JP2008297657A - Quilting cloth, bedding and down jacket - Google Patents

Quilting cloth, bedding and down jacket Download PDF

Info

Publication number
JP2008297657A
JP2008297657A JP2007144733A JP2007144733A JP2008297657A JP 2008297657 A JP2008297657 A JP 2008297657A JP 2007144733 A JP2007144733 A JP 2007144733A JP 2007144733 A JP2007144733 A JP 2007144733A JP 2008297657 A JP2008297657 A JP 2008297657A
Authority
JP
Japan
Prior art keywords
fabric
yarn
self
water
quilting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007144733A
Other languages
Japanese (ja)
Inventor
Satoshi Yasui
聡 安井
Original Assignee
Teijin Fibers Ltd
帝人ファイバー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teijin Fibers Ltd, 帝人ファイバー株式会社 filed Critical Teijin Fibers Ltd
Priority to JP2007144733A priority Critical patent/JP2008297657A/en
Publication of JP2008297657A publication Critical patent/JP2008297657A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a quilting cloth including a facing fabric, a lining fabric and a cotton pad interposed therebetween, not only presenting good thermal insulation, but also with little dimensional change on absorbing water, and enabling its own stuffiness and stickiness to be reduced owing to air permeability improvement or unevenness development, and to provide a bedding and a down jacket each using such a quilting cloth. <P>SOLUTION: The quilting cloth includes a facing fabric, a lining fabric and a cotton pad interposed therebetween, wherein at least either one of the facing fabric and the lining fabric is composed of such a fabric A as to be 10% or more larger in area in a wet state than in a dry state. The bedding and the down jacket each using such a quilting cloth are also provided, respectively. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、表地、裏地、およびこれらの間に介在する中綿を含むキルテイング生地であって、吸水時に通気性が向上するか凹凸が発現することにより、ムレやベトツキを低減することが可能なキルテイング生地および、かかるキルテイング生地を用いてなる寝具およびダウンジャケットに関するものである。   The present invention is a quilting fabric that includes a surface material, a lining material, and a padding interposed between them, and the quilting material that can reduce stuffiness and stickiness by improving air permeability or expressing irregularities when absorbing water. The present invention relates to a fabric, and a bedding and a down jacket made using such a quilting fabric.

キルテイング生地は、表地、裏地、およびこれらの間に介在する中綿で構成され、優れた保温性を呈するため、布団、シーツ、敷きパッド、枕カバー等の寝具、あるいはダウンジャケット、スキーパンツ等の保温衣料などで使用されている(例えば、特許文献1、特許文献2、特許文献3、特許文献4参照)。しかしながら、かかるキルテイング生地を寝具や保温衣料として用いると、肌からの発汗によりムレやベトツキが発生するという問題があった。   Quilting fabric is composed of outer material, lining material, and padding intervening between them, and exhibits excellent heat retention. Used in clothing and the like (for example, see Patent Document 1, Patent Document 2, Patent Document 3, and Patent Document 4). However, when such a quilting fabric is used as bedding or warm clothes, there is a problem that stuffiness and stickiness are generated due to sweating from the skin.

他方、発汗によって生じるムレやベトツキを解消する方法として、発汗時に織編物の通気性が向上すること吸水変化層と非吸水変化層とを貼り合せた多層構造体が提案されている(例えば、特許文献4参照)。しかしながら、かかる多層構造体では、吸水時に生地寸法がほとんど変化することなくムレやベトツキを低減することができるものの、保温性の点で十分とはいえなかった。   On the other hand, as a method for eliminating stuffiness and stickiness caused by sweating, a multilayer structure in which the air permeability of the woven or knitted fabric is improved during sweating and a water-absorbing change layer and a non-water-absorbing change layer are bonded to each other has been proposed (for example, patents). Reference 4). However, in such a multilayer structure, the dough size and stickiness can be reduced with almost no change in the fabric size upon water absorption, but it is not sufficient in terms of heat retention.

特公平02−13064号公報Japanese Examined Patent Publication No. 02-13064 特開平11−302907号公報JP-A-11-302907 特開2000−41815号公報JP 2000-41815 A 実公昭61−44825号公報Japanese Utility Model Publication No. 61-44825 特開2006−264309号公報JP 2006-264309 A

本発明は上記の背景に鑑みなされたものであり、その目的は、表地、裏地、およびこれらの間に介在する中綿を含むキルテイング生地であって、優れた保温性を呈するだけでなく、吸水時に生地寸法がほとんど変化することなく、通気性が向上するか凹凸が発現することにムレやベトツキを低減することができるキルテイング生地、およびかかるキルテイング生地を用いてなる寝具およびダウンジャケットを提供することにある。   The present invention has been made in view of the above background, and its purpose is a quilted fabric including a front material, a lining material, and a cotton pad interposed therebetween, not only exhibiting excellent heat retention but also at the time of water absorption. Providing a quilted fabric that can reduce stuffiness and stickiness by improving air permeability or developing irregularities with almost no change in fabric dimensions, and a bedding and a down jacket using the quilted fabric. is there.

本発明者は上記の課題を達成するため鋭意検討した結果、吸水時に面積が大きくなる布帛を表地および/または裏地に用いてキルテイング生地を得ると、キルテイング生地の優れた保温性を損うことなく、吸水時に生地の通気性が向上することによりムレやベトツキを低減することができること、また、生地が吸水しても、キルテイング生地のキルテイング部により拘束されるため、生地の厚みは大きくなるものの、生地の平面方向の寸法はあまり変化しないことを見出し、さらに鋭意検討を重ねることにより本発明を完成するに至った。   As a result of intensive studies to achieve the above-mentioned problems, the present inventor obtained a quilted fabric using a fabric having a large area at the time of water absorption as a surface and / or lining, without impairing the excellent heat retention of the quilted fabric. Although the fabric breathability is improved at the time of water absorption, stuffiness and tackiness can be reduced, and even if the fabric absorbs water, it is restrained by the quilting portion of the quilting fabric, so the thickness of the fabric increases, The present inventors have found that the dimension in the plane direction of the dough does not change so much, and have completed the present invention by further intensive studies.

かくして、本発明によれば「表地、裏地、およびこれらの間に介在する中綿を含むキルテイング生地であって、前記表地および裏地のうち少なくともどちらか一方が、吸水時に乾燥時よりも面積が10%以上大きくなる布帛Aで構成されることを特徴とするキルテイング生地。」が提供される。   Thus, according to the present invention, “a quilting fabric including a surface material, a lining material, and a batting intervening therebetween, wherein at least one of the surface material and the lining material has an area of 10% more than when dried when absorbing water. A quilting fabric characterized in that it is composed of a fabric A that is larger than the above.

ただし、乾燥時とは、温度20℃、湿度65%RHの環境下に試料を24時間放置した直後の状態であり、吸水時とは、乾燥後の試料表面に霧吹きにより水を噴霧し、乾燥時の試料重量に対して含水率70重量%となるまで水を付与した直後の状態であり、前記面積変化率は下記式により算出する。
面積変化率(%)=((吸水時の試料面積)−(乾燥時の試料面積))/(乾燥時の試料面積)×100
その際、前記表地および裏地がともに前記布帛Aで構成されることが好ましい。 At that time, it is preferable that both the outer material and the lining are made of the cloth A. また、前記表地および裏地のうちどちらか一方のみが前記布帛Aで構成されていてもよい。 Further, only one of the outer material and the lining may be made of the cloth A. However, the time of drying is a state immediately after the sample is left for 24 hours in an environment of temperature 20 ° C. and humidity 65% RH, and the time of water absorption is water sprayed on the sample surface after drying by spraying and drying. This is the state immediately after applying water until the water content becomes 70% by weight with respect to the sample weight at the time, and the area change rate is calculated by the following equation. However, the time of drying is a state immediately after the sample is left for 24 hours in an environment of temperature 20 ° C. and humidity 65% ​​RH, and the time of water absorption is water sprayed on the sample surface after drying by spraying and drying. This is the state immediately after applying water until the water content becomes 70% by weight with respect to the sample weight at the time, and the area change rate is calculated by the following equation.
Area change rate (%) = ((sample area at the time of water absorption) − (sample area at the time of drying)) / (sample area at the time of drying) × 100 Area change rate (%) = ((sample area at the time of water absorption) − (sample area at the time of drying)) / (sample area at the time of drying) × 100
At that time, it is preferable that both the outer material and the lining material are composed of the fabric A. Further, only one of the outer material and the lining material may be formed of the fabric A. At that time, it is preferred that both the outer material and the lining material are composed of the fabric A. Further, only one of the outer material and the lining material may be formed of the fabric A.

本発明のキルテイング生地において、前記布帛Aが、吸水自己伸張糸と非自己伸張糸とからなる織編物であって、乾燥時における該織編物中の吸水自己伸張糸の糸長を(A)、他方、非自己伸張糸の糸長を(B)とするとき、A/Bが0.9以下であることは好ましい。   In the quilted fabric of the present invention, the fabric A is a woven or knitted fabric composed of a water-absorbing self-stretching yarn and a non-self-stretching yarn, and the length of the water-absorbing self-stretching yarn in the woven or knitted fabric when dried is (A), On the other hand, when the yarn length of the non-self-stretching yarn is (B), it is preferable that A / B is 0.9 or less.

ここで、かかる織編物の態様としては(1)吸水自己伸張糸と非自己伸張糸とが丸編組織の複合ループを形成してなる織編物、(2)吸水自己伸張糸と非自己伸張糸とが引き揃えられて織組織の経糸および/または緯糸を構成してなる織編物、(3)吸水自己伸張糸と非自己伸張糸とが各々織編物の構成糸条として1本交互にまたは複数本交互に配列してなる織編物、(4)吸水自己伸張糸と非自己伸張糸とが複合糸として織編物中に含まれる織編物が好ましい。   In this case, the woven or knitted fabric includes (1) a woven or knitted fabric in which a water-absorbing self-stretching yarn and a non-self-stretching yarn form a composite loop of a circular knitting structure, and (2) a water-absorbing self-stretching yarn and a non-self-stretching yarn. And (3) water-absorbing self-stretching yarns and non-self-stretching yarns, each constituting one or more of the yarns constituting the knitted fabric. A woven or knitted fabric in which the knitted fabric is alternately arranged, and (4) a woven or knitted fabric in which a water-absorbing self-stretching yarn and a non-self-stretching yarn are contained as a composite yarn in the woven or knitted fabric are preferable.

前記の吸水自己伸張糸としては、ポリブチレンテレフタレートをハードセグメントとし、ポリオキシエチレングリコールをソフトセグメントとするポリエーテルエステルエラストマーからなるポリエーテルエステル繊維が好ましい。一方、非自己伸張糸としてはポリエステル繊維が好ましい。   The water-absorbing self-stretching yarn is preferably a polyetherester fiber made of a polyetherester elastomer having polybutylene terephthalate as a hard segment and polyoxyethylene glycol as a soft segment. On the other hand, the non-self-stretching yarn is preferably a polyester fiber.

本発明のキルテイング生地において、前記布帛Aが、ポリエステル成分とポリアミド成分とがサイドバイサイド型に接合され、かつ潜在捲縮性能が発現してなる捲縮を有する複合繊維を含む織編物であることが好ましい。また、前記中綿がポリエステル繊維からなることが好ましい。また、吸水時の通気性が乾燥時よりも10%以上大きくなることが好ましい。また、吸水時の厚みが乾燥時よりも10%以上大きくなることが好ましい。   In the quilting fabric of the present invention, it is preferable that the fabric A is a woven or knitted fabric including a composite fiber having a crimp in which a polyester component and a polyamide component are joined in a side-by-side manner and latent crimping performance is exhibited. . Moreover, it is preferable that the said batting consists of a polyester fiber. Moreover, it is preferable that the air permeability at the time of water absorption becomes 10% or more larger than that at the time of drying. Moreover, it is preferable that the thickness at the time of water absorption becomes 10% or more larger than at the time of drying.

また、本発明によれば、前記のキルテイング生地を用いてなる、布団、シーツ、敷きパッド、および枕カバーからなる群より選択されるいずれかの寝具が提供される。また、本発明によれば、前記のキルテイング生地を用いてなるダウンジャケットが提供される。   In addition, according to the present invention, there is provided any bedding selected from the group consisting of a futon, a sheet, a mat pad, and a pillow cover, using the quilting fabric. Moreover, according to this invention, the down jacket which uses the said quilting cloth is provided.

本発明によれば、表地、裏地、およびこれらの間に介在する中綿を含むキルテイング生地であって、優れた保温性を呈するだけでなく、吸水時に生地寸法がほとんど変化することなく、通気性が向上するか凹凸が発現することにムレやベトツキを低減することができるキルテイング生地、およびかかるキルテイング生地を用いてなる寝具およびダウンジャケットが得られる。   According to the present invention, it is a quilting fabric including a surface material, a lining material, and a padding interposed therebetween, not only exhibiting excellent heat retention properties, but also hardly changes in fabric size upon water absorption, and has breathability. It is possible to obtain a quilting fabric that can improve stuffiness and tackiness due to improvement or unevenness, and bedding and down jackets using such quilting fabric.

以下、本発明の実施の形態について詳細に説明する。
本発明のキルテイング生地は、表地、裏地、およびかかる表地と裏地との間に介在する中綿を含む生地であり、前記表地および裏地のうち少なくともどちらか一方が、吸水時に乾燥時よりも面積が10%以上大きくなる布帛Aで構成される。
Hereinafter, embodiments of the present invention will be described in detail.
The quilting fabric of the present invention is a fabric including a surface material, a lining material, and a cotton pad interposed between the surface material and the lining material, and at least one of the surface material and the lining material has an area of 10 than that when dried when absorbing water. It is comprised with the fabric A which becomes larger than%.

ただし、乾燥時とは、温度20℃、湿度65%RHの環境下に試料を24時間放置した直後の状態であり、吸水時とは、乾燥後の試料表面に霧吹きにより水を噴霧し、乾燥時の試料重量に対して含水率70重量%となるまで水を付与した直後の状態であり、前記面積変化率は下記式により算出する。
面積変化率(%)=((吸水時の試料面積)−(乾燥時の試料面積))/(乾燥時の試料面積)×100 However, the time of drying is a state immediately after the sample is left for 24 hours in an environment of temperature 20 ° C. and humidity 65% RH, and the time of water absorption is water sprayed on the sample surface after drying by spraying and drying. This is the state immediately after applying water until the water content becomes 70% by weight with respect to the sample weight at the time, and the area change rate is calculated by the following equation. Area change rate (%) = ((sample area during water absorption)-(sample area during drying)) / (sample area during drying) x 100 However, the time of drying is a state immediately after the sample is left for 24 hours in an environment of temperature 20 ° C. and humidity 65% ​​RH, and the time of water absorption is water sprayed on the sample surface after drying by spraying and drying. This is the state immediately after applying water until the water content becomes 70% by weight with respect to the sample weight at the time, and the area change rate is calculated by the following equation.
Area change rate (%) = ((sample area at the time of water absorption) − (sample area at the time of drying)) / (sample area at the time of drying) × 100 Area change rate (%) = ((sample area at the time of water absorption) − (sample area at the time of drying)) / (sample area at the time of drying) × 100

前記表地および裏地がともに前記布帛Aで構成されていてもよいし、前記表地および裏地のうちどちらか一方のみが前記布帛Aで構成されていてもよい。
前記布帛Aは吸水時に乾燥時よりも面積が10%以上(好ましくは20〜40%)大きくなる布帛であれば特に限定されないが、特開2006−264309号公報に開示されているような、下記の織編物1または織編物2が好ましく例示される。
Both the outer material and the lining material may be composed of the fabric A, or only one of the outer material and the lining material may be composed of the fabric A.
The cloth A is not particularly limited as long as the area is 10% or more (preferably 20 to 40%) larger than that at the time of drying when water is absorbed, but as disclosed in JP-A-2006-264309, the following The woven / knitted fabric 1 or woven / knitted fabric 2 is preferably exemplified. The cloth A is not particularly limited as long as the area is 10% or more (preferably 20 to 40%) larger than that at the time of drying when water is absorbed, but as disclosed in JP-A-2006-264309, the following The woven / knitted fabric 1 or woven / knitted fabric 2 is preferably 00.

まず、織編物1は、吸水自己伸張糸と非自己伸張糸とからなる織編物であって、乾燥時における該織編物中の吸水自己伸張糸の糸長を(A)、他方、非自己伸張糸の糸長を(B)とするとき、A/Bが0.9以下(好ましくは0.9〜0.2、特に好ましくは0.8〜0.3)である織編物であることが好ましい。   First, the woven or knitted fabric 1 is a woven or knitted fabric composed of a water-absorbing self-stretching yarn and a non-self-stretching yarn. The length of the water-absorbing self-stretching yarn in the woven or knitting fabric during drying is (A). When the yarn length of the yarn is (B), the knitted or knitted fabric has an A / B of 0.9 or less (preferably 0.9 to 0.2, particularly preferably 0.8 to 0.3). preferable.

ここで、吸水自己伸張糸と非自己伸張糸は以下に定義する糸である。すなわち、枠周:1.125mの巻き返し枠を用いて荷重:0.88mN/dtex(0.1g/de)をかけて一定の速度で巻き返し、巻き数:10回のかせを作り、かせ取りした糸を温度20℃、湿度65RH%の環境下に24時間放置し、これに非弾性糸の場合は1.76mN/dtex(200mg/de)、弾性糸の場合は0.0088mN/dtex(1mg/de)の荷重をかけて測定した糸長(mm)を乾燥時の糸長とする。該糸を水温20℃の水中に5分間浸漬した後に水中より引き上げ、該糸に乾燥時と同様に非弾性糸の場合は1.76mN/dtex(200mg/de)、弾性糸の場合は0.0088mN/dtex(1mg/de)の荷重をかけて測定した糸長(mm)を湿潤時の糸長とする。なお、前記非弾性糸とは破断伸度が200%以下の糸であり、前記弾性糸とは破断伸度が200%より高い糸である。そして、下記式で求められる繊維軸方向の膨潤率が5%以上のものを吸水自己伸張糸と定義する。他方、該膨潤率が5%未満のものを非自己伸張糸と定義する。
膨潤率(%)=((湿潤時の糸長)−(乾燥時の糸長))/(乾燥時の糸長)×100 Here, the water-absorbing self-stretching yarn and the non-self-stretching yarn are yarns defined below. That is, using a rewind frame with a frame circumference of 1.125 m, a load of 0.88 mN / dtex (0.1 g / de) was applied and the rewind was performed at a constant speed, and the number of turns: 10 times of skein was made and cut off. The yarn is allowed to stand for 24 hours in an environment of a temperature of 20 ° C. and a humidity of 65 RH%. This is 1.76 mN / dtex (200 mg / de) for an inelastic yarn and 0.0088 mN / dtex (1 mg / de) for an elastic yarn. The yarn length (mm) measured by applying a load of de) is defined as the yarn length at the time of drying. The yarn is immersed in water at a water temperature of 20 ° C. for 5 minutes and then pulled up from the water. As in the case of drying, the yarn is 1.76 mN / dtex (200 mg / de) in the case of an inelastic yarn, and in the case of an elastic yarn, it is 0.7. The yarn length (mm) mea Swelling rate (%) = ((thread length when wet)-(thread length when dry)) / (thread length when dry) x 100 Here, the water-absorbing self-stretching yarn and the non-self-stretching yarn are yarns defined below. That is, using a rewind frame with a frame circumference of 1.125 m, a load of 0.88 mN / dtex (0.1 g / de) was applied and the rewind was performed at a constant speed, and the number of turns: 10 times of skein was made and cut off. The yarn is allowed to stand for 24 hours in an environment of a temperature of 20 ° C. and a humidity of 65 RH%. This is 1.76 mN / dtex (200 mg / de) for an inelastic yarn and 0.0088 mN / dtex (1 mg / de) for an elastic yarn. The yarn length (mm) measured by applying a load of de) is defined as the yarn length at the time of drying. is immersed in water at a water temperature of 20 ° C. for 5 minutes and then pulled up from the water. As in the case of drying, the yarn is 1.76 mN / dtex (200 mg / de) in the case of an inelastic yarn, and in the case of an elastic yarn, it is 0.7. The yarn length (mm) mea sured by applying a load of 0088 mN / dtex (1 mg / de) is defined as the wet yarn length. The inelastic yarn is a yarn having a breaking elongation of 200% or less, and the elastic yarn is a yarn having a breaking elongation higher than 200%. And a thing whose swelling rate of the fiber axis direction calculated | required by the following formula is 5% or more is defined as a water absorption self-extension thread | yarn. On the other hand, those having a swelling ratio of less than 5% are defined as non-self-stretching yarns. sured by applying a load of 0088 mN / dtex (1 mg / de) is defined as the wet yarn length. The inelastic yarn is a yarn having a breaking elongation of 200% or less, and the elastic yarn is a yarn having a breaking extending higher than 200%. And a thing whose swelling rate of the fiber axis direction calculated | required by the following formula is 5% or more is defined as a water absorption self-extension thread | yarn. On the other hand, those having a swelling ratio of less than 5% are defined as non-self-stretching yarns.
Swell ratio (%) = ((wet yarn length) − (dry yarn length)) / (dry yarn length) × 100 Swell ratio (%) = ((wet yarn length) − (dry yarn length)) / (dry yarn length) × 100

ここで、吸水自己伸張糸としては、前記の膨潤率を有するものであれば特に限定されないが、6%以上(より好ましくは8〜30%)の膨潤率を有するものであることが好ましい。 Here, the water-absorbing self-stretching yarn is not particularly limited as long as it has the above-described swelling rate, but preferably has a swelling rate of 6% or more (more preferably 8 to 30%).

かかる吸水自己伸張糸としては、例えば、ポリブチレンテレフタレートをハードセグメントとし、ポリオキシエチレングリコールをソフトセグメントとするポリエーテルエステルエラストマーからなるポリエーテルエステル繊維や、ポリアクリル酸金属塩、ポリアクリル酸およびその共重合体、ポリメタアクリル酸およびその共重合体、ポリビニルアルコールおよびその共重合体、ポリアクリルアミドおよびその共重合体、ポリオキシエチレン系ポリマーなどを配合したポリエステル繊維、5−スルホイソフタル酸成分を共重合したポリエステル繊維などが例示される。なかでも、かかる吸水自己伸張弾性繊維として、ポリブチレンテレフタレートをハードセグメントとし、ポリオキシエチレングリコールをソフトセグメントとするポリエーテルエステルエラストマーからなるポリエーテルエステル繊維が好適に例示される。   Examples of such water-absorbing self-stretching yarns include polyether ester fibers made of a polyether ester elastomer having polybutylene terephthalate as a hard segment and polyoxyethylene glycol as a soft segment, polyacrylic acid metal salts, polyacrylic acid and the like. Copolymer, polymethacrylic acid and its copolymer, polyvinyl alcohol and its copolymer, polyacrylamide and its copolymer, polyester fiber blended with polyoxyethylene polymer, 5-sulfoisophthalic acid component Examples include polymerized polyester fibers. Especially, as such a water absorption self-extension elastic fiber, the polyether ester fiber which consists of a polyether ester elastomer which uses polybutylene terephthalate as a hard segment and polyoxyethylene glycol as a soft segment is illustrated suitably.

上記ポリブチレンテレフタレートは、ブチレンテレフタレート単位を少なくとも70モル%以上含有することが好ましい。ブチレンテレフタレートの含有率は、より好ましくは80モル%以上、さらに好ましくは90モル%以上である。酸成分は、テレフタル酸が主成分であるが、少量の他のジカルボン酸成分を共重合してもよく、またグリコール成分は、テトラメチレングリコールを主成分とするが、他のグリコール成分を共重合成分として加えてもよい。   The polybutylene terephthalate preferably contains at least 70 mol% of butylene terephthalate units. The content of butylene terephthalate is more preferably 80 mol% or more, and still more preferably 90 mol% or more. The acid component is mainly composed of terephthalic acid, but a small amount of other dicarboxylic acid components may be copolymerized. The glycol component is mainly composed of tetramethylene glycol, but other glycol components are copolymerized. It may be added as a component.

テレフタル酸以外のジカルボン酸としては、例えばナフタレンジカルボン酸、イソフタル酸、ジフェニルジカルボン酸、ジフェニルキシエタンジカルボン酸、β−ヒドロキシエトキシ安息香酸、p−オキシ安息香酸、アジピン酸、セバシン酸、1、4−シクロヘキサンジカルボン酸のような芳香族、脂肪族のジカルボン酸成分を挙げることができる。さらに、本発明の目的の達成が実質的に損なわれない範囲内で、トリメリット酸、ピロメリット酸のような三官能性以上のポリカルボン酸を共重合成分として用いても良い。   Examples of dicarboxylic acids other than terephthalic acid include naphthalenedicarboxylic acid, isophthalic acid, diphenyldicarboxylic acid, diphenyloxyethanedicarboxylic acid, β-hydroxyethoxybenzoic acid, p-oxybenzoic acid, adipic acid, sebacic acid, and 1,4- Examples thereof include aromatic and aliphatic dicarboxylic acid components such as cyclohexanedicarboxylic acid. Further, a tricarboxylic or higher polycarboxylic acid such as trimellitic acid or pyromellitic acid may be used as a copolymerization component as long as the achievement of the object of the present invention is not substantially impaired.

また、テトラメチレングリコール以外のジオール成分としては、例えばトリメチレングリコール、エチレングリコール、シクロヘキサン−1,4−ジメタノール、ネオペンチルグリコールのような脂肪族、脂環族、芳香族のジオール化合物を挙げることができる。更に、本発明の目的の達成が実質的に損なわれない範囲内で、グリセリン、トリメチロールプロパン、ペンタエリスリトールのような三官能性以上のポリオールを共重合成分として用いてもよい。   Examples of diol components other than tetramethylene glycol include aliphatic, alicyclic and aromatic diol compounds such as trimethylene glycol, ethylene glycol, cyclohexane-1,4-dimethanol, and neopentyl glycol. Can do. Furthermore, a trifunctional or higher functional polyol such as glycerin, trimethylolpropane, or pentaerythritol may be used as a copolymerization component as long as the achievement of the object of the present invention is not substantially impaired.

一方、ポリオキシエチレングリコールは、オキシエチレングリコール単位を少なくとも70モル%以上含有することが好ましい。オキシエチレングリコールの含有量は、より好ましくは80モル%以上、さらに好ましくは90モル%以上である。本発明の目的の達成が実質的に損なわれない範囲内で、オキシエチレングリコール以外にプロピレングリコール、テトラメチレングリコール、グリセリンなどを共重合させても良い。
かかるポリオキシエチレングリコールの数平均分子量としては、400〜8000が好ましく、なかでも1000〜6000が特に好ましい。 The number average molecular weight of the polyoxyethylene glycol is preferably 400 to 8000, and particularly preferably 1000 to 6000. On the other hand, the polyoxyethylene glycol preferably contains at least 70 mol% or more of oxyethylene glycol units. The content of oxyethylene glycol is more preferably 80 mol% or more, and still more preferably 90 mol% or more. In addition to oxyethylene glycol, propylene glycol, tetramethylene glycol, glycerin and the like may be copolymerized within a range where the achievement of the object of the present invention is not substantially impaired. On the other hand, the polyoxyethylene glycol preferably contains at least 70 mol% or more of oxyethylene glycol units. The content of oxyethylene glycol is more preferably 80 mol% or more, and still more preferably 90 mol% or more. In addition to oxyethylene glycol, propylene glycol, tetramethylene glycol, glycolin and the like may be copolymerized within a range where the achievement of the object of the present invention is not substantially impaired.
The number average molecular weight of such polyoxyethylene glycol is preferably 400 to 8000, and particularly preferably 1000 to 6000. The number average molecular weight of such polyoxyethylene glycol is preferably 400 to 8000, and particularly preferably 1000 to 6000.

前記のポリエーテルエステルエラストマーは、たとえば、テレフタル酸ジメチル、テトラメチレングリコールおよびポリオキシエチレングリコールとを含む原料を、エステル交換触媒の存在下でエステル交換反応させ、ビス(ω−ヒドロキシブチル)テレフタレート及び/又はオリゴマーを形成させ、その後、重縮合触媒及び安定剤の存在下で高温減圧下にて溶融重縮合を行うことにより得ることができる。   The polyether ester elastomer is obtained, for example, by subjecting a raw material containing dimethyl terephthalate, tetramethylene glycol and polyoxyethylene glycol to a transesterification reaction in the presence of a transesterification catalyst to produce bis (ω-hydroxybutyl) terephthalate and / or Alternatively, it can be obtained by forming an oligomer and then performing melt polycondensation under high temperature and reduced pressure in the presence of a polycondensation catalyst and a stabilizer.

ハードセグメント/ソフトセグメントの比率は、重量を基準として30/70〜70/30であることが好ましい。
かかるポリエーテルエステル中には、公知の有機スルホン酸金属塩が含まれていると、さらに優れた吸水自己伸張性能が得られ好ましい。
The ratio of hard segment / soft segment is preferably 30/70 to 70/30 based on weight.
It is preferable that a known organic sulfonic acid metal salt is contained in such a polyether ester because a further excellent water absorption self-extension performance is obtained.

ポリエーテルエステル繊維は、前記ポリエーテルエステルを、通常の溶融紡糸口金から溶融して押し出し、引取速度300〜1200m/分(好ましくは400〜980m/分)で引取り、巻取ドラフト率をさらに該引取速度の1.0〜1.2(好ましくは1.0〜1.1)で巻取ることにより製造することができる。   The polyether ester fiber is obtained by melting and extruding the polyether ester from a normal melt spinneret, and taking it out at a take-up speed of 300 to 1200 m / min (preferably 400 to 980 m / min). It can manufacture by winding at 1.0-1.2 (preferably 1.0-1.1) of taking-up speed.

他方、非自己伸張糸としては、木綿、麻などの天然繊維やレーヨン、アセテートなどのセルロース系化学繊維、さらにはポリエチレンテレフタレートやポリトリメチレンテレフタレートに代表されるポリエステル、ポリアミド、ポリアクリルニトリル、ポリプロピレンなどの合成繊維が例示される。なかでも、通常のポリエステル繊維が好ましく例示される。   On the other hand, non-self-stretched yarns include natural fibers such as cotton and linen, cellulosic chemical fibers such as rayon and acetate, and polyesters such as polyethylene terephthalate and polytrimethylene terephthalate, polyamide, polyacrylonitrile, and polypropylene. These synthetic fibers are exemplified. Especially, a normal polyester fiber is illustrated preferably.

前記吸水自己伸張糸及び非自己伸張糸の繊維形態は特に限定されず、短繊維でもよいし長繊維でもよい。繊維の断面形状も特に限定されず、丸、三角、扁平、中空など公知の断面形状が採用できる。吸水自己伸張糸及び非自己伸張糸の総繊度、単糸繊度、フィラメント数も特に限定されないが、風合いや生産性の点で総繊度30〜300dtex、単糸繊度0.6〜10dtex、フィラメント数1〜300本の範囲が好ましい。   The fiber form of the water-absorbing self-stretching yarn and the non-self-stretching yarn is not particularly limited, and may be a short fiber or a long fiber. The cross-sectional shape of the fiber is not particularly limited, and a known cross-sectional shape such as a circle, a triangle, a flat shape, or a hollow shape can be employed. The total fineness, single yarn fineness, and number of filaments of the water-absorbing self-stretching yarn and non-self-stretching yarn are not particularly limited, but the total fineness is 30 to 300 dtex, the single yarn fineness is 0.6 to 10 dtex, and the number of filaments is 1 in terms of texture and productivity. A range of ˜300 is preferred.

前記織編物1は、吸水自己伸張糸と非自己伸張糸とからなる。その際、両者の重量比として、前者:後者で10:90〜60:40(より好ましくは20:80〜50:50)の範囲であることが好ましい。   The woven or knitted fabric 1 is composed of a water-absorbing self-stretching yarn and a non-self-stretching yarn. In this case, the weight ratio of the two is preferably in the range of 10:90 to 60:40 (more preferably 20:80 to 50:50) in the former: the latter.

織編物1の構造としては、その織編組織、層数は特に限定されるものではない。例えば、平織、綾織、サテンなどの織組織や、天竺、スムース、フライス、鹿の子、デンビー、トリコットなどの編組織が好適に例示されるが、これらに限定されるものではない。層数も単層でもよいし、2層以上の多層であってもよい。   As the structure of the knitted or knitted fabric 1, the woven or knitted structure and the number of layers are not particularly limited. For example, woven structures such as plain weave, twill weave, and satin, and knitted structures such as tengu, smooth, milling, kanoko, denby, and tricot are preferably exemplified, but not limited thereto. The number of layers may be a single layer or a multilayer of two or more layers.

吸水自己伸張糸と非自己伸張糸との糸配列としては、以下の糸配列が好適に例示される。
まず、その1として、吸湿自己伸張糸と非自己伸張糸とが引き揃えられて、編物のニードルループや、織物の経糸および/または緯糸を構成する糸配列があげられる。 First, as the first, there is a yarn arrangement in which a hygroscopic self-stretching yarn and a non-self-stretching yarn are aligned to form a needle loop of a knitted fabric and a warp and / or weft of a woven fabric. 例えば、図6に示すように、吸湿自己伸張糸と非自己伸張糸とが丸編組織の複合ループ(2本の糸条で、同時にニードルループを形成する。添え糸編みとも言われる。)を形成してなる糸配列や、図7に示すように、吸水自己伸張糸と非自己伸張糸とが、引き揃えられて織組織の経糸および/または緯糸に配された糸配列が例示される。 For example, as shown in FIG. 6, a hygroscopic self-stretching yarn and a non-self-stretching yarn form a composite loop of a circular knitting structure (two yarns form a needle loop at the same time. Also called a splicing yarn knitting). Examples thereof include a formed yarn arrangement and, as shown in FIG. 7, a yarn arrangement in which a water-absorbing self-stretching yarn and a non-self-stretching yarn are aligned and arranged in a warp and / or weft of a woven structure. As the yarn arrangement of the water-absorbing self-stretching yarn and the non-self-stretching yarn, the following yarn arrangement is preferably exemplified. As the yarn arrangement of the water-absorbing self-stretching yarn and the non-self-stretching yarn, the following yarn arrangement is preferably 00.
First, the hygroscopic self-stretching yarn and the non-self-stretching yarn are aligned to form a needle loop of a knitted fabric and a yarn arrangement constituting a warp and / or weft of a woven fabric. For example, as shown in FIG. 6, a hygroscopic self-stretching yarn and a non-self-stretching yarn form a circular loop knitted composite loop (two yarns form a needle loop at the same time, also called splicing yarn). As shown in FIG. 7, the formed yarn arrangement and the yarn arrangement in which the water-absorbing self-stretching yarn and the non-self-stretching yarn are aligned and arranged on the warp and / or the weft of the woven structure are exemplified. First, the hygroscopic self-stretching yarn and the non-self-stretching yarn are aligned to form a needle loop of a knitted fabric and a yarn arrangement therefore a warp and / or weft of a woven fabric. For example, as shown in FIG. 6, a hygroscopic self-stretching yarn and a non-self-stretching yarn form a circular loop knitted composite loop (two yarns form a needle loop at the same time, also called splicing yarn). As shown in FIG. 7, the formed yarn arrangement and the yarn arrangement in which the water-absorbing self-stretching yarn and the non-self-stretching yarn are aligned and arranged on the warp and / or the weft of the woven structure are 00.

その2として、吸湿自己伸張糸と非自己伸張糸とが、織編物の経糸および/または緯糸において1本交互(1:1)や複数本交互(2:2、3:3など)に配された糸配列があげられる。例えば、図8に示すように、丸編物中に吸水自己伸張糸と非自己伸張糸とが1:1に配された糸配列、図9に示すように、織物中に吸水自己伸張糸と非自己伸張糸とが1:1に経糸および緯糸に配された糸配列などが例示される。   As part 2, hygroscopic self-stretching yarn and non-self-stretching yarn are arranged alternately (1: 1) or plural (2: 2, 3: 3, etc.) in the warp and / or weft of the woven or knitted fabric. Thread arrangement. For example, as shown in FIG. 8, a yarn arrangement in which a water-absorbing self-stretching yarn and a non-self-stretching yarn are arranged 1: 1 in a circular knitted fabric, and as shown in FIG. Examples thereof include a yarn arrangement in which self-stretching yarns are arranged 1: 1 on warps and wefts.

その3として、吸水自己伸張糸と非自己伸張糸とが、混繊糸、複合仮撚捲縮加工糸、合撚糸、カバリング糸などの複合糸として織編物を構成する態様があげられる。   As a third example, there is an embodiment in which a water-absorbing self-stretching yarn and a non-self-stretching yarn constitute a woven or knitted fabric as a composite yarn such as a mixed yarn, a composite false twist crimped yarn, a combined twist yarn, or a covering yarn.

ここで、糸長の測定は以下の方法で行うものとする。まず、織編物を温度20℃、湿度65%RHの雰囲気中に24時間放置した後、該織編物から、30cm×30cmの小片を裁断する(n数=5)。続いて、各小片から、吸水自己伸張糸及び非自己伸張糸を1本ずつ取り出し、吸水自己伸張糸の糸長A(mm)、非自己伸張糸の糸長B(mm)を測定する。その際、非弾性糸の場合は1.76mN/dtex(200mg/de)、弾性糸の場合は0.0088mN/dtex(1mg/de)の荷重をかけて測定する。そして、(糸長Aの平均値)/(糸長Bの平均値)をA/Bとする。ここで、小片から取り出す吸水自己伸張糸と非自己伸張糸とは織編物中において同一方向のものである必要がある。例えば、吸水自己伸張糸を織物の経糸(緯糸)から取り出す場合、他方の非自己伸張糸も経糸(緯糸)から取り出す必要がある。また、吸水自己伸張糸と非自己伸張糸とが、複合糸として織編物を構成する場合には、裁断された小片(30cm×30cm)から複合糸を取り出し(n数=5)、さらに複合糸から吸水自己伸張糸と非自己伸張糸とを取り出して前記と同様にして測定するものとする。   Here, the yarn length is measured by the following method. First, after leaving the woven or knitted fabric to stand in an atmosphere of a temperature of 20 ° C. and a humidity of 65% RH for 24 hours, a 30 cm × 30 cm small piece is cut from the woven or knitted fabric (n number = 5). Subsequently, one water-absorbing self-stretching yarn and one non-self-stretching yarn are taken out from each piece, and the yarn length A (mm) of the water-absorbing self-stretching yarn and the yarn length B (mm) of the non-self-stretching yarn are measured. At that time, in the case of an inelastic yarn, the load is 1.76 mN / dtex (200 mg / de), and in the case of an elastic yarn, a load of 0.0088 mN / dtex (1 mg / de) is applied. Then, (average value of yarn length A) / (average value of yarn length B) is defined as A / B. Here, the water-absorbing self-stretching yarn and the non-self-stretching yarn taken out from the small piece need to be in the same direction in the woven or knitted fabric. For example, when the water-absorbing self-stretching yarn is taken out from the warp (weft) of the fabric, the other non-self-stretching yarn needs to be taken out from the warp (weft). When the water-absorbing self-stretching yarn and the non-self-stretching yarn constitute a woven or knitted fabric as a composite yarn, the composite yarn is taken out from the cut pieces (30 cm × 30 cm) (n number = 5), and further the composite yarn The water-absorbing self-stretching yarn and the non-self-stretching yarn are taken out of the yarn and measured in the same manner as described above.

前記のように、吸水自己伸張糸と非自己伸張糸との糸長差をもうける方法としては、以下の方法が例示される。
例えば、その1として、前記の織編物1を製編織する際、吸水自己伸張糸として、前記の弾性を有するポリエーテルエステル繊維を使用し、該ポリエーテルエステル繊維をドラフト(延伸)しながら非自己伸張糸と引き揃え、同一の給糸口に給糸して製編織する方法があげられる。その際、ポリエーテルエステル繊維のドラフト率としては、10%以上(好ましくは20%以上300%以下)が好ましい。なお、該ドラフト率(%)は、下記式で求められる。
ドラフト率(%)=((引き取り速度)−(供給速度))/(供給速度)×100 As described above, the following method is exemplified as a method for obtaining the yarn length difference between the water-absorbing self-stretching yarn and the non-self-stretching yarn. Draft rate (%) = ((pickup rate)-(supply rate)) / (supply rate) x 100 As described above, the following method is exemplified as a method for obtaining the yarn length difference between the water-absorbing self-stretching yarn and the non-self-stretching yarn.
For example, as the first example, when weaving and weaving the woven or knitted fabric 1, the polyether ester fiber having elasticity described above is used as a water-absorbing self-stretching yarn, and the polyether ester fiber is drafted (stretched) while being non-self There is a method of knitting and weaving by aligning with stretch yarns and feeding them to the same yarn feeder. At that time, the draft rate of the polyetherester fiber is preferably 10% or more (preferably 20% or more and 300% or less). The draft rate (%) is obtained by the following formula. For example, as the first example, when weaving and weaving the woven or knitted fabric 1, the sintered ester fiber having elasticity described above is used as a water-absorbing self-stretching yarn, and the sintered ester fiber is drafted (stretched) while being non-self There is a method of knitting and weaving by aligning with stretch yarns and feeding them to the same yarn feeder. At that time, the draft rate of the weavingester fiber is preferably 10% or more (preferably 20% or more and 300% or less). The draft rate (%) is obtained by the following formula.
Draft rate (%) = ((take-off speed) − (supply speed)) / (supply speed) × 100 Draft rate (%) = ((take-off speed) − (supply speed)) / (supply speed) × 100

ポリエーテルエステル繊維は、通常弾性性能を有しているため、織編物中において、ポリエーテルエステル繊維は、弾性回復してその糸長が短くなり、他方の非自己伸張糸との糸長差をもうけることができる。   Since polyetherester fibers usually have elastic performance, in woven and knitted fabrics, the polyetherester fibers are elastically recovered and their yarn length is shortened, resulting in a difference in yarn length from the other non-self-stretching yarn. I can make it.

その2として、前記の織編物1を製編織する際、吸水自己伸張糸の沸水収縮率を非自己伸張糸の沸水収縮率よりも大きくする方法があげられる。かかる織編物を通常の染色加工工程に供することにより、吸水自己伸張糸の糸長が短くなり、他方の非自己伸張糸との糸長差をもうけることができる。   As a second method, when the knitted or knitted fabric 1 is knitted or woven, the boiling water shrinkage rate of the water-absorbing self-stretching yarn is larger than the boiling water shrinkage rate of the non-self-stretching yarn. By subjecting such a woven or knitted fabric to a normal dyeing process, the length of the water-absorbing self-stretching yarn can be shortened, and a difference in yarn length from the other non-self-stretching yarn can be obtained.

その3として、非自己伸張糸をオーバーフィード(過供給)させながら吸水自己伸張糸と引き揃えて、通常の空気混繊加工、撚糸、カバリング加工なより複合糸を得て、該複合糸を用いて織編物を製編織する方法があげられる。   As part 3, the non-self-stretched yarn is aligned with the water-absorbing self-stretched yarn while overfeeding (oversupply) to obtain a composite yarn from ordinary air-mixing, twisting, and covering processing, and the composite yarn is used. And a method of knitting and knitting the knitted fabric.

次に、織編物2は、ポリエステル成分とポリアミド成分とがサイドバイサイド型に接合され、かつ潜在捲縮性能が発現してなる捲縮を有する複合繊維を含む織編物である。
ここで、ポリエステル成分としては、他方のポリアミド成分との接着性の点で、スルホン酸のアルカリまたはアルカリ土類金属、ホスホニウム塩を有し、かつエステル形成能を有する官能基を1個以上もつ化合物が共重合された、ポリエチレンテレフタレート、ポリプロピレンテレフタレート、ポリブチレンタレフタレート等の変性ポリエステルが好ましく例示される。 Here, as the polyester component, a compound having an alkali or alkaline earth metal of sulfonic acid, a phosphonium salt, and one or more functional groups having an ester-forming ability in terms of adhesion to the other polyamide component. Modified polyesters such as polyethylene terephthalate, polypropylene terephthalate, and polybutylentale phthalate, which are copolymerized with the above, are preferably exemplified. なかでも、汎用性およびポリマーコストの点で、前記化合物が共重合された、変性ポリエチレンテレフタレートが特に好ましい。 Of these, modified polyethylene terephthalate in which the compound is copolymerized is particularly preferable in terms of versatility and polymer cost. その際、共重合成分としては、5−ナトリウムスルホイソフタル酸およびそのエステル誘導体、5−ホスホニウムイソフタル酸およびそのエステル誘導体、p−ヒドロキシベンゼンスルホン酸ナトリウムなどがあげられる。 At that time, examples of the copolymerization component include 5-sodium sulfoisophthalic acid and its ester derivative, 5-phosphonium isophthalic acid and its ester derivative, and sodium p-hydroxybenzenesulfonate. なかでも、5−ナトリウムスルホイソフタル酸が好ましい。 Of these, 5-sodium sulfoisophthalic acid is preferable. 共重合量としては、2.0〜4.5モル%の範囲が好ましい。 The copolymerization amount is preferably in the range of 2.0 to 4.5 mol%. 該共重合量が2.0モル%よりも小さいと、優れた捲縮性能が得られるものの、ポリアミド成分とポリエステル成分との接合界面にて剥離が生じるおそれがある。 If the copolymerization amount is smaller than 2.0 mol%, excellent crimping performance can be obtained, but peeling may occur at the bonding interface between the polyamide component and the polyester component. 逆に、該共重合量が4.5モル%よりも大きいと、延伸熱処理の際、ポリエステル成分の結晶化が進みにくくなるため、延伸熱処理温度を上げる必要があり、その結果、糸切れが多発するおそれがある。 On the contrary, if the copolymerization amount is larger than 4.5 mol%, crystallization of the polyester component is difficult to proceed during the draw heat treatment, so that it is necessary to raise the draw heat treatment temperature, and as a result, yarn breakage frequently occurs. There is a risk of Next, the woven or knitted fabric 2 is a woven or knitted fabric including a composite fiber having crimps in which a polyester component and a polyamide component are joined in a side-by-side manner and latent crimp performance is exhibited. Next, the woven or knitted fabric 2 is a woven or knitted fabric including a composite fiber having crimps in which a polyester component and a polyamide component are joined in a side-by-side manner and latent crimp performance is exhibited.
Here, as the polyester component, in terms of adhesiveness with the other polyamide component, a compound having one or more functional groups having an alkali or alkaline earth metal of sulfonic acid or a phosphonium salt and having an ester forming ability Preferred examples thereof include modified polyesters such as polyethylene terephthalate, polypropylene terephthalate, and polybutylene terephthalate. Among these, modified polyethylene terephthalate obtained by copolymerizing the above compound is particularly preferable from the viewpoint of versatility and polymer cost. In this case, examples of the copolymer component include 5-sodium sulfoisophthalic acid and ester derivatives thereof, 5-phosphonium isophthalic acid and ester derivatives thereof, and sodium p-hydroxybenzenesulfonate. Of these, 5-sodium sulfoisophthalic acid is preferable. As a copolymerization amount, the range of 2.0-4.5 mol% is preferable. When the copolymerization amount is less than 2.0 mol%, although exc Here, as the polyester component, in terms of adhesiveness with the other polyamide component, a compound having one or more functional groups having an alkali or alkaline earth metal of sulfonic acid or a phosphonium salt and having an ester forming ability Preferred examples thereof include modified polyesters such as polyethylene terephthalate, polypropylene terephthalate, and polybutylene terephthalate. Among these, modified polyethylene terephthalate obtained by copolymerizing the above compound is particularly preferred from the viewpoint of versatility and polymer cost. In this case, examples of the copolymer component include 5-sodium sulfoisophthalic acid and ester derivatives thereof, 5-phosphonium isophthalic acid and ester derivatives thereof, and sodium p-hydroxybenzenesulfonate. Of these, 5-sodium sulfoisophthalic acid is preferred. As a polypropyleneization amount, the range of 2.0-4.5 mol% is preferred. When the copolymerization amount is less than 2.0 mol%, although exc ellent crimping performance can be obtained, there is a possibility that peeling occurs at the bonding interface between the polyamide component and the polyester component. On the other hand, if the copolymerization amount is greater than 4.5 mol%, the crystallization of the polyester component becomes difficult to proceed during the stretching heat treatment, and thus it is necessary to raise the stretching heat treatment temperature. There is a risk. ellent crimping performance can be obtained, there is a possibility that peeling occurs at the bonding interface between the polyamide component and the polyester component. On the other hand, if the copolymerization amount is greater than 4.5 mol%, the crystallization of the polyester component becomes There is a risk. Difficult to proceed during the stretching heat treatment, and thus it is necessary to raise the stretching heat treatment temperature.

一方のポリアミド成分としては、主鎖中にアミド結合を有するものであれば特に限定されるものではなく、例えば、ナイロン−4、ナイロン−6、ナイロン−66、ナイロン−46、ナイロン−12などがあげられる。なかでも、汎用性、ポリマーコスト、製糸安定性の点で、ナイロン−6およびナイロン−66が好適である。   One polyamide component is not particularly limited as long as it has an amide bond in the main chain, and examples thereof include nylon-4, nylon-6, nylon-66, nylon-46, nylon-12, and the like. can give. Among these, nylon-6 and nylon-66 are preferable in terms of versatility, polymer cost, and yarn production stability.

なお、前記ポリエステル成分およびポリアミド成分には、公知の添加剤、例えば、顔料、顔料、艶消し剤、防汚剤、蛍光増白剤、難燃剤、安定剤、帯電防止剤、耐光剤、紫外線吸収剤等が含まれていてもよい。   The polyester component and the polyamide component include known additives such as pigments, pigments, matting agents, antifouling agents, fluorescent whitening agents, flame retardants, stabilizers, antistatic agents, light-resistant agents, and ultraviolet absorption agents. An agent or the like may be included.

前記のサイドバイサイド型に接合された複合繊維は、任意の断面形状および複合形態をとることができ、サイドバイサイド型や偏心芯鞘型であってもよい。さらには、三角形や四角形、その断面内に中空部を有するものであってもよい。なかでも、サイドバイサイド型が好ましい。両成分の複合比は任意に選定することができるが、通常、ポリエステル成分とポリアミド成分の重量比で30:70〜70:30(より好ましくは40:60〜60:40)の範囲内であることが好ましい。   The composite fiber joined to the side-by-side type can take any cross-sectional shape and composite form, and may be a side-by-side type or an eccentric core-sheath type. Furthermore, you may have a hollow part in the triangle, the square, and the cross section. Of these, the side-by-side type is preferable. Although the composite ratio of both components can be selected arbitrarily, it is usually in the range of 30:70 to 70:30 (more preferably 40:60 to 60:40) by weight ratio of the polyester component and the polyamide component. It is preferable.

前記複合繊維の単糸繊度、単糸数(フィラメント数)としては特に限定されないが、単糸繊度1〜10dtex(より好ましくは2〜5dtex)、単糸数10〜200本(より好ましくは20〜100本)の範囲内であることが好ましい。   The single yarn fineness and the number of single yarns (number of filaments) of the composite fiber are not particularly limited, but the single yarn fineness is 1 to 10 dtex (more preferably 2 to 5 dtex), and the number of single yarns is 10 to 200 (more preferably 20 to 100). ) Is preferable.

また、前記複合繊維は、潜在捲縮性能が発現してなる捲縮構造を有している必要がある。異種ポリマーがサイドバイサイド型に接合された複合繊維は、通常、潜在捲縮性能を有しており、後記のように、染色加工等で熱処理を受けると潜在捲縮性能が発現する。捲縮構造としては、ポリアミド成分が捲縮の内側に位置し、ポリエステル成分が捲縮の外側に位置していることが好ましい。かかる捲縮構造を有する複合繊維は、後記の製造方法により容易に得ることができる。複合繊維がこのような捲縮構造を有していると、湿潤時に、内側のポリアミド成分が膨潤、伸張し、外側のポリエステル成分はほとんど長さ変化を起こさないため、捲縮率が低下する(複合繊維の見かけの長さが長くなる。)。一方、乾燥時には、内側のポリアミド成分が収縮し、外側のポリエステル成分はほとんど長さ変化を起こさないため、捲縮率が増大する(複合繊維の見かけの長さが短くなる。)。このように、湿潤時に、複合繊維の捲縮率が可逆的に低下し見かけの糸長が増大するため、織編物の寸法が大きくなる。   Further, the composite fiber needs to have a crimped structure that exhibits latent crimping performance. A composite fiber in which different types of polymers are joined in a side-by-side manner usually has latent crimping performance, and the latent crimping performance is manifested when subjected to heat treatment such as dyeing as described later. As the crimped structure, it is preferable that the polyamide component is located inside the crimp and the polyester component is located outside the crimp. The composite fiber having such a crimped structure can be easily obtained by the production method described later. When the composite fiber has such a crimped structure, the inner polyamide component swells and stretches when wet, and the outer polyester component hardly changes in length, so that the crimp rate decreases ( The apparent length of the composite fiber is increased.) On the other hand, at the time of drying, the inner polyamide component shrinks and the outer polyester component hardly changes in length, so that the crimp rate increases (the apparent length of the composite fiber becomes shorter). Thus, when wet, the crimp rate of the composite fiber is reversibly lowered and the apparent yarn length is increased, so that the size of the woven or knitted fabric is increased.

前記の複合繊維は、湿潤時に、容易に捲縮が低下しみかけの糸長が増大する上で、無撚糸、または300T/m以下の撚りが施された甘撚り糸であることが好ましい。特に、無撚糸であることが好ましい。強撚糸のように、強い撚りが付与されていると、湿潤時に捲縮が低下しにくく好ましくない。なお、交絡数が20〜60ケ/m程度となるようにインターレース空気加工および/または通常の仮撚捲縮加工が施されていてもさしつかえない。   The composite fiber is preferably a non-twisted yarn or a sweet twisted yarn subjected to a twist of 300 T / m or less in order to easily reduce crimp and increase the apparent yarn length when wet. In particular, non-twisted yarn is preferable. When a strong twist is imparted like a strong twisted yarn, it is not preferred that crimps are difficult to decrease when wet. It should be noted that interlaced air processing and / or normal false twist crimping may be performed so that the number of entanglements is about 20 to 60 pieces / m.

織編物2の構造としては、その織編組織、層数は特に限定されるものではない。例えば、平織、綾織、サテンなどの織組織や、天竺、スムース、フライス、鹿の子、そえ糸編、デンビー、ハーフなどの編組織が好適に例示される。特に丸編物またはメッシュ状の織編物が好ましい。   As the structure of the woven or knitted fabric 2, the woven or knitted structure and the number of layers are not particularly limited. For example, woven structures such as plain weave, twill weave, and satin, and knitted structures such as tenshi, smooth, milling, kanoko, knitting yarn, denby, and half are preferably exemplified. A circular knitted fabric or a mesh woven or knitted fabric is particularly preferable.

かかる織編物2は、例えば下記の製造方法によって容易に得ることができる。
まず、固有粘度が0.30〜0.43(オルソクロロフェノールを溶媒として35℃で測定)の、5−ナトリウムスルホイソフタル酸が2.0〜4.5モル%共重合された変性ポリエステルと、固有粘度が1.0〜1.4(m−クレゾールを溶媒として30℃で測定)のポリアミドとを用いてサイドバイサイド型に溶融複合紡糸する。 First, a modified polyester having an intrinsic viscosity of 0.30 to 0.43 (measured at 35 ° C. using orthochlorophenol as a solvent) and 2.0 to 4.5 mol% of 5-sodium sulfoisophthalic acid copolymerized with the modified polyester. Polyamide with an intrinsic viscosity of 1.0 to 1.4 (measured at 30 ° C. using m-cresol as a solvent) is used for side-by-side melt-composite spinning. その際、ポリエステル成分の固有粘度が0.43以下であることが特に重要である。 At that time, it is particularly important that the intrinsic viscosity of the polyester component is 0.43 or less. ポリエステル成分の固有粘度が0.43よりも大きいと、ポリエステル成分の粘度が増大するため、複合繊維の物性がポリエステル単独糸に近くなり好ましくない。 If the intrinsic viscosity of the polyester component is larger than 0.43, the viscosity of the polyester component increases, and the physical properties of the composite fiber become close to those of the polyester single yarn, which is not preferable. 逆に、ポリエステル成分の固有粘度が0.30よりも小さいと、溶融粘度が小さくなりすぎて製糸性が低下するとともに毛羽発生が多くなり、品質および生産性が低下するおそれがある。 On the contrary, if the intrinsic viscosity of the polyester component is smaller than 0.30, the melt viscosity becomes too small, the yarn-making property is lowered, and fluffing is increased, which may lower the quality and productivity. Such a woven or knitted fabric 2 can be easily obtained by, for example, the following production method. Such a woven or knitted fabric 2 can be easily obtained by, for example, the following production method.
First, a modified polyester having an intrinsic viscosity of 0.30 to 0.43 (measured at 35 ° C. using orthochlorophenol as a solvent) and 2.0 to 4.5 mol% of 5-sodium sulfoisophthalic acid copolymerized; Using a polyamide having an intrinsic viscosity of 1.0 to 1.4 (measured at 30 ° C. using m-cresol as a solvent), melt composite spinning is performed in a side-by-side manner. At that time, it is particularly important that the intrinsic viscosity of the polyester component is 0.43 or less. When the intrinsic viscosity of the polyester component is larger than 0.43, the viscosity of the polyester component increases, so that the physical properties of the composite fiber are close to that of a single polyester yarn, which is not preferable. On the other hand, if the intrinsic viscosity of the polyester component is less than 0.30, the melt viscosity becomes too small and the yarn-making property is lowered and the generation of fluff is increased, which may reduce the quality and product First, a modified polyester having an intrinsic viscosity of 0.30 to 0.43 (measured at 35 ° C. using orthochlorophenol as a solvent) and 2.0 to 4.5 mol% of 5-sodium sulfoisophthalic acid copolymerized; Using a polyamide having an intrinsic viscosity of 1.0 to 1.4 (measured at 30 ° C. using m-cresol as a solvent), melt composite spinning is performed in a side-by-side manner. At that time, it is particularly important that the intrinsic viscosity of the polyester component is 0.43 or less. When the intrinsic viscosity of the polyester component is larger than 0.43, the viscosity of the polyester component increases, so that the physical properties of the composite fiber are close to that of a single polyester yarn, which is not preferred. On the other hand, if the intrinsic viscosity of the polyester component is less than 0.30, the melt viscosity becomes too small and the yarn-making property is lowered and the generation of fluff is increased, which may reduce the quality and product ivity. ivity.

溶融紡糸の際に用いる紡糸口金としては、特開2000−144518号公報の図1のような、高粘度側と低粘度側の吐出孔を分離し、かつ高粘度側吐出線速度を小さくした(吐出断面積を大きくした)紡糸口金が好適である。そして、高粘度側吐出孔に溶融ポリエステルを通過させ、低粘度側吐出孔に溶融ポリアミドを通過させ冷却固化させることが好ましい。その際、ポリエステル成分とポリアミド成分との重量比は、前述のとおり、30:70〜70:30(より好ましくは40:60〜60:40)の範囲内であることが好ましい。   As the spinneret used for melt spinning, as shown in FIG. 1 of JP-A-2000-144518, the high-viscosity side and low-viscosity side discharge holes are separated and the high-viscosity side discharge linear velocity is reduced ( A spinneret having a large discharge cross-sectional area is preferred. Then, it is preferable that the molten polyester is passed through the high viscosity side discharge holes and the molten polyamide is passed through the low viscosity side discharge holes to be cooled and solidified. In that case, it is preferable that the weight ratio of a polyester component and a polyamide component exists in the range of 30: 70-70: 30 (more preferably 40: 60-60: 40) as above-mentioned.

また、溶融複合紡糸した後、一旦巻き取った後に延伸する別延方式を採用してもよいし、一旦巻き取らずに延伸熱処理を行う直延方式を採用してもよい。その際、紡糸・延伸条件としては、通常の条件でよい。例えば、直延方式の場合、1000〜3500m/分程度で紡糸した後、連続して100〜150℃の温度で延伸し巻き取る。延伸倍率は最終時に得られる複合繊維の切断伸度が10〜60%(好ましくは20〜45%)、切断強度が3.0〜4.7cN/dtex程度となるよう、適宜選定すればよい。   Further, after the melt composite spinning, a separate stretching method in which the film is once wound and then stretched may be employed, or a direct stretching method in which a stretching heat treatment is performed without winding once may be employed. At that time, the spinning and drawing conditions may be normal conditions. For example, in the case of the direct extension method, after spinning at about 1000 to 3500 m / min, the film is continuously drawn and wound at a temperature of 100 to 150 ° C. The draw ratio may be appropriately selected so that the cut elongation of the composite fiber obtained at the end is 10 to 60% (preferably 20 to 45%) and the cut strength is about 3.0 to 4.7 cN / dtex.

ここで、前記の複合繊維が、下記の要件(1)および(2)を同時に満足することが好ましい。
(1)乾燥時における複合繊維の捲縮率DCが1.5〜13%(好ましくは2〜6%)の範囲内である。
(2)捲縮率DCと、乾燥時における複合繊維の捲縮率HCとの差(DC−HC)が0.5%以上(好ましくは1〜5%)である。
Here, it is preferable that the composite fiber satisfies the following requirements (1) and (2) at the same time.
(1) The crimp ratio DC of the composite fiber at the time of drying is in the range of 1.5 to 13% (preferably 2 to 6%).
(2) The difference (DC-HC) between the crimp rate DC and the crimp rate HC of the composite fiber during drying is 0.5% or more (preferably 1 to 5%).

ただし、乾燥時とは、試料を温度20℃、湿度65%RH環境下に24時間放置した後の状態であり、一方、湿潤時とは、試料を温度20℃の水中に2時間浸漬した直後の状態であり、乾燥時における捲縮率DCおよび湿潤時における捲縮率HCは、下記の方法で測定した値を用いることとする。   However, when dry, the sample is left in a 20 ° C., 65% RH environment for 24 hours, while when wet, the sample is immediately immersed in water at 20 ° C. for 2 hours. In this state, the crimping rate DC at the time of drying and the crimping rate HC at the time of wetness are values measured by the following methods.

まず、枠周:1.125mの巻き返し枠を用いて、荷重:49/50mN×9×トータルテックス(0.1gf×トータルデニール)をかけて一定の速度で巻き返し、巻き数:10回の小綛をつくり、該小綛をねじり2重の輪状にしたものに49/2500mN×20×9×トータルテックス(2mg×20×トータルデニール)の初荷重をかけたまま沸水中に入れて30分間処理し、該沸水処理の後100℃の乾燥機にて30分間乾燥し、その後さらに初荷重をかけたまま160℃の乾熱中に入れ5分間処理する。該乾熱処理の後に初荷重を除き、温度20℃、湿度65%RH環境下に24時間以上放置した後、前記の初荷重および98/50mN×20×9×トータルテックス(0.2gf×20×トータルデニール)の重荷重を負荷し、綛長:L0を測定し、直ちに重荷重のみを取り除き、除重1分後の綛長:L1を測定する。さらにこの綛を初荷重をかけたまま温度20℃の水中に2時間浸漬した後取り出し、ろ紙にて0.69mN/cm(70mgf/cm)の圧力で軽く水を拭き取った後、初荷重および重荷重を負荷し綛長:L0’を測定し、直ちに重荷重のみを取り除き、除重1分後の綛長:L1’を測定する。以上の測定数値から下記の計算式にて、乾燥時の捲縮率(DC)、湿潤時の捲縮率(HC)、乾燥時と湿潤時の捲縮率差(DC−HC)を算出する。
乾燥時の捲縮率DC(%)=((L0−L1)/L0)×100 Crisp rate DC (%) at the time of drying = ((L0-L1) / L0) × 100
湿潤時の捲縮率HC(%)=(L0'−L1')/L0')×100 First, using a rewind frame with a frame circumference of 1.125 m, a load was applied at 49/50 mN × 9 × total tex (0.1 gf × total denier) at a constant speed, and the number of turns was 10 times. , Twisted into a double ring, and put it in boiling water for 30 minutes with initial load of 49 / 2500mN x 20 x 9 x total tex (2mg x 20 x total denier) Then, after the boiling water treatment, it is dried for 30 minutes in a dryer at 100 ° C., and is further placed in a dry heat of 160 ° C. for 5 minutes with the initial load applied. After the dry heat treatment, the initial load was removed and the sample was allowed to stand for 24 hours or more in a temperature of 20 ° C. and a humidity of 65% RH. Then, the initial load and 98/50 mN × 20 × 9 × total tex (0.2 gf × 20 × Apply a heavy load of total denier), measure the heel length: L0, immediately remove only the heavy load, and measure the heel length: L1 after 1 minute of dewetting. Further, the soot was im Wet crimp rate HC (%) = (L0'-L1') / L0') x 100 First, using a rewind frame with a frame circumference of 1.125 m, a load was applied at 49/50 mN x 9 x total tex (0.1 gf x total denier) at a constant speed, and the number of turns was 10 times., Twisted into a double ring, and put it in boiling water for 30 minutes with initial load of 49 / 2500mN x 20 x 9 x total tex (2mg x 20 x total denier) Then, after the boiling water treatment, it is dried for 30 minutes in a dryer at 100 ° C., and is further placed in a dry heat of 160 ° C. for 5 minutes With the initial load applied. After the dry heat treatment, the initial load was removed and the sample was allowed to stand for 24 hours or more in a temperature of 20 ° C. and a humidity of 65% RH. Then, the initial load and 98/50 mN × 20 × 9 × total tex (0.2 gf × 20 × Apply a heavy load of total denier), measure the heel length: L0, immediately remove only the heavy load, and measure the heel length: L1 after 1 minute of dewetting. Further, the soot was im mersed in water at a temperature of 20 ° C. for 2 hours with the initial load applied, taken out, and after lightly wiping off the water with a filter paper at a pressure of 0.69 mN / cm 2 (70 mgf / cm 2 ), the initial load was applied. Then, a heavy load is applied, and the heel length: L0 ′ is measured, and only the heavy load is immediately removed, and the heel length: L1 ′ after 1 minute of dewetting is measured. Based on the above measurement values, the crimping rate during drying (DC), the crimping rate during wetness (HC), and the difference in crimping rate between dry and wet (DC-HC) are calculated using the following formula. . mersed in water at a temperature of 20 ° C. for 2 hours with the initial load applied, taken out, and after lightly wiping off the water with a filter paper at a pressure of 0.69 mN / cm 2 (70 mgf / cm 2 ) , the initial load was applied. Then, a heavy load is applied, and the heel length: L0 ′ is measured, and only the heavy load is immediately removed, and the heel length: L1 ′ after 1 minute of dewetting is measured. Based on the above measurement values, the crimping rate during drying (DC), the crimping rate during wetness (HC), and the difference in crimping rate between dry and wet (DC-HC) are calculated using the following formula.
Crimp rate during drying DC (%) = ((L0−L1) / L0) × 100 Crimp rate during drying DC (%) = ((L0−L1) / L0) × 100
Crimp rate HC (%) when wet = (L0′−L1 ′) / L0 ′) × 100 Crimp rate HC (%) when wet = (L0 ′ − L1 ′) / L0 ′) × 100

前記の湿潤時における複合繊維の捲縮率HCとしては、0.5〜10.0%(好ましくは1〜3%)の範囲内であることが好ましい。
ここで、乾燥時における複合繊維の捲縮率DCが1.5%よりも小さいと、湿潤時の捲縮変化量が小さくなるおそれがある。逆に、乾燥時における複合繊維の捲縮率DCが13%よりも大きい場合は、捲縮が強すぎて湿潤時に捲縮が変化しにくくなるおそれがある。
The crimp rate HC of the composite fiber when wet is preferably in the range of 0.5 to 10.0% (preferably 1 to 3%).

Here, if the crimp ratio DC of the composite fiber at the time of drying is less than 1.5%, the amount of change in crimp at the time of wetting may be small. On the other hand, when the crimp ratio DC of the composite fiber at the time of drying is larger than 13%, the crimp is too strong and the crimp may not easily change when wet. Here, if the crimp ratio DC of the composite fiber at the time of drying is less than 1.5%, the amount of change in crimp at the time of wetting may be small. On the other hand, when the crimp ratio DC of the composite fiber at the time of drying is larger than 13%, the crimp is too strong and the crimp may not easily change when wet.

次いで、前記複合繊維を単独で用いるか、他の繊維も同時に用いて織編物を織編成した後、染色加工などの熱処理により前記複合繊維の捲縮を発現させる。
ここで、織編物2を織編成する際、前述のように、重量基準で織編物全重量に対して、10重量%以上(好ましくは40重量%以上)であることが肝要である。 Here, when weaving and knitting the woven and knitted fabric 2, as described above, it is important that the weight is 10% by weight or more (preferably 40% by weight or more) with respect to the total weight of the woven and knitted fabric. また、織編組織は特に限定されず、前述のものを適宜選定することができる。 Further, the weaving structure is not particularly limited, and the above-mentioned one can be appropriately selected. Next, the composite fiber is used alone, or other fibers are used at the same time to weave and knit the knitted fabric, and then the crimp of the composite fiber is expressed by heat treatment such as dyeing. Next, the composite fiber is used alone, or other fibers are used at the same time to weave and knit the knitted fabric, and then the crimp of the composite fiber is expressed by heat treatment such as dyeing.
Here, when weaving the knitted or knitted fabric 2, as described above, it is important that the amount is 10% by weight or more (preferably 40% by weight or more) with respect to the total weight of the woven or knitted fabric on a weight basis. Further, the woven or knitted structure is not particularly limited, and the above-described one can be selected as appropriate. Here, when weaving the knitted or knitted fabric 2, as described above, it is important that the amount is 10% by weight or more (preferably 40% by weight or more) with respect to the total weight of the woven or knitted fabric on Further, the woven or knitted structure is not particularly limited, and the above-described one can be selected as appropriate.

前記染色加工の温度としては100〜140℃(より好ましくは110〜135℃)、時間としてはトップ温度のキープ時間が5〜40分の範囲内であることが好ましい。かかる条件で、織編物に染色加工を施すことにより、前記複合繊維は、ポリエステル成分とポリアミド成分との熱収縮差により捲縮を発現する。その際、ポリエステル成分とポリアミド成分として、前述のポリマーを選定することにより、ポリアミド成分が捲縮の内側に位置する捲縮構造となる。   The dyeing temperature is preferably 100 to 140 ° C. (more preferably 110 to 135 ° C.), and the time is preferably the top temperature keeping time within a range of 5 to 40 minutes. By applying a dyeing process to the woven or knitted fabric under such conditions, the composite fiber develops crimp due to a difference in thermal shrinkage between the polyester component and the polyamide component. At that time, by selecting the above-mentioned polymer as the polyester component and the polyamide component, a crimped structure is obtained in which the polyamide component is located inside the crimp.

染色加工が施された織編物2には、通常、乾熱ファイナルセットが施される。その際、乾熱ファイナルセットの温度としては120〜200℃(より好ましくは140〜180℃)、時間としては1〜3分の範囲内であることが好ましい。かかる、乾熱ファイナルセットの温度が120℃よりも低いと、染色加工時に発生したシワが残り易く、また、仕上がり製品の寸法安定性が悪くなるおそれがある。逆に、該乾熱ファイナルセットの温度が200℃よりも高いと、染色加工の際に発現した複合繊維の捲縮が低下したり、繊維が硬化し生地の風合いが硬くなるおそれがある。   A dry heat final set is usually applied to the woven or knitted fabric 2 that has been dyed. At that time, the temperature of the dry heat final set is preferably 120 to 200 ° C. (more preferably 140 to 180 ° C.), and the time is preferably within a range of 1 to 3 minutes. If the temperature of the dry heat final set is lower than 120 ° C., wrinkles generated during the dyeing process are likely to remain, and the dimensional stability of the finished product may be deteriorated. On the other hand, if the temperature of the dry heat final set is higher than 200 ° C., the crimp of the composite fiber developed during the dyeing process may be reduced, or the fiber may be cured and the texture of the fabric may be hardened.

また、前記織編物1または2に吸水加工を施すことが好ましい。織編物に吸水加工を施すことにより、少量の汗でも通気性が向上しやすくなる。かかる吸水加工としては特に限定されず、ポリエチレングリコールジアクリレートやその誘導体、または、ポリエチレンテレフタレート−ポリエチレングリコール共重合体などの吸水加工剤を織編物に、織編物の重量に対して0.25〜0.50重量%付着させることが好ましく例示される。吸水加工の方法としては、例えば染色加工時に染液に吸水加工剤を混合する浴中加工法や、乾熱ファイナルセット前に、織編物を吸水加工液中にデイッピングしマングルで絞る方法、グラビヤコーテング法、スクリーンプリント法といった塗布による加工方法等が例示される。   The woven or knitted fabric 1 or 2 is preferably subjected to water absorption processing. By subjecting the woven or knitted fabric to water absorption, air permeability is easily improved even with a small amount of sweat. Such water-absorbing processing is not particularly limited, and a water-absorbing processing agent such as polyethylene glycol diacrylate or a derivative thereof or polyethylene terephthalate-polyethylene glycol copolymer is added to the woven or knitted fabric in an amount of 0.25 to 0 based on the weight of the woven or knitted fabric. Preferably, 50% by weight is deposited. Water absorption processing methods include, for example, a bath processing method in which a water absorption processing agent is mixed with the dye solution during dyeing processing, a method in which a woven or knitted fabric is dipped into the water absorption processing solution and squeezed with a mangle before dry heat final setting, and gravure coating. Examples thereof include processing methods such as coating and screen printing.

本発明のキルテイング生地は、前記布帛Aを表地および裏地のうち少なくともどちらか一方に用いて、表地と裏地との間に中綿を介在させキルテイングすることにより製造することができる。   The quilting fabric of the present invention can be produced by using the fabric A for at least one of the outer material and the lining material, and quilting with a batting between the outer material and the lining material.

ここで、表地および裏地のうちどちらか一方にのみ前記布帛Aが配される場合、他方に配される布帛Bとしては、従来から知られている通常の繊維からなる通常の織編物でよい。例えば、繊維の種類としては、綿、羊毛、麻などの有機天然繊維、ポリエステル、ナイロン、及びポリオレフィン繊維などの有機合成繊維、セルロースアセテート繊維などの有機半合成繊維及、ビスコースレーヨン繊維などの有機再生繊維から選ばれるものであり、特にその種類は限定されない。   Here, when the fabric A is disposed only on one of the outer fabric and the lining, the fabric B disposed on the other may be an ordinary woven or knitted fabric made of ordinary fibers known in the art. For example, the types of fibers include organic natural fibers such as cotton, wool and hemp, organic synthetic fibers such as polyester, nylon and polyolefin fibers, organic semi-synthetic fibers such as cellulose acetate fibers, and organic materials such as viscose rayon fibers. It is selected from recycled fibers, and the type is not particularly limited.

なかでも、繊維強度や取り扱い性の点でポリエステル繊維が好適である。ポリエステル繊維は、ジカルボン酸成分と、ジグリコール成分とから製造される。ジカルボン酸成分としは、主としてテレフタル酸が用いられることが好ましく、ジグリコール成分としては主としてエチレングリコール、トリメチレングリコール及びテトラメチレングリコールから選ばれた1種以上のアルキレングリコールを用いることが好ましい。また、ポリエステルには、前記ジカルボン酸成分及びグリコール成分の他に第3成分を含んでいてもよい。第3成分としては、カチオン染料可染性アニオン成分、例えば、ナトリウムスルホイソフタル酸;テレフタル酸以外のジカルボン酸、例えばイソフタル酸、ナフタレンジカルボン酸、アジピン酸、セバシン酸;及びアルキレングリコール以外のグリコール化合物、例えばジエチレングリコール、ポリエチレングリコール、ビスフェノールA、ビスフェノールスルフォンの1種以上を用いることができる。   Of these, polyester fibers are preferred in terms of fiber strength and handleability. The polyester fiber is produced from a dicarboxylic acid component and a diglycol component. As the dicarboxylic acid component, terephthalic acid is preferably used mainly, and as the diglycol component, it is preferable to use at least one alkylene glycol selected from ethylene glycol, trimethylene glycol and tetramethylene glycol. Further, the polyester may contain a third component in addition to the dicarboxylic acid component and the glycol component. As the third component, cationic dye-dyeable anion components such as sodium sulfoisophthalic acid; dicarboxylic acids other than terephthalic acid such as isophthalic acid, naphthalenedicarboxylic acid, adipic acid, sebacic acid; and glycol compounds other than alkylene glycol, For example, one or more of diethylene glycol, polyethylene glycol, bisphenol A, and bisphenol sulfone can be used.

かかる繊維には、必要に応じて艶消し剤(二酸化チタン)、微細孔形成剤(有機スルホン酸金属塩)、着色防止剤、熱安定剤、難燃剤(三酸化二アンチモン)、蛍光増白剤、着色顔料、制電剤(スルホン酸金属塩)、吸湿剤(ポリオキシアルキレングリコール)、抗菌剤、その他の無機粒子の1種以上を含有させてもよい。   For such fibers, a matting agent (titanium dioxide), a micropore forming agent (organic sulfonic acid metal salt), a coloring inhibitor, a heat stabilizer, a flame retardant (antimony trioxide), and a fluorescent whitening agent as necessary. , A coloring pigment, an antistatic agent (sulfonic acid metal salt), a hygroscopic agent (polyoxyalkylene glycol), an antibacterial agent, and other inorganic particles may be contained.

かかる繊維の形態は特に限定されず、長繊維(マルチフィラメント)、短繊維いずれでもよいが、柔軟な風合いを得る上で長繊維が好ましい。さらには、通常の仮撚捲縮加工、撚糸、インターレース空気加工が施されていてもよい。繊維の繊度は特に限定されないが、柔軟な風合いを得る上で単繊維繊度は0.1〜3dtex、フィラメント数は20〜150、総繊度は30〜300dtexであることが好ましい。単繊維の断面形状には制限はなく、通常の円形断面のほかに三角、扁平、十字形、六様形、あるいは中空形の断面形状を有していてもよい。   The form of the fiber is not particularly limited, and may be either a long fiber (multifilament) or a short fiber, but a long fiber is preferable for obtaining a soft texture. Furthermore, normal false twist crimping, twisting, and interlaced air processing may be applied. The fineness of the fiber is not particularly limited, but in order to obtain a soft texture, the single fiber fineness is preferably 0.1 to 3 dtex, the number of filaments is 20 to 150, and the total fineness is preferably 30 to 300 dtex. The cross-sectional shape of the single fiber is not limited, and may have a triangular, flat, cross, hexagonal, or hollow cross-sectional shape in addition to a normal circular cross-section.

布帛Bを形成する織編物の組織も特に限定されず、通常のものでよい。例えば、織物の織組織としては、平織、斜文織、朱子織等の三原組織、変化組織、変化斜文織等の変化組織、たて二重織、よこ二重織等の片二重組織、たてビロードなどが例示される。編物の種類は、よこ編物であってもよいしたて編物であってもよい。よこ編組織としては、平編、ゴム編、両面編、パール編、タック編、浮き編、片畔編、レース編、添え毛編等が好ましく例示され、たて編組織としては、シングルデンビー編、シングルアトラス編、ダブルコード編、ハーフトリコット編、裏毛編、ジャガード編等が例示される。   The structure of the woven or knitted fabric forming the fabric B is not particularly limited, and may be a normal one. For example, the woven structure of the woven fabric is a three-layer structure such as plain weave, oblique weave, satin weave, etc., altered structure, altered structure such as altered oblique weave, single duplex structure such as vertical double weave, weft double weave, etc. And fresh velvet. The type of knitted fabric may be a weft knitted fabric or a newly knitted fabric. Preferred examples of the weft knitting structure include flat knitting, rubber knitting, double-sided knitting, pearl knitting, tuck knitting, float knitting, one-sided knitting, lace knitting, bristle knitting, and the like. Single atlas knitting, double cord knitting, half tricot knitting, back hair knitting, jacquard knitting and the like are exemplified.

また、本発明のキルテイング生地に用いられる中綿において、その繊維種類や単繊維繊度、繊維長は特に制限はないが、優れた保温性を得る上で、ポリエチレンテレフタレートなどのポリエステル繊維からなり、その単繊維繊度が0.1〜5.0dtexの短繊維が好ましい。また、かかる中綿の目付けは、優れた保温性を得る上で50〜500g/mの範囲内であることが好ましい。 Further, in the batting used in the quilting fabric of the present invention, the fiber type, single fiber fineness, and fiber length are not particularly limited. However, in order to obtain excellent heat retention properties, the fiber is made of polyester fiber such as polyethylene terephthalate. Short fibers having a fiber fineness of 0.1 to 5.0 dtex are preferred. Moreover, it is preferable that the fabric weight of this batting is in the range of 50-500 g / m < 2 >, when obtaining the outstanding heat retention.

また、キルテイングを施す方法としては、通常のキルテイング縫製糸による方法が好ましいが、超音波加工による熱接着や接着剤による接着でもよい。また、キルテイングの柄パターンは特に限定されないが、図3に例示した柄パターンが好ましい。その際、キルテイング部で囲まれた箇所の面積が25mm以上(より好ましくは100mm以上、特に好ましくは200〜1000mm)であることが好ましい。該面積が25mmよりも小さいと吸水時の通気性または凹凸の変化が小さくなり、本発明の目的が十分達成されないおそれがある。 Moreover, as a method for performing quilting, a method using a normal quilting sewing thread is preferable, but thermal bonding using ultrasonic processing or bonding using an adhesive may be used. Further, the pattern pattern of quilting is not particularly limited, but the pattern pattern illustrated in FIG. 3 is preferable. At that time, the 25 mm 2 or more areas of portions surrounded by Kiruteingu part (more preferably 100 mm 2 or more, particularly preferably 200 to 1000 mm 2) is preferably. If the area is less than 25 mm 2, the change in air permeability or unevenness at the time of water absorption becomes small, and the object of the present invention may not be sufficiently achieved.

かくして得られたキルテイング生地において、吸水時には前記表地および裏地のうち少なくともどちらか一方に配された布帛Aの面積が大きくなるが、キルテイング部分の拘束により、生地の平面方向の寸法はあまり変化することなく、図2に模式的に示すように厚さが大きくなると同時に通気性も大きくなる。   In the quilted fabric thus obtained, the area of the fabric A disposed on at least one of the outer fabric and the lining is increased at the time of water absorption, but due to the restraint of the quilting portion, the dimension in the plane direction of the fabric changes so much. In addition, as schematically shown in FIG. 2, the thickness increases and at the same time the air permeability increases.

ここで、優れた保温性を得る上で、乾燥時の厚みが2mm以上(より好ましくは3mm以上、特に好ましくは5〜50mm)であることが好ましい。また、下記式で定義する厚み変化率が10%以上(より好ましくは20〜100%)であることが好ましい。このように吸水時の厚みが大きくなることにより、該キルテイング生地を用いて寝具やダウンジャケットを得ると、人体からの発汗により吸水した箇所が凸部となりベトツキを低減することができる。
厚み変化率(%)=(TW−TD)/TD×100 Here, in order to obtain excellent heat retention, it is preferable that the thickness during drying is 2 mm or more (more preferably 3 mm or more, particularly preferably 5 to 50 mm). Moreover, it is preferable that the thickness change rate defined by the following formula is 10% or more (more preferably 20 to 100%). Thus, when the thickness at the time of water absorption becomes large, when bedding and a down jacket are obtained using this quilting cloth, the part which absorbed water by perspiration from a human body will become a convex part, and stickiness can be reduced. Thickness change rate (%) = (TW-TD) / TD × 100 Here, in order to obtain excellent heat retention, it is preferred that the thickness during drying is 2 mm or more (more preferably 3 mm or more, particularly preferably 5) to 50 mm). Moreover, it is preferred that the thickness change rate defined by the following formula is 10% or more (more preferably 20 to 100%). Thus, when the thickness at the time of water absorption becomes large, when bedding and a down jacket are obtained using this quilting cloth, the part which absorbed water by perspiration from a human body will become a convex part, and stickiness can be reduced.
Thickness change rate (%) = (TW−TD) / TD × 100 Thickness change rate (%) = (TW−TD) / TD × 100

ただし、厚み変化率は下記の方法により測定するものとする。すなわち、試料を温度20℃、湿度65%RHの雰囲気中に24時間放置した後、該試料から、10cm×10cmの小片を裁断する(n数=5)。続いて、上記試料を平らな板の上に置き、圧力0.13cN/cm(0.13g/cm)の荷重を試料全面に均等にかけ、ミツトヨ社製デジマチックハイトゲージ(HDS−HC)を用いて、乾燥時の厚みTDを計測する。さらに、この小片に含水率が70%になるよう霧吹きにて水を付与し、1分経過後に当該滴下部に前記と同様に圧力0.13cN/cm(0.13g/cm)の荷重下にて吸水時の厚みTWを計測する。それぞれ、n数は5でその平均を求める。 However, the thickness change rate is measured by the following method. That is, after leaving the sample in an atmosphere of a temperature of 20 ° C. and a humidity of 65% RH for 24 hours, a 10 cm × 10 cm piece is cut from the sample (n number = 5). Subsequently, the sample is placed on a flat plate, a load of 0.13 cN / cm 2 (0.13 g / cm 2 ) is applied evenly over the entire surface, and a Digimatic Height Gauge (HDS-HC) manufactured by Mitutoyo Corporation is applied. Used to measure the thickness TD during drying. Furthermore, water was applied to the small piece by spraying so that the water content was 70%, and after 1 minute, the dropping portion was loaded with a pressure of 0.13 cN / cm 2 (0.13 g / cm 2 ) as described above. The thickness TW at the time of water absorption is measured below. In each case, n number is 5, and the average is obtained.

また、本発明のキルテイング生地において、吸水時の通気性が乾燥時よりも10%以上(好ましくは20〜200%)大きくなることが好ましい。このように、吸水時の通気性が大きくなることにより、該キルテイング生地を用いて寝具やダウンジャケットを得ると、人体からの発汗により吸水した箇所の通気性が大きくなりムレを低減することができる。ここで、かかる通気性の変化率は下記式により算出するものとする。
通気性の変化率(%)=((吸水時の通気性)−(乾燥時の通気性))/(乾燥時の通気性)×100 In the quilted fabric of the present invention, it is preferable that the air permeability at the time of water absorption is 10% or more (preferably 20 to 200%) greater than that at the time of drying. In this way, by increasing the air permeability at the time of water absorption, when a bedding or a down jacket is obtained using the quilting fabric, the air permeability at the place where water is absorbed by sweating from the human body is increased, and stuffiness can be reduced. . Here, the change rate of the air permeability is calculated by the following formula. Rate of change in breathability (%) = ((breathability during water absorption)-(breathability during drying)) / (breathability during drying) x 100 In the quilted fabric of the present invention, it is preferred that the air permeability at the time of water absorption is 10% or more (preferably 20 to 200%) greater than that at the time of drying. In this way, by increasing the air permeability at the time of water absorption, when a bedding or a down jacket is obtained using the quilting fabric, the air permeability at the place where water is absorbed by sweating from the human body is increased, and stuffiness can be reduced .. Here, the change rate of the air permeability is calculated by the following formula ..
Percent change in air permeability (%) = ((air permeability during water absorption) − (air permeability during drying)) / (air permeability during drying) × 100 Percent change in air permeability (%) = ((air permeability during water absorption) − (air permeability during drying)) / (air permeability during drying) × 100

ただし、通気性はJIS L 1096−1998、6.27.1、A(フラジール型通気性試験機法)により乾燥時と吸水時について通気性(n数=5)を測定し、その平均を求める。乾燥時とは、試料を温度20℃、湿度65%RH環境下に24時間放置した後の状態であり、一方、吸水時とは、試料に含水率が70%になるよう霧吹きにて水を付与した状態である。   However, the air permeability is measured according to JIS L 1096-1998, 6.27.1, A (Fragile-type air permeability tester method) when dry and when water is absorbed (n number = 5), and the average is obtained. . Drying means a state after the sample is left for 24 hours in an environment of temperature 20 ° C. and humidity 65% RH. On the other hand, water absorption means that the sample is sprayed with water so that the moisture content is 70%. It is in the granted state.

なお、キルテイングを施す前および/または後に、前述のように染色加工、吸水加工、さらには、常法の起毛加工、紫外線遮蔽あるいは抗菌剤、消臭剤、防虫剤、蓄光剤、再帰反射剤、マイナスイオン発生剤、撥水剤等の機能を付与する各種加工を付加適用してもよい。   In addition, before and / or after quilting, dyeing processing, water absorption processing as described above, furthermore, brushing processing of ordinary methods, UV shielding or antibacterial agent, deodorant, insect repellent, phosphorescent agent, retroreflective agent, Various processings that impart functions such as a negative ion generator and a water repellent may be additionally applied.

本発明の寝具は、前記のキルテイング生地を用いてなる、布団、シーツ、敷きパッド、および枕カバーからなる群より選択されるいずれかの寝具である。かかる寝具は前記のキルテイング生地を用いているので、優れた保温性を呈するだけでなく、人体の発汗時に通気性が向上するか凹凸が発現することによりムレやベトツキを低減することができる。   The bedding of the present invention is any one of the bedding selected from the group consisting of a futon, a sheet, a laying pad, and a pillow cover, using the quilting fabric. Such bedding uses the above-mentioned quilting fabric, so that it not only exhibits excellent heat retention, but also improves air permeability or develops irregularities when sweating the human body, thereby reducing stuffiness and stickiness.

また、本発明のダウンジャケットは前記のキルテイング生地を用いてなるダウンジャケットである。かかるダウンジャケットはは前記のキルテイング生地を用いているので、優れた保温性を呈するだけでなく、人体の発汗時に通気性が向上するか凹凸が発現することによりムレやベトツキを低減することができる。しかも、寸法があまり変化することがない。   Moreover, the down jacket of this invention is a down jacket formed using the said quilting cloth. Since such a down jacket uses the above-mentioned quilted fabric, it not only exhibits excellent heat retention, but also improves air permeability or develops irregularities when sweating the human body, thereby reducing stuffiness and stickiness. . Moreover, the dimensions do not change much.

以下、実施例をあげて本発明を詳細に説明するが、本発明はこれらによって何ら限定されるものではない。なお、実施例中の各物性は下記の方法により測定したものである。   EXAMPLES Hereinafter, although an Example is given and this invention is demonstrated in detail, this invention is not limited at all by these. In addition, each physical property in an Example is measured with the following method.

<通気性および通気性変化率>JIS L 1096−1998、6.27.1、A(フラジール型通気性試験機法)により乾燥時の通気性(cc/cm/s)と吸水時の通気性(cc/cm/s)を測定した。ただし、乾燥時とは、試料を温度20℃、湿度65%RH環境下に24時間放置した後の状態であり、一方、吸水時とは、試料に含水率が70%になるよう霧吹きにて水を付与した状態であり、それぞれ通気性(n数=5)を測定し、その平均を求めた。そして、通気性の変化率を下記式により算出した。
通気性の変化率(%)=((吸水時の通気性)−(乾燥時の通気性))/(乾燥時の通気性)×100 <Breathability and rate of change in breathability> Breathability at the time of drying (cc / cm 2 / s) and aeration at the time of water absorption according to JIS L 1096-1998, 6.27.1, A (Fragile breathability tester method) The property (cc / cm 2 / s) was measured. However, “drying” means a state after the sample is left in an environment of temperature 20 ° C. and humidity 65% RH for 24 hours. On the other hand, when water is absorbed, the sample is sprayed with a moisture content of 70%. In this state, water was added, and air permeability (n number = 5) was measured, and the average was obtained. And the change rate of air permeability was computed by the following formula. Rate of change in breathability (%) = ((breathability during water absorption)-(breathability during drying)) / (breathability during drying) x 100 <Breathability and rate of change in breathability> Breathability at the time of drying (cc / cm 2 / s) and aeration at the time of water absorption according to JIS L 1096-1998, 6.27.1, A (Fragile breathability tester method) The property (cc / cm 2 / s) was measured. However , “Drying” means a state after the sample is left in an environment of temperature 20 ° C. and humidity 65% ​​RH for 24 hours. On the other hand, when water is absorbed, the sample is sprayed with a moisture content of 70 %. In this state, water was added, and air permeability (n number = 5) was measured, and the average was obtained. And the change rate of air permeability was computed by the following formula.
Percent change in air permeability (%) = ((air permeability during water absorption) − (air permeability during drying)) / (air permeability during drying) × 100 Percent change in air permeability (%) = ((air permeability during water absorption) − (air permeability during drying)) / (air permeability during drying) × 100

<面積変化率>試料を温度20℃、湿度65RH%の環境下に24時間放置した後に小片(経20cm×緯20cmの正方形)を試料と同じ方向に裁断し、乾燥時の面積(cm )とする。一方、該小片に含水率が70%になるよう霧吹きにて水を付与した後、該小片の面積を測定し、吸水時の面積(cm )とした。そして、下記式で定義する面積変化率により面積変化率(%)を算出した。
面積変化率(%)=((吸水時の面積)−(乾燥時の面積))/(乾燥時の面積)×100 <Area change rate> After leaving the sample in an environment of temperature 20 ° C. and humidity 65 RH for 24 hours, a small piece (square of 20 cm × 20 cm of latitude) was cut in the same direction as the sample, and the area when dried (cm 2 ) And On the other hand, water was applied to the small piece by spraying so that the moisture content was 70%, and then the area of the small piece was measured to obtain the area (cm 2 ) at the time of water absorption. Then, the area change rate (%) was calculated from the area change rate defined by the following formula. Area change rate (%) = ((water absorption area)-(dry area)) / (dry area) x 100 <Area change rate> After leaving the sample in an environment of temperature 20 ° C. and humidity 65 RH for 24 hours, a small piece (square of 20 cm x 20 cm of latitude) was cut in the same direction as the sample, and the area when dried (cm 2 ) And On the other hand, water was applied to the small piece by spraying so that the moisture content was 70%, and then the area of ​​the small piece was measured to obtain the area (cm 2 ) at the time of water absorption. Then, the area change rate (%) was calculated from the area change rate defined by the following formula.
Area change rate (%) = ((Area upon water absorption) − (Area upon drying)) / (Area upon drying) × 100 Area change rate (%) = ((Area upon water absorption) − (Area upon drying)) / (Area upon drying) × 100

<厚みおよび厚み変化率>
試料を温度20℃、湿度65%RHの雰囲気中に24時間放置した後、該試料から、10cm×10cmの小片を裁断した(n数=5)。 After allowing the sample to stand in an atmosphere of a temperature of 20 ° C. and a humidity of 65% RH for 24 hours, a small piece of 10 cm × 10 cm was cut from the sample (n number = 5). 続いて、上記試料を平らな板の上に置き、圧力0.13cN/cm (0.13g/cm )の荷重をかけ、ミツトヨ社製デジマチックハイトゲージ(HDS−HC)を用いて、試料の厚みTDを計測した。 Subsequently, the sample is placed on a flat plate, a load of a pressure of 0.13 cN / cm 2 (0.13 g / cm 2 ) is applied, and the sample is used using a Mitutoyo Digimatic Height Gauge (HDS-HC). Thickness TD was measured.
更に、この小片に含水率が70%になるよう霧吹きにて水を付与し、1分経過後に当該滴下部に前記と同様に圧力0.13cN/cm (0.13g/cm )の荷重下にて厚みTWを計測した。 Further, water was applied to the small pieces by spraying so that the water content became 70%, and after 1 minute, the dropping portion was loaded with a pressure of 0.13 cN / cm 2 (0.13 g / cm 2 ) in the same manner as described above. The thickness TW was measured below.
以上の測定数値から下記の計算式にて、厚み変化率を算出した。 From the above measured values, the thickness change rate was calculated by the following formula.
厚み変化率(%)=(TW−TD)/TD×100 <Thickness and thickness change rate> Thickness change rate (%) = (TW-TD) / TD x 100 <Thickness and thickness change rate>
The sample was allowed to stand in an atmosphere of a temperature of 20 ° C. and a humidity of 65% RH for 24 hours, and then a 10 cm × 10 cm piece was cut from the sample (n number = 5). Subsequently, the sample is placed on a flat plate, a pressure of 0.13 cN / cm 2 (0.13 g / cm 2 ) is applied, and a Mitsutoyo Digimatic Height Gauge (HDS-HC) is used. The thickness TD was measured. The sample was allowed to stand in an atmosphere of a temperature of 20 ° C. and a humidity of 65% RH for 24 hours, and then a 10 cm x 10 cm piece was cut from the sample (n number = 5). , the sample is placed on a flat plate, a pressure of 0.13 cN / cm 2 (0.13 g / cm 2 ) is applied, and a Mitsutoyo Digimatic Height Gauge (HDS-HC) is used. The thickness TD was measured.
Furthermore, water was applied to the small piece by spraying so that the moisture content was 70%, and after 1 minute, the load was applied with a pressure of 0.13 cN / cm 2 (0.13 g / cm 2 ) in the same manner as described above. The thickness TW was measured below. Furthermore, water was applied to the small piece by spraying so that the moisture content was 70%, and after 1 minute, the load was applied with a pressure of 0.13 cN / cm 2 (0.13 g / cm 2 ) in the same manner as described above. The thickness TW was measured below.
From the above measured numerical values, the thickness change rate was calculated by the following formula. From the above measured numerical values, the thickness change rate was calculated by the following formula.
Thickness change rate (%) = (TW−TD) / TD × 100 Thickness change rate (%) = (TW−TD) / TD × 100

<沸水収縮率>JIS L 1013−1998、7.15で規定される方法により、沸水収縮率(熱水収縮率)(%)をn数3で測定した。 <Boiling water shrinkage rate> The boiling water shrinkage rate (hot water shrinkage rate) (%) was measured by an n number of 3 by the method defined in JIS L 1013-1998, 7.15.

<糸長の測定>織編物を温度20℃、湿度65%RHの雰囲気中に24時間放置した後、該織編物から、経緯の方向が織編物と同じになるよう30cm×30cmの小片を裁断した(n数=5)。続いて、各々の小片から、吸水自己伸張糸及び非自己伸張糸を1本ずつ取り出し、弾性糸である吸水自己伸張糸には0.0088mN/dtex(1mg/de)の荷重をかけ、非弾性糸である非自己伸張糸には1.76mN/dtex(200mg/de)の荷重をかけて吸水自己伸張糸の糸長A(mm)、非自己伸張糸の糸長B(mm)を測定した。そして、(糸長Aの平均値)/(糸長Bの平均値)をA/Bとした。 <Measurement of yarn length> After leaving the woven or knitted fabric in an atmosphere at a temperature of 20 ° C. and a humidity of 65% RH for 24 hours, a small piece of 30 cm × 30 cm is cut from the woven or knitted fabric so that the direction of the weft is the same as that of the woven or knitted fabric (N number = 5). Subsequently, one water-absorbing self-stretching yarn and one non-self-stretching yarn are taken out from each piece, and a load of 0.0088 mN / dtex (1 mg / de) is applied to the water-absorbing self-stretching yarn, which is an elastic yarn. A load of 1.76 mN / dtex (200 mg / de) was applied to the non-self-stretching yarn, which was a yarn, and the yarn length A (mm) of the water-absorbing self-stretching yarn and the yarn length B (mm) of the non-self-stretching yarn were measured. . Then, (average value of yarn length A) / (average value of yarn length B) was defined as A / B.

[実施例1]
ハードセグメントとしてポリブチレンテレフタレートを49.8重量部、ソフトセグメントとして数平均分子量4000のポリオキシエチレングリコール50.2重量部からなるポリエーテルエステルを、230℃で溶融し、所定の紡糸口金より吐出量3.05g/分で押出した。このポリマーを2個のゴデットロールを介して705m/分で引取り、さらに750m/分(巻取りドラフト1.06)で巻取り、44デシテックス/1フィラメントの弾性を有する吸水自己伸張糸を得た。この吸水自己伸張糸の吸水時の繊維軸方向への膨潤率は10%であり、沸水収縮率は8%であった。
一方、非自己伸張糸として沸水収縮率が8%であり、吸水時の膨張率が1%以下である、通常のポリエチレンテレフタレートからなる仮撚捲縮加工糸(56デシテックス/72フィラメント、帝人ファイバー(株)製)を用意した。 On the other hand, as a non-self-stretching yarn, a false twist crimped yarn (56 decitex / 72 filaments, Teijin fiber) made of ordinary polyethylene terephthalate having a boiling water shrinkage rate of 8% and an expansion rate during water absorption of 1% or less. Made by Co., Ltd.) was prepared. [Example 1] [Example 1]
Polyetherene terephthalate (49.8 parts by weight) as a hard segment and polyether ester (50.2 parts by weight of polyoxyethylene glycol having a number average molecular weight of 4000 as a soft segment) are melted at 230 ° C. and discharged from a predetermined spinneret. Extruded at 3.05 g / min. The polymer was drawn through two godet rolls at 705 m / min and further wound at 750 m / min (winding draft 1.06) to obtain a water-absorbing self-stretching yarn having elasticity of 44 dtex / 1 filament. The swelling rate of the water-absorbing self-stretching yarn in the fiber axis direction at the time of water absorption was 10%, and the boiling water shrinkage rate was 8%. Polyetherene terephthalate (49.8 parts by weight) as a hard segment and glycol ester (50.2 parts by weight of polyoxyethylene glycol having a number average molecular weight of 4000 as a soft segment) are melted at 230 ° C. and discharged from a predetermined spinneret. Extruded at 3.05 g / min. The polymer was drawn through two godet rolls at 705 m / min and further wound at 750 m / min (winding draft 1.06) to obtain a water-absorbing self-stretching yarn having elasticity of 44 dtex / 1 filament. The swelling rate of the water-absorbing self-stretching yarn in the fiber axis direction at the time of water absorption was 10%, and the boiling water shrinkage rate was 8%.
On the other hand, as a non-self-stretched yarn, the boiling water shrinkage rate is 8%, and the expansion rate at the time of water absorption is 1% or less. A false twist crimped yarn made of ordinary polyethylene terephthalate (56 dtex / 72 filament, Teijin Fiber ( Co., Ltd.) was prepared. On the other hand, as a non-self-stretched yarn, the boiling water shrinkage rate is 8%, and the expansion rate at the time of water absorption is 1% or less. A false twist crimped yarn made of ordinary polyethylene terephthalate ( 56 dtex / 72 filament, Teijin Fiber (Co., Ltd.) was prepared.

次いで、前記吸水自己伸長糸を芯糸とし、前記仮撚捲縮加工糸を鞘糸として、撚り数350回/m、芯糸のドラフト率2.5倍にて、カバリング糸を作製した。
次いで、28ゲージのダブル丸編機を用いて、上記カバリング糸と、沸水収縮率が10%であり、吸水時の膨張率が1%以下である、通常のポリエチレンテレフタレートマルチフィラメント仮撚捲縮加工糸(84デシテックス/72フィラメント)を用いて、図4のメッシュ組織の丸編地を編成した。
Next, a covering yarn was produced using the water-absorbing self-extending yarn as a core yarn, the false twist crimped yarn as a sheath yarn, and a twist number of 350 times / m and a draft rate of 2.5 times of the core yarn.
Next, using a 28 gauge double circular knitting machine, the above-mentioned covering yarn and normal polyethylene terephthalate multifilament false twist crimping process having a boiling water shrinkage of 10% and a water expansion coefficient of 1% or less A circular knitted fabric having a mesh structure shown in FIG. 4 was knitted using yarn (84 dtex / 72 filaments). Next, using a 28 gauge double circular knitting machine, the above-mentioned covering yarn and normal polyethylene terephthalate multifilament false twist crimping process having a boiling water shrinkage of 10% and a water expansion coefficient of 1% or less A circular knitted fabric having a mesh structure shown in FIG. 4 was knitted using yarn (84 dtex / 72 filaments).

次いで、この丸編地を常法の染色仕上げ方法にて加工を行うことにより、吸水時に通気性が向上する編地を得た。得られた編地において、カバリング糸内の吸水自己伸張糸の糸長A(mm)と非自己伸張糸の糸長B(mm)との比A/Bは0.7であった。また、乾燥時では、通気性90cc/cm/sであり、吸水時には、通気性170cc/cm/s(通気性変化率89%)と、吸水により通気性が大きく向上するものであった。また、該編地の乾燥時と吸水時の寸法変化率は22%(タテ11%、ヨコ10%)であり、この編地を布帛Aとして用いた。 Subsequently, this circular knitted fabric was processed by a conventional dyeing finishing method to obtain a knitted fabric having improved air permeability when absorbing water. In the obtained knitted fabric, the ratio A / B of the yarn length A (mm) of the water-absorbing self-stretching yarn and the yarn length B (mm) of the non-self-stretching yarn in the covering yarn was 0.7. Further, the air permeability was 90 cc / cm 2 / s when dried, the air permeability was 170 cc / cm 2 / s (breathability change rate 89%) when water was absorbed, and the air permeability was greatly improved by water absorption. . Further, the dimensional change rate during drying and water absorption of the knitted fabric was 22% (vertical 11%, horizontal 10%), and this knitted fabric was used as the fabric A.

他方、単糸繊度3デシテックスのポリエチレンテレフタレートマルチフィラメントからなる厚み10mm、目付け200g/mの綿を用いて、この綿を中綿として、前記吸水拡大編物を表地および裏地にし、通常のポリエチレンテレフタレート製のキルテイング縫製糸にて、図5のキルテイングパターン(キルテイング部で囲まれた箇所の面積400mm)で表地と中綿と裏地とをキルテイングすることによりキルテイング生地を得た。
得られたキルテイング生地の評価結果は表1に示す通りで、吸水により厚みが43%向上し、通気性も74%向上し満足なものであった。 The evaluation results of the obtained quilted dough are as shown in Table 1, and the thickness was improved by 43% and the air permeability was improved by 74% by water absorption, which was satisfactory. また、吸水時に平面方向の寸法はほとんど変化しなかった。 In addition, the dimensions in the plane direction hardly changed during water absorption. On the other hand, using a cotton having a thickness of 10 mm and a basis weight of 200 g / m 2 made of polyethylene terephthalate multifilaments having a single yarn fineness of 3 dtex, using the cotton as a batting, the water-absorbing expanded knitted fabric is used as a surface and a lining, and is made of ordinary polyethylene terephthalate. The quilting fabric was obtained by quilting the outer material, the batting and the lining with the quilting sewing thread shown in FIG. 5 (the area of the area surrounded by the quilting part is 400 mm 2 ). On the other hand, using a cotton having a thickness of 10 mm and a basis weight of 200 g / m 2 made of polyethylene terephthalate multifilaments having a single yarn fineness of 3 dtex, using the cotton as a batting, the water-absorbing expanded knitted fabric is used as a surface and a lining, and is made of ordinary polyethylene terephthalate. The quilting fabric was obtained by quilting the outer material, the batting and the lining with the quilting sewing thread shown in FIG. 5 (the area of ​​the area of ​​the) area surrounded by the quilting part is 400 mm 2 ).
The evaluation results of the obtained quilted fabric were as shown in Table 1. The thickness was improved by 43% by absorbing water and the air permeability was improved by 74%, which was satisfactory. Moreover, the dimension of the plane direction hardly changed at the time of water absorption. The evaluation results of the obtained quilted fabric were as shown in Table 1. The thickness was improved by 43% by absorbing water and the air permeability was improved by 74%, which was satisfactory. Moreover, the dimension of the plane direction hardly changed at the time of water absorption.

次いで、該キルテイング生地を用いて布団を得て実際に使用したところ、発汗時に通気性が向上しまた凹凸が発現することにより、ムレやベトツキがなく快適なものであった。
また、該該キルテイング生地を用いてダウンジャケットを得て実際に使用したところ、発汗時に通気性が向上し、また凹凸が発現することにより、ムレやベトツキがなく快適なものであった。 Further, when a down jacket was obtained using the quilted fabric and actually used, the breathability was improved at the time of sweating, and unevenness was developed, so that the down jacket was comfortable without stuffiness or stickiness. Next, when a futon was obtained using the quilted fabric and actually used, the air permeability improved during sweating and the appearance of irregularities, so that there was no stuffiness or stickiness and it was comfortable. Next, when a futon was obtained using the quilted fabric and actually used, the air permeability improved during sweating and the appearance of irregularities, so that there was no stuffiness or stickiness and it was comfortable.
Further, when a down jacket was obtained using the quilted fabric and actually used, the breathability was improved during sweating, and unevenness was developed, so that it was comfortable without stuffiness or stickiness. Further, when a down jacket was obtained using the quilted fabric and actually used, the breathability was improved during sweating, and unevenness was developed, so that it was comfortable without stuffiness or stickiness.

[実施例2]
22ゲージトリコット編機にてバック筬にポリエチレンテレフタレートマルチフィラメント糸(84デシテックス36フィラメント)をフルセットし、ミドル筬にバック筬と同じ糸を3in3outでセットし、フロント筬もバック筬と同じ糸を3out3inでセットし、バック:01−10、ミドル:(10−34)×2(67−43)×2、フロント:(67−43)×2(10−34)×2の編組織で、機上コース数21コース/インチの編条件で、メッシュ構造の編地を編成した。 Fully set polyethylene terephthalate multifilament yarn (84 decitex 36 filament) on the back reed with a 22 gauge tricot knitting machine, set the same yarn as the back reed at 3in3out on the middle reed, and set the same yarn as the back reed 3out3in on the front reed. Set with, back: 01-10, middle: (10-34) x 2 (67-43) x 2, front: (67-43) x 2 (10-34) x 2 knitting structure, onboard A knitted fabric with a mesh structure was knitted under a knitting condition of 21 courses / inch. この編地を常法の加工条件で染色仕上げ加工を行った。 This knitted fabric was dyed and finished under the usual processing conditions. 得られた編地の乾燥時と吸水時の寸法変化率は0.1%であり、この編地を布帛B(非吸水拡大編物)として裏地に用いること以外は実施例1と同様にしてキルテイング生地を得た(表地は実施例1と同じ布帛A、中綿も実施例1と同じ中綿)。 The dimensional change rate of the obtained knitted fabric during drying and water absorption was 0.1%, and quilting was carried out in the same manner as in Example 1 except that this knitted fabric was used as a lining as cloth B (non-water-absorbing expanded knitted fabric). A fabric was obtained (the outer material is the same fabric A as in Example 1, and the batting is the same as in Example 1).
得られたキルテイング生地の評価結果は表1に示す通りで、吸水により厚みが39%向上し、通気性も46%向上し満足なものであった。 The evaluation results of the obtained quilted dough are as shown in Table 1, and the thickness was improved by 39% and the air permeability was improved by 46% by water absorption, which was satisfactory. また、吸水時に平面方向の寸法はほとんど変化しなかった。 In addition, the dimensions in the plane direction hardly changed during water absorption. [Example 2] [Example 2]
Fully set polyethylene terephthalate multifilament yarn (84 dtex 36 filament) on the back 筬 with a 22 gauge tricot knitting machine, set the same yarn as the back heel in 3in3out on the middle heel, and 3out3in the same yarn on the front heel as the back heel Knitted structure of back: 01-10, middle: (10-34) x 2 (67-43) x 2, front: (67-43) x 2 (10-34) x 2, on-machine A knitted fabric having a mesh structure was knitted under knitting conditions of 21 courses / inch. This knitted fabric was dyed and finished under conventional processing conditions. The knitted fabric obtained was quilted in the same manner as in Example 1 except that the dimensional change rate during drying and water absorption was 0.1%, and this knitted fabric was used as the fabric B (non-water-absorbing expanded knitted fabric). A fabric was obtained (the outer material was the same fabric A as in Example 1, and the batting was also the same as in Example 1). Fully set textile terephthalate multifilament yarn (84 dtex 36 filament) on the back reed with a 22 gauge tricot knitting machine, set the same yarn as the back heel in 3in3out on the middle heel, and 3out3in the same yarn on the front heel as the back heel Knitted structure of back: 01-10, middle: (10-34) x 2 (67-43) x 2, front: (67-43) x 2 (10-34) x 2, on-machine A knitted fabric having a mesh structure was knitted under knitting conditions of 21 courses / inch. This knitted fabric was dyed and finished under conventional processing conditions. The knitted fabric obtained was quilted in the same manner as in Example 1 except that the dimensional change rate during drying. and water absorption was 0.1%, and this knitted fabric was used as the fabric B (non-water-absorbing expanded knitted fabric). A fabric was obtained (the outer material was the same fabric A as in Example 1, and the batting was also the same as in Example 1).
The evaluation results of the obtained quilted fabric were as shown in Table 1. The thickness was improved by 39% by absorbing water and the air permeability was improved by 46%, which was satisfactory. Moreover, the dimension of the plane direction hardly changed at the time of water absorption. The evaluation results of the obtained quilted fabric were as shown in Table 1. The thickness was improved by 39% by absorbing water and the air permeability was improved by 46%, which was satisfactory. Moreover, the dimension of the plane direction hardly changed at the time of water absorption.

[比較例1]
28ゲージのトリコット編機を用いて、ナイロンマルチフィラメント糸(84デシテックス/24フィラメント)をバック筬およびフロント筬にフルセットし、バック:10−12、フロント:23−10のハーフ組織で、機上コース数80コース/インチの編条件で、編地を編成した。 Using a 28-gauge tricot knitting machine, nylon multifilament yarn (84 decitex / 24 filaments) is fully set on the back reed and front reed, and the half structure of back: 10-12 and front: 23-10 is on the machine. The knitted fabric was knitted under the knitting condition of 80 courses / inch. この編地を常法の加工条件で染色仕上げ加工を行った。 This knitted fabric was dyed and finished under the usual processing conditions. 得られた編地は、乾燥時と吸水時の寸法変化率が4%(タテ1.3%、ヨコ2.7%)であり、この編地を表地として用いる以外は実施例2と同様にしてキルテイング生地を得た(裏地は実施例2と同じ布帛B、中綿は実施例2と同じ中綿)。 The obtained knitted fabric had a dimensional change rate of 4% (vertical 1.3%, horizontal 2.7%) during drying and water absorption, and was the same as in Example 2 except that this knitted fabric was used as the outer material. The quilted fabric was obtained (the lining is the same fabric B as in Example 2, and the batting is the same batting as in Example 2).
得られたキルテイング生地の評価結果は表1に示す通りで、吸水により厚みが2%しか向上せず、通気性も15%しか向上せず満足ゆくものは得られなかった。 The evaluation results of the obtained quilted dough are as shown in Table 1, and the thickness was improved by only 2% and the air permeability was improved by only 15% by water absorption, and no satisfactory material was obtained. [Comparative Example 1] [Comparative Example 1]
Using a 28-gauge tricot knitting machine, fully set nylon multifilament yarn (84 dtex / 24 filament) on the back heel and front heel, back: 10-12, front: 23-10 half structure, on-machine The knitted fabric was knitted under knitting conditions of 80 courses / inch. This knitted fabric was dyed and finished under conventional processing conditions. The obtained knitted fabric has a dimensional change rate of 4% (vertical 1.3%, horizontal 2.7%) at the time of drying and water absorption. Thus, a quilted fabric was obtained (the lining was the same fabric B as in Example 2, and the batting was the same as in Example 2). Using a 28-gauge tricot knitting machine, fully set nylon multifilament yarn (84 dtex / 24 filament) on the back heel and front heel, back: 10-12, front: 23-10 half structure, on-machine The knitted fabric was knitted under knitting conditions of 80 courses / inch. This knitted fabric was dyed and finished under conventional processing conditions. The obtained knitted fabric has a dimensional change rate of 4% (vertical 1.3%, horizontal 2.7%) at the time of drying and water Thus, a quilted fabric was obtained (the lining was the same fabric B as in Example 2, and the batting was the same as in Example 2).
The evaluation results of the quilted fabric obtained are as shown in Table 1. The thickness was improved only by 2% by water absorption, the air permeability was improved only by 15%, and a satisfactory product was not obtained. The evaluation results of the quilted fabric obtained are as shown in Table 1. The thickness was improved only by 2% by water absorption, the air permeability was improved only by 15%, and a satisfactory product was not obtained.

本発明によれば、表地、裏地、およびこれらの間に介在する中綿を含むキルテイング生地であって、優れた保温性を呈するだけでなく、吸水時に生地寸法がほとんど変化することなく、通気性が向上するか凹凸が発現することにムレやベトツキを低減することができるキルテイング生地、およびかかるキルテイング生地を用いてなる寝具およびダウンジャケットが提供され、その工業的価値は極めて大である。   According to the present invention, it is a quilting fabric including a surface material, a lining material, and a padding interposed therebetween, not only exhibiting excellent heat retention properties, but also hardly changes in fabric size upon water absorption, and has breathability. There are provided a quilting fabric that can be improved in terms of unevenness or unevenness, and a bedding and a down jacket using the quilting fabric, and its industrial value is extremely large.

本発明のキルテイング生地を模式的に示す図である。 It is a figure showing typically quilting cloth of the present invention. 図1の破線に沿った切断した際の断面を示す断面図であり、(1)乾燥状態、(2)吸水状態を示す。 It is sectional drawing which shows the cross section at the time of cut | disconnecting along the broken line of FIG. 1, (1) A dry state and (2) a water absorption state are shown. 本発明のキルテイング生地において、好適に採用することのできるキルテイング柄パターンを例示する図である。 It is a figure which illustrates the quilting pattern which can be employ | adopted suitably in the quilting cloth of this invention. 実施例1において採用した編組織図である。 1 is a knitting organization chart employed in Example 1. FIG. 実施例1において、採用したキルテイング柄パターンを模式的に示す図である。 In Example 1, it is a figure which shows typically the employ | adopted quilting pattern. 本発明のキルテイング生地において、吸水時に乾燥時よりも面積が10%以上大きくなる布帛Aとして採用することができる丸編物において、吸水自己伸張糸と非自己伸張糸とが丸編組織の複合ループを形成する糸配列を模式的に示すものであり、(1)乾燥時、(2)吸水時である。In the knitting fabric of the present invention, in the circular knitted fabric that can be used as the fabric A having an area of 10% or more larger than that at the time of drying when water is absorbed, the water-absorbing self-stretching yarn and the non-self-stretching yarn form a composite loop of a circular knitting structure. The yarn arrangement to be formed is schematically shown (1) at the time of drying and (2) at the time of water absorption. 本発明のキルテイング生地において、吸水時に乾燥時よりも面積が10%以上大きくなる布帛Aとして採用することができる織物において、吸水自己伸張糸と非自己伸張糸とが、引き揃えられて織組織の経糸および緯糸を構成する糸配列を模式的に示すものであり、(1)乾燥時、(2)吸水時である。In the quilting fabric of the present invention, in the woven fabric that can be used as the fabric A having an area of 10% or more larger than that at the time of drying when water is absorbed, the water-absorbing self-stretching yarn and the non-self-stretching yarn are aligned to form a woven structure. FIG. 2 schematically shows a yarn arrangement constituting warp and weft yarns: (1) at the time of drying and (2) at the time of water absorption. 本発明のキルテイング生地において、吸水時に乾燥時よりも面積が10%以上大きくなる布帛Aとして採用することができる丸編物において、吸水自己伸張糸と非自己伸張糸とが1:1に配列されて丸編物を構成する糸配列を模式的に示すものであり、(1)乾燥時、(2)吸水時である。In the knitting fabric of the present invention, in the circular knitted fabric that can be adopted as the fabric A having an area of 10% or more larger than that at the time of drying when water is absorbed, the water-absorbing self-stretching yarn and the non-self-stretching yarn are arranged in 1: 1. The yarn arrangement constituting the circular knitted fabric is schematically shown. (1) At the time of drying, (2) At the time of water absorption. 本発明のキルテイング生地において、吸水時に乾燥時よりも面積が10%以上大きくなる布帛Aとして採用することができる織物において、吸水自己伸張糸と非自己伸張糸とが織物の経糸と緯糸に1:1に配列されて織物を構成する糸配列を模式的に示すものであり、(1)乾燥時、(2)吸水時である。In the woven fabric of the present invention, the water-absorbing self-stretching yarn and the non-self-stretching yarn can be used as the warp and weft yarn of the fabric in the woven fabric that can be used as the fabric A having an area of 10% or more larger than that at the time of drying when water is absorbed. 1 schematically shows a yarn arrangement arranged in 1 to constitute a woven fabric, (1) at the time of drying and (2) at the time of water absorption.

符号の説明Explanation of symbols

1,6,7 キルテイング部 2,3 表地 4,5 裏地 A−1,A−2,A−3,A−4,A−5,A−6,A−7,A−8 吸水自己伸張糸 B−1,B−2,B−3,B−4,B−5,B−6,B−7,B−8 非自己伸張糸1,6,7 Quilting parts 2,3 Outer fabric 4,5 Lining A-1, A-2, A-3, A-4, A-5, A-6, A-7, A-8 Water-absorbing self-stretching yarn B-1, B-2, B-3, B-4, B-5, B-6, B-7, B-8 Non-self-stretching yarn

Claims (16)

  1. 表地、裏地、およびこれらの間に介在する中綿を含むキルテイング生地であって、前記表地および裏地のうち少なくともどちらか一方が、吸水時に乾燥時よりも面積が10%以上大きくなる布帛Aで構成されることを特徴とするキルテイング生地。
    ただし、乾燥時とは、温度20℃、湿度65%RHの環境下に試料を24時間放置した直後の状態であり、吸水時とは、乾燥後の試料表面に霧吹きにより水を噴霧し、乾燥時の試料重量に対して含水率70重量%となるまで水を付与した直後の状態であり、前記面積変化率は下記式により算出する。
    面積変化率(%)=((吸水時の試料面積)−(乾燥時の試料面積))/(乾燥時の試料面積)×100 A quilting fabric including a front material, a lining material, and a cotton pad interposed therebetween, wherein at least one of the outer material and the lining material is made of a fabric A having an area that is 10% or more larger than that when dried when absorbing water. Quilting fabric characterized by that. Area change rate (%) = ((sample area during water absorption)-(sample area during drying)) / (sample area during drying) x 100 A quilting fabric including a front material, a lining material, and a cotton pad Quilting fabric characterized by that. Quilting fabric characterized by that. Quilting fabric characterized by that is 10% or more larger than that when dried when absorbing water.
    However, the time of drying is a state immediately after the sample is left for 24 hours in an environment of temperature 20 ° C. and humidity 65% RH, and the time of water absorption is water sprayed on the sample surface after drying by spraying and drying. This is the state immediately after applying water until the water content becomes 70% by weight with respect to the sample weight at the time, and the area change rate is calculated by the following equation. However, the time of drying is a state immediately after the sample is left for 24 hours in an environment of temperature 20 ° C. and humidity 65% ​​RH, and the time of water absorption is water sprayed on the sample surface after drying by spraying and drying. This is the state immediately after applying water until the water content becomes 70% by weight with respect to the sample weight at the time, and the area change rate is calculated by the following equation.
    Area change rate (%) = ((sample area at the time of water absorption) − (sample area at the time of drying)) / (sample area at the time of drying) × 100 Area change rate (%) = ((sample area at the time of water absorption) − (sample area at the time of drying)) / (sample area at the time of drying) × 100
  2. 前記表地および裏地がともに前記布帛Aで構成される、請求項1に記載のキルテイング生地。 The quilting fabric according to claim 1, wherein both the outer material and the lining material are made of the fabric A.
  3. 前記表地および裏地のうちどちらか一方のみが前記布帛Aで構成される、請求項1に記載のキルテイング生地。 The quilting fabric according to claim 1, wherein only one of the outer material and the lining material is constituted by the fabric A.
  4. 前記布帛Aが、吸水自己伸張糸と非自己伸張糸とからなる織編物であって、乾燥時における該織編物中の吸水自己伸張糸の糸長を(A)、他方、非自己伸張糸の糸長を(B)とするとき、A/Bが0.9以下である、請求項1〜3のいずれかに記載のキルテイング生地。   The fabric A is a woven or knitted fabric composed of a water-absorbing self-stretching yarn and a non-self-stretching yarn, and the length of the water-absorbing self-stretching yarn in the woven or knitting fabric during drying is (A), The quilting fabric according to any one of claims 1 to 3, wherein A / B is 0.9 or less when the yarn length is (B).
  5. 前記の吸水自己伸張糸と非自己伸張糸とからなる織編物において、吸水自己伸張糸と非自己伸張糸とが、丸編組織の複合ループを形成してなる、請求項4に記載のキルテイング生地。   The quilting fabric according to claim 4, wherein the water-absorbing self-stretching yarn and the non-self-stretching yarn form a composite loop of a circular knitting structure in the woven or knitted fabric composed of the water-absorbing self-stretching yarn and the non-self-stretching yarn. .
  6. 前記の吸水自己伸張糸と非自己伸張糸とからなる織編物において、吸水自己伸張糸と非自己伸張糸とが、引き揃えられて織組織の経糸および/または緯糸を構成してなる、請求項4に記載のキルテイング生地。   The woven or knitted fabric comprising the water-absorbing self-stretching yarn and the non-self-stretching yarn, wherein the water-absorbing self-stretching yarn and the non-self-stretching yarn are aligned to form a warp and / or a weft of the woven structure. 4. Quilting fabric according to 4.
  7. 前記の吸水自己伸張糸と非自己伸張糸とからなる織編物において、吸水自己伸張糸と非自己伸張糸とが、各々織編物の構成糸条として、1本交互にまたは複数本交互に配列してなる、請求項4に記載のキルテイング生地。   In the woven or knitted fabric composed of the water-absorbing self-stretching yarn and the non-self-stretching yarn, each of the water-absorbing self-stretching yarn and the non-self-stretching yarn is arranged alternately or alternately as a constituent yarn of the knitted fabric. The quilting fabric according to claim 4, wherein
  8. 前記の吸水自己伸張糸と非自己伸張糸とからなる織編物において、吸水自己伸張糸と非自己伸張糸とが、複合糸として織編物中に含まれる、請求項4に記載のキルテイング生地。   The quilting fabric according to claim 4, wherein the water-absorbing self-stretching yarn and the non-self-stretching yarn are included in the woven or knitting fabric as a composite yarn.
  9. 吸水自己伸張糸が、ポリブチレンテレフタレートをハードセグメントとし、ポリオキシエチレングリコールをソフトセグメントとするポリエーテルエステルエラストマーからなるポリエーテルエステル繊維である、請求項4〜8のいずれかに記載のキルテイング生地。   The quilting fabric according to any one of claims 4 to 8, wherein the water-absorbing self-stretching yarn is a polyetherester fiber comprising a polyetherester elastomer having polybutylene terephthalate as a hard segment and polyoxyethylene glycol as a soft segment.
  10. 非自己伸張糸がポリエステル繊維である、請求項4〜9のいずれかに記載のキルテイング生地。 The quilting fabric according to any one of claims 4 to 9, wherein the non-self-stretching yarn is a polyester fiber.
  11. 前記布帛Aが、ポリエステル成分とポリアミド成分とがサイドバイサイド型に接合され、かつ潜在捲縮性能が発現してなる捲縮を有する複合繊維を含む織編物である、請求項1〜3のいずれかに記載のキルテイング生地。 The fabric A is a woven or knitted fabric including a conjugate fiber having crimps in which a polyester component and a polyamide component are joined in a side-by-side manner and latent crimping performance is exhibited. The stated quilting fabric.
  12. 前記中綿がポリエステル繊維からなる、請求項1〜11のいずれかに記載のキルテイング生地。 The quilting fabric according to any one of claims 1 to 11, wherein the batting is made of polyester fibers.
  13. 吸水時の通気性が乾燥時よりも10%以上大きくなる、請求項1〜12に記載のキルテイング生地。 The quilting fabric according to claim 1, wherein the air permeability at the time of water absorption is 10% or more larger than that at the time of drying.
  14. 吸水時の厚みが乾燥時よりも10%以上大きくなる、請求項1〜13に記載のキルテイング生地。 The quilting fabric according to claim 1, wherein the thickness at the time of water absorption is 10% or more larger than that at the time of drying.
  15. 請求項1〜14のいずれかに記載のキルテイング生地を用いてなる、布団、シーツ、敷きパッド、および枕カバーからなる群より選択されるいずれかの寝具。 Any one bedding selected from the group which consists of a futon, a bed sheet, a laying pad, and a pillow cover which uses the quilting cloth in any one of Claims 1-14.
  16. 請求項1〜14のいずれかに記載のキルテイング生地を用いてなるダウンジャケット。   The down jacket which uses the quilting cloth in any one of Claims 1-14.
JP2007144733A 2007-05-31 2007-05-31 Quilting cloth, bedding and down jacket Pending JP2008297657A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007144733A JP2008297657A (en) 2007-05-31 2007-05-31 Quilting cloth, bedding and down jacket

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007144733A JP2008297657A (en) 2007-05-31 2007-05-31 Quilting cloth, bedding and down jacket

Publications (1)

Publication Number Publication Date
JP2008297657A true JP2008297657A (en) 2008-12-11

Family

ID=40171427

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007144733A Pending JP2008297657A (en) 2007-05-31 2007-05-31 Quilting cloth, bedding and down jacket

Country Status (1)

Country Link
JP (1) JP2008297657A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103637595A (en) * 2013-12-10 2014-03-19 紫罗兰家纺科技股份有限公司 Moisture-holding and warm-keeping quilt and producing method thereof
JP2014173221A (en) * 2013-03-12 2014-09-22 Boxmark Leather Proizvodnja In Trgovina Doo Multilayer coating material for comfort furniture, including upholstery, cushion, blanket, etc. and production method thereof
EP2857566A1 (en) 2013-09-17 2015-04-08 Precision Fukuhara Works, Ltd. Knitted fabric with reduced cracks, knitting method therefor, and design system using the knitting method
JP2016097074A (en) * 2014-11-21 2016-05-30 帝人株式会社 futon
CN106108530A (en) * 2015-08-29 2016-11-16 潘灿兴 A kind of environmental protection cotton-wadded quilt

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6174430U (en) * 1984-10-23 1986-05-20
WO1988009838A1 (en) * 1987-06-10 1988-12-15 Kanebo, Ltd. Lengthwise and crosswise stretchable cloth and process for its production
JP2005036374A (en) * 2003-06-23 2005-02-10 Teijin Fibers Ltd Woven/knitted fabric improved with air permeability on becoming wet
JP2005304900A (en) * 2004-04-23 2005-11-04 Toyobo Co Ltd Heat-insulating laminate
JP2006264309A (en) * 2005-02-23 2006-10-05 Teijin Fibers Ltd Multilayer structure varying in three-dimentional structure by absorbing water and textile product
JP2008031598A (en) * 2006-07-31 2008-02-14 Toray Ind Inc Fiber structure

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6174430U (en) * 1984-10-23 1986-05-20
WO1988009838A1 (en) * 1987-06-10 1988-12-15 Kanebo, Ltd. Lengthwise and crosswise stretchable cloth and process for its production
JP2005036374A (en) * 2003-06-23 2005-02-10 Teijin Fibers Ltd Woven/knitted fabric improved with air permeability on becoming wet
JP2005304900A (en) * 2004-04-23 2005-11-04 Toyobo Co Ltd Heat-insulating laminate
JP2006264309A (en) * 2005-02-23 2006-10-05 Teijin Fibers Ltd Multilayer structure varying in three-dimentional structure by absorbing water and textile product
JP2008031598A (en) * 2006-07-31 2008-02-14 Toray Ind Inc Fiber structure

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014173221A (en) * 2013-03-12 2014-09-22 Boxmark Leather Proizvodnja In Trgovina Doo Multilayer coating material for comfort furniture, including upholstery, cushion, blanket, etc. and production method thereof
EP2857566A1 (en) 2013-09-17 2015-04-08 Precision Fukuhara Works, Ltd. Knitted fabric with reduced cracks, knitting method therefor, and design system using the knitting method
CN103637595A (en) * 2013-12-10 2014-03-19 紫罗兰家纺科技股份有限公司 Moisture-holding and warm-keeping quilt and producing method thereof
JP2016097074A (en) * 2014-11-21 2016-05-30 帝人株式会社 futon
CN106108530A (en) * 2015-08-29 2016-11-16 潘灿兴 A kind of environmental protection cotton-wadded quilt

Similar Documents

Publication Publication Date Title
JP3500392B2 (en) Yarn dyed yarn
CA2654920C (en) Knitted fabric and sports clothing
JP3834018B2 (en) Reversible breathable fabric
EP1640488B1 (en) Woven or knitted fabric containing two different yarns and clothing comprising the same
KR102046198B1 (en) Fabric and fiber product
TWI276715B (en) Three-dimensional fabric and method for producing the same
US6845638B2 (en) Insulated knitted fabric
EP1801274B1 (en) Woven/knit fabric including crimped fiber and becoming rugged upon humidification, process for producing the same, and textile product
EP1359238A1 (en) Three-layer knitting fabric
JP4372153B2 (en) Air permeability reversible change knitted fabric
JP3992687B2 (en) Woven knitted fabric with improved breathability when wet
EP1676944A1 (en) Stretchable composite fabric and clothing product therefrom
KR101220658B1 (en) Woven or knit fabric containing crimped composite fiber having its air permeability enhanced by water wetting and relevant clothing
JP5933952B2 (en) Fabrics and textile products
EP1650335A1 (en) Woven or knitted cloth containing two different yarns and exhibiting reduction of interstitial rate in becoming wet
US6561230B1 (en) Weft knitted fabric
KR100517043B1 (en) Stretchable high-density woven fabric
JP5363145B2 (en) Moisture permeable waterproof fabric and textile products
EP2065497A1 (en) Woven/knit fabric including crimped fiber and decreasing in porosity upon humidification, process for producing the same, and textile product
TW200306365A (en) Stretchable core in sheath type composite yarn and stretchable woven or knitted fabric
CN101031679B (en) Woven or knit fabric containing crimped composite fiber having its air permeability enhanced by water wetting and relevant clothing
JP2003041462A (en) Woven/knitted fabric with air self-regulating permeability function
JP4343014B2 (en) Dense ultrashort blanket, method for producing the same, and car seat member
JP2012057265A (en) High-density woven fabric
JP2004183128A (en) Corrugated board-like three-dimensional woven fabric having soft texture and method for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20100409

Free format text: JAPANESE INTERMEDIATE CODE: A621

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20110707

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20110707

A977 Report on retrieval

Effective date: 20120316

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120612

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20121016