apparatus" provides a pneumatic fluid reciprocating guiding system and a temperature device for biochemical reactions. If this type of method is only suitable for a simple biochemical reaction, the number of PCRs is used to detect the DN A source material, and its freewheeling is reduced to two. Single Chinese dynamic use and post announcement for control without 6
1253435 法應付複雜之生化反應或連鎖反應。尤其是 PCR,其需要不斷地變化微流體之溫度,因此 上述之方式進行單純之往復運動,將須進行困 高之變溫控制,因而增加了實驗或反應控制 度。 此外,Giordano等人亦發表一種微腔式聚合 反應晶片(B.C. Giordano, J . Ferrance, S . S w A. F. R. Huhmer, and J. P. Landers, “Pol) Chain Reaction in Polymeric Microchips Amplification in Less Than 2 4 0 Seconds” Biochemistry 291,PP.124-132,200 1),其原理 應檢體置於晶片腔室中,並利用溫度控制系統 升溫及降溫來達到三溫循環,如此雖可任意決 之次數,但仍必須設法精確且快速地進行溫度 再者,習知技術亦提供微流體動力熱循環系 流體做單一方向之往復運動以及熱循環,雖縮 道長度,且可任意控制反應次數,但仍然需要 溫控制。 Κ ο p p等人以玻璃基材所製作之連續流 P C R 利用微幫浦單向驅動流體,使其連續流經三個 度的反應區,並固定進行二十個循環 (Kopp, deMello,A.J.; Manz, A., Science 1998 pp. 1 Ob eid等人亦採單向連續流之方式來製作 PCR 仍然僅提供數個固定之循環次數供選擇 ( 上述之 若使用 難度極 之複雜 酶連鎖 e d b e r g, Μη e r a s e : DN A , Anal 係將反 快速地 定反應 控制。 統,使 減了流 進行變 晶片 ^ 固定溫 M.U.; 04 6 ) ° 晶片 5 Ο b e i d, 7 1253435The 1253435 method deals with complex biochemical reactions or chain reactions. In particular, PCR requires constant changes in the temperature of the microfluid, so that the simple reciprocating motion described above requires a variable temperature control, thereby increasing the degree of experimentation or reaction control. In addition, Giordano et al. also published a microcavity polymerization wafer (BC Giordano, J. Ferrance, S. S w AFR Huhmer, and JP Landers, “Pol) Chain Reaction in Polymeric Microchips Amplification in Less Than 2 4 0 Seconds” Biochemistry 291, pp. 124-132, 200 1), the principle is that the sample is placed in the wafer chamber, and the temperature control system is used to raise and lower the temperature to reach the three-temperature cycle, so although it can be arbitrarily determined, it must still be In order to accurately and quickly carry out the temperature recovery, the prior art also provides a microfluidic thermal cycle fluid for reciprocating motion in a single direction as well as thermal cycling. Although the length of the tunnel is reduced and the number of reactions can be arbitrarily controlled, temperature control is still required. ο ο pp et al. continuous flow PCR made of glass substrate using micro-pump unidirectional driving fluid, which continuously flows through the reaction zone of three degrees and fixed for twenty cycles (Kopp, deMello, AJ; Manz, A., Science 1998 pp. 1 Ob eid et al. also use one-way continuous flow to make PCR. There are still only a few fixed cycles to choose from. (If you use the extremely complex enzyme chain edberg, Μη Erase : DN A , Anal will control the reaction quickly and inversely. The system will reduce the flow to change the wafer ^ fixed temperature MU; 04 6 ) ° wafer 5 Ο beid, 7 1253435
Pierre J . ; Christopoulos, Theodore K.Pierre J . ; Christopoulos, Theodore K.
” Continuous-flow D N A and R N A amplification chip combined with laser-induced fluorescence detection" A n a 1 y t i c a Chimica Acta Volume: 494, Issue: 1-2, October 8, (2003),pp. 1-9)。SchneegaB 等人亦採單向 連續流方式製作PCR晶片,並僅提供三十二次反應循 環 (SchneegaB, Ivonne; Kohler, Johann Michael, "Flow-through polymerase chain reactions in chip thermocyclers M ,Molecular Biotechnology Volume: 82, Issue: 2,December, 2001,pp. 101-121)° 綜上所述,習知之微流體驅動及運動裝置,皆僅以 單方向之運動為主,或者使微流體不斷前進與後退之 往復運動。以目前之PCR生物晶片而言,依然僅採用 單方向之流動方式,因此需要較長流道。越長之流道 出現故障之頻率越高,並且僅能進行固定次數之反應 循環。微腔室式P C R晶片及往復式流體溫控裝置雖能 自由改變反應之循環次數,但仍然需進行快速變溫控 制,提高連鎖反應之操控難度。 【發明内容】 鑒於上述問題,本發明在此提供一種迴圈式微流體 運動系統與裝置,使微流體可於其中之迴圈式微流體 通道内重複繞圈運動,其中並利用溫度控制裝置調整 此迴圈式微流體通道中各個區段的溫度,使微流體每 8Continuous-flow DNA and RNA amplification chip combined with laser-induced fluorescence detection" A na 1 ytica Chimica Acta Volume: 494, Issue: 1-2, October 8, (2003), pp. 1-9). SchneegaB et al. PCR wafers were also produced in a unidirectional continuous flow mode and provided only thirty-two reaction cycles (Schneega B, Ivonne; Kohler, Johann Michael, "Flow-through polymerase chain reactions in chip thermocyclers M , Molecular Biotechnology Volume: 82, Issue 2, December, 2001, pp. 101-121) ° In summary, the conventional microfluidic driving and motion devices are mainly based on single-direction motion, or the micro-fluid is continuously moving forward and backward. In the case of current PCR biochips, only one-way flow is still used, so a longer flow path is required. The longer the flow path, the higher the frequency of failure, and only a fixed number of reaction cycles can be performed. Micro-chamber Although the PCR wafer and the reciprocating fluid temperature control device can freely change the number of cycles of the reaction, it is still necessary to perform rapid temperature change control to improve the chain reaction. In view of the above problems, the present invention provides a loop-type microfluidic motion system and apparatus for repetitively moving a microfluid in a loop-type microfluidic channel therein, wherein temperature control is utilized. The device adjusts the temperature of each segment of the loop-type microfluidic channel to make the microfluid every 8
1253435 經歷一次繞圈運動即可完成一次三溫循環,並藉由 制繞圈運動之次數,來使微流體(檢體)進行最佳 反應次數,以得到精確之反應結果。 本發明之目的在於提供一種迴圈式微流體運動 統,其包含一迴圈式微流體通道,用以容納微流體 其内運動,以及用以供氣體進出複數個氣孔。此外 包含複數個驅動微流道,用以供微流體或氣體通这 其中每一個驅動微流道之一端均連接至上述之迴 式微流體通道,而另一端連接至其中一個氣孔。一 體供應裝置耦合至複數個氣孔,用以使氣體進入或 出氣孔,進而驅動迴圈式微流體通道内之微流體。 少一個溫度控制裝置耦合至此迴圈式微流體通道, 以控制流經此迴圈式微流體通道之微流體的溫度。 本發明之另一目的在於提供一種迴圈式微流體 動裝置,其包含迴圈式微流體通道,用以容納微流 於其内進行運動,以及複數個氣孔,用以供氣體或 流體進出。此外亦包含複數個驅動微流道,用以供 流體或氣體通過,其中每一個通道之一端均連接至 述之迴圈式微流體通道,而另一端係連接至其中一 氣孑L 。 【實施方式】 ί 本發明將配合其較佳實施例與隨附之圖示詳述 下,應理解者為本發明中所有之較佳實施例僅為例 控 之 系 於 並 圈 氣 排 至 用 運 體 微 微 上 個 於 示 91253435 A three-temperature cycle can be completed by a circular motion, and the microfluidic (sample) is optimally reacted by the number of times the coil is moved to obtain an accurate reaction result. SUMMARY OF THE INVENTION It is an object of the present invention to provide a loop-type microfluidic motion system that includes a loop-type microfluidic channel for containing microfluidic motion therein and for gas to enter and exit a plurality of pores. In addition, a plurality of driving microchannels are provided for the microfluidics or gas passages. Each of the driving microchannels is connected to one of the above-mentioned returning microfluidic channels, and the other end is connected to one of the pores. A body supply device is coupled to the plurality of vents for ingress of gas into or out of the vent, thereby driving the microfluidics within the looped microfluidic channel. One less temperature control device is coupled to the looped microfluidic channel to control the temperature of the microfluidic fluid flowing through the looped microfluidic channel. Another object of the present invention is to provide a loop-type microfluidic device comprising a loop-type microfluidic channel for containing microfluidic movement therein and a plurality of pores for gas or fluid to enter and exit. In addition, a plurality of driving microchannels are provided for the passage of fluid or gas, wherein one end of each channel is connected to the loop-type microfluidic channel and the other end is connected to one of the gas channels L. [Embodiment] The present invention will be described in conjunction with the preferred embodiments and the accompanying drawings. It should be understood that all of the preferred embodiments of the present invention are only for the control of the present invention. The body is slightly above the display 9
1253435 之用,因此除文中之較佳實施例外,本發明 地應用在其他實施例中。且本發明並不受限 施例,應以隨附之申請專利範圍及其同等4) 參照圖一,呈現本發明較佳實施例之迴圈 晶片的結構,以迴圈式微流體通道(1 0、1 : 主體,並包含數個驅動微流道(4、5、6 )與 2、3 )。應可理解為,雖然圖一中僅呈現三 流道與三個與其對應之氣孔,然而其僅用以 明之較佳實施例,亦即應用於需要三段溫差 因此本發明仍可應用於其他各個實施例,亦 於三段溫差,並得配合其需要增加或減少聯 氣孔之數目,其中氣孔與驅動微流道之數 等,並且--對應。此外本發明主要乃應用 體形式存在之檢體,因此本發明内之驅動微 迴圈式微流體通道之口徑最好為一百微米左 以下實施例之說明主要為本發明於聚合 應(Polymerase Chain Reaction ; PCR)中 但本發明之應用並非侷限於 PCR。由於一: 需要使檢體重複經歷三溫循環,因此在本實 乃藉由聯外之驅動微流道4至6將迴圈式微 區分為三個區段 1 0至 1 2。並利用三個溫度 至9來個別控制各個區段之溫度,因為本發 ; 體通道為迴圈式之設計,因此可讓微流體於 迴圈(圓周)運動,並不斷依序通過三個溫> 亦可廣泛 於任何實 丨域而定。 式微流道 • 、 12)為 氣孔(1 、 條驅動微 例示本發 之 PCR, 非僅適用 外通道與 目最好相 於以微流 流道以及 右。 酶連鎖反 之應用, &之 PCR 施例中, 流體通道 控制器7 明之微流 其中進行 曼區段10 10 1253435 至1 2,而輕易獲得三溫循環之效果。此溫度控制器7 至 9 可以各種加熱裝置為其熱源,如金屬接觸式加 熱、紅外線加熱等等,並且藉由本發明之迴圈式設 計,使各個溫度控制器7至9能夠僅保持在固定之溫 度,即可達成三段溫差之目的,無需進行難度頗高之 快速變溫控制。 再者,由於以微流體形式存在之檢體係於上述之迴 圈式微流體通道内進行繞圈運動,亦即順時針或逆時1253435 is used, so the present invention is applied to other embodiments, except for the preferred embodiment. The present invention is not limited to the embodiment, and the structure of the loop wafer of the preferred embodiment of the present invention is presented in the accompanying patent application and its equivalent. 4) Referring to Figure 1, the loop-type microfluidic channel (10) 1, the main body, and contains several driving micro-flow channels (4, 5, 6) and 2, 3). It should be understood that although only three flow paths and three corresponding air holes are shown in FIG. 1, it is only used to illustrate the preferred embodiment, that is, the application requires three temperature differences, so the present invention can be applied to other implementations. For example, the temperature difference is also in the three stages, and it is necessary to increase or decrease the number of the air holes, in which the number of the air holes and the driving micro flow path, etc., correspond to each other. In addition, the present invention is mainly applied to a sample in the form of a bulk, and therefore the diameter of the micro-circular microfluidic channel driven in the present invention is preferably one hundred micrometers. The description of the embodiment is mainly for the present invention. In PCR), the application of the invention is not limited to PCR. Since one: the sample needs to be repeatedly subjected to the three-temperature cycle, the loop is slightly differentiated into three segments 10 to 12 by the externally driven microchannels 4 to 6. And use three temperatures to 9 to individually control the temperature of each segment, because the body; the body channel is a loop design, so that the microfluid can move in the loop (circumference), and continuously pass three temperatures in sequence > can also be broadly based on any real field. Microchannels, 12) are stomata (1, strip drive micro-example PCR, not only for external channels and meshes with microfluidic flow channels and right. Enzyme linkage, vice versa, & PCR In the example, the fluid channel controller 7 defines the microflow in which the MAN section 10 10 1253435 to 12 is performed, and the effect of the three-temperature cycle is easily obtained. The temperature controllers 7 to 9 can be various heat sources such as metal contacts. Heating, infrared heating, etc., and by the loop design of the present invention, the temperature controllers 7 to 9 can be maintained at a fixed temperature, thereby achieving the three-stage temperature difference without requiring a high degree of difficulty. Variable temperature control. Furthermore, since the inspection system in the form of microfluidics performs a circular motion in the above-mentioned loop-type microfluidic channel, that is, clockwise or reverse
針方向之運動,所以其反應之次數可藉由調整繞圈之 次數來進行控制,無論是數十次或甚至數千次之反 應,均無需延長或擴增迴圈式微流體通道之長度或體 積,簡化了裝置之結構,不僅節省空間,更可降低裝 置故障之機率。並且雖然本發明所例示之迴圈式微流 體通道均為圓形,但並非以此為限,本發明亦可利用 任何形成封閉迴路之微流體通道,如橢圓形或甚至多 肇 角形。 圖二呈現本發明之迴圈式微流道晶片(迴圈式微流 體運動裝置)的立體簡要圖示,其大小約為三至四公 分,而厚度約為一公厘左右。如圖二所示,本發明之 迴圈式微流體通道2 1 (亦即圖一中區段 1 0至 1 2 )、 聯外通道4至 6均位在基板20之中,並以氣孔 1至3 作為其與外界it聯之出入口,可允許微流體(檢體) 或加壓之氣體進出。在本發明之一實施例中,此晶片 之形成之方式可先於一下層基板上蝕刻出所有之通 11 1253435 道(包含 1至6以及21),並以一上層基板或其他材 料覆蓋之,應可理解者為,此迴圈式微流道晶片之製 作方式並非本發明之重點所在,因此本發明應可利用 各式各樣現存之技術來製作此晶片,而非僅限於任何 特定之實施例。由於此微流道晶片採用迴圈式設計, 因此其將能夠保持在如此微小之尺吋,而無論其内之 生化反應將進行幾次多重溫度循環。 圖三呈現微流體運動控制系統架構圖,此系統主要 以氣體驅動晶片内之微流體,使之進行迴圈式運動, 亦即順時針運動或逆時針運動。氣體之來源為氣體供 應裝置32,其乃由氣體壓縮機320、緩衝槽321以及 數個控制閥3 2 2至3 2 4所構成,控制閥之個數至少與 晶片 2 0内之氣孔個數相同,圖三之較佳實施例所呈 現之三個控制閥3 2 2至3 2 4乃分別連接至晶片20之 氣孔1至3。Movement in the direction of the needle, so the number of reactions can be controlled by adjusting the number of turns, whether it is tens or even thousands of reactions, without extending or amplifying the length or volume of the loop microfluidic channel It simplifies the structure of the device, not only saves space, but also reduces the probability of device failure. Further, although the loop-type microfluidic channel exemplified in the present invention is circular, it is not limited thereto, and the present invention can also utilize any microfluidic channel forming a closed loop, such as an elliptical shape or even a multi-turned corner. Fig. 2 is a perspective schematic view showing a loop-type microchannel wafer (loop type microfluidic motion device) of the present invention, which has a size of about three to four centimeters and a thickness of about one millimeter. As shown in FIG. 2, the loop-type microfluidic channel 2 1 of the present invention (that is, the segments 10 to 12 in FIG. 1 ) and the external channels 4 to 6 are all located in the substrate 20 and have the pores 1 to 3 As its entrance and exit with the outside it, it can allow microfluidic (sample) or pressurized gas to enter and exit. In one embodiment of the present invention, the wafer is formed by etching all of the 111535343 tracks (including 1 to 6 and 21) on the underlying substrate and covering it with an upper substrate or other material. It should be understood that the manner in which the loop microfluidic wafer is fabricated is not the focus of the present invention, and thus the present invention should be able to fabricate the wafer using a variety of existing techniques, and is not limited to any particular embodiment. . Since the microfluidic wafer is designed in a loop-like configuration, it will be able to maintain such a small size, regardless of the biochemical reaction within it, which will undergo multiple multiple temperature cycles. Figure 3 presents a microfluidic motion control system architecture diagram that uses a gas to drive the microfluidics within the wafer for loop motion, either clockwise or counterclockwise. The gas source is a gas supply device 32, which is composed of a gas compressor 320, a buffer tank 321 and a plurality of control valves 3 2 2 to 3 2 4, and the number of control valves is at least the number of pores in the wafer 20 Similarly, the three control valves 3 2 2 to 3 2 4 presented in the preferred embodiment of FIG. 3 are connected to the air holes 1 to 3 of the wafer 20, respectively.
氣體壓縮機3 2 0首先將氣體加壓至驅動微流體所需 之氣壓,並將此加壓過後之氣體儲存於缓衝槽 321 内,此緩衝槽3 2 1接著便將此加壓過後之氣體供應至 各個控制閥3 2 2至3 2 4。此控制閥除了能夠使加壓過 後之氣體經由氣孔與驅動微流道進入迴圈式微流體 通道内之外,亦可讓迴圈式微流體通道内之氣體或微 流體排出。 圖三之系統可藉由電腦3 0進行操控,電腦3 0並連 接或安裝一資料擷取卡3 1。資料擷取卡3 1能夠傳送 12The gas compressor 320 further pressurizes the gas to the air pressure required to drive the microfluid, and the pressurized gas is stored in the buffer tank 321, and the buffer tank 3 2 1 is then pressurized. Gas is supplied to the respective control valves 3 2 2 to 3 2 4 . In addition to allowing the pressurized gas to enter the loop-type microfluidic channel via the vent and drive microchannels, the control valve can also vent gas or microfluids in the looped microfluidic channel. The system of Figure 3 can be controlled by the computer 30, and the computer 30 is connected or installed with a data capture card 3 1 . Data capture card 3 1 can transmit 12
1253435 驅動訊號至氣體供應裝置32,以藉由加壓氣體之 與排出來驅使晶片 2 0内之迴圈式微流體通道中 流體進行運動。當此系統作為生化反應用途時, 20耦合至加熱器 34及溫度感測器 35,此加熱 由電腦3 0透過資料擷取卡3 1傳送出的訊號來档 可提供熱源將圖一中迴圈式微流體通道(1 〇、1 1 升溫至反應所需之各種溫度,而感測器 3 5可偵 在執行生化反應時之晶片内的溫度,並將測得之 結果透過資料擷取卡3 1傳送於電腦3 0,作為溫 授控制之用途。當此生化反應為P C R時,本系統 包含額外之光學檢測裝置 3 6,此一光學檢測裝. 乃直接對流道内反應中之檢體進行檢測,觀察 進行時 DNA之複製效率與反應情形,此一觀察 亦透過資料擷取卡3 1傳送至電腦3 0,並根據結 定此反應所需循環次數,以及何時需將循環停止 體導出。此外,應可理解者為上述之氣體供應裝 之構造,僅為例示本發明之用,而非用以限縮 明,任何能夠提供足夠壓力之氣體進入氣孔並讓 20内之氣體或微流體排出之裝置,均可應用於 明。 再者,本發明之微流體運動裝置係以氣體驅動 式使迴圈式微;流體通道内之微流體進行迴圈 動,氣體由晶片 20之氣孔經過驅動微流道進入 圖一所示,驅動微流道4至6與迴圈式微流體通 進入 之微 晶片 器 34 制, 、12 ) 測正 溫度 度回 亦可 t 3 6 PCR 結果 果決 讓檢 置 3 2 本發 晶片 本發 之方 式運 〇如 道間 13The 1253435 drive signal to the gas supply unit 32 to drive fluid movement in the looped microfluidic channel within the wafer 20 by the pressurization of the pressurized gas. When the system is used as a biochemical reaction, 20 is coupled to the heater 34 and the temperature sensor 35, and the heating is transmitted by the computer 30 through the data capture card 31 to provide a heat source. The microfluidic channel (1 〇, 1 1 is heated to various temperatures required for the reaction, and the sensor 35 can detect the temperature in the wafer during the biochemical reaction, and the measured result is transmitted through the data capture card 3 1 It is transmitted to the computer 30 for use as a temperature control. When the biochemical reaction is PCR, the system includes an additional optical detecting device 3, which is directly for detecting the sample in the reaction in the flow channel. Observing the replication efficiency and reaction of the DNA at the time of the observation, this observation is also transmitted to the computer 30 through the data capture card 31, and according to the number of cycles required to determine the reaction, and when the cycle stop body needs to be derived. It should be understood that the configuration of the above-mentioned gas supply device is merely for exemplifying the present invention, and is not intended to limit the use of any gas capable of providing sufficient pressure to enter the air hole and let the gas or microfluid in 20 Further, the microfluidic motion device of the present invention is gas-driven to make the loop type micro; the microfluid in the fluid channel is looped, and the gas is driven by the pores of the wafer 20 The flow path enters the micro-disc device 34, which drives the micro-channels 4 to 6 and the loop-type microfluidic flow into, as shown in Fig. 1, 12) the temperature is measured back to t 3 6 PCR results are determined to be 3 2 The method of the present invention is as follows:
1253435 均具有一夾角1 3至1 5,此一夾角之大小將影響迴 式微流體通道内微流體之運動方向,而圖一中之配 方式,係可讓其中之微流體進行順時針方向之運食 然而本發明並非以圖一之配置方式為限,仍可調整 角之大小使運動之方向改變為逆時針運動。上述之 角最好介於零度至四十五度之間,夾角之角度越λ!, 氣體所產生之驅動動能也越大,但也較不易操控, 過大之角度將可能使注入之氣體分散,造成循環之 能不足。此外,本發明之系統係以控制閥來操控氣 或微流體進出氣孔,甚至關閉之,因此本發明之驅 微流道4至6與迴圈式微流體通道之間乃採無閥門 設計,使晶片内之構造簡化,以節省成本,並降低 障之機率。 同時參照圖四與圖五,其中圖四顯示本實施例之 圈式微流體通道内微流體之驅動過程,包含六個運 狀態 Α至F,而圖五係顯示驅動之流程圖。首先, 步驟 5 0中將檢體(微流體)導入迴圈式微流體通 之區段 46,如狀態 A所示。根據本發明之實施例 此導入之方式可藉由氣體供應裝置以氣體將檢體 過氣孔 40與驅動微流道43推入區段46中。接者 步驟5 1中,將此檢體以氣體驅動至區段4 7,如狀 B所示。在此過程中,對應於氣孔 40之控制閥將 具有適當壓力之氣體經過驅動微流道 43進入迴圈 微流體通道,同時關閉與氣孔 4 1對應之控制閥, 圈 置 〇 夾 夾 , 而 動 體 動 之 故 迴 動 於 道 , 透 於 態 使 式 並 14 1253435 且開啟與氣孔42對應之控制閥使空氣得以由氣孔42 釋出,如此一來將使區段 46内之檢體產生順時針方 向之推力,將其驅動至區段47,如狀態C所示。 接著,於步驟 5 2中,將此檢體以氣體驅動至區段 4 8。其運作方式為關閉氣孔4 2,使加壓之氣體由氣孔 4 1進入,並開啟氣孔4 0使氣體得以由其排出,如狀 態D所示。如此一來,將產生一驅動力量使檢體由區 段47移動至區段48,如狀態E所示。1253435 has an angle of 1 3 to 15 . The angle of this angle will affect the direction of movement of the microfluid in the return microfluidic channel. The configuration in Figure 1 allows the microfluid to be clockwise. However, the present invention is not limited to the configuration of FIG. 1, and the size of the angle can be adjusted to change the direction of motion to counterclockwise motion. The above angle is preferably between zero and forty-five degrees. The angle of the angle is λ!, the driving kinetic energy generated by the gas is larger, but it is also less easy to handle. The excessive angle may cause the injected gas to disperse. The energy of the cycle is insufficient. In addition, the system of the present invention uses a control valve to control the gas or microfluid inlet and outlet, or even closes it. Therefore, the microfluidic channels 4 to 6 of the present invention and the loop-type microfluidic channel have a valveless design to enable the wafer. The internal structure is simplified to save costs and reduce the chance of obstacles. Referring to Fig. 4 and Fig. 5, Fig. 4 shows the driving process of the microfluid in the coil type microfluidic channel of the embodiment, which includes six operating states Α to F, and Fig. 5 shows a flow chart of driving. First, in step 50, the specimen (microfluid) is introduced into the loop-type microfluidic section 46 as shown in state A. According to an embodiment of the present invention, the introduction can be carried out by pushing the sample through-hole 40 and the driving micro-channel 43 into the section 46 by a gas supply means. In step 51, the sample is driven by gas to section 47, as shown in the shape B. During this process, the control valve corresponding to the air hole 40 passes the gas having the appropriate pressure through the driving microchannel 43 into the loop microfluidic channel, and simultaneously closes the control valve corresponding to the air hole 4 1 , and the coil clamp is clamped. The body motion is returned to the road, and the control valve corresponding to the air hole 42 is opened and the air is released from the air hole 42 so that the sample in the section 46 is clockwise. The thrust of the direction is driven to section 47 as shown in state C. Next, in step 52, the sample is driven by gas to section 48. It operates by closing the vent 4 2 so that the pressurized gas enters through the vent 4 1 and opens the vent 40 to allow gas to escape therefrom, as indicated by state D. As a result, a driving force is generated to move the specimen from the segment 47 to the segment 48 as shown in state E.
在檢體進入區段4 8之後,將於步驟5 3中使檢體移 動至區段4 6,以完成一個循環之順時針繞圈運動。其 運作方式為關閉氣孔40,使加壓之氣體由氣孔42進 入,並開啟氣孔 4 1使氣體得以由其排出,如狀態 F 所示。因此,於上述運作方式相似,將可產生一驅動 力量使檢體由區段48移動至區段46,如狀態A所示。 由於本實施例係應用於P C R,因此於反應之前已藉 由溫度控制裝置將各個區段調整至適當之反應溫 度。例如,將區段46内之溫度提升為攝氏94度,而 於區段47將溫度降低至五十度,於區段48再將溫度 提升至七十度。因此,檢體每繞行迴圈式微流體通道 一圈,便可經歷一次三溫循環,並且透過上述重複之 操作,可讓檢體進行預期次數之三溫循環,當未達欲 得之循環次數時,於步驟 5 3完成後,將返回至步驟 ί 5 1,此檢體重複進行另一次順時針繞圈運動。待達到 欲得之循環次數時,便將檢體導出,如步驟5 4所示, 15After the specimen enters section 48, the specimen will be moved to section 46 in step 53 to complete a cycle of clockwise loop motion. It operates by closing the vent 40 so that pressurized gas enters the vent 42 and opens the vent 4 1 to allow gas to escape therefrom, as indicated by state F. Thus, similar to the above, a drive force will be generated to move the specimen from section 48 to section 46, as shown in state A. Since this embodiment is applied to P C R, the respective sections have been adjusted to an appropriate reaction temperature by the temperature control means before the reaction. For example, the temperature in section 46 is raised to 94 degrees Celsius, while section 47 reduces the temperature to fifty degrees, and section 48 again raises the temperature to seventy degrees. Therefore, each round of the loop-type microfluidic channel of the sample can undergo a three-temperature cycle, and through the above repeated operations, the sample can be subjected to the expected number of three-temperature cycles, when the number of cycles is not reached. When it is completed in step 353, it will return to step ί 5 1, and the specimen repeats another clockwise movement. When the desired number of cycles is reached, the sample is exported, as shown in step 5 4, 15
1253435 以獲得精確之反應成果。 習知之技術皆以直線之單向運動或往復運 主,單向運動雖無需進行複雜之變溫控制,但卻 應之次數受限,並可能因為次數之增加而使晶片 積增大及結構複雜化,而往復運動之設計雖可控 應之次數並使體積固定,但卻需進行難度頗高之 變溫控制,影響實驗之結果。本發明之迴圈式設 將可同時解決上述習知技術所遭遇之問題,並同 有所有習知技術之優點,進而提高反應之效能, 無闊門流道之設計,使晶片製程之複雜度降低, 增加本發明之晶片的成本優勢。 對熟悉此領域技藝者,本發明雖以較佳實例闡 上,然其並非用以限定本發明之精神。在不脫離 明之精神與範圍内所作之修改與類似的配置,均 含在下述之申請專利範圍内,此範圍應覆蓋所有 修改與類似結構,且應做最寬廣的詮釋。 【圖式簡單說明】 圖一為一概要結構圖,呈現本發明較佳實施例之 式微流道裝置。 圖二為迴圈式微流體晶片的立體概要圖。 圖三為一系統架構圖,呈現本發明之迴圈式微流 動系統。 圖四顯示迴圈式微流體通道内微流體之驅動過程 動為 使反 之體 制反 快速 計, 時具 加上 因而 明如 本發 應包 類似 迴圈 體運 16 1253435 圖五顯示微流體驅動過程之流程圖。 【主要元件符號說明】 1至3 氣孔 4至 6 驅動微流道 7至 9 溫度控制裝置 1 0 至 12 迴圈式微流體通道之區段 1 3 至 1 5 夾角 171253435 for precise results. The conventional techniques all use a one-way motion or a reciprocating transporter in a straight line. Although the one-way motion does not require complicated temperature-changing control, the number of times should be limited, and the wafer product may increase and the structure may be complicated due to the increase in the number of times. However, the design of the reciprocating motion can control the number of times and fix the volume, but it requires a relatively difficult temperature control to affect the results of the experiment. The loop type design of the present invention can solve the problems encountered by the above-mentioned prior art, and has the advantages of all the prior art, thereby improving the efficiency of the reaction, and the design of the wide gate flow path reduces the complexity of the wafer process. , increasing the cost advantage of the wafer of the present invention. The present invention has been described by way of example only, and is not intended to limit the scope of the invention. Modifications and similar configurations made without departing from the spirit and scope of the invention are intended to be included in the scope of the appended claims. BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1 is a schematic structural view showing a micro flow path device of a preferred embodiment of the present invention. Figure 2 is a perspective schematic view of a loop-type microfluidic wafer. Figure 3 is a system architecture diagram showing the loop-type microfluidic system of the present invention. Figure 4 shows the driving process of the microfluid in the loop-type microfluidic channel. In order to make the reverse system quick, the time is added. Therefore, the present invention should be similar to the loop body. 16 1253435 Figure 5 shows the flow of the microfluidic driving process. Figure. [Main component symbol description] 1 to 3 Air holes 4 to 6 Drive micro flow path 7 to 9 Temperature control device 1 0 to 12 Loop type microfluidic channel section 1 3 to 1 5 Angle 17
Claims (1)
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW094119509A TWI253435B (en) | 2005-06-13 | 2005-06-13 | Loop micro fluid system |
US11/246,854 US20060280629A1 (en) | 2005-06-13 | 2005-10-07 | Loop-type microfluidic system |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW094119509A TWI253435B (en) | 2005-06-13 | 2005-06-13 | Loop micro fluid system |
Publications (2)
Publication Number | Publication Date |
---|---|
TWI253435B true TWI253435B (en) | 2006-04-21 |
TW200642946A TW200642946A (en) | 2006-12-16 |
Family
ID=37524270
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW094119509A TWI253435B (en) | 2005-06-13 | 2005-06-13 | Loop micro fluid system |
Country Status (2)
Country | Link |
---|---|
US (1) | US20060280629A1 (en) |
TW (1) | TWI253435B (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI508772B (en) * | 2011-08-22 | 2015-11-21 | Panasonic Corp | Micro fluid device |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI271435B (en) * | 2005-06-29 | 2007-01-21 | Univ Nat Cheng Kung | Polymerare Chain Reaction chip |
US8735103B2 (en) * | 2006-12-05 | 2014-05-27 | Electronics And Telecommunications Research Institute | Natural convection-driven PCR apparatus and method using disposable polymer chip |
JP2013531222A (en) * | 2010-04-28 | 2013-08-01 | シーメンス・ヘルスケア・ダイアグノスティックス・インコーポレーテッド | Sample analysis system and method of use |
CN102199529A (en) | 2011-03-22 | 2011-09-28 | 博奥生物有限公司 | Biochip hybridization system |
Family Cites Families (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US671602A (en) * | 1900-02-10 | 1901-04-09 | Christopher W Levalley | Clutch-shipper. |
US5164598A (en) * | 1985-08-05 | 1992-11-17 | Biotrack | Capillary flow device |
US4963498A (en) * | 1985-08-05 | 1990-10-16 | Biotrack | Capillary flow device |
US5705018A (en) * | 1995-12-13 | 1998-01-06 | Hartley; Frank T. | Micromachined peristaltic pump |
US6391622B1 (en) * | 1997-04-04 | 2002-05-21 | Caliper Technologies Corp. | Closed-loop biochemical analyzers |
US7033474B1 (en) * | 1997-04-25 | 2006-04-25 | Caliper Life Sciences, Inc. | Microfluidic devices incorporating improved channel geometries |
US6637463B1 (en) * | 1998-10-13 | 2003-10-28 | Biomicro Systems, Inc. | Multi-channel microfluidic system design with balanced fluid flow distribution |
US7351376B1 (en) * | 2000-06-05 | 2008-04-01 | California Institute Of Technology | Integrated active flux microfluidic devices and methods |
JP4148778B2 (en) * | 2001-03-09 | 2008-09-10 | バイオミクロ システムズ インコーポレイティッド | Microfluidic interface equipment with arrays |
US6743636B2 (en) * | 2001-05-24 | 2004-06-01 | Industrial Technology Research Institute | Microfluid driving device |
US6825127B2 (en) * | 2001-07-24 | 2004-11-30 | Zarlink Semiconductor Inc. | Micro-fluidic devices |
US20030123322A1 (en) * | 2001-12-31 | 2003-07-03 | Industrial Technology Research Institute | Microfluidic mixer apparatus and microfluidic reactor apparatus for microfluidic processing |
US7223371B2 (en) * | 2002-03-14 | 2007-05-29 | Micronics, Inc. | Microfluidic channel network device |
US6682311B2 (en) * | 2002-05-29 | 2004-01-27 | Industrial Technology Research Institute | Pneumatic driving device for micro fluids wherein fluid pumping is governed by the control of the flow and direction of incident plural gas streams |
US7160025B2 (en) * | 2003-06-11 | 2007-01-09 | Agency For Science, Technology And Research | Micromixer apparatus and methods of using same |
-
2005
- 2005-06-13 TW TW094119509A patent/TWI253435B/en not_active IP Right Cessation
- 2005-10-07 US US11/246,854 patent/US20060280629A1/en not_active Abandoned
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI508772B (en) * | 2011-08-22 | 2015-11-21 | Panasonic Corp | Micro fluid device |
Also Published As
Publication number | Publication date |
---|---|
TW200642946A (en) | 2006-12-16 |
US20060280629A1 (en) | 2006-12-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10415086B2 (en) | Polymerase chain reaction systems | |
KR100442836B1 (en) | System and method for circulating biochemical fluidic solutions around closed two or more temperature zones of chambers | |
US8616227B1 (en) | Multilevel microfluidic systems and methods | |
EP2044220B1 (en) | Systems and methods for real-time pcr | |
US9677133B2 (en) | Biological chip hybridization system | |
US8122901B2 (en) | System and method for microfluidic flow control | |
US7413712B2 (en) | Microfluidic rotary flow reactor matrix | |
US20080125330A1 (en) | Real-Time Pcr Detection of Microorganisms Using an Integrated Microfluidics Platform | |
US20100159582A1 (en) | Disposable multiplex polymerase chain reaction (pcr) chip and device | |
US20010036672A1 (en) | Integrated nucleic acid diagnostic device | |
TWI253435B (en) | Loop micro fluid system | |
US20170114380A1 (en) | Systems and methods for the amplification of dna | |
JP2013172724A (en) | Method and device for conducting biochemical or chemical reaction at multiple temperatures | |
WO2009003184A1 (en) | Digital microfluidics based apparatus for heat-exchanging chemical processes | |
US8367976B2 (en) | Laser heating of aqueous samples on a micro-optical-electro-mechanical system | |
KR20100060723A (en) | Micro-pump for lab-on-a-chip and the method of producting that | |
CN113454200A (en) | Microfluidic reaction chamber for nucleic acid amplification | |
CN115353967A (en) | Centrifugal micro-fluidic chip for rapid nucleic acid PCR amplification and fluorescence detection | |
Wang et al. | Circulating polymerase chain reaction chips utilizing multiple-membrane activation | |
Chen et al. | Microfluidic PCR chips | |
JP2016049064A (en) | Pcr device using microchip | |
TWI797820B (en) | Pcr rapid detection device and method thereof | |
CN114653411A (en) | Three-dimensional spiral chip | |
Spitzack et al. | Polymerase chain reaction in miniaturized systems: big progress in little devices | |
JP4069024B2 (en) | Chemically modified DNA fragment amplification apparatus and DNA fragment amplification method using the apparatus |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
MM4A | Annulment or lapse of patent due to non-payment of fees |