JP2006112009A - Woven or knit fabric developing unevenness by wetting, method for producing the same and textile product - Google Patents

Woven or knit fabric developing unevenness by wetting, method for producing the same and textile product Download PDF

Info

Publication number
JP2006112009A
JP2006112009A JP2004301219A JP2004301219A JP2006112009A JP 2006112009 A JP2006112009 A JP 2006112009A JP 2004301219 A JP2004301219 A JP 2004301219A JP 2004301219 A JP2004301219 A JP 2004301219A JP 2006112009 A JP2006112009 A JP 2006112009A
Authority
JP
Japan
Prior art keywords
woven
knitted fabric
fiber
layer
crimped
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004301219A
Other languages
Japanese (ja)
Inventor
Shigeru Morioka
Takashi Yamaguchi
Satoshi Yasui
Masato Yoshimoto
正人 吉本
聡 安井
尊志 山口
茂 森岡
Original Assignee
Teijin Fibers Ltd
帝人ファイバー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teijin Fibers Ltd, 帝人ファイバー株式会社 filed Critical Teijin Fibers Ltd
Priority to JP2004301219A priority Critical patent/JP2006112009A/en
Publication of JP2006112009A publication Critical patent/JP2006112009A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06CFINISHING, DRESSING, TENTERING OR STRETCHING TEXTILE FABRICS
    • D06C7/00Heating or cooling textile fabrics
    • D06C7/02Setting
    • AHUMAN NECESSITIES
    • A41WEARING APPAREL
    • A41DOUTERWEAR; PROTECTIVE GARMENTS; ACCESSORIES
    • A41D31/00Materials specially adapted for outerwear
    • A41D31/04Materials specially adapted for outerwear characterised by special function or use
    • A41D31/14Air permeable, i.e. capable of being penetrated by gases
    • A41D31/145Air permeable, i.e. capable of being penetrated by gases using layered materials
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/22Formation of filaments, threads, or the like with a crimped or curled structure; with a special structure to simulate wool
    • DTEXTILES; PAPER
    • D03WEAVING
    • D03DWOVEN FABRICS; METHODS OF WEAVING; LOOMS
    • D03D15/00Woven fabrics characterised by the material or construction of the yarn or other warp or weft elements used
    • D03D15/04Woven fabrics characterised by the material or construction of the yarn or other warp or weft elements used woven to produce shapes or effects upon differential shrinkage
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04BKNITTING
    • D04B1/00Weft knitting processes for the production of fabrics or articles not dependent on the use of particular machines; Fabrics or articles defined by such processes
    • D04B1/14Other fabrics or articles characterised primarily by the use of particular thread materials
    • D04B1/16Other fabrics or articles characterised primarily by the use of particular thread materials synthetic threads
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04BKNITTING
    • D04B21/00Warp knitting processes for the production of fabrics or articles not dependent on the use of particular machines; Fabrics or articles defined by such processes
    • D04B21/14Fabrics characterised by the incorporation by knitting, in one or more thread, fleece, or fabric layers, of reinforcing, binding, or decorative threads; Fabrics incorporating small auxiliary elements, e.g. for decorative purposes
    • D04B21/16Fabrics characterised by the incorporation by knitting, in one or more thread, fleece, or fabric layers, of reinforcing, binding, or decorative threads; Fabrics incorporating small auxiliary elements, e.g. for decorative purposes incorporating synthetic threads
    • AHUMAN NECESSITIES
    • A41WEARING APPAREL
    • A41DOUTERWEAR; PROTECTIVE GARMENTS; ACCESSORIES
    • A41D31/00Materials specially adapted for outerwear
    • A41D31/04Materials specially adapted for outerwear characterised by special function or use
    • A41D31/12Hygroscopic; Water retaining
    • A41D31/125Moisture handling or wicking function through layered materials
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2401/00Physical properties
    • D10B2401/02Moisture-responsive characteristics
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2403/00Details of fabric structure established in the fabric forming process
    • D10B2403/01Surface features
    • D10B2403/011Dissimilar front and back faces
    • D10B2403/0114Dissimilar front and back faces with one or more yarns appearing predominantly on one face, e.g. plated or paralleled yarns
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2403/00Details of fabric structure established in the fabric forming process
    • D10B2403/02Cross-sectional features
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2403/00Details of fabric structure established in the fabric forming process
    • D10B2403/02Cross-sectional features
    • D10B2403/023Fabric with at least two, predominantly unlinked, knitted or woven plies interlaced with each other at spaced locations or linked to a common internal co-extensive yarn system
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2403/00Details of fabric structure established in the fabric forming process
    • D10B2403/03Shape features
    • D10B2403/033Three dimensional fabric, e.g. forming or comprising cavities in or protrusions from the basic planar configuration, or deviations from the cylindrical shape as generally imposed by the fabric forming process
    • D10B2403/0331Three dimensional fabric, e.g. forming or comprising cavities in or protrusions from the basic planar configuration, or deviations from the cylindrical shape as generally imposed by the fabric forming process with one or more convex or concave portions of limited extension, e.g. domes or pouches
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T442/00Fabric [woven, knitted, or nonwoven textile or cloth, etc.]
    • Y10T442/30Woven fabric [i.e., woven strand or strip material]
    • Y10T442/3065Including strand which is of specific structural definition
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T442/00Fabric [woven, knitted, or nonwoven textile or cloth, etc.]
    • Y10T442/40Knit fabric [i.e., knit strand or strip material]
    • Y10T442/425Including strand which is of specific structural definition

Abstract

<P>PROBLEM TO BE SOLVED: To provide a woven or knit fabric reversibly developing unevenness on the surface of the fabric by wetting and decreasing the unevenness in dried state and provide a method for producing the fabric and a textile product. <P>SOLUTION: The woven or knit fabric developing unevenness by wetting contains a crimped fiber A lowering the crimp percent in wet state and a non-crimped fiber or a crimped fiber B essentially free from the change of the crimp percent by wetting. The woven or knit fabric has an unevenness variation rate defined by ((TW-TD)/TD)×100 of ≥5% wherein TD is the thickness of the fabric in dried state and TW is the thickness in wet state. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、湿潤時に捲縮率が低下する捲縮繊維と、非捲縮または湿潤時に捲縮率が実質的に変化しない捲縮を有する繊維とを含む織編物であって、湿潤時に織編物表面に凹凸が発現し、一方乾燥時には凹凸が減少することにより、発汗時の肌と衣服とのベトツキを低減することができる織編物およびその製造方法および繊維製品に関するものである。   The present invention relates to a woven or knitted fabric comprising a crimped fiber whose crimp rate decreases when wet and a fiber having crimps that do not substantially change crimp rate when non-crimped or wet. The present invention relates to a woven or knitted fabric, a method for producing the same, and a textile product, which can reduce the stickiness between the skin and clothes during sweating by providing unevenness on the surface and reducing the unevenness during drying.

従来、合成繊維や天然繊維などからなる織編物を、スポーツウエアーやインナーウエアーなどとして使用すると、肌からの発汗によりムレやベトツキが発生するという問題があった。   Conventionally, when a woven or knitted fabric made of synthetic fiber or natural fiber is used as sportswear or innerwear, there has been a problem that stuffiness or stickiness is generated due to sweating from the skin.

特に発汗初期の蒸気状の汗に対しては、衣服を構成する素材として吸湿性の高い繊維を用いる方法や衣服を構成する織編物の構造をあらくし、通気性を高める方法などが通常よく使われている。   Especially for vaporous sweat in the early stages of sweating, a method that uses highly hygroscopic fibers as a material that constitutes clothing or a method that increases the air permeability by revealing the structure of the woven or knitted fabric that constitutes clothing is commonly used. It has been broken.

一方、発汗中期〜後期の液状の汗に対しては、多層構造織編物において外層と内層(肌側)に密度差を設け、肌側で吸収した汗を素早く外側に移行させる方法(例えば、特許文献1参照)や、衣服を構成する織編物の肌側表面に凹凸を設け、肌と衣服との接触面積を少なくしてベトツキを低減する方法など(例えば、特許文献2、特許文献3参照)が提案されている。しかしながら、前者については、発汗が衣服の飽和吸水量を超えると肌側面にも汗が残り、その結果、衣服が肌にべとつくという問題があった。また、後者については、発汗量が増すと凹凸量が不十分なため衣服が肌にべとつく、これを回避するために凹凸量を大きくすると織編物の含気率が増し保温性が高くなりかえって発汗を助長する、凹凸の凸部が肌とこすれチクチクし不快である、凸部が肌に引っかかり易くピリングになりやすいなどの問題があった。   On the other hand, for liquid sweat in the middle to late periods of sweating, a method of providing a density difference between the outer layer and the inner layer (skin side) in a multilayered woven or knitted fabric and quickly transferring the sweat absorbed on the skin side to the outside (for example, patents) Reference 1), and a method of reducing unevenness by providing unevenness on the skin side surface of the knitted or knitted fabric constituting the garment to reduce the contact area between the skin and the garment (for example, see Patent Document 2 and Patent Document 3). Has been proposed. However, the former has a problem that when the sweating exceeds the saturated water absorption amount of the clothes, the sweat also remains on the side of the skin, and as a result, the clothes are sticky to the skin. For the latter, as the amount of sweat increases, the amount of unevenness becomes insufficient, and the clothes become sticky to the skin. To avoid this, increasing the amount of unevenness increases the moisture content of the woven or knitted fabric, which in turn increases the heat retention. There is a problem that the uneven convex part rubs against the skin and is uncomfortable, and the convex part is easily caught on the skin and is prone to pilling.

このような理由から、湿潤により織編物表面に凹凸が可逆的に発現することにより、ベトツキを低減することができる織編物の提案が望まれている。
なお、本発明者らは、先に特願2003−404302号において、吸水自己伸張糸を用いて湿潤により凹凸が発現する織編物を提案している。
For these reasons, there has been a demand for a knitted or knitted fabric proposal that can reduce stickiness by reversibly expressing irregularities on the surface of the woven or knitted fabric when wet.
In addition, the present inventors have previously proposed a woven or knitted fabric in which unevenness is developed by wetting using a water-absorbing self-stretching yarn in Japanese Patent Application No. 2003-404302.

特開平9−316757号公報JP-A-9-316757 特開平10−131000号公報Japanese Patent Laid-Open No. 10-131000 特開平9−324313号公報JP-A-9-324313

本発明は上記の背景に鑑みなされたものであり、その目的は、湿潤時に捲縮率が低下する捲縮繊維と、非捲縮または湿潤時に捲縮率が実質的に変化しない捲縮を有する繊維とを含む織編物であって、湿潤により織編物表面に凹凸が可逆的に発現し、ベトツキを低減することができる織編物およびその製造方法および繊維製品を提供することにある。   The present invention has been made in view of the above-described background, and the object thereof is to provide a crimped fiber whose crimp rate is reduced when wet and a crimp whose crimp rate is not substantially changed when non-crimped or wet. An object of the present invention is to provide a woven or knitted fabric containing fibers, a knitted or knitted fabric that can reversibly exhibit unevenness on the surface of the woven or knitted fabric when wet, and reduce stickiness, a manufacturing method thereof, and a fiber product.

本発明者らは上記の課題を達成するため鋭意検討した結果、湿潤時に捲縮率が低下する捲縮繊維と、非捲縮または湿潤時に捲縮率が実質的に変化しない捲縮を有する繊維とを用いて、特定の糸配列で織編物を織編成することにより、所望の織編物が得られることを見出し、さらに鋭意検討を重ねることにより本発明を完成するに至った。   As a result of intensive studies to achieve the above-mentioned problems, the present inventors have found that the crimped fiber has a crimp rate that decreases when wet, and a fiber that has a crimp that does not change substantially when crimped or non-crimped. And knitting the knitted and knitted fabrics with a specific yarn arrangement, it was found that a desired woven and knitted fabric can be obtained, and the present invention was completed by further intensive studies.

かくして、本発明によれば「湿潤時に捲縮率が低下する捲縮繊維Aと、非捲縮または湿潤時に捲縮率が実質的に変化しない捲縮を有する繊維Bとを含む織編物であって、該織編物の乾燥時における厚さ(TD)および湿潤時における厚さ(TW)から下記式により算出した凹凸変化率が5%以上であることを特徴とする湿潤により凹凸が発現する織編物。」が提供される。
凹凸変化率(%)=((TW−TD)/TD)×100
ただし、乾燥時における厚さとは、織編物を温度20℃、湿度65%RH環境下に24時間放置した後の状態での織編物の厚さであり、一方、湿潤時における厚さとは、織編物に水を1cc滴下した後、1分経過後の当該滴下個所の最大厚さである。 However, the thickness at the time of drying is the thickness of the woven / knitted product after being left in a temperature of 20 ° C. and a humidity of 65% RH for 24 hours, while the thickness at the time of wetting is the weaving. It is the maximum thickness of the dropping portion 1 minute after dropping 1 cc of water on the knitted fabric. Thus, according to the present invention, “a knitted or knitted fabric comprising a crimped fiber A that has a reduced crimp rate when wet and a fiber B that has non-crimped or crimped fibers that do not substantially change the crimp rate when wet. The weaving that exhibits unevenness by wetting, characterized in that the unevenness change rate calculated by the following formula is 5% or more from the thickness (TD) at the time of drying and the thickness (TW) at the time of wetting of the woven or knitted fabric Knitted. "Is provided. Thus, according to the present invention, “a knitted or knitted fabric comprising a crimped fiber A that has a reduced crimp rate when wet and a fiber B that has non-crimped or crimped fibers that do not substantially change the crimp rate when wet. The weaving that exhibits unevenness by wetting, characterized in that the unevenness change rate calculated by the following formula is 5% or more from the thickness (TD) at the time of drying and the thickness (TW) at the time of wetting of the woven or knitted fabric Knitted. "Is provided.
Concavity and convexity change rate (%) = ((TW−TD) / TD) × 100 Concavity and convexity change rate (%) = ((TW−TD) / TD) × 100
However, the thickness at the time of drying is the thickness of the woven or knitted fabric after leaving the woven or knitted fabric for 24 hours in a temperature of 20 ° C. and a humidity of 65% RH. This is the maximum thickness of the dripping portion after 1 minute has elapsed after 1 cc of water is dropped on the knitted fabric. However, the thickness at the time of drying is the thickness of the woven or knitted fabric after leaving the woven or knitted fabric for 24 hours in a temperature of 20 ° C. and a humidity of 65% RH. This is the maximum thickness of the dripping portion after 1 minute has elapsed after 1 cc of water is dropped on the knitted fabric.

ここで、捲縮繊維Aが、ポリエステル成分とポリアミド成分とがサイドバイサイド型に接合された複合繊維であって、潜在捲縮性能が発現してなる捲縮構造を有する捲縮繊維であることが好ましい。その際、ポリエステル成分が、5−ナトリウムスルホイソフタル酸が2.0〜4.5モル%共重合された変性ポリエチレンテレフタレートであることが好ましい。かかる捲縮繊維Aは、無撚糸、または300T/m以下の撚りが施された甘撚り糸であることが好ましい。一方の繊維Bはポリエステル繊維であることが好ましい。   Here, it is preferable that the crimped fiber A is a composite fiber in which a polyester component and a polyamide component are joined in a side-by-side manner, and a crimped fiber having a crimped structure in which latent crimping performance is expressed. . In that case, it is preferable that the polyester component is a modified polyethylene terephthalate copolymerized with 2.0 to 4.5 mol% of 5-sodium sulfoisophthalic acid. The crimped fiber A is preferably a non-twisted yarn or a sweet twisted yarn subjected to a twist of 300 T / m or less. One fiber B is preferably a polyester fiber.

本発明の織編物の実施態様としては、(1)前記捲縮繊維Aのみで構成される部分(Y部)と、前記繊維Bのみで構成される部分(Z部)とを有し、前記Z部が経方向および/または緯方向に連続的につながっている織編物、(2)前記繊維Bのみで構成される部分(Z部)と、前記捲縮繊維Aと前記繊維Bとで構成される部分(X部)とを有し、前記Z部が経方向および/または緯方向に連続的につながっている織編物、(3)前記捲縮繊維Aと前記繊維Bとで構成される部分(X部)と、前記捲縮繊維Aのみで構成される部分(Y部)とを有し、該織編物において前記X部が経方向および/または緯方向に連続的につながっている織編物、(4)前記捲縮繊維Aと前記繊維Bとで構成される部分(X部)と、前記捲縮繊維Aのみで構成される部分(Y部)と、前記繊維Bのみで構成される部分(Z部)とを有し、前記Z部が経方向および/または緯方向に連続的につながっている織編物、(5)織編物が2層以上からなる多層織編物であり、前記捲縮繊維Aと繊維Bとで構成される層と、前記繊維Bのみで構成される層を有し、かつ前者の層と後者の層とが部分的に結接している織編物、(6)織編物が2層以上からなる多層織編物であり、前記捲縮繊維Aと繊維Bとで構成される層と、前記捲縮繊維Aのみで構成される層を有し、かつ前者の層と後者の層とが部分的に結接している織編物、(7)織編物が2層以上からなる多層織編物であり、前記捲縮繊維Aのみで構成される層と、前記繊維Bのみで構成される層を有し、かつ前者の層と後者の層とが部分的に結接している織編物、などが例示される。   As an embodiment of the woven or knitted fabric of the present invention, it has (1) a part (Y part) composed only of the crimped fibers A and a part (Z part) composed only of the fibers B, Woven knitted fabric in which the Z portion is continuously connected in the warp direction and / or the weft direction, (2) a portion (Z portion) composed only of the fiber B, and the crimped fiber A and the fiber B A woven or knitted fabric in which the Z portion is continuously connected in the warp direction and / or the weft direction, and (3) the crimped fiber A and the fiber B. A woven fabric having a portion (X portion) and a portion (Y portion) composed only of the crimped fibers A, and in the woven or knitted fabric, the X portion is continuously connected in the warp direction and / or the weft direction. A knitted fabric, (4) a portion (X portion) composed of the crimped fiber A and the fiber B, and the crimped fiber A alone A woven or knitted fabric having a portion (Y portion) and a portion (Z portion) composed only of the fibers B, wherein the Z portion is continuously connected in the warp direction and / or the weft direction, (5) The woven or knitted fabric is a multilayer woven or knitted fabric comprising two or more layers, and has a layer composed of the crimped fibers A and fibers B, a layer composed of only the fibers B, and the former layer and the latter A woven or knitted fabric in which the layers are partially connected, (6) a multilayer woven or knitted fabric in which the woven or knitted fabric is composed of two or more layers, a layer composed of the crimped fibers A and fibers B, and the crimped fibers A woven or knitted fabric having a layer composed only of A and in which the former layer and the latter layer are partially joined; and (7) a multilayer woven or knitted fabric comprising two or more woven or knitted fabrics, It has a layer composed only of the compressed fibers A and a layer composed only of the fibers B, and the former layer and the latter layer are partially connected. Knitting, and the like are exemplified.

本発明の織編物は、「固有粘度が0.30〜0.43のポリエステルと、固有粘度が1.0〜1.4のポリアミドとを用いてサイドバイサイド型に溶融紡糸して得られた複合繊維と、非捲縮または湿潤時に捲縮率が実質的に変化しない捲縮を有する繊維Bとを用いて織編物を織編成した後、該織編物に熱処理を施すことにより前記複合繊維の潜在捲縮を発現させることを特徴とする、湿潤により凹凸が発現する織編物の製造方法。」により得ることができる。   The woven or knitted fabric of the present invention is “a composite fiber obtained by melt spinning into a side-by-side type using a polyester having an intrinsic viscosity of 0.30 to 0.43 and a polyamide having an intrinsic viscosity of 1.0 to 1.4. And woven / knitted fabric using fibers B having crimps that do not substantially change the crimp rate when not crimped or wet, and then subjecting the woven / knitted fabric to a heat treatment by subjecting the fabric to heat treatment. A method for producing a knitted or knitted fabric in which unevenness is developed by wetting, characterized by expressing shrinkage.

その際、織編成に用いる複合繊維が、沸水処理後において、下記(1)〜(3)の要件を同時に満足することが好ましい。
(1)乾燥時における複合繊維の捲縮率DCが1.5〜13%の範囲内である。
(2)湿潤時における複合繊維の捲縮率HCが0.5〜7.0%の範囲内である。
(3)前記捲縮率DCと捲縮率HCとの差(DC−HC)が0.5%以上である。
ただし、乾燥時とは、試料を温度20℃、湿度65%RH環境下に24時間放置した後の状態であり、一方、湿潤時とは、試料を温度20℃の水中に2時間浸漬した直後の状態である。 However, the dry state is a state after the sample is left in an environment of 20 ° C. and a humidity of 65% RH for 24 hours, while the wet state is a state immediately after the sample is immersed in water at a temperature of 20 ° C. for 2 hours. It is in the state of. At that time, it is preferable that the composite fiber used for knitting satisfies the following requirements (1) to (3) simultaneously after the boiling water treatment. At that time, it is preferred that the composite fiber used for knitting satisfies the following requirements (1) to (3) simultaneously after the boiling water treatment.
(1) The crimp rate DC of the composite fiber at the time of drying is in the range of 1.5 to 13%. (1) The crimp rate DC of the composite fiber at the time of drying is in the range of 1.5 to 13%.
(2) The crimp ratio HC of the composite fiber when wet is in the range of 0.5 to 7.0%. (2) The crimp ratio HC of the composite fiber when wet is in the range of 0.5 to 7.0%.
(3) The difference (DC-HC) between the crimp rate DC and the crimp rate HC is 0.5% or more. (3) The difference (DC-HC) between the crimp rate DC and the crimp rate HC is 0.5% or more.
However, when dry, the sample is left in a 20 ° C., 65% RH environment for 24 hours, while when wet, the sample is immediately immersed in water at 20 ° C. for 2 hours. It is a state. However, when dry, the sample is left in a 20 ° C., 65% RH environment for 24 hours, while when wet, the sample is immediately immersed in water at 20 ° C. for 2 hours. It is a state.

本発明の織編物は、アウター用衣料、スポーツ用衣料、インナー用衣料などの繊維製品に好適に使用することができる。   The woven or knitted fabric of the present invention can be suitably used for textile products such as outer clothing, sports clothing, and inner clothing.

本発明によれば、湿潤時に捲縮率が低下する捲縮繊維と、非捲縮または湿潤時に捲縮率が実質的に変化しない捲縮を有する繊維とを含む織編物であって、湿潤により織編物表面に凹凸が可逆的に発現し、ベトツキを低減することができる織編物およびその製造方法および繊維製品が得られる。   According to the present invention, there is provided a woven or knitted fabric including a crimped fiber whose crimp rate decreases when wet and a fiber having a crimp that does not substantially change crimp rate when not crimped or wet. Unevenness is reversibly developed on the surface of the woven or knitted fabric, and a woven or knitted fabric that can reduce stickiness, a manufacturing method thereof, and a fiber product are obtained.

以下、本発明の実施の形態について詳細に説明する。
本発明の織編物は、湿潤時に捲縮率が低下する捲縮繊維A(以下、単に「捲縮繊維A」ということもある。)と、非捲縮または湿潤時に捲縮率が実質的に変化しない捲縮を有する繊維B(以下、単に「繊維B」ということもある。)とで構成される必要があり、織編物が発汗や降雨により湿潤されると、織編物に含まれる捲縮繊維Aだけが捲縮量が低下することにより伸長する。その結果、湿潤時に織編物表面に凹凸が可逆的に発現する。
Hereinafter, embodiments of the present invention will be described in detail.
The woven or knitted fabric of the present invention has a crimped fiber A (hereinafter, also simply referred to as “crimped fiber A”) that has a reduced crimp rate when wet, and a substantially reduced crimp rate when not crimped or wet. It is necessary to be composed of fibers B having crimps that do not change (hereinafter, also simply referred to as “fibers B”). Only the fiber A is stretched due to a decrease in the amount of crimp. As a result, irregularities appear reversibly on the surface of the woven or knitted fabric when wet. The woven or knitted fabric of the present invention has a crimped fiber A (hereinafter, also simply referred to as “crimped fiber A”) that has a reduced crimp rate when wet, and a substantially reduced crimp rate when not crimped or wet. Only the fiber A is stretched due to a decrease in the amount of crimp. As a result, irregularities appear. Is necessary to be composed of fibers B having crimps that do not change (hereinafter, also simply referred to as “fibers B”). reversibly on the surface of the woven or knitted fabric when wet.

その際、該織編物の乾燥時における厚さ(TD)および湿潤時における厚さ(TW)から下記式により凹凸変化率を算出したとき、該凹凸変化率が5%以上(好ましくは10〜100%)であることが肝要である。かかる凹凸変化率の差が5%未満であると、湿潤時にベトツキを十分に低減することができず好ましくない。
凹凸変化率(%)=((TW−TD)/TD)×100
ただし、乾燥時における厚さとは、織編物を温度20℃、湿度65%RH環境下に24時間放置した後の状態での厚さであり、一方、湿潤時における厚さとは、織編物にスポイトで水を1cc滴下し1分経過後の、当該滴下個所の最大厚さであり、これらの厚さは、例えば超高精密レーザー変位計(キーエンス社製、モデルLC−2400)を用いて測定することができる。 However, the thickness at the time of drying is the thickness after the woven and knitted fabric is left in a temperature of 20 ° C. and a humidity of 65% RH for 24 hours, while the thickness at the time of wetting is a dropper on the woven and knitted fabric. 1 cc of water is dropped in 1 cc, and the maximum thickness of the dropped part is one minute later. These thicknesses are measured using, for example, an ultra-high precision laser displacement meter (Keyence, model LC-2400). be able to. At that time, when the unevenness change rate is calculated from the thickness (TD) when the woven or knitted fabric is dried and the thickness (TW) when wet, the unevenness change rate is 5% or more (preferably 10 to 100). %) Is important. If the difference in the unevenness change rate is less than 5%, the stickiness cannot be sufficiently reduced when wet, which is not preferable. At that time, when the unevenness change rate is calculated from the thickness (TD) when the woven or knitted fabric is dried and the thickness (TW) when wet, the unevenness change rate is 5% or more (preferably 10 to 100). %) Is important. If the difference in the unevenness change rate is less than 5%, the stickiness cannot be sufficiently reduced when wet, which is not preferred.
Concavity and convexity change rate (%) = ((TW−TD) / TD) × 100 Concavity and convexity change rate (%) = ((TW−TD) / TD) × 100
However, the thickness at the time of drying is the thickness after leaving the woven or knitted fabric for 24 hours in an environment of temperature 20 ° C. and humidity 65% RH, while the thickness at the time of wetting is a dropper on the woven or knitted fabric. 1 cc of water and the maximum thickness of the dropping portion after one minute has elapsed. These thicknesses are measured using, for example, an ultra-high precision laser displacement meter (Model LC-2400, manufactured by Keyence Corporation). be able to. However, the thickness at the time of drying is the thickness after leaving the woven or knitted fabric for 24 hours in an environment of temperature 20 ° C. and humidity 65% ​​RH, while the thickness at the time of wetting is a dropper on the woven or knitted fabric. 1 cc of water and the maximum thickness of the dropping portion after one minute has elapsed. These thicknesses are measured using, for example, an ultra-high precision laser displacement meter (Model LC-2400, manufactured by Keyence Corporation) ). Be able to.

前記の捲縮繊維Aは、乾燥時における捲縮率DCと湿潤時における捲縮率HCとの差(DC−HC)が0.5%以上であることが肝要であり、かかる捲縮繊維としては、ポリエステル成分とポリアミド成分とがサイドバイサイド型に接合された複合繊維であって、潜在捲縮性能が発現してなる捲縮構造を有する捲縮繊維であることが好ましい。   It is important that the crimped fiber A has a difference (DC-HC) between the crimp rate DC during drying and the crimp rate HC during wetness of 0.5% or more. Is a composite fiber in which a polyester component and a polyamide component are bonded in a side-by-side manner, and is preferably a crimped fiber having a crimped structure in which latent crimping performance is expressed.

ここで、ポリエステル成分としては、他方のポリアミド成分との接着性の点で、スルホン酸のアルカリまたはアルカリ土類金属、ホスホニウム塩を有し、かつエステル形成能を有する官能基を1個以上もつ化合物が共重合された、ポリエチレンテレフタレート、ポリプロピレンテレフタレート、ポリブチレンタレフタレート等の変性ポリエステルが好ましく例示される。なかでも、汎用性およびポリマーコストの点で、前記化合物が共重合された、変性ポリエチレンテレフタレートが特に好ましい。その際、共重合成分としては、5−ナトリウムスルホイソフタル酸およびそのエステル誘導体、5−ホスホニウムイソフタル酸およびそのエステル誘導体、p−ヒドロキシベンゼンスルホン酸ナトリウムなどがあげられる。なかでも、5−ナトリウムスルホイソフタル酸が好ましい。共重合量としては、2.0〜4.5モル%の範囲が好ましい。該共重合量が2.0モル%よりも小さいと、優れた捲縮性能が得られるものの、ポリアミド成分とポリエステル成分との接合界面にて剥離が生じるおそれがある。逆に、該共重合量が4.5モル%よりも大きいと、延伸熱処理の際、ポリエステル成分の結晶化が進みにくくなるため、延伸熱処理温度を上げる必要があり、その結果、糸切れが多発するおそれがある。   Here, as the polyester component, a compound having one or more functional groups having an alkali or alkaline earth metal or phosphonium salt of sulfonic acid and having an ester forming ability in terms of adhesiveness to the other polyamide component. Preferred examples thereof include modified polyesters such as polyethylene terephthalate, polypropylene terephthalate, and polybutylene terephthalate. Among these, modified polyethylene terephthalate obtained by copolymerizing the above compound is particularly preferable from the viewpoint of versatility and polymer cost. In this case, examples of the copolymer component include 5-sodium sulfoisophthalic acid and ester derivatives thereof, 5-phosphonium isophthalic acid and ester derivatives thereof, and sodium p-hydroxybenzenesulfonate. Of these, 5-sodium sulfoisophthalic acid is preferable. As a copolymerization amount, the range of 2.0-4.5 mol% is preferable. When the copolymerization amount is less than 2.0 mol%, although excellent crimping performance can be obtained, there is a possibility that peeling occurs at the bonding interface between the polyamide component and the polyester component. On the other hand, if the copolymerization amount is greater than 4.5 mol%, the crystallization of the polyester component becomes difficult to proceed during the stretching heat treatment, and thus it is necessary to raise the stretching heat treatment temperature. There is a risk.

一方のポリアミド成分としては、主鎖中にアミド結合を有するものであれば特に限定されるものではなく、例えば、ナイロン−4、ナイロン−6、ナイロン−66、ナイロン−46、ナイロン−12などがあげられる。なかでも、汎用性、ポリマーコスト、製糸安定性の点で、ナイロン−6およびナイロン−66が好適である。   One polyamide component is not particularly limited as long as it has an amide bond in the main chain, and examples thereof include nylon-4, nylon-6, nylon-66, nylon-46, nylon-12, and the like. can give. Among these, nylon-6 and nylon-66 are preferable in terms of versatility, polymer cost, and yarn production stability.

なお、前記ポリエステル成分およびポリアミド成分には、公知の添加剤、例えば、顔料、顔料、艶消し剤、防汚剤、蛍光増白剤、難燃剤、安定剤、帯電防止剤、耐光剤、紫外線吸収剤等が含まれていてもよい。   The polyester component and the polyamide component include known additives such as pigments, pigments, matting agents, antifouling agents, fluorescent whitening agents, flame retardants, stabilizers, antistatic agents, light-resistant agents, and ultraviolet absorption agents. An agent or the like may be included.

前記のサイドバイサイド型に接合された複合繊維は、任意の断面形状および複合形態をとることができる。図1は、本発明で使用することのできるサイドバイサイド型に接合された複合繊維の拡大横断面図を例示したものである。通常は(イ)、(ロ)のような横断面を有する複合繊維が用いられるが、(ハ)のような偏心芯鞘型であってもよい。さらには、三角形や四角形、その断面内に中空部を有するものであってもよい。なかでも、図1の(イ)のような丸型が好ましい。両成分の複合比は任意に選定することができるが、通常、ポリエステル成分とポリアミド成分の重量比で30:70〜70:30(より好ましくは40:60〜60:40)の範囲内であることが好ましい。   The composite fiber joined to the side-by-side type can take any cross-sectional shape and composite form. FIG. 1 illustrates an enlarged cross-sectional view of a composite fiber bonded to a side-by-side type that can be used in the present invention. Usually, a composite fiber having a cross section like (A) or (B) is used, but an eccentric core-sheath type like (C) may be used. Furthermore, you may have a hollow part in the triangle, the square, and the cross section. Of these, the round shape as shown in FIG. Although the composite ratio of both components can be selected arbitrarily, it is usually in the range of 30:70 to 70:30 (more preferably 40:60 to 60:40) by weight ratio of the polyester component and the polyamide component. It is preferable.

前記捲縮繊維Aの単糸繊度、単糸数(フィラメント数)としては特に限定されないが、単糸繊度1〜10dtex(より好ましくは2〜5dtex)、単糸数10〜200本(より好ましくは20〜100本)の範囲内であることが好ましい。   Although the single yarn fineness and the number of single yarns (number of filaments) of the crimped fiber A are not particularly limited, the single yarn fineness is 1 to 10 dtex (more preferably 2 to 5 dtex), and the number of single yarns is 10 to 200 (more preferably 20 to 20). 100) is preferable.

このように異種ポリマーがサイドバイサイド型に接合された複合繊維は、通常、潜在捲縮性能を有しており、後記のように、染色加工等で熱処理を受けると潜在捲縮性能が発現する。捲縮構造としては、ポリアミド成分が捲縮の内側に位置し、ポリエステル成分が捲縮の外側に位置していることが好ましい。かかる捲縮構造を有する複合繊維は、後記の製造方法により容易に得ることができる。捲縮繊維Aがこのような捲縮構造を有していると、湿潤時に、内側のポリアミド成分が膨潤、伸張し、外側のポリエステル成分はほとんど長さ変化を起こさないため、捲縮率が低下する(捲縮繊維Aの見かけの長さが長くなる。)。一方、乾燥時には、内側のポリアミド成分が収縮し、外側のポリエステル成分はほとんど長さ変化を起こさないため、捲縮率が増大する(捲縮繊維Aの見かけの長さが短くなる。)。   Thus, a composite fiber in which different types of polymers are joined in a side-by-side manner usually has a latent crimping performance, and the latent crimping performance is manifested when subjected to heat treatment such as dyeing as described later. As the crimped structure, it is preferable that the polyamide component is located inside the crimp and the polyester component is located outside the crimp. The composite fiber having such a crimped structure can be easily obtained by the production method described later. When the crimped fiber A has such a crimped structure, the inner polyamide component swells and stretches when wet, and the outer polyester component hardly changes in length, so that the crimp rate decreases. (The apparent length of the crimped fiber A becomes longer.) On the other hand, at the time of drying, the inner polyamide component shrinks and the outer polyester component hardly changes in length, so that the crimp rate increases (the apparent length of the crimped fiber A becomes shorter).

前記の捲縮繊維Aは、湿潤時に、容易に捲縮率が低下する上で、無撚糸、または300T/m以下の撚りが施された甘撚り糸であることが好ましい。特に、無撚糸であることが好ましい。強撚糸のように、強い撚りが付与されていると、湿潤時に捲縮率が低下しにくく好ましくない。なお、交絡数が20〜60ケ/m程度となるようにインターレース空気加工および/または通常の仮撚捲縮加工が施されていてもさしつかえない。   The crimped fiber A is preferably a non-twisted yarn or a sweet twisted yarn subjected to a twist of 300 T / m or less in order to easily reduce the crimp rate when wet. In particular, non-twisted yarn is preferable. When a strong twist is imparted like a strong twisted yarn, the crimping rate is difficult to decrease when wet, which is not preferable. It should be noted that interlaced air processing and / or normal false twist crimping may be performed so that the number of entanglements is about 20 to 60 pieces / m.

一方、非捲縮または湿潤時に捲縮率が実質的に変化しない捲縮を有する繊維Bとしては、非捲縮繊維または湿潤時に捲縮率が実質的に変化しない捲縮を有する繊維であれば、特に限定されない。ここで、「湿潤時に捲縮率が実質的に変化しない」とは、乾燥時における捲縮率DCと湿潤時における捲縮率HCとの差(DC−HC)が0.5%未満のものをいう。   On the other hand, as the fiber B having a crimp that does not substantially change the crimp rate when not crimped or wet, the fiber B may be a non-crimped fiber or a fiber having a crimp that does not substantially change when wet. There is no particular limitation. Here, “the crimping rate does not change substantially when wet” means that the difference (DC−HC) between the crimping rate DC during drying and the crimping rate HC when wet is less than 0.5%. Say.

かかる繊維Bとしては、ポリエチレンタレフタレート、ポリトリメチレンテレフタレート、ポリブチレンテレフタレート等のポリエステル、ナイロン6、ナイロン66等のポリアミド、ポリエチレン、ポリプロピレン等のポリオレフィン、アクリル、パラ型もしくはメタ型アラミド、およびそれらの変性合成繊維、天然繊維、再生繊維、半合成繊維、ポリウレタン系弾性糸、ポリエーテルエステル系弾性糸など衣料に適した繊維であれば自由に選択できる。なかでも、湿潤時の寸法安定性や、前記捲縮繊維Aとの相性(混繊性、交編・交織性、染色性)の点で、ポリエチレンテレフタレート、ポリプロピレンテレフタレート、ポリブチレンタレフタレートや、これらに前記共重合成分が共重合された変性ポリエステルからなるポリエステル繊維が好適である。また、かかる繊維Bの単糸繊度、単糸数(フィラメント数)としては特に限定されないが、織編物の吸水性を高め、湿潤時に凹凸を性能よく発現させる上で、単糸繊度0.1〜5dtex(より好ましくは0.5〜2dtex)、単糸数20〜200本(より好ましくは30〜100本)の範囲内であることが好ましい。なお、交絡数が20〜60ケ/m程度となるようにインターレース空気加工および/または通常の仮撚捲縮加工が施されていてもさしつかえない。   Examples of such fibers B include polyesters such as polyethylene terephthalate, polytrimethylene terephthalate, polybutylene terephthalate, polyamides such as nylon 6 and nylon 66, polyolefins such as polyethylene and polypropylene, acrylic, para-type or meta-type aramids, and the like. Any fiber suitable for clothing such as modified synthetic fiber, natural fiber, regenerated fiber, semi-synthetic fiber, polyurethane elastic yarn, polyether ester elastic yarn can be freely selected. Among these, polyethylene terephthalate, polypropylene terephthalate, polybutylene terephthalate, and the like in terms of dimensional stability when wet and compatibility with the crimped fiber A (mixing property, knitting / weaving property, dyeability) Polyester fibers made of a modified polyester obtained by copolymerizing the above copolymerizable components are preferred. In addition, the single yarn fineness and the number of single yarns (number of filaments) of the fiber B are not particularly limited, but the single yarn fineness is 0.1 to 5 dtex in order to increase the water absorption of the woven or knitted fabric and to express unevenness when wet. (More preferably 0.5 to 2 dtex) and the number of single yarns 20 to 200 (more preferably 30 to 100) are preferable. It should be noted that interlaced air processing and / or normal false twist crimping may be performed so that the number of entanglements is about 20 to 60 pieces / m.

本発明の織編物には、前記の湿潤時に捲縮率が低下する捲縮繊維Aと、非捲縮または湿潤時に捲縮率が実質的に変化しない捲縮を有する繊維Bとが含まれる。   The woven or knitted fabric of the present invention includes the above-described crimped fiber A having a reduced crimp rate when wet and fiber B having a crimp that does not substantially change the crimp rate when not crimped or wet.

織編物の構造としては、その織編組織、層数は特に限定されるものではない。例えば、平織、綾織、サテンなどの織組織や、天竺、スムース、フライス、鹿の子、そえ糸編、デンビー、ハーフなどの編組織が好適に例示されるが、これらに限定されるものではない。層数も単層でもよいし、2層以上の多層であってもよい。   As the structure of the woven or knitted fabric, the woven or knitted structure and the number of layers are not particularly limited. For example, woven structures such as plain weave, twill weave, and satin, and knitted structures such as tenshi, smooth, milling, kanoko, knitting yarn, denby, and half are preferably exemplified, but not limited thereto. The number of layers may be a single layer or a multilayer of two or more layers.

ここで、湿潤により織編物に凹凸が発現する理由は、織編物が、湿潤により寸法変化(拡張)する部分と湿潤しても寸法変化しないか寸法変化量が小さい部分とからなり、前者が湿潤により寸法変化するのに対し、後者が寸法変化しないか寸法変化量が小さく、湿潤時に前者が凸部として凹凸が発現するためであり、湿潤により凹凸を効果的に発現させるためには、前記捲縮繊維Aと繊維Bとを適切に配置させることが重要である。   Here, the reason why unevenness appears in the woven or knitted fabric by wetting is that the woven or knitted fabric is composed of a portion that undergoes dimensional change (expansion) due to wetting and a portion that does not undergo dimensional change even when moistened or has a small amount of dimensional change. This is because the latter does not change in size or the amount of dimensional change is small, and the former develops unevenness as a convex portion when wet. It is important to arrange the contracted fibers A and B appropriately.

本発明の織編物中に含まれる前記捲縮繊維Aと繊維Bの配置の好ましい実施態様について下記に説明する。 A preferred embodiment of the arrangement of the crimped fibers A and fibers B contained in the woven or knitted fabric of the present invention will be described below.

まず実施態様(1)において、前記捲縮繊維Aのみで構成される部分(Y部)と、前記繊維Bのみで構成される部分(Z部)とを有し、前記Z部が経方向および/または緯方向に連続的につながっている。 First, in the embodiment (1), it has a part (Y part) composed only of the crimped fiber A and a part (Z part) composed only of the fiber B, and the Z part is / Or connected continuously in the weft direction.

かかる構造では、Y部がZ部に比べ湿潤時に寸法変化しやすく、かつ織編物中においてZ部が経方向および/または緯方向に連続的につながっているため織編物全体の寸法変化が抑えられ、その結果、Y部が凸部となって凹凸が発現する。   In such a structure, the dimensional change of the entire woven or knitted fabric is suppressed because the Y portion is more susceptible to dimensional change when wet than the Z portion, and the Z portion is continuously connected in the warp direction and / or the weft direction in the woven or knitted fabric. As a result, the Y portion becomes a convex portion, and irregularities appear.

その際、Z部が経方向および/または緯方向に連続的につながるパターンとしては、特に限定されないが、例えば、ボーダーパターン、ストライプパターン、格子パターン、図6に模式的に示すダイヤ柄パターン、市松格子柄パターンなどが例示される。   At this time, the pattern in which the Z portion is continuously connected in the longitudinal direction and / or the weft direction is not particularly limited. For example, a border pattern, a stripe pattern, a lattice pattern, a diagram pattern pattern schematically shown in FIG. A lattice pattern or the like is exemplified.

前記Z部とY部との面積比は特に限定されないが、織編物の寸法安定性の点で(Z部:Y部)で10:90〜90:10(より好ましくは、20:80〜80:20)の範囲内であることが好ましい。   The area ratio between the Z part and the Y part is not particularly limited, but is 10:90 to 90:10 (more preferably 20:80 to 80) in terms of dimensional stability of the woven or knitted fabric (Z part: Y part). : Within 20).

前記Y部同士は織編物中において、Z部により断絶している。その際、Y部1ヶ所の面積は特に限定されないが、0.01〜4.0cm(より好ましくは、0.1〜1.0cm)の範囲内であることが、発汗時に衣服と肌とのベトツキを防ぐ上で好ましい。一方Z部の線巾としては、0.5〜100mmの範囲内であることが好ましい。 The Y parts are disconnected by the Z part in the woven or knitted fabric. At that time, the area of one Y portion is not particularly limited, but it is within the range of 0.01 to 4.0 cm 2 (more preferably 0.1 to 1.0 cm 2 ), so that clothes and skin are sweated. It is preferable in preventing stickiness. On the other hand, the line width of the Z portion is preferably in the range of 0.5 to 100 mm.

次に実施態様(2)において、前記繊維Bのみで構成される部分(Z部)と、前記捲縮繊維Aと前記繊維Bとで構成される部分(X部)とを有し、前記Z部が経方向および/または緯方向に連続的につながっている。   Next, in embodiment (2), it has a part (Z part) composed only of the fiber B, and a part (X part) composed of the crimped fiber A and the fiber B, and the Z The parts are continuously connected in the warp direction and / or the weft direction.

かかる構造では、X部がZ部に比べ湿潤時に寸法変化しやすく、かつ織編物中においてZ部が経方向および/または緯方向に連続的につながっているため織編物全体の寸法変化が抑えられ、その結果、X部が凸部となって凹凸が発現する。その際、Z部がつながるパターンや、両者の面積比は実施態様(1)と同程度でよい。   In such a structure, the dimensional change of the entire woven or knitted fabric can be suppressed because the X portion is more susceptible to dimensional change when wet than the Z portion, and the Z portion is continuously connected in the warp direction and / or the weft direction in the woven or knitted fabric. As a result, the X portion becomes a convex portion, and irregularities appear. In that case, the pattern which connects Z part, and the area ratio of both may be comparable as embodiment (1).

次に実施態様(3)において、前記捲縮繊維Aと前記繊維Bとで構成される部分(X部)と、前記捲縮繊維Aのみで構成される部分(Y部)とを有し、該織編物において前記X部が経方向および/または緯方向に連続的につながっている。   Next, in the embodiment (3), it has a portion (X portion) composed of the crimped fiber A and the fiber B, and a portion (Y portion) composed only of the crimped fiber A, In the woven or knitted fabric, the portion X is continuously connected in the warp direction and / or the weft direction.

かかる構造では、Y部がX部に比べ湿潤時に寸法変化しやすく、かつ織編物中においてX部が経方向および/または緯方向に連続的につながっているため織編物全体の寸法変化が抑えられ、その結果、Y部が凸部となって凹凸が発現する。その際、X部がつながるパターンや、両者の面積比は実施態様(1)と同程度でよい。   In such a structure, the dimensional change of the entire woven or knitted fabric can be suppressed because the Y portion is more susceptible to dimensional change when wet than the X portion, and the X portion is continuously connected in the warp direction and / or the weft direction in the woven or knitted fabric. As a result, the Y portion becomes a convex portion, and irregularities appear. In that case, the pattern which X part connects, and the area ratio of both may be comparable as embodiment (1).

次に実施態様(4)において、前記織編物が、前記捲縮繊維Aと前記繊維Bとで構成される部分(X部)と、前記捲縮繊維Aのみで構成される部分(Y部)と、前記繊維Bのみで構成される部分(Z部)とを有し、前記Z部が経方向および/または緯方向に連続的につながっている。   Next, in the embodiment (4), the woven or knitted fabric is a portion (X portion) composed of the crimped fiber A and the fiber B, and a portion (Y portion) composed only of the crimped fiber A. And a portion (Z portion) composed only of the fiber B, and the Z portion is continuously connected in the warp direction and / or the weft direction.

かかる構造では、Z部が他の部(X部またはY部)に比べ湿潤時に寸法変化し難く、かつ織編物中においてZ部が経方向および/または緯方向に連続的につながっているため織編物全体の寸法変化が抑えられ、その結果、他の部(X部またはY部)が凸部となって凹凸が発現する。その際、Z部がつながるパターンや、Z部と他の部との面積比は実施態様(1)と同程度でよい。   In such a structure, the Z portion is less susceptible to dimensional changes when wet compared to other portions (X portion or Y portion), and the Z portion is continuously connected in the warp and / or weft directions in the woven or knitted fabric. The dimensional change of the entire knitted fabric is suppressed, and as a result, the other part (X part or Y part) becomes a convex part and unevenness appears. In that case, the pattern which connects Z part, and the area ratio of Z part and other parts may be comparable as embodiment (1).

次に実施態様(5)において、織編物が2層以上からなる多層織編物であり、前記捲縮繊維Aと繊維Bとで構成される層(X層)と、前記繊維Bのみで構成される層(Z層)を有し、かつ前者の層と後者の層とが部分的に結接している。
かかる構造では、X層はてZ層に比べ湿潤による寸法変化が大きく、X層の中でZ層と結接されていない部分が凸部となり凹凸が発現する。
Next, in the embodiment (5), the woven or knitted fabric is a multilayer woven or knitted fabric composed of two or more layers, and is composed of a layer (X layer) composed of the crimped fibers A and fibers B and the fibers B alone. The former layer and the latter layer are partially connected.
In such a structure, the X layer has a larger dimensional change due to wetting than the Z layer, and the portion of the X layer that is not connected to the Z layer becomes a convex portion, and unevenness appears. In such a structure, the X layer has a larger dimensional change due to wetting than the Z layer, and the portion of the X layer that is not connected to the Z layer becomes a convex portion, and unevenness appears.

次に実施態様(6)において、前記織編物が2層以上からなる多層織編物であり、前記捲縮繊維Aと繊維Bとで構成される層(X層)と、前記捲縮繊維Aのみで構成される層(Y層)を有し、かつX層とY層とが部分的に結接している。
かかる構造では、Y層はX層に比べて湿潤による寸法変化が大きく、Y層の中でX層と結接されていない部分が凸部となり凹凸が発現する。 In such a structure, the Y layer has a larger dimensional change due to wetting than the X layer, and the portion of the Y layer that is not connected to the X layer becomes a convex portion and unevenness appears. Next, in the embodiment (6), the woven or knitted fabric is a multilayer woven or knitted fabric composed of two or more layers, a layer (X layer) composed of the crimped fibers A and fibers B, and the crimped fibers A only. And the X layer and the Y layer are partially connected to each other. Next, in the embodiment (6), the woven or knitted fabric is a multilayer woven or knitted fabric composed of two or more layers, a layer (X layer) composed of the crimped fibers A and fibers B, and the crimped fibers A only . And the X layer and the Y layer are partially connected to each other.
In such a structure, the Y layer has a larger dimensional change due to wetting than the X layer, and a portion of the Y layer that is not connected to the X layer becomes a convex portion, and irregularities appear. In such a structure, the Y layer has a larger dimensional change due to wetting than the X layer, and a portion of the Y layer that is not connected to the X layer becomes a convex portion, and irregularities appear.

次に実施態様(7)において、前記織編物が2層以上からなる多層織編物であり、前記捲縮繊維Aのみで構成される層(Y層)と、前記繊維Bのみ(Z層)で構成される層を有し、Y層とZ層とが部分的に結接している。
かかる構造において、Y層はZ層に比べて湿潤による寸法変化が大きくなり、Y層のなかでZ層と結接されていない部分が凸部となり凹凸が発現する。
Next, in the embodiment (7), the woven or knitted fabric is a multilayer woven or knitted fabric composed of two or more layers, and includes a layer composed only of the crimped fibers A (Y layer) and only the fibers B (Z layer). The Y layer and the Z layer are partially connected.
In such a structure, the dimensional change due to wetting of the Y layer is larger than that of the Z layer, and the portion of the Y layer that is not connected to the Z layer becomes a convex portion, and irregularities appear. In such a structure, the dimensional change due to wetting of the Y layer is larger than that of the Z layer, and the portion of the Y layer that is not connected to the Z layer becomes a convex portion, and irregularities appear.

本発明の織編物は、例えば下記の製造方法によって容易に得ることができる。
まず、固有粘度が0.30〜0.43(オルソクロロフェノールを溶媒として35℃で測定)のポリエステルと、固有粘度が1.0〜1.4(m−クレゾールを溶媒として30℃で測定)のポリアミドとを用いてサイドバイサイド型に溶融複合紡糸する。 First, polyester having an intrinsic viscosity of 0.30 to 0.43 (measured at 35 ° C. using orthochlorophenol as a solvent) and an intrinsic viscosity of 1.0 to 1.4 (measured at 30 ° C. using m-cresol as a solvent). In a side-by-side type, melt composite spinning is performed using the polyamide of. その際、ポリエステル成分の固有粘度が0.43以下であることが特に重要である。 At that time, it is particularly important that the intrinsic viscosity of the polyester component is 0.43 or less. ポリエステル成分の固有粘度が0.43よりも大きいと、ポリエステル成分の粘度が増大するため、複合繊維の物性がポリエステル単独糸に近くなり、本発明が目的とする織編物が得られず好ましくない。 If the intrinsic viscosity of the polyester component is larger than 0.43, the viscosity of the polyester component increases, so that the physical properties of the composite fiber become close to those of the polyester single yarn, and the woven or knitted fabric intended by the present invention cannot be obtained, which is not preferable. 逆に、ポリエステル成分の固有粘度が0.30よりも小さいと、溶融粘度が小さくなりすぎて製糸性が低下するとともに毛羽発生が多くなり、品質および生産性が低下するおそれがある。 On the contrary, when the intrinsic viscosity of the polyester component is smaller than 0.30, the melt viscosity becomes too small, the yarn-making property is lowered, and fluffing is increased, which may lower the quality and productivity. The woven or knitted fabric of the present invention can be easily obtained, for example, by the following production method. The woven or knitted fabric of the present invention can be easily obtained, for example, by the following production method.
First, a polyester having an intrinsic viscosity of 0.30 to 0.43 (measured at 35 ° C. using orthochlorophenol as a solvent) and an intrinsic viscosity of 1.0 to 1.4 (measured at 30 ° C. using m-cresol as a solvent) The composite spinning is performed into a side-by-side type using a polyamide. At that time, it is particularly important that the intrinsic viscosity of the polyester component is 0.43 or less. If the intrinsic viscosity of the polyester component is larger than 0.43, the viscosity of the polyester component increases, so that the physical properties of the composite fiber are close to those of a single polyester yarn, and the woven or knitted fabric intended by the present invention cannot be obtained. On the other hand, if the intrinsic viscosity of the polyester component is less than 0.30, the melt viscosity becomes too small and the yarn-making property is lowered and the generation of fluff is increased, which may reduce the quality and productivity. First, a polyester having an intrinsic viscosity of 0.30 to 0.43 (measured at 35 ° C. using orthochlorophenol as a solvent) and an intrinsic viscosity of 1.0 to 1.4 (measured at 30 ° C. using m-cresol as a solvent) The composite Spinning is performed into a side-by-side type using a polyamide. At that time, it is particularly important that the intrinsic viscosity of the polyester component is 0.43 or less. If the intrinsic viscosity of the polyester component is larger than 0.43, the On the other hand, if the intrinsic viscosity. On the other hand, if the intrinsic viscosity. On the other hand, if the intrinsic viscosity, and the woven or knitted fabric intended by the present invention cannot be obtained. of the polyester component is less than 0.30, the melt viscosity becomes too small and the yarn-making property is lowered and the generation of fluff is increased, which may reduce the quality and productivity.

溶融紡糸の際に用いる紡糸口金としては、特開2000−144518号公報の図1のような、高粘度側と低粘度側の吐出孔を分離し、かつ高粘度側吐出線速度を小さくした(吐出断面積を大きくした)紡糸口金が好適である。そして、高粘度側吐出孔に溶融ポリエステルを通過させ、低粘度側吐出孔に溶融ポリアミドを通過させ冷却固化させることが好ましい。その際、ポリエステル成分とポリアミド成分との重量比は、前述のとおり、30:70〜70:30(より好ましくは40:60〜60:40)の範囲内であることが好ましい。   As the spinneret used for melt spinning, as shown in FIG. 1 of JP-A-2000-144518, the high-viscosity side and low-viscosity side discharge holes are separated and the high-viscosity side discharge linear velocity is reduced ( A spinneret having a large discharge cross-sectional area is preferred. Then, it is preferable that the molten polyester is passed through the high viscosity side discharge holes and the molten polyamide is passed through the low viscosity side discharge holes to be cooled and solidified. In that case, it is preferable that the weight ratio of a polyester component and a polyamide component exists in the range of 30: 70-70: 30 (more preferably 40: 60-60: 40) as above-mentioned.

また、溶融複合紡糸した後、一旦巻き取った後に延伸する別延方式を採用してもよいし、一旦巻き取らずに延伸熱処理を行う直延方式を採用してもよい。その際、紡糸・延伸条件としては、通常の条件でよい。例えば、直延方式の場合、1000〜3500m/分程度で紡糸した後、連続して100〜150℃の温度で延伸し巻き取る。延伸倍率は最終時に得られる複合繊維の切断伸度が10〜60%(好ましくは20〜45%)、切断強度が3.0〜4.7cN/dtex程度となるよう、適宜選定すればよい。   Further, after the melt composite spinning, a separate stretching method in which the film is once wound and then stretched may be employed, or a direct stretching method in which a stretching heat treatment is performed without winding once may be employed. At that time, the spinning and drawing conditions may be normal conditions. For example, in the case of the direct extension method, after spinning at about 1000 to 3500 m / min, the film is continuously drawn and wound at a temperature of 100 to 150 ° C. The draw ratio may be appropriately selected so that the cut elongation of the composite fiber obtained at the end is 10 to 60% (preferably 20 to 45%) and the cut strength is about 3.0 to 4.7 cN / dtex.

ここで、前記の複合繊維が、下記の要件(1)〜(3)を同時に満足することが好ましい。
(1)乾燥時における複合繊維の捲縮率DCが1.5〜13%(好ましくは2〜6%)の範囲内である。
(2)湿潤時における複合繊維の捲縮率HCが、0.5〜7.0%(好ましくは1〜3%)の範囲内である。
(3)前記捲縮率DCと捲縮率HCとの差(DC−HC)が0.5%以上(好ましくは1〜5%)である。
ただし、乾燥時とは、試料を温度20℃、湿度65%RH環境下に24時間放置した後の状態であり、一方、湿潤時とは、試料を温度20℃の水中に2時間浸漬した直後の状態であり、乾燥時における捲縮率DCおよび湿潤時における捲縮率HCは、下記の方法で測定した値を用いることとする。 However, the dry state is a state after the sample is left in a temperature of 20 ° C. and a humidity of 65% RH for 24 hours, while the wet state is a state immediately after the sample is immersed in water at a temperature of 20 ° C. for 2 hours. For the crimp rate DC at the time of drying and the crimp rate HC at the time of wetting, the values ​​measured by the following methods shall be used. Here, it is preferable that the composite fiber satisfies the following requirements (1) to (3) at the same time. Here, it is preferred that the composite fiber satisfies the following requirements (1) to (3) at the same time.
(1) The crimp ratio DC of the composite fiber at the time of drying is in the range of 1.5 to 13% (preferably 2 to 6%). (1) The crimp ratio DC of the composite fiber at the time of drying is in the range of 1.5 to 13% (preferably 2 to 6%).
(2) The crimp ratio HC of the composite fiber when wet is in the range of 0.5 to 7.0% (preferably 1 to 3%). (2) The crimp ratio HC of the composite fiber when wet is in the range of 0.5 to 7.0% (preferably 1 to 3%).
(3) The difference (DC-HC) between the crimp rate DC and the crimp rate HC is 0.5% or more (preferably 1 to 5%). (3) The difference (DC-HC) between the crimp rate DC and the crimp rate HC is 0.5% or more (preferably 1 to 5%).
However, when dry, the sample is left in a 20 ° C., 65% RH environment for 24 hours, while when wet, the sample is immediately immersed in water at 20 ° C. for 2 hours. In this state, the crimping rate DC at the time of drying and the crimping rate HC at the time of wetness are values measured by the following methods. However, when dry, the sample is left in a 20 ° C., 65% RH environment for 24 hours, while when wet, the sample is immediately immersed in water at 20 ° C. for 2 hours. In this state, the crimping rate DC at the time of drying and the crimping rate HC at the time of wetness are values ​​measured by the following methods.

まず、枠周:1.125mの巻き返し枠を用いて、荷重:49/50mN×9×トータルテックス(0.1gf×トータルデニール)をかけて一定の速度で巻き返し、巻き数:10回の小綛をつくり、該小綛をねじり2重の輪状にしたものに49/2500mN×20×9×トータルテックス(2mg×20×トータルデニール)の初荷重をかけたまま沸水中に入れて30分間処理し、該沸水処理の後100℃の乾燥機にて30分間乾燥し、その後さらに初荷重をかけたまま160℃の乾熱中に入れ5分間処理した。該乾熱処理の後に初荷重を除き、温度20℃、湿度65%RH環境下に24時間以上放置した後、前記の初荷重および98/50mN×20×9×トータルテックス(0.2gf×20×トータルデニール)の重荷重を負荷し、綛長:L0を測定し、直ちに重荷重のみを取り除き、除重1分後の綛長:L1を測定した。さらにこの綛を初荷重をかけたまま温度20℃の水中に2時間浸漬した後取り出し、ろ紙(大きさ30cm×30cm)にて0.69mN/cm(70mgf/cm)の圧力を5秒間かけて軽く水を拭き取った後、初荷重および重荷重を負荷し綛長:L0’を測定し、直ちに重荷重のみを取り除き、除重1分後の綛長:L1’を測定する。以上の測定数値から下記の計算式にて、乾燥時の捲縮率DC(%)、湿潤時の捲縮率HC(%)、乾燥時と湿潤時の捲縮率差(DC−HC)(%)を算出した。なお、n数は5で平均値を求めた。
乾燥時の捲縮率DC(%)=((L0−L1)/L0)×100 Crisp rate DC (%) at the time of drying = ((L0-L1) / L0) × 100
湿潤時の捲縮率HC(%)=(L0'−L1')/L0')×100 First, using a rewind frame with a frame circumference of 1.125 m, the load was applied at 49/50 mN × 9 × total tex (0.1 gf × total denier) at a constant speed, and the number of turns was 10 times. , Twisted into a double ring, and put it in boiling water for 30 minutes while applying an initial load of 49/2500 mN x 20 x 9 x total tex (2 mg x 20 x total denier) After the boiling water treatment, it was dried in a dryer at 100 ° C. for 30 minutes, and then placed in a dry heat of 160 ° C. for 5 minutes with the initial load applied. After the dry heat treatment, the initial load was removed and the sample was allowed to stand for 24 hours or more in a temperature of 20 ° C. and a humidity of 65% RH. Then, the initial load and 98/50 mN × 20 × 9 × total tex (0.2 gf × 20 × A heavy load of (total denier) was applied, the heel length: L0 was measured, only the heavy load was immediately removed, and the heel length: L1 after 1 minute of dewetting was measured Wet crimp rate HC (%) = (L0'-L1') / L0') × 100 First, using a rewind frame with a frame circumference of 1.125 m, the load was applied at 49/50 mN × 9 × total tex (0.1 gf x total denier) at a constant speed, and the number of turns was 10 times., Twisted into a double ring, and put it in boiling water for 30 minutes while applying an initial load of 49/2500 mN x 20 x 9 x total tex (2 mg x 20 x total denier) After the boiling water treatment, it was dried in a dryer at 100 ° C. for 30 minutes, and then placed in a dry heat of 160 ° C. for 5 minutes with the initial load applied. After the dry heat treatment, the initial load was removed and the sample was allowed to stand for 24 hours or more in a temperature of 20 ° C. and a humidity of 65% RH. Then, the initial load and 98/50 mN × 20 × 9 × total tex (0.2 gf × 20 × A heavy load of (total denier) was applied, the heel length: L0 was measured, only the heavy load was immediately removed, and the heel length : L1 after 1 minute of dewetting was measured . Further, the soot was immersed in water at a temperature of 20 ° C. for 2 hours with the initial load applied, and then taken out. The filter paper (size 30 cm × 30 cm) was applied with a pressure of 0.69 mN / cm 2 (70 mgf / cm 2 ) for 5 seconds. After lightly wiping off the water, an initial load and a heavy load are applied, and the heel length: L0 ′ is measured. Only the heavy load is removed immediately, and the heel length: L1 ′ after 1 minute of dewetting is measured. From the above measurement values, the following formulas are used to calculate the crimp rate DC (%) at the time of drying, the crimp rate HC (%) at the time of wetness, and the crimp rate difference between the dry and wet conditions (DC-HC) ( %) Was calculated. In addition, the number of n was 5, and the average value was obtained. Further, the soot was immersed in water at a temperature of 20 ° C. for 2 hours with the initial load applied, and then taken out. The filter paper (size 30 cm x 30 cm) was applied with a pressure of 0.69 mN / cm 2 (70 mgf / cm 2 ) for 5 seconds. After lightly wiping off the water, an initial load and a heavy load are applied, and the heel length: L0 ′ is measured. Only the heavy load is removed immediately, and the heel length: L1 ′ after 1 minute of dewetting is measured. From the above measurement values, the following formulas are used to calculate the crimp rate DC (%) at the time of drying, the crimp rate HC (%) at the time of wetness, and the crimp rate difference between the dry and wet conditions (DC-HC) (%) Was calculated. In addition, the number of n was 5, and the average value was obtained.
Crimp rate during drying DC (%) = ((L0−L1) / L0) × 100 Crimp rate during drying DC (%) = ((L0−L1) / L0) × 100
Crimp rate HC (%) when wet = (L0′−L1 ′) / L0 ′) × 100 Crimp rate HC (%) when wet = (L0 ′ − L1 ′) / L0 ′) × 100

ここで、乾燥時における複合繊維の捲縮率DCが1.5%よりも小さいと、湿潤時の捲縮変化量が小さくなるため、凹凸が発現しないおそれがある。逆に、乾燥時における複合繊維の捲縮率DCが13%よりも大きい場合は、捲縮が強すぎて湿潤時に捲縮が変化しにくく、やはり凹凸が発現しないおそれがある。また、乾燥時における複合繊維の捲縮率HCとの差(DC−HC)が0.5%より小さい場合も、湿潤時に凹凸が発現しないおそれがある。   Here, if the crimp ratio DC of the composite fiber at the time of drying is less than 1.5%, the amount of change in crimp at the time of wetting becomes small, so that there is a possibility that unevenness will not appear. On the other hand, when the crimp ratio DC of the composite fiber at the time of drying is larger than 13%, the crimp is too strong, and the crimp does not easily change when wet, and the unevenness may not be developed. In addition, when the difference (DC-HC) from the crimp ratio HC of the composite fiber during drying is smaller than 0.5%, there is a possibility that unevenness does not appear when wet.

次いで、前記複合繊維と、非捲縮または湿潤時に捲縮率が実質的に変化しない捲縮を有する繊維Bとを同時に用いて織編物を織編成した後、染色加工を施し、染色加工の際の熱により前記複合繊維の潜在捲縮を発現させる(捲縮繊維とする)。
ここで、織編物を織編成する際、織編組織は特に限定されず、前述のものを適宜選定することができる。
Next, a woven or knitted fabric is knitted using the composite fiber and a fiber B having a crimp that does not substantially change the crimp rate when not crimped or wet, and then a dyeing process is performed. The latent crimp of the composite fiber is expressed by the heat of (a crimped fiber).
Here, when weaving the knitted or knitted fabric, the woven or knitted structure is not particularly limited, and the above-mentioned ones can be appropriately selected. Here, when weaving the knitted or knitted fabric, the woven or knitted structure is not particularly limited, and the above-mentioned ones can be appropriately selected.

前記染色加工の温度としては100〜140℃(より好ましくは110〜135℃)、時間としてはトップ温度のキープ時間が5〜40分の範囲内であることが好ましい。かかる条件で、織編物に染色加工を施すことにより、前記複合繊維は、ポリエステル成分とポリアミド成分との熱収縮差により捲縮を発現する。その際、ポリエステル成分とポリアミド成分として、前述のポリマーを選定することにより、ポリアミド成分が捲縮の内側に位置する捲縮構造となる。   The dyeing temperature is preferably 100 to 140 ° C. (more preferably 110 to 135 ° C.), and the time is preferably the top temperature keeping time within a range of 5 to 40 minutes. By applying a dyeing process to the woven or knitted fabric under such conditions, the composite fiber develops crimp due to a difference in thermal shrinkage between the polyester component and the polyamide component. At that time, by selecting the above-mentioned polymer as the polyester component and the polyamide component, a crimped structure is obtained in which the polyamide component is located inside the crimp.

染色加工が施された織編物には、通常、乾熱ファイナルセットが施される。その際、乾熱ファイナルセットの温度としては120〜200℃(より好ましくは140〜180℃)、時間としては1〜3分の範囲内であることが好ましい。かかる、乾熱ファイナルセットの温度が120℃よりも低いと、染色加工時に発生したシワが残り易く、また、仕上がり製品の寸法安定性が悪くなるおそれがある。逆に、該乾熱ファイナルセットの温度が200℃よりも高いと、染色加工の際に発現した複合繊維の捲縮が低下したり、繊維が硬化し生地の風合いが硬くなるおそれがある。   A dry heat final set is usually applied to the woven or knitted fabric subjected to the dyeing process. At that time, the temperature of the dry heat final set is preferably 120 to 200 ° C. (more preferably 140 to 180 ° C.), and the time is preferably within a range of 1 to 3 minutes. When the temperature of the dry heat final set is lower than 120 ° C., wrinkles generated during the dyeing process are likely to remain, and the dimensional stability of the finished product may be deteriorated. On the other hand, if the temperature of the dry heat final set is higher than 200 ° C., the crimp of the composite fiber developed during the dyeing process may be reduced, or the fiber may be cured and the texture of the fabric may be hardened.

かくして得られた織編物において、織編物が発汗や降雨により湿潤されると、捲縮繊維Aは自身の捲縮量が低下することにより伸長する。一方、繊維Bは湿潤されても伸長しないため、織編物の寸法が固定される。その結果、湿潤により捲縮繊維Aが含まれる部分が凸部となり凹凸が発現する。かかる凹凸の発現により、湿潤時のベトツキを低減することができる。かかるベトツキ低減の目安として、ベトツキ力が980mN(100grf)以下であることが好ましい。ここで、ベトツキ力とは、特開平9−195172号公報の図1に示されているように、直径8cmの金属ローラーに、長さ15cm、巾6cmの布帛をのせ、一端をストレス・ストレイン・ゲージに取り付け、布帛のもう一端に重さ98mN(10grf)のクリップを取り付ける。次いで金属ローラーを7cm/secの表面速度で回転させながら注射器で金属ローラーと布帛との間に0.5cmを注入し、このとき布帛にかかる張力をストレス・ストレイン・ゲージで測定し、その最大値をベトツキ力とする。 In the woven or knitted fabric thus obtained, when the woven or knitted fabric is moistened by sweating or rain, the crimped fiber A is stretched due to a decrease in the amount of crimps. On the other hand, since the fibers B do not stretch even when wet, the dimensions of the woven or knitted fabric are fixed. As a result, the portion including the crimped fiber A becomes a convex portion due to the wetness, and irregularities are developed. Such unevenness can reduce stickiness when wet. As a measure for reducing such stickiness, the stickiness force is preferably 980 mN (100 grf) or less. Here, as shown in FIG. 1 of Japanese Patent Laid-Open No. 9-195172, the sticking force refers to a metal roller having a diameter of 8 cm and a fabric having a length of 15 cm and a width of 6 cm. Attach to the gauge and attach a clip of 98 mN (10 grf) to the other end of the fabric. Then, while rotating the metal roller at a surface speed of 7 cm / sec, 0.5 cm 3 was injected between the metal roller and the fabric with a syringe, and the tension applied to the fabric was measured with a stress strain gauge. The value is the stickiness.

なお、本発明の織編物には、常法の吸水加工、撥水加工、起毛加工、紫外線遮蔽あるいは抗菌剤、消臭剤、防虫剤、蓄光剤、再帰反射剤、マイナスイオン発生剤等の機能を付与する各種加工を付加適用してもよい。   The woven or knitted fabric of the present invention has functions such as conventional water absorption processing, water repellent processing, brushed processing, ultraviolet shielding or antibacterial agent, deodorant, insect repellent, phosphorescent agent, retroreflective agent, negative ion generator, etc. Various processes for imparting may be additionally applied.

以下、実施例をあげて本発明を詳細に説明するが、本発明はこれらによって何ら限定されるものではない。なお、実施例中の各物性は下記の方法により測定したものである。
<ポリエステルの固有粘度>オルソクロロフェノールを溶媒として使用し温度35℃で測定した。
<ポリアミドの固有粘度>m−クレゾールを溶媒として使用し温度30℃で測定した。
<破断強度、破断伸度>繊維試料を、雰囲気温度25℃、湿度60%RHの恒温恒湿に保たれた部屋に一昼夜放置した後、サンプル長さ100mmで(株)島津製作所製引張試験機テンシロンにセットし、200mm/minの速度で伸張し、破断時の強度(cN/dtex)、伸度(%)を測定した。 <Breaking strength, breaking elongation> After leaving the fiber sample in a room kept at an atmospheric temperature of 25 ° C. and a humidity of 60% RH for a whole day and night, a tensile tester manufactured by Shimadzu Corporation with a sample length of 100 mm. It was set in Tensilon, stretched at a speed of 200 mm / min, and the strength (cN / dtex) and elongation (%) at break were measured. なお、n数5でその平均値を求めた。 The average value was calculated with n number 5.
<沸水収縮率>JIS L 1013−1998、7.15で規定される方法により、沸水収縮率(%)を測定した。 <Boiling water shrinkage rate> The boiling water shrinkage rate (%) was measured by the method specified in JIS L 1013-1998, 7.15. なお、n数3でその平均値を求めた。 The average value was calculated with n number 3. EXAMPLES Hereinafter, although an Example is given and this invention is demonstrated in detail, this invention is not limited at all by these. In addition, each physical property in an Example is measured with the following method. In addition, each physical property in an Example is measured with the following method. Inclusion, although an Example is given and this invention is demonstrated in detail, this invention is not limited at all by these.
<Intrinsic Viscosity of Polyester> Measured at a temperature of 35 ° C. using orthochlorophenol as a solvent. <Intrinsic Viscosity of Polyester> Measured at a temperature of 35 ° C. using orthochlorophenol as a solvent.
<Intrinsic viscosity of polyamide> The viscosity was measured at 30 ° C. using m-cresol as a solvent. <Intrinsic viscosity of polyamide> The viscosity was measured at 30 ° C. using m-cresol as a solvent.
<Breaking strength, breaking elongation> After leaving the fiber sample in a room maintained at a constant temperature and humidity of 25 ° C. and a humidity of 60% RH for a day and night, a tensile tester manufactured by Shimadzu Corporation with a sample length of 100 mm It was set on Tensilon, stretched at a speed of 200 mm / min, and the strength at break (cN / dtex) and elongation (%) were measured. In addition, the average value was calculated | required by n number 5. <Breaking strength, breaking elongation> After leaving the fiber sample in a room maintained at a constant temperature and humidity of 25 ° C. and a humidity of 60% RH for a day and night, a tensile tester manufactured by Shimadzu Corporation with a sample length of 100 mm It was set on Tensilon, stretched at a speed of 200 mm / min, and the strength at break (cN / dtex) and elongation (%) were measured. In addition, the average value was calculated | required by n number 5.
<Boiling water shrinkage> Boiling water shrinkage (%) was measured by the method defined in JIS L 1013-1998, 7.15. In addition, the average value was calculated | required by n number 3. <Boiling water shrinkage> Boiling water shrinkage (%) was measured by the method defined in JIS L 1013-1998, 7.15. In addition, the average value was calculated | required by n number 3.

<複合繊維の捲縮率>枠周:1.125mの巻き返し枠を用いて、荷重:49/50mN×9×トータルテックス(0.1gf×トータルデニール)をかけて一定の速度で巻き返し、巻き数:10回の小綛をつくり、該小綛をねじり2重の輪状にしたものに49/2500mN×20×9×トータルテックス(2mg×20×トータルデニール)の初荷重をかけたまま沸水中に入れて30分間処理し、該沸水処理の後100℃の乾燥機にて30分間乾燥し、その後さらに初荷重をかけたまま160℃の乾熱中に入れ5分間処理した。該乾熱処理の後に初荷重を除き、温度20℃、湿度65%RH環境下に24時間以上放置した後、前記の初荷重および98/50mN×20×9×トータルテックス(0.2gf×20×トータルデニール)の重荷重を負荷し、綛長:L0を測定し、直ちに重荷重のみを取り除き、除重1分後の綛長:L1を測定した。さらにこの綛を初荷重をかけたまま温度20℃の水中に2時間浸漬した後取り出し、ろ紙にて軽く水を拭き取った後、初荷重および重荷重を負荷し綛長:L0’を測定し、直ちに重荷重のみを取り除き、除重1分後の綛長:L1’を測定する。以上の測定数値から下記の計算式にて、乾燥時の捲縮率DC(%)、湿潤時の捲縮率HC(%)、乾燥時と湿潤時の捲縮率差(DC−HC)(%)を算出した。なお、n数は5で平均値を求めた。
乾燥時の捲縮率DC(%)=((L0−L1)/L0)×100 Crisp rate DC (%) at the time of drying = ((L0-L1) / L0) × 100
湿潤時の捲縮率HC(%)=(L0'−L1')/L0')×100 <Crimping rate of composite fiber> Frame circumference: Using a rewind frame of 1.125 m, the load was 49/50 mN × 9 × total tex (0.1 gf × total denier) and wound at a constant speed. : Make 10 gavel and twist it into a double ring shape and put it in boiling water with initial load of 49 / 2500mN x 20 x 9 x total tex (2mg x 20 x total denier) It was treated for 30 minutes, and after the boiling water treatment, it was dried in a dryer at 100 ° C. for 30 minutes, and then further placed in a dry heat of 160 ° C. for 5 minutes with the initial load applied. After the dry heat treatment, the initial load was removed and the sample was allowed to stand for 24 hours or more in a temperature of 20 ° C. and a humidity of 65% RH. Then, the initial load and 98/50 mN × 20 × 9 × total tex (0.2 gf × 20 × A heavy load of (total denier) was applied, the heel length: L0 was measured, only the heavy load was immediately removed, and the heel length: L1 after 1 minute of Wet crimp rate HC (%) = (L0'-L1') / L0') × 100 <Crimping rate of composite fiber> Frame circumference: Using a rewind frame of 1.125 m, the load was 49/50 mN × 9 x total tex (0.1 gf x total denier) and wound at a constant speed.: Make 10 gavel and twist it into a double ring shape and put it in boiling water with initial load of 49 / 2500mN x 20 x 9 x total tex (2mg x 20 x total denier) It was treated for 30 minutes, and after the boiling water treatment, it was dried in a dryer at 100 ° C. for 30 minutes, and then further placed in a dry heat of 160 ° C. for 5 minutes with the initial load applied. After the dry heat treatment, the initial load was removed and the sample was allowed to stand for 24 hours or more in a temperature of 20 ° C. and a humidity of 65% RH. Then, the initial load and 98/50 mN × 20 × 9 × total tex (0.2 gf × 20 × A heavy load of (total denier) was applied, the heel length: L0 was measured, only the heavy load was immediately removed, and the heel length: L1 after 1 minute of dewetting was measured. Furthermore, after this soot was immersed in water at a temperature of 20 ° C. for 2 hours with the initial load applied, it was taken out, and after lightly wiping off the water with a filter paper, the initial load and heavy load were applied, and the heel length: L0 ′ was measured. Immediately remove only the heavy load and measure the heel length L1 ′ after 1 minute of dewetting. From the above measurement values, the following formulas are used to calculate the crimp rate DC (%) at the time of drying, the crimp rate HC (%) at the time of wetness, and the crimp rate difference between the dry and wet conditions (DC-HC) ( %) Was calculated. In addition, the number of n was 5, and the average value was obtained. dewetting was measured. Further, after this soot was immersed in water at a temperature of 20 ° C. for 2 hours with the initial load applied, it was taken out, and after lightly wiping off the water with a filter paper, the initial load and heavy load were applied, and the heel length: L0 ′ was measured. Immediately remove only the heavy load and measure the heel length L1 ′ after 1 minute of dewetting. From the above measurement values, the following formulas are used to calculate the crimp rate DC (%) at the time of drying, the crimp rate HC (%) at the time of wetness, and the crimp rate difference between the dry and wet conditions (DC-HC) (%) Was calculated. In addition, the number of n was 5, and the average value was obtained.
Crimp rate during drying DC (%) = ((L0−L1) / L0) × 100 Crimp rate during drying DC (%) = ((L0−L1) / L0) × 100
Crimp rate HC (%) when wet = (L0′−L1 ′) / L0 ′) × 100 Crimp rate HC (%) when wet = (L0 ′ − L1 ′) / L0 ′) × 100

<ベトツキ力>特開平9−195172号公報の図1に示されているように、直径8cmの金属ローラーに、長さ15cm、巾6cmの布帛をのせ、一端をストレス・ストレイン・ゲージに取り付け、布帛のもう一端に重さ98mN(10grf)のクリップを取り付ける。次いで金属ローラーを7cm/secの表面速度で回転させながら注射器で金属ローラーと布帛との間に0.5cmを注入し、このとき布帛にかかる張力をストレス・ストレイン・ゲージで測定し、その最大値をベトツキ力とした。なお、n数は5としその平均値を求めた。 <Sticking force> As shown in FIG. 1 of JP-A-9-195172, a fabric of 15 cm in length and 6 cm in width is placed on a metal roller having a diameter of 8 cm, and one end is attached to a stress strain gauge. A clip with a weight of 98 mN (10 grf) is attached to the other end of the fabric. Then, while rotating the metal roller at a surface speed of 7 cm / sec, 0.5 cm 3 was injected between the metal roller and the fabric with a syringe, and the tension applied to the fabric was measured with a stress strain gauge. The value was defined as stickiness. In addition, n number was set to 5 and the average value was calculated | required.

<凹凸変化率>織編物を温度20℃、湿度65%RH環境下に24時間放置した後、該織編物から、30cm×30cmの小片を裁断する(n数=5)。そして、温度20℃、湿度65%RH環境下で、超高精密レーザー変位計(キーエンス社製、モデルLC−2400)を用いて、織編物の乾燥時における厚さ(TD)を測定した。次いで、該小片にスポイトで水を1cc滴下した後、1分経過後の当該滴下個所の最大厚さを、超高精密レーザー変位計(キーエンス社製、モデルLC−2400)を用いて測定し、湿潤時における厚さ(TW)とした。そして、下記式から凹凸変化率を算出した。なお、n数は5としその平均値を求めた。
凹凸変化率(%)=((TW−TD)/TD)×100 <Roughness change ratio> After leaving the woven or knitted fabric to stand in an environment of a temperature of 20 ° C. and a humidity of 65% RH for 24 hours, a small piece of 30 cm × 30 cm is cut from the woven or knitted fabric (n number = 5). And the thickness (TD) at the time of drying of a woven / knitted fabric was measured using the ultra high precision laser displacement meter (the Keyence company make, model LC-2400) in temperature 20 degreeC and humidity 65% RH environment. Then, after 1 cc of water was dropped onto the small piece with a dropper, the maximum thickness of the dropping portion after 1 minute was measured using an ultra-high precision laser displacement meter (Keyence Co., model LC-2400), The thickness when wet (TW) was used. And the uneven | corrugated change rate was computed from the following formula. In addition, n number was set to 5 and the average value was calculated | required. Roughness change ratio (%) = ((TW-TD) / TD) x 100 <Roughness change ratio> After leaving the woven or knitted fabric to stand in an environment of a temperature of 20 ° C. and a humidity of 65% RH For 24 hours, a small piece of 30 cm x 30 cm is cut from the woven or knitted fabric (n number = 5). And the thickness (TD) at the time of drying of a woven / knitted fabric was measured using the ultra high precision laser displacement meter (the Keyence company make, model LC-2400) in temperature 20 degreeC and humidity 65% ​​RH environment. Then, after 1 cc of water was dropped onto the small piece with a dropper, the maximum thickness of the dropping portion after 1 minute was measured using an ultra-high precision laser displacement meter (Keyence Co., model LC-2400), The thickness when wet (TW) was used. And the uneven | corrugated change rate was computed from the following formula. In addition, n number was set to 5 and the average value was calculated | required.
Concavity and convexity change rate (%) = ((TW−TD) / TD) × 100 Concavity and convexity change rate (%) = ((TW−TD) / TD) × 100

[実施例1]
固有粘度[η]が1.3のナイロン6と、固有粘度[η]が0.39で2.6モル%の5−ナトリウムスルフォイソフタル酸を共重合させた変性ポリエチレンテレフタレートとをそれぞれ270℃、290℃にて溶融し、特開2000−144518号公報の図1と同様の複合紡糸口金を用い、それぞれ12.7g/分の吐出量にて押し出し、図1(イ)の単糸横断面形状を有するサイドバイサイド型複合繊維を形成させ、冷却固化、油剤を付与した後、糸条を速度1000m/分、温度60℃の予熱ローラーにて予熱し、ついで、該予熱ローラーと、速度3050m/分、温度150℃に加熱された加熱ローラー間で延伸熱処理を行い、巻取り、84dtex/24filの複合繊維を得た。 Nylon 6 having an intrinsic viscosity [η] of 1.3 and modified polyethylene terephthalate having an intrinsic viscosity [η] of 0.39 and 2.6 mol% of 5-sodium sulfoisophthalic acid copolymerized at 270 ° C. , Melted at 290 ° C., extruded at a discharge rate of 12.7 g / min using the same composite spun cap as in FIG. 1 of JP-A-2000-144518, and cross-sectional cross section of the single yarn of FIG. 1 (a). After forming side-by-side type composite fibers having a shape, cooling and solidifying, and applying an oil agent, the threads are preheated with a preheating roller having a speed of 1000 m / min and a temperature of 60 ° C., and then the preheating roller and the speed of 3050 m / min. , Stretching heat treatment was performed between heating rollers heated to a temperature of 150 ° C., and the fibers were wound to obtain 84 dtex / 24 fil composite fibers. 該複合繊維において、破断強度3.4cN/dtex、破断伸度40%であった。 In the composite fiber, the breaking strength was 3.4 cN / dtex and the breaking elongation was 40%. また、該複合繊維に沸水処理を施して捲縮率を測定したところ、乾燥時の捲縮率DCが3.3%、湿潤時の捲縮率HCが1.6%、乾燥時の捲縮率DCと湿潤時の捲縮率HCとの差(DC−HC)が1.7%であった。 Further, when the composite fiber was subjected to boiling water treatment and the crimp rate was measured, the crimp rate DC at the time of drying was 3.3%, the crimp rate HC at the time of wetting was 1.6%, and the crimp rate at the time of drying was 1.6%. The difference (DC-HC) between the rate DC and the crimp rate HC when wet was 1.7%. [Example 1] [Example 1]
Nylon 6 having an intrinsic viscosity [η] of 1.3 and modified polyethylene terephthalate copolymerized with 2.6 mol% of 5-sodium sulfoisophthalic acid having an intrinsic viscosity [η] of 0.39 are each 270 ° C. The melt was melted at 290 ° C. and extruded at a discharge rate of 12.7 g / min using a composite spinneret similar to that shown in FIG. 1 of JP-A No. 2000-144518. After forming a side-by-side type composite fiber having a shape, cooling and solidifying and applying an oil agent, the yarn is preheated with a preheating roller at a speed of 1000 m / min and a temperature of 60 ° C., and then the preheating roller and a speed of 3050 m / min. Then, a drawing heat treatment was performed between heating rollers heated to a temperature of 150 ° C., and winding was performed to obtain 84 dtex / 24 fil composite fiber. The composite fiber had a breaking strength of 3.4 cN / dtex and a breaking elongation of 40%. Further, when the crimp rate was measured by performing boiling water t Nylon 6 having an intrinsic viscosity [η] of 1.3 and modified polyethylene terephthalate copolymerized with 2.6 mol% of 5-sodium sulfoisophthalic acid having an intrinsic viscosity [η] of 0.39 are each 270 ° C. The melt was melted at 290 ° C. and extruded at a discharge rate of 12.7 g / min using a composite spinneret similar to that shown in FIG. 1 of JP-A No. 2000-144518. After forming a side-by-side type composite fiber having a shape, cooling and solidifying and applying an oil agent, the yarn is preheated with a preheating roller at a speed of 1000 m / min and a temperature of 60 ° C., and then the preheating roller and a speed of 3050 m / min. Then, a drawing heat treatment was performed between heating coil heated to a temperature of 150 ° C., and winding was performed to obtain 84 dtex / 24 fil composite fiber. The composite fiber had a breaking strength of 3.4 cN / dtex and a breaking elongation of 40% . Further, when the crimp rate was measured by performing boiling water t reatment on the composite fiber, the crimp rate DC when dried was 3.3%, the crimp rate HC when wet was 1.6%, and the crimp rate when dried. The difference between the rate DC and the crimp rate HC when wet (DC-HC) was 1.7%. reatment on the composite fiber, the crimp rate DC when dried was 3.3%, the crimp rate HC when wet was 1.6%, and the crimp rate when dried. The difference between the rate DC and the crimp rate HC when wet (DC-HC) ) Was 1.7%.

次いで、前記の複合繊維(沸水処理されておらず、捲縮は発現していない。無撚糸)を用いて、28ゲージのダブル丸編機を使用して、前記の複合繊維と、沸水収縮率が8%の通常のポリエチレンテレフタレートマルチフィラメント糸条(繊維B)84dtex/72filとを図2に示す編組織で編物を編成した。   Next, using the above-described composite fiber (not treated with boiling water and not crimped. Untwisted yarn), using a 28-gauge double circular knitting machine, the composite fiber and the boiling water shrinkage rate A knitted fabric was knitted with a normal terephthalate multifilament yarn (fiber B) of 84% dtex / 72 fil of 8%.

そして、温度130℃、キープ時間15分で染色加工し、複合繊維の潜在捲縮性能を顕在化させ、捲縮繊維Aとした。その際、吸水加工剤(ポリエチレンテレフタレート−ポリエチレングリコール共重合体)を染液に対して2ml/lの割合にて、染色加工時に同浴処理を行うことにより、編物に吸水加工剤を付与した。次いで、該丸編物に、温度160℃、時間1分で乾熱ファイナルセットを施した。   And it dyed at a temperature of 130 ° C. and a keep time of 15 minutes, and the latent crimping performance of the composite fiber was made obvious to obtain a crimped fiber A. At that time, the water-absorbing processing agent (polyethylene terephthalate-polyethylene glycol copolymer) was applied to the knitted fabric at the rate of 2 ml / l, and the water-absorbing processing agent was imparted to the knitted fabric. The circular knitted fabric was then subjected to a dry heat final set at a temperature of 160 ° C. for 1 minute.

該編物において、厚み方向の断面は図3に示すように、一層(Z層)は繊維Bだけで構成され、他の層(Y層)は捲縮繊維Aだけで構成され、Z層とY層とは部分的に結接されていた。
Y層側からみた編地表面は、図4に示すようにY層とZ層とが格子状に結接されており、湿潤時は、この格子以外の結接されていない四角部が凸部となり凹凸が発現した。
かかる編物において、乾燥時と湿潤時の凹凸変化率が15%、ベトツキ力が784mN(80gf)と、湿潤時のベトツキが少なく満足なものであった。 In such a knitted fabric, the rate of change in unevenness between drying and wetting was 15%, and the stickiness was 784 mN (80 gf), which was satisfactory with less stickiness when wet. In the knitted fabric, the cross section in the thickness direction is, as shown in FIG. 3, one layer (Z layer) is composed only of fibers B, and the other layer (Y layer) is composed only of crimped fibers A. The layer was partially connected. In the knitted fabric, the cross section in the thickness direction is, as shown in FIG. 3, one layer (Z layer) is composed only of fibers B, and the other layer (Y layer) is composed only of crimped fibers A. The layer was partially connected.
As shown in FIG. 4, the knitted fabric surface viewed from the Y layer side has the Y layer and the Z layer connected in a lattice shape, and when wet, a square portion other than this lattice is not connected. As a result, irregularities appeared. As shown in FIG. 4, the knitted fabric surface viewed from the Y layer side has the Y layer and the Z layer connected in a lattice shape, and when wet, a square portion other than this lattice is not connected. As a result, irregularities appeared.
In such a knitted fabric, the unevenness change rate during drying and wetting was 15%, and the tackiness was 784 mN (80 gf), which was satisfactory with little tackiness during wetting. In such a knitted fabric, the unevenness change rate during drying and wetting was 15%, and the tackiness was 784 mN (80 gf), which was satisfactory with little tackiness during wetting.

[実施例2]
28ゲージのトリコット編機を使用して、バック筬に実施例1で用いたものと同じ複合繊維をフルセットし、ミドル筬に実施例1で用いたものと同じポリエチレンテレフタレートマルチフィラメント糸条(繊維B)を2in10outでセットし、フロント筬に実施例1で用いたものと同じポリエチレンテレフタレートマルチフィラメント糸条(繊維B)を10out2inにてセットし、バック10−12、ミドル10−12−23−34−45−43−32−21、フロント45−43−32−21−10−12−23−34の編組織、機上コース数60コース/2.54cmの編条件にてトリコット編物を編成した。 Using a 28-gauge tricot knitting machine, the back reed is fully set with the same composite fibers as used in Example 1, and the middle reed is made of the same polyethylene terephthalate multifilament yarn (fiber) as that used in Example 1. B) was set at 2in10out, and the same polyethylene terephthalate multifilament thread (fiber B) as that used in Example 1 was set at 10out2in on the front reed, back 10-12, middle 10-12-23-34. A tricot knitted fabric was knitted under the knitting structure of 455-43-32-21, front 45-43-32-21-10-12-23-34, and the number of on-board courses of 60 courses / 2.54 cm. 次いで、この編地を実施例1と同様に染色仕上げした。 Next, this knitted fabric was dyed and finished in the same manner as in Example 1. [Example 2] [Example 2]
Using a 28-gauge tricot knitting machine, fully set the same composite fiber as used in Example 1 on the back heel, and the same polyethylene terephthalate multifilament yarn (fiber) as used in Example 1 on the middle heel B) is set at 2 in 10 out, and the same polyethylene terephthalate multifilament yarn (fiber B) as used in Example 1 is set at 10 out 2 in on the front heel, back 10-12, middle 10-12-23-34 A tricot knitted fabric was knitted under the knitting conditions of −45−43−32-21, front 45−43−32−21−10−12−23−34, and on-machine course number of 60 courses / 2.54 cm. Next, this knitted fabric was dyed and finished in the same manner as in Example 1. Using a 28-gauge tricot knitting machine, fully set the same composite fiber as used in Example 1 on the back heel, and the same polyethylene terephthalate multifilament yarn (fiber) as used in Example 1 on the middle heel B) is set at 2 in 10 out, and the same polyethylene terephthalate multifilament yarn (fiber B) as used in Example 1 is set at 10 out 2 in on the front heel, back 10-12, middle 10-12-23-34 A tricot knitted fabric was knitted under the knitting conditions of −45−43−32-21, front 45−43−32−21−10−12−23−34, and on-machine course number of 60 courses / 2.54 cm. Next, this knitted fabric was dyed and finished in the same manner as in Example 1.

該編物において、厚み方向の断面は、図5に示すように、捲縮繊維Aのみから構成される部分(Y部)と、捲縮繊維Aと繊維Bとで構成される部分(X部)から構成されていた。
編物表面は、図6に示すように、Y部はダイヤ柄状に編物全体に連続的につながっており、湿潤時は、このダイヤ柄の中部分(Y部)が凸部になり凹凸が発現した。
かかる編物において、乾燥時と湿潤時の凹凸変化率が25%、ベトツキ力が686mN(70gf)と、湿潤時のべとつきが少なく満足なものであった。
In the knitted fabric, as shown in FIG. 5, the cross section in the thickness direction includes a portion composed of only the crimped fiber A (Y portion) and a portion composed of the crimped fiber A and the fiber B (X portion). Consisted of.
As shown in Fig. 6, the knitted surface is continuously connected to the entire knitted fabric in a diamond pattern, and when wet, the middle part (Y part) of this diamond pattern becomes a convex part, and irregularities appear. did. As shown in Fig. 6, the knitted surface is continuously connected to the entire knitted fabric in a diamond pattern, and when wet, the middle part (Y part) of this diamond pattern becomes a convex part, and irregularities appear. Did.
In such a knitted fabric, the unevenness change rate during drying and wetting was 25%, and the tackiness was 686 mN (70 gf), which was satisfactory with little stickiness during wetting. In such a knitted fabric, the unevenness change rate during drying and wetting was 25%, and the tackiness was 686 mN (70 gf), which was satisfactory with little stickiness during wetting.

[比較例1]
実施例1において、ポリエチレンテレフタレートマルチフィラメント糸条(繊維B)のかわりに実施例1で用いたものと同じ複合繊維を用いること以外は実施例1と同様に、編物を編成し染色仕上げした。

得られた編物において、乾燥時と湿潤時の凹凸変化率が2%、ベトツキ力が1470mN(150gf)と、湿潤時のべとつきが大きく不満足なものであった。 In the obtained knitted fabric, the rate of change in unevenness between drying and wetting was 2%, and the stickiness was 1470 mN (150 gf), which were unsatisfactory due to the large stickiness during wet. [Comparative Example 1] [Comparative Example 1]
In Example 1, a knitted fabric was knitted and dyed and finished in the same manner as in Example 1 except that the same conjugate fiber as that used in Example 1 was used instead of the polyethylene terephthalate multifilament yarn (fiber B). In Example 1, a knitted fabric was knitted and dyed and finished in the same manner as in Example 1 except that the same conjugate fiber as that used in Example 1 was used instead of the polyethylene terephthalate multifilament yarn (fiber B).
The obtained knitted fabric was unsatisfactory because of the 2% change in unevenness between dry and wet conditions and a stickiness of 1470 mN (150 gf). The obtained knitted fabric was unsatisfactory because of the 2% change in unevenness between dry and wet conditions and a stickiness of 1470 mN (150 gf).

本発明によれば、湿潤時に織編物表面に凹凸が可逆的に発現し、一方乾燥時に凹凸が減少する織編物、およびかかる織編物を用いたアウターウエアー、インナーウエアー、スポーツウエアーなどの繊維製品が得られ、これらを着用すると発汗時の肌と衣服とのベトツキを低減することができる。   According to the present invention, a woven or knitted fabric in which irregularities appear reversibly on the surface of the woven or knitted fabric when wet, and a textile product such as outerwear, innerwear or sportswear using the woven or knitted fabric, and the knitted or knitted fabric is used. When these are worn, the stickiness between the skin and clothes during sweating can be reduced.

本発明で用いられる複合繊維の単糸横断面形状を例示した模式図である。 It is the schematic diagram which illustrated the single yarn cross-sectional shape of the composite fiber used by this invention. 本発明に係る織編物の編組織図の一例である。 1 is an example of a knitting structure diagram of a woven or knitted fabric according to the present invention. 本発明に係る織編物の断面の一例を示した模式図であり、(1)乾燥時(2)湿潤時である。 It is the schematic diagram which showed an example of the cross section of the woven / knitted fabric which concerns on this invention, (1) At the time of drying (2) At the time of wetness. 本発明に係る織編物の一例を示した模式図である。 It is the schematic diagram which showed an example of the woven / knitted fabric which concerns on this invention. 本発明に係る織編物の断面の一例を示した模式図であり、(1)乾燥時(2)湿潤時である。 It is the schematic diagram which showed an example of the cross section of the woven / knitted fabric which concerns on this invention, (1) At the time of drying (2) At the time of wetness. 本発明に係る織編物の一例を示した模式図である。 It is the schematic diagram which showed an example of the woven / knitted fabric which concerns on this invention.

符号の説明Explanation of symbols

P:ポリエステル成分 N:ポリアミド成分 1:Z層 2:結接部 3:Y層 4:Z層と結接している部分 5:Z層と結接していない部分 6:Y部 7:X部 8:Y部 9:X部P: Polyester component N: Polyamide component 1: Z layer 2: Connection part 3: Y layer 4: Part connected to the Z layer 5: Part not connected to the Z layer 6: Y part 7: X part 8 : Y part 9: X part

Claims (15)

  1. 湿潤時に捲縮率が低下する捲縮繊維Aと、非捲縮または湿潤時に捲縮率が実質的に変化しない捲縮を有する繊維Bとを含む織編物であって、該織編物の乾燥時における厚さ(TD)および湿潤時における厚さ(TW)から下記式により算出した凹凸変化率が5%以上であることを特徴とする湿潤により凹凸が発現する織編物。
    凹凸変化率(%)=((TW−TD)/TD)×100
    ただし、乾燥時における厚さとは、織編物を温度20℃、湿度65%RH環境下に24時間放置した後の状態での織編物の厚さであり、一方、湿潤時における厚さとは、織編物に水を1cc滴下した後、1分経過後の当該滴下個所の最大厚さである。 However, the thickness at the time of drying is the thickness of the woven / knitted product after being left in a temperature of 20 ° C. and a humidity of 65% RH for 24 hours, while the thickness at the time of wetting is the weaving. It is the maximum thickness of the dropping portion 1 minute after dropping 1 cc of water on the knitted fabric. A woven or knitted fabric comprising a crimped fiber A having a reduced crimp rate when wet and a fiber B having a crimp that does not substantially change the crimp rate when not crimped or wet, when the woven or knitted fabric is dried A woven or knitted fabric that exhibits unevenness due to wetting, wherein the unevenness change rate calculated by the following formula is 5% or more from the thickness (TD) and wet thickness (TW). A woven or knitted fabric comprising a crimped fiber A having a reduced crimp rate when wet and a fiber B having a crimp that does not substantially change the crimp rate when not crimped or wet, when the woven or knitted fabric is dried A woven or knitted fabric that exhibits unevenness due to wetting, wherein the unevenness change rate calculated by the following formula is 5% or more from the thickness (TD) and wet thickness (TW).
    Concavity and convexity change rate (%) = ((TW−TD) / TD) × 100 Concavity and convexity change rate (%) = ((TW−TD) / TD) × 100
    However, the thickness at the time of drying is the thickness of the woven or knitted fabric after leaving the woven or knitted fabric for 24 hours in a temperature of 20 ° C. and a humidity of 65% RH. This is the maximum thickness of the dripping portion after 1 minute has elapsed after 1 cc of water is dropped on the knitted fabric. However, the thickness at the time of drying is the thickness of the woven or knitted fabric after leaving the woven or knitted fabric for 24 hours in a temperature of 20 ° C. and a humidity of 65% RH. This is the maximum thickness of the dripping portion after 1 minute has elapsed after 1 cc of water is dropped on the knitted fabric.
  2. 捲縮繊維Aが、ポリエステル成分とポリアミド成分とがサイドバイサイド型に接合された複合繊維であって、潜在捲縮性能が発現してなる捲縮構造を有する捲縮繊維である、請求項1に記載の湿潤により凹凸が発現する織編物。   The crimped fiber A is a composite fiber in which a polyester component and a polyamide component are bonded in a side-by-side manner, and is a crimped fiber having a crimped structure in which latent crimping performance is expressed. Woven and knitted fabrics that appear uneven when wet.
  3. ポリエステル成分が、5−ナトリウムスルホイソフタル酸が2.0〜4.5モル%共重合された変性ポリエチレンテレフタレートからなる、請求項2に記載の湿潤により凹凸が発現する織編物。   The knitted or knitted fabric having unevenness due to wetting according to claim 2, wherein the polyester component is a modified polyethylene terephthalate copolymerized with 2.0 to 4.5 mol% of 5-sodium sulfoisophthalic acid.
  4. 前記の捲縮繊維Aが、無撚糸または300T/m以下の撚りが施された甘撚り糸である、請求項1〜3のいずれかに記載の湿潤により凹凸が発現する織編物。 The woven or knitted fabric in which unevenness is manifested by wetting according to any one of claims 1 to 3, wherein the crimped fiber A is a non-twisted yarn or a sweet twisted yarn having a twist of 300 T / m or less.
  5. 繊維Bがポリエステル繊維である、請求項1〜4のいずれかに記載の湿潤により凹凸が発現する織編物。 The woven or knitted fabric in which irregularities are manifested by wetting according to any one of claims 1 to 4, wherein the fiber B is a polyester fiber.
  6. 前記捲縮繊維Aのみで構成される部分(Y部)と、前記繊維Bのみで構成される部分(Z部)とを有し、前記Z部が経方向および/または緯方向に連続的につながっている、請求項1〜5のいずれかに記載の湿潤により凹凸が発現する織編物。   It has a portion (Y portion) composed only of the crimped fiber A and a portion (Z portion) composed only of the fiber B, and the Z portion is continuously in the warp direction and / or the weft direction. The knitted or knitted fabric in which unevenness is expressed by wetting according to any one of claims 1 to 5.
  7. 前記繊維Bのみで構成される部分(Z部)と、前記捲縮繊維Aと前記繊維Bとで構成される部分(X部)とを有し、前記Z部が経方向および/または緯方向に連続的につながっている、請求項1〜5のいずれかに記載の湿潤により凹凸が発現する織編物。   It has the part (Z part) comprised only with the said fiber B, and the part (X part) comprised with the said crimped fiber A and the said fiber B, and the said Z part is a warp direction and / or a weft direction. The woven or knitted fabric in which unevenness is manifested by wetting according to any one of claims 1 to 5, wherein
  8. 前記織編物が、前記捲縮繊維Aと前記繊維Bとで構成される部分(X部)と、前記捲縮繊維Aのみで構成される部分(Y部)とを有し、該織編物において前記X部が経方向および/または緯方向に連続的につながっている、請求項1〜5のいずれかに記載の湿潤により凹凸が発現する織編物。   In the woven or knitted fabric, the woven or knitted fabric has a portion (X portion) composed of the crimped fibers A and the fibers B and a portion (Y portion) composed only of the crimped fibers A. The woven or knitted fabric in which unevenness is expressed by wetting according to any one of claims 1 to 5, wherein the X part is continuously connected in the warp direction and / or the weft direction.
  9. 前記織編物が、前記捲縮繊維Aと前記繊維Bとで構成される部分(X部)と、前記捲縮繊維Aのみで構成される部分(Y部)と、前記繊維Bのみで構成される部分(Z部)とを有し、前記Z部が経方向および/または緯方向に連続的につながっている、請求項1〜5のいずれかに記載の湿潤により凹凸が発現する織編物。   The woven or knitted fabric is composed of a portion (X portion) composed of the crimped fibers A and the fibers B, a portion composed only of the crimped fibers A (Y portion), and the fibers B only. The knitted or knitted fabric having unevenness due to wetting according to any one of claims 1 to 5, wherein the Z portion is continuously connected in the warp direction and / or the weft direction.
  10. 前記織編物が2層以上からなる多層織編物であり、前記捲縮繊維Aと繊維Bとで構成される層と、前記繊維Bのみで構成される層を有し、かつ前者の層と後者の層とが部分的に結接している請求項1〜5の何れかに記載の湿潤により凹凸が発現する織編物。   The woven or knitted fabric is a multilayer woven or knitted fabric composed of two or more layers, having a layer composed of the crimped fibers A and fibers B, a layer composed of only the fibers B, and the former layer and the latter The knitted or knitted fabric in which unevenness is expressed by wetting according to any one of claims 1 to 5, wherein the layer is partially bonded.
  11. 前記織編物が2層以上からなる多層織編物であり、前記捲縮繊維Aと繊維Bとで構成される層と、前記捲縮繊維Aのみで構成される層を有し、かつ前者の層と後者の層とが部分的に結接している、請求項1〜5のいずれかに記載の湿潤により凹凸が発現する織編物。   The woven or knitted fabric is a multilayer woven or knitted fabric composed of two or more layers, and has a layer composed of the crimped fibers A and fibers B and a layer composed only of the crimped fibers A, and the former layer The woven or knitted fabric in which unevenness is developed by wetting according to any one of claims 1 to 5, wherein the first layer and the latter layer are partially bonded.
  12. 前記織編物が2層以上からなる多層織編物であり、前記捲縮繊維Aのみで構成される層と、前記繊維Bのみで構成される層を有し、かつ前者の層と後者の層とが部分的に結接している、請求項1〜5のいずれかに記載の湿潤により凹凸が発現する織編物。   The woven or knitted fabric is a multilayer woven or knitted fabric composed of two or more layers, and has a layer composed only of the crimped fibers A, a layer composed only of the fibers B, and the former layer and the latter layer, The woven or knitted fabric in which unevenness is expressed by wetting according to any one of claims 1 to 5, wherein is partially bonded.
  13. 固有粘度が0.30〜0.43のポリエステルと、固有粘度が1.0〜1.4のポリアミドとを用いてサイドバイサイド型に溶融紡糸して得られた複合繊維と、非捲縮または湿潤時に捲縮率が実質的に変化しない捲縮を有する繊維Bとを用いて織編物を織編成した後、該織編物に熱処理を施すことにより前記複合繊維の潜在捲縮を発現させることを特徴とする、請求項1に記載の湿潤により凹凸が発現する織編物の製造方法。   A composite fiber obtained by melt spinning into a side-by-side type using a polyester having an intrinsic viscosity of 0.30 to 0.43 and a polyamide having an intrinsic viscosity of 1.0 to 1.4; The woven or knitted fabric is knitted using the fiber B having a crimp with substantially no change in the crimp rate, and then the woven or knitted fabric is subjected to a heat treatment to develop the latent crimp of the composite fiber. The method for producing a woven or knitted fabric in which unevenness is developed by wetting according to claim 1.
  14. 織編成に用いる複合繊維が、沸水処理後において、下記(1)〜(3)の要件を同時に満足する、請求項13に記載の湿潤により凹凸が発現する織編物の製造方法。
    (1)乾燥時における複合繊維の捲縮率DCが1.5〜13%の範囲内である。
    (2)湿潤時における複合繊維の捲縮率HCが0.5〜7.0%の範囲内である。
    (3)前記捲縮率DCと捲縮率HCとの差(DC−HC)が0.5%以上である。
    ただし、乾燥時とは、試料を温度20℃、湿度65%RH環境下に24時間放置した後の状態であり、一方、湿潤時とは、試料を温度20℃の水中に2時間浸漬した直後の状態である。 However, the dry state is a state after the sample is left in an environment of a temperature of 20 ° C. and a humidity of 65% RH for 24 hours, while the wet state is a state immediately after the sample is immersed in water at a temperature of 20 ° C. for 2 hours. It is in the state of. The method for producing a woven or knitted fabric with unevenness due to wetting according to claim 13, wherein the composite fiber used for knitting satisfies the following requirements (1) to (3) after boiling water treatment. The method for producing a woven or knitted fabric with unevenness due to wetting according to claim 13, wherein the composite fiber used for knitting satisfies the following requirements (1) to (3) after boiling water treatment.
    (1) The crimp rate DC of the composite fiber at the time of drying is in the range of 1.5 to 13%. (1) The crimp rate DC of the composite fiber at the time of drying is in the range of 1.5 to 13%.
    (2) The crimp ratio HC of the composite fiber when wet is in the range of 0.5 to 7.0%. (2) The crimp ratio HC of the composite fiber when wet is in the range of 0.5 to 7.0%.
    (3) The difference (DC-HC) between the crimp rate DC and the crimp rate HC is 0.5% or more. (3) The difference (DC-HC) between the crimp rate DC and the crimp rate HC is 0.5% or more.
    However, when dry, the sample is left in a 20 ° C., 65% RH environment for 24 hours, while when wet, the sample is immediately immersed in water at 20 ° C. for 2 hours. It is a state. However, when dry, the sample is left in a 20 ° C., 65% RH environment for 24 hours, while when wet, the sample is immediately immersed in water at 20 ° C. for 2 hours. It is a state.
  15. 請求項1〜12のいずれかに記載の織編物を用いてなる、アウター用衣料、スポーツ用衣料、およびインナー用衣料からなる群より選択される繊維製品。   A textile product selected from the group consisting of an outer garment, a sports garment, and an inner garment, wherein the woven or knitted fabric according to any one of claims 1 to 12 is used.
JP2004301219A 2004-10-15 2004-10-15 Woven or knit fabric developing unevenness by wetting, method for producing the same and textile product Pending JP2006112009A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004301219A JP2006112009A (en) 2004-10-15 2004-10-15 Woven or knit fabric developing unevenness by wetting, method for producing the same and textile product

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
JP2004301219A JP2006112009A (en) 2004-10-15 2004-10-15 Woven or knit fabric developing unevenness by wetting, method for producing the same and textile product
KR1020077008208A KR101220720B1 (en) 2004-10-15 2005-10-13 Woven/knit fabric including crimped fiber and becoming rugged upon humidification, process for producing the same, and textile product
US11/665,349 US20070270067A1 (en) 2004-10-15 2005-10-13 Crimped Filament-Containing Woven or Knitted Fabric Manifesting Roughness Upon Wetting with Water, Process for Producing the Same and Textile Products Made Therefrom
CA 2579211 CA2579211C (en) 2004-10-15 2005-10-13 Crimped filament-containing woven or knitted fabric manifesting roughness upon wetting with water, process for producing the same and textile products made therefrom
CN2005800351613A CN101040076B (en) 2004-10-15 2005-10-13 Woven/knit fabric including crimped fiber and becoming rugged upon humidification, process for producing the same, and textile product
EP05795767.2A EP1801274B1 (en) 2004-10-15 2005-10-13 Woven/knit fabric including crimped fiber and becoming rugged upon humidification, process for producing the same, and textile product
PCT/JP2005/019245 WO2006041200A1 (en) 2004-10-15 2005-10-13 Woven/knit fabric including crimped fiber and becoming rugged upon humidification, process for producing the same, and textile product
TW094135901A TWI366613B (en) 2004-10-15 2005-10-14 Crimped filament-containing woven or knitted fabric manifesting roughness upon wetting with water and process for producing same and textile products therefrom

Publications (1)

Publication Number Publication Date
JP2006112009A true JP2006112009A (en) 2006-04-27

Family

ID=36148485

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004301219A Pending JP2006112009A (en) 2004-10-15 2004-10-15 Woven or knit fabric developing unevenness by wetting, method for producing the same and textile product

Country Status (8)

Country Link
US (1) US20070270067A1 (en)
EP (1) EP1801274B1 (en)
JP (1) JP2006112009A (en)
KR (1) KR101220720B1 (en)
CN (1) CN101040076B (en)
CA (1) CA2579211C (en)
TW (1) TWI366613B (en)
WO (1) WO2006041200A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009104607A1 (en) * 2008-02-20 2009-08-27 帝人ファイバー株式会社 Fabric and textile products
JP2009197367A (en) * 2008-02-22 2009-09-03 Teijin Fibers Ltd Woven or knitted fabric having opacity increasing with absorption of moisture and fiber product
JP2009235616A (en) * 2008-03-27 2009-10-15 Teijin Fibers Ltd Fabric decreasing thickness by absorption of moisture and textile products
JP2009235651A (en) * 2008-03-28 2009-10-15 Teijin Fibers Ltd Fabric decreasing dimension by absorption of moisture and textile products
JP2010059570A (en) * 2008-09-03 2010-03-18 Teijin Fibers Ltd Woven fabric and textile product
JP2013220190A (en) * 2012-04-16 2013-10-28 Teijin Frontier Co Ltd Shoe material and shoe

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7437774B2 (en) 2004-03-19 2008-10-21 Nike, Inc. Article of apparel incorporating a zoned modifiable textile structure
US20050208857A1 (en) 2004-03-19 2005-09-22 Nike, Inc. Article of apparel incorporating a modifiable textile structure
US9700077B2 (en) 2004-03-19 2017-07-11 Nike, Inc. Article of apparel with variable air permeability
WO2007086491A1 (en) * 2006-01-26 2007-08-02 Asahi Kasei Fibers Corporation Cellulose fiber blended fabric
JP4866103B2 (en) * 2006-03-01 2012-02-01 帝人ファイバー株式会社 Composite fiber
DE602007009059D1 (en) * 2006-03-01 2010-10-21 Teijin Fibers Ltd YARN OF CONJUGATE FIBER
JP2007239139A (en) * 2006-03-08 2007-09-20 Teijin Fibers Ltd Composite false-twisted yarn
JP4866109B2 (en) * 2006-03-08 2012-02-01 帝人ファイバー株式会社 False twisted yarn
JP4866110B2 (en) * 2006-03-08 2012-02-01 帝人ファイバー株式会社 Blended yarn
CN102084046B (en) 2008-02-28 2013-01-02 Mmt纺织品有限公司 A material
CN101967713B (en) * 2010-09-13 2012-08-29 无锡华东创新材料研究院 Flame retardant fabric expanded with heat and fireproof heat-insulation clothing made of same
GB201210691D0 (en) * 2012-06-15 2012-08-01 Mmt Textiles Ltd Active fibre
JP6359117B2 (en) * 2014-11-27 2018-07-18 株式会社ダイセル Tow band manufacturing method and tow band manufacturing apparatus
CN105483893B (en) * 2016-01-06 2017-11-24 绍兴满和纺织有限公司 A kind of functional textile fabric
CN105671731B (en) * 2016-01-06 2017-09-22 浙江西大门新材料股份有限公司 New type functional fabric
CN105648626B (en) * 2016-01-06 2017-10-17 绍兴百丰纺织有限公司 New type functional weaving face fabric
CN105671732B (en) * 2016-01-06 2017-10-24 浙江朗莎尔维迪制衣有限公司 A kind of new type functional fabric
CN105483857B (en) * 2016-01-06 2017-12-29 绍兴前瞻化纤有限公司 A kind of textile fabric and its fabric
CN105648625B (en) * 2016-01-06 2017-10-27 章俊杰 A kind of novel fabric
CN105506823B (en) * 2016-01-06 2017-10-24 江苏海阳化纤有限公司 Fabric fabric
CN105495797B (en) * 2016-01-06 2017-10-24 江苏海阳化纤有限公司 A kind of functional textile fabric
CN105463667B (en) * 2016-01-06 2017-10-10 绍兴柯桥东进纺织有限公司 A kind of weaving face fabric
CN105506824B (en) * 2016-01-06 2017-10-10 绍兴金阳纺织有限公司 A kind of fabric fabric

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60252746A (en) * 1984-05-30 1985-12-13 Teijin Ltd Light permeation quantity variable fabric
JPS60252756A (en) * 1984-05-30 1985-12-13 Teijin Ltd Light permeation quantity variable knitted fabric
JPS62162043A (en) * 1986-01-06 1987-07-17 Teijin Ltd Production of fabric
JPH08218253A (en) * 1995-02-10 1996-08-27 Mitsubishi Rayon Co Ltd Interlock knit fabric

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003082543A (en) * 2001-09-06 2003-03-19 Teijin Ltd Composite false-twist yarn and method for producing the same and fabric with self-controllable breathability
WO2004113601A1 (en) * 2003-06-23 2004-12-29 Teijin Fibers Limited Woven or knitted fabric containing two different yarns and clothing comprising the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60252746A (en) * 1984-05-30 1985-12-13 Teijin Ltd Light permeation quantity variable fabric
JPS60252756A (en) * 1984-05-30 1985-12-13 Teijin Ltd Light permeation quantity variable knitted fabric
JPS62162043A (en) * 1986-01-06 1987-07-17 Teijin Ltd Production of fabric
JPH08218253A (en) * 1995-02-10 1996-08-27 Mitsubishi Rayon Co Ltd Interlock knit fabric

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009104607A1 (en) * 2008-02-20 2009-08-27 帝人ファイバー株式会社 Fabric and textile products
JP2009197367A (en) * 2008-02-22 2009-09-03 Teijin Fibers Ltd Woven or knitted fabric having opacity increasing with absorption of moisture and fiber product
JP2009235616A (en) * 2008-03-27 2009-10-15 Teijin Fibers Ltd Fabric decreasing thickness by absorption of moisture and textile products
JP2009235651A (en) * 2008-03-28 2009-10-15 Teijin Fibers Ltd Fabric decreasing dimension by absorption of moisture and textile products
JP2010059570A (en) * 2008-09-03 2010-03-18 Teijin Fibers Ltd Woven fabric and textile product
JP2013220190A (en) * 2012-04-16 2013-10-28 Teijin Frontier Co Ltd Shoe material and shoe

Also Published As

Publication number Publication date
CA2579211C (en) 2013-11-12
TW200619442A (en) 2006-06-16
US20070270067A1 (en) 2007-11-22
CN101040076B (en) 2011-06-01
KR20070067131A (en) 2007-06-27
EP1801274A1 (en) 2007-06-27
EP1801274A4 (en) 2014-05-28
CN101040076A (en) 2007-09-19
TWI366613B (en) 2012-06-21
EP1801274B1 (en) 2018-08-29
KR101220720B1 (en) 2013-01-09
WO2006041200A1 (en) 2006-04-20
CA2579211A1 (en) 2006-04-20

Similar Documents

Publication Publication Date Title
JP5160679B2 (en) Composite effect yarn and its fabric
US7842628B2 (en) Woven or knitted fabric containing two different yarns and clothing comprising the same
JP3016361B2 (en) Unidirectional elastic nonwoven fabric and method for producing the same
JP3797486B2 (en) Woven fabric and method for producing the same
JP4571541B2 (en) Method for producing moisture-permeable and waterproof polyester fabric
JP5155162B2 (en) Knitted fabric and sports clothing
CA2447838C (en) Insulated knitted fabric
DE60025440T2 (en) Soft elastic yarns and process for their preparation
EP1788127B1 (en) Composite fiber
JP4922654B2 (en) Nanofiber fiber structure, method for producing the same, and fiber product
TWI354041B (en) Woven or knitted fabric and cloth containing crimp
CN101040076B (en) Woven/knit fabric including crimped fiber and becoming rugged upon humidification, process for producing the same, and textile product
US9783916B2 (en) Woven fabric
US7601656B2 (en) Leather-like sheet and process for producing thereof
TWI247829B (en) Conjugate fiber and method for production thereof
JP4581725B2 (en) Leather-like sheet and manufacturing method thereof
JP2018503754A (en) Easily set stretch fabric with low melting point fibers
KR20060089225A (en) Stretchable composite fabric and clothing product therefrom
Gandhi Woven textiles: Principles, technologies and applications
JP5395088B2 (en) Bra
JP4292763B2 (en) Composite fabric and manufacturing method thereof
JP4571566B2 (en) Method for producing fabric capable of adsorbing odor
JP5141415B2 (en) Polyester crimped multifilament and method for producing the same
CN101031679B (en) Woven or knit fabric containing crimped composite fiber having its air permeability enhanced by water wetting and relevant clothing
JP5620761B2 (en) High density fabric

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070417

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100622

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100805

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20110711

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20110711

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110712

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110808

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120605

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120817

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20120824

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20121102

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20130122