JP2009041148A - Woven fabric and textile product - Google Patents

Woven fabric and textile product Download PDF

Info

Publication number
JP2009041148A
JP2009041148A JP2007209411A JP2007209411A JP2009041148A JP 2009041148 A JP2009041148 A JP 2009041148A JP 2007209411 A JP2007209411 A JP 2007209411A JP 2007209411 A JP2007209411 A JP 2007209411A JP 2009041148 A JP2009041148 A JP 2009041148A
Authority
JP
Japan
Prior art keywords
woven fabric
composite fiber
judgment
fibers
fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007209411A
Other languages
Japanese (ja)
Inventor
Naomiki Horikawa
直幹 堀川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teijin Frontier Co Ltd
Original Assignee
Teijin Fibers Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teijin Fibers Ltd filed Critical Teijin Fibers Ltd
Priority to JP2007209411A priority Critical patent/JP2009041148A/en
Publication of JP2009041148A publication Critical patent/JP2009041148A/en
Pending legal-status Critical Current

Links

Landscapes

  • Undergarments, Swaddling Clothes, Handkerchiefs Or Underwear Materials (AREA)
  • Yarns And Mechanical Finishing Of Yarns Or Ropes (AREA)
  • Multicomponent Fibers (AREA)
  • Woven Fabrics (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a woven fabric containing a conjugate fiber containing a polyester component and a polyamide component bonded in a side-by-side form and having a property to easily recover the wrinkle caused by the use of the fabric by moisture absorption, and a textile product produced by using the woven fabric. <P>SOLUTION: The woven fabric contains a conjugate fiber containing a polyester component and a polyamide component bonded in a side-by-side form in an amount of 20 wt.% or more based on the total weight of the woven fabric, the conjugate fiber slipped out of the woven fabric has a crimped structure, the conjugate fiber satisfies the formula DC<SB>F</SB>-HC<SB>F</SB>≥5 (%) wherein DC<SB>F</SB>(%) is the crimp percent of the conjugate fiber in dried state and HC<SB>F</SB>(%) is the crimp percent of the fiber in humidified state, and the cover factor CF of the woven fabric is 3,300 or less. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、ポリエステル成分とポリアミド成分とがサイドバイサイド型に接合された複合繊維を含む織物であって、使用によって付与された皺が入浴後の浴室等の湿気により容易に回復する織物および該織物を用いてなる繊維製品に関するものである。   The present invention relates to a woven fabric including a composite fiber in which a polyester component and a polyamide component are joined in a side-by-side manner, and a woven fabric in which wrinkles provided by use are easily recovered by moisture in a bathroom after bathing, and the woven fabric. The present invention relates to a textile product to be used.

従来、アウター用衣料、ブラウス、ドレスシャツ、Yシャツなどの用途に、ポリエステル繊維などの合成繊維からなる織物が多く用いられている。
しかしながら、ポリエステル繊維などの合成繊維からなる織物は皺になり難いという長所を有するものの、一度皺が付与されると容易には皺が回復しないという短所を有していた。
なお、ポリエステル成分とポリアミド成分とがサイドバイサイド型に接合された複合繊維を含む織編物は、例えば特許文献1や特許文献2により提案されている。
Conventionally, fabrics made of synthetic fibers such as polyester fibers are often used for outer clothing, blouses, dress shirts, Y-shirts and the like.
However, fabrics made of synthetic fibers such as polyester fibers have the advantage that they do not easily become wrinkles, but have the disadvantage that wrinkles do not easily recover once wrinkles are applied.
A woven or knitted fabric including a composite fiber in which a polyester component and a polyamide component are joined in a side-by-side manner is proposed by, for example, Patent Document 1 and Patent Document 2.

特開2006−97176号公報JP 2006-97176 A 特開2003−41462号公報JP 2003-41462 A

本発明は上記の背景に鑑みなされたものであり、その目的は、ポリエステル成分とポリアミド成分とがサイドバイサイド型に接合された複合繊維を含む織物であって、使用によって付与された皺が吸湿により容易に回復する性能を有する織物および該織物を用いてなる繊維製品を提供することにある。   The present invention has been made in view of the above-mentioned background, and the object thereof is a woven fabric including a composite fiber in which a polyester component and a polyamide component are joined in a side-by-side manner, and a wrinkle imparted by use is easily absorbed by moisture absorption. Another object of the present invention is to provide a woven fabric having the ability to recover to the above and a textile product using the woven fabric.

本発明者は上記の課題を達成するため鋭意検討した結果、ポリエステルとポリアミドの異質ポリマーを貼りあわせたサイドバイサイド型複合繊維を用いて織物を得る際、該織物から抜出した前記複合繊維が捲縮構造を有し、かつ吸湿時と乾燥時において特定の捲縮率を有しており、かつ織物が所定のカバーファクターを有していると、使用によって付与された皺が吸湿により容易に回復することを見出し、さらに鋭意検討を重ねることにより本発明を完成するに至った。   As a result of intensive studies to achieve the above-mentioned problems, the present inventor has obtained a crimped structure when the composite fiber extracted from the fabric is obtained using a side-by-side type composite fiber in which different polymers of polyester and polyamide are bonded. If the fabric has a specific crimping rate at the time of moisture absorption and drying, and the fabric has a predetermined cover factor, the wrinkles imparted by use can be easily recovered by moisture absorption. As a result, the present invention has been completed.

かくして、本発明によれば「ポリエステル成分とポリアミド成分とがサイドバイサイド型に接合された複合繊維を、織物の全重量に対して20重量%以上含む織物であって、該織物から抜出した前記複合繊維が捲縮構造を有しており、該複合繊維の乾燥時の捲縮率をDC(%)、吸湿時の捲縮率をHC(%)とするとき、DC−HC≧5(%)であり、かつ織物のカバーファクターCFが3300以下であることを特徴とする織物。」が提供される。 Thus, according to the present invention, “a composite fiber in which a polyester component and a polyamide component are bonded in a side-by-side manner in an amount of 20% by weight or more based on the total weight of the fabric, the composite fiber extracted from the fabric. There has crimped structure, the crimp ratio of the dry composite fiber DC F (%), when the percentage of crimp moisture absorption and HC F (%), DC F -HC F ≧ 5 And a cover factor CF of the fabric is 3300 or less.

ただし、乾燥時とは、試料を温度20℃、湿度65%RH環境下に24時間放置した後の状態であり、一方、吸湿時とは、試料を温度30℃、湿度90%RH環境下に24時間放置した後の状態であり、また、カバーファクターCFは下記式により定義される。
CF=(DWp/1.1)1/2×MWp+(DWf/1.1)1/2×MWf
[DWpは経糸総繊度(dtex)、MWpは経糸織密度(本/2.54cm)、DWfは緯糸総繊度(dtex)、MWfは緯糸織密度(本/2.54cm)である。]
However, during drying, the sample is left for 24 hours in a temperature of 20 ° C. and humidity of 65% RH. On the other hand, when moisture is absorbed, the sample is placed in a temperature of 30 ° C. and humidity of 90% RH. This is the state after standing for 24 hours, and the cover factor CF is defined by the following equation.
CF = (DWp / 1.1) 1/2 × MWp + (DWf / 1.1) 1/2 × MWf
[DWp is the total warp fineness (dtex), MWp is the warp weave density (main / 2.54 cm), DWf is the total weft fineness (dtex), and MWf is the weft weave density (main / 2.54 cm). ]

その際、ポリエステル成分が、5−ナトリウムスルホイソフタル酸が2.0〜4.5モル%共重合された変性ポリエステルからなることが好ましい。また、前記の複合繊維が600T/m以上の撚りが施された撚り糸であることが好ましい。   In that case, it is preferable that a polyester component consists of a modified polyester copolymerized with 2.0 to 4.5 mol% of 5-sodium sulfoisophthalic acid. Moreover, it is preferable that the said composite fiber is a twisted yarn in which the twist of 600 T / m or more was given.

本発明の織物において、織物が、前記複合繊維と他の繊維とで構成されることが好ましい。ここで、前記の複合繊維が経糸および緯糸のうちどちらか一方に配され、他の繊維が他方に配されてなることが好ましい。また、前記の複合繊維と他の繊維とが、各々織物の構成糸条として、1本交互または複数本交互に配されてなることが好ましい。また、前記の複合繊維と他の繊維とが、前記の複合繊維が芯部に位置し、他の繊維が鞘部に位置する芯鞘型複合糸として織編物に含まれることが好ましい。また、他の繊維がポリエステル繊維であることが好ましい。   In the woven fabric of the present invention, the woven fabric is preferably composed of the composite fiber and other fibers. Here, it is preferable that the composite fiber is arranged on one of the warp and the weft and the other fiber is arranged on the other. Moreover, it is preferable that the said composite fiber and other fiber are alternately arranged by one line or multiple lines as a constituent thread of a textile fabric, respectively. Moreover, it is preferable that the said composite fiber and another fiber are contained in a woven or knitted fabric as a core-sheath type composite yarn in which the said composite fiber is located in a core part, and another fiber is located in a sheath part. Moreover, it is preferable that another fiber is a polyester fiber.

本発明の織物において、染色加工が施されていることが好ましい。また、吸湿時における織物の皺回復性が2級以上であることが好ましい。ただし、織物の皺回復性は下記の方法で測定するものとする。ただし、織物の皺回復性は下記の方法で測定するものとする。まず、試験片として織物と同じ方向に経8cm緯25cmの試験片(長方形)を3枚採取し、短辺の1cmを縫い代とし輪状に縫い合わせる。その後、図1に示すように、該試験片を直径6cmの円筒の下部まで通した後、さらにその上から円筒にぴったりくっつくように39.2N(4kgf)の円筒荷重を加えて30分間皺付けを行う。除重後、試験片の縫い糸をほどき、3時間放置した後、該試験片を図2に示す判定標準写真と並べて比較判定し、乾燥時の判定級(A1)とする。その後、該試験片を温度30℃、相対湿度90%の恒温恒湿層に1時間投入し、取り出して1時間経過後の皺付きの状況を再度、前記の判定標準写真と並べて比較判定し、吸湿後の判定級(A2)とする。そして、皺回復性を下記式により算出する。
皺回復性(級)=(吸湿後の判定級(A2))−(乾燥時の判定級(A1))
The fabric of the present invention is preferably subjected to a dyeing process. Moreover, it is preferable that the wrinkle recovery property of the fabric at the time of moisture absorption is 2nd grade or more. However, the wrinkle recovery property of the woven fabric shall be measured by the following method. However, the wrinkle recovery property of the woven fabric shall be measured by the following method. First, three test pieces (rectangular) having a length of 8 cm and a length of 25 cm are collected as test pieces in the same direction as the fabric, and 1 cm on the short side is sewn into a ring shape with a seam allowance. Thereafter, as shown in FIG. 1, after passing the test piece to the bottom of a cylinder having a diameter of 6 cm, a cylindrical load of 39.2 N (4 kgf) is further applied so that the test piece is closely attached to the cylinder from above, and brazed for 30 minutes. I do. After dewetting, the test piece is unwound and left for 3 hours, and then the test piece is compared with the judgment standard photograph shown in FIG. 2 to make a judgment grade (A1) when drying. Thereafter, the test piece is placed in a constant temperature and humidity layer at a temperature of 30 ° C. and a relative humidity of 90% for 1 hour, taken out, and the state of wrinkles after 1 hour has passed is again compared with the above judgment standard photograph for comparison and judgment. It is set as the judgment grade (A2) after moisture absorption. And wrinkle recovery property is computed by the following formula.
Wrinkle recovery (class) = (judgment class after moisture absorption (A2)) − (judgment class during drying (A1))

また、本発明によれば、前記の織物を用いてなる、アウター用衣料、ブラウス、ドレスシャツ、およびYシャツからなる群より選択される繊維製品が提供される。   In addition, according to the present invention, there is provided a textile product selected from the group consisting of an outer garment, a blouse, a dress shirt, and a Y-shirt, using the woven fabric.

本発明によれば、ポリエステル成分とポリアミド成分とがサイドバイサイド型に接合された複合繊維を含む織物であって、使用によって付与された皺が吸湿により容易に回復する性能を有する織物および該織物を用いてなる繊維製品が得られる。   According to the present invention, a woven fabric including a composite fiber in which a polyester component and a polyamide component are bonded in a side-by-side manner, and a woven fabric having a performance in which wrinkles provided by use are easily recovered by moisture absorption, and the woven fabric are used. A textile product is obtained.

以下、本発明の実施の形態について詳細に説明する。
本発明において、複合繊維はポリエステル成分とポリアミド成分とからなり、両成分はサイドバイサイド型に接合されている。
Hereinafter, embodiments of the present invention will be described in detail.
In the present invention, the composite fiber is composed of a polyester component and a polyamide component, and both components are joined in a side-by-side manner.

ここで、ポリエステル成分としては、他方のポリアミド成分との接着性の点で、スルホン酸のアルカリまたはアルカリ土類金属、ホスホニウム塩を有し、かつエステル形成能を有する官能基を1個以上もつ化合物が共重合された、ポリエチレンテレフタレート、ポリプロピレンテレフタレート、ポリブチレンタレフタレート等の変性ポリエステルが好ましく例示される。なかでも、汎用性およびポリマーコストの点で、前記化合物が共重合された、変性ポリエチレンテレフタレートが特に好ましい。その際、共重合成分としては、5−ナトリウムスルホイソフタル酸およびそのエステル誘導体、5−ホスホニウムイソフタル酸およびそのエステル誘導体、p−ヒドロキシベンゼンスルホン酸ナトリウムなどがあげられる。なかでも、5−ナトリウムスルホイソフタル酸が好ましい。共重合量としては、2.0〜4.5モル%の範囲が好ましい。該共重合量が2.0モル%よりも小さいと、優れた捲縮性能が得られるものの、ポリアミド成分とポリエステル成分との接合界面にて剥離が生じるおそれがある。逆に、該共重合量が4.5モル%よりも大きいと、延伸熱処理の際、ポリエステル成分の結晶化が進みにくくなるため、延伸熱処理温度を上げる必要があり、その結果、糸切れが多発するおそれがある。   Here, as the polyester component, in terms of adhesiveness with the other polyamide component, a compound having one or more functional groups having an alkali or alkaline earth metal of sulfonic acid or a phosphonium salt and having an ester forming ability Preferred examples thereof include modified polyesters such as polyethylene terephthalate, polypropylene terephthalate, and polybutylene terephthalate. Among these, modified polyethylene terephthalate obtained by copolymerizing the above compound is particularly preferable from the viewpoint of versatility and polymer cost. In this case, examples of the copolymer component include 5-sodium sulfoisophthalic acid and ester derivatives thereof, 5-phosphonium isophthalic acid and ester derivatives thereof, and sodium p-hydroxybenzenesulfonate. Of these, 5-sodium sulfoisophthalic acid is preferable. As a copolymerization amount, the range of 2.0-4.5 mol% is preferable. When the copolymerization amount is less than 2.0 mol%, although excellent crimping performance can be obtained, there is a possibility that peeling occurs at the bonding interface between the polyamide component and the polyester component. On the other hand, if the copolymerization amount is greater than 4.5 mol%, the crystallization of the polyester component becomes difficult to proceed during the stretching heat treatment, and thus it is necessary to raise the stretching heat treatment temperature. There is a risk.

一方のポリアミド成分としては、主鎖中にアミド結合を有するものであれば特に限定されるものではなく、例えば、ナイロン−4、ナイロン−6、ナイロン−66、ナイロン−46、ナイロン−12などがあげられる。なかでも、汎用性、ポリマーコスト、製糸安定性の点で、ナイロン−6およびナイロン−66が好適である。   One polyamide component is not particularly limited as long as it has an amide bond in the main chain, and examples thereof include nylon-4, nylon-6, nylon-66, nylon-46, nylon-12 and the like. can give. Among these, nylon-6 and nylon-66 are preferable in terms of versatility, polymer cost, and yarn production stability.

なお、前記ポリエステル成分およびポリアミド成分には、公知の添加剤、例えば、顔料、顔料、艶消し剤、防汚剤、蛍光増白剤、難燃剤、安定剤、帯電防止剤、耐光剤、紫外線吸収剤等が含まれていてもよい。   The polyester component and the polyamide component include known additives such as pigments, pigments, matting agents, antifouling agents, fluorescent whitening agents, flame retardants, stabilizers, antistatic agents, light-resistant agents, and ultraviolet absorption agents. An agent or the like may be included.

前記のサイドバイサイド型に接合された複合繊維は、任意の断面形状および複合形態をとることができる。例えば、特開2006−97176号公報の図1の(イ)、(ロ)のようなサイドバイサイド型が好ましく用いられるが、(ハ)のような偏心芯鞘型であってもよい。さらには、単繊維の断面形状が三角形や四角形、その断面内に中空部を有するものであってもよい。なかでも、特開2006−97176号公報の図1の(イ)のように、丸型であると吸湿時に皺が容易に回復し好ましい。両成分の複合比は任意に選定することができるが、通常、ポリエステル成分とポリアミド成分の重量比で30:70〜70:30(より好ましくは40:60〜60:40)の範囲内であることが好ましい。   The composite fiber joined to the side-by-side type can take any cross-sectional shape and composite form. For example, a side-by-side type as shown in FIGS. 1A and 1B of JP-A-2006-97176 is preferably used, but an eccentric core-sheath type as shown in FIG. Furthermore, the cross-sectional shape of the single fiber may be a triangle or a quadrangle, and the hollow portion may be included in the cross section. In particular, as shown in FIG. 1 (A) of Japanese Patent Application Laid-Open No. 2006-97176, a round shape is preferable because wrinkles are easily recovered during moisture absorption. Although the composite ratio of both components can be selected arbitrarily, it is usually in the range of 30:70 to 70:30 (more preferably 40:60 to 60:40) by weight ratio of the polyester component and the polyamide component. It is preferable.

前記複合繊維の単糸繊度、単糸数(フィラメント数)としては特に限定されないが、単糸繊度1〜10dtex(より好ましくは2〜5dtex)、単糸数10〜200本(より好ましくは20〜100本)の範囲内であることが好ましい。   The single yarn fineness and the number of single yarns (number of filaments) of the composite fiber are not particularly limited, but the single yarn fineness is 1 to 10 dtex (more preferably 2 to 5 dtex), and the number of single yarns is 10 to 200 (more preferably 20 to 100). ) Is preferable.

また、本発明の織物に含まれる複合繊維は、捲縮構造を有している必要がある。異種ポリマーがサイドバイサイド型に接合された複合繊維は、通常、潜在捲縮性能を有しており、後記のように、染色加工等で熱処理を受けると潜在捲縮性能が発現する。捲縮構造としては、ポリアミド成分が捲縮の内側に位置し、ポリエステル成分が捲縮の外側に位置していることが好ましい。かかる捲縮構造を有する複合繊維は、後記の製造方法により容易に得ることができる。複合繊維がこのような捲縮構造を有していると、吸湿時に、内側のポリアミド成分が膨潤、伸張し、外側のポリエステル成分はほとんど長さ変化を起こさないため、捲縮率が低下する(複合繊維の見かけの長さが長くなる。)。一方、乾燥時には、内側のポリアミド成分が収縮し、外側のポリエステル成分はほとんど長さ変化を起こさないため、捲縮率が増大する(複合繊維の見かけの長さが短くなる。)。このように、吸湿時に、複合繊維の捲縮率が可逆的に変化することにより皺が回復する。   Moreover, the composite fiber contained in the fabric of the present invention needs to have a crimped structure. A composite fiber in which different types of polymers are joined in a side-by-side manner usually has latent crimping performance, and the latent crimping performance is manifested when subjected to heat treatment such as dyeing as described later. As the crimped structure, it is preferable that the polyamide component is located inside the crimp and the polyester component is located outside the crimp. The composite fiber having such a crimped structure can be easily obtained by the production method described later. When the composite fiber has such a crimped structure, the inner polyamide component swells and stretches during moisture absorption, and the outer polyester component hardly undergoes a change in length, resulting in a lower crimp rate ( The apparent length of the composite fiber is increased.) On the other hand, at the time of drying, the inner polyamide component shrinks and the outer polyester component hardly changes in length, so that the crimp rate increases (the apparent length of the composite fiber becomes shorter). Thus, wrinkles are recovered by reversibly changing the crimp rate of the composite fiber during moisture absorption.

前記の複合繊維は、600T/m以上(好ましくは600〜1500T/m)の撚りが施された撚り糸であることが好ましい。このように撚りが施されていると、吸湿時に複合繊維の捲縮率が可逆的に変化する際、撚りとの相乗効果により皺が容易に回復する。なお、該撚数が1500T/mよりも大きいとシボが発生してしまうおそれがあるので、1500T/m以下であることが好ましい。また、交絡数が20〜60ケ/m程度となるようにインターレース空気加工および/または通常の仮撚捲縮加工が施されていてもさしつかえない。   The composite fiber is preferably a twisted yarn subjected to a twist of 600 T / m or more (preferably 600 to 1500 T / m). When the twist is applied in this way, when the crimp rate of the composite fiber reversibly changes during moisture absorption, the wrinkle is easily recovered by a synergistic effect with the twist. In addition, since there exists a possibility that a wrinkle may generate | occur | produce when this twist number is larger than 1500 T / m, it is preferable that it is 1500 T / m or less. Further, interlaced air processing and / or ordinary false twist crimping may be performed so that the number of entanglements is about 20 to 60 pieces / m.

本発明の織物には、前記の複合繊維が含まれている。その際、織物中に含まれる複合繊維の含有量は、重量基準で織物全重量に対して、20重量%以上(より好ましくは40重量%以上)であることが肝要である。複合繊維の含有量が20重量%よりも小さいと、吸湿時に皺が十分回復しないおそれがある。   The woven fabric of the present invention contains the above-described composite fiber. At that time, it is important that the content of the composite fiber contained in the woven fabric is 20% by weight or more (more preferably 40% by weight or more) based on the weight of the woven fabric. If the content of the composite fiber is less than 20% by weight, wrinkles may not be sufficiently recovered during moisture absorption.

また織物が、前記複合繊維と前記複合繊維以外の他の繊維とで構成される場合、かかる他の繊維としては特に限定されず、ポリエチレンタレフタレート、ポリトリメチレンテレフタレート、ポリブチレンテレフタレート等のポリエステル、ナイロン6、ナイロン66等のポリアミド、ポリエチレン、ポリプロピレン等のポリオレフィン、アクリル、パラ型もしくはメタ型アラミド、およびそれらの変性合成繊維、さらには、天然繊維、再生繊維、半合成繊維など衣料に適した繊維であれば自由に選択できる。なかでも、湿潤時の寸法安定性や、前記複合繊維との相性(混繊性、交編・交織性、染色性)の点で、ポリエチレンテレフタレート、ポリプロピレンテレフタレート、ポリブチレンタレフタレートや、これらに前記共重合成分が共重合された変性ポリエステルからなるポリエステル繊維が好適である。また、かかる他の繊維の単糸繊度、単糸数(フィラメント数)としては特に限定されないが、織編物の吸湿性を高め、吸湿時に皺を性能よく回復させる上で、単糸繊度0.1〜5dtex(より好ましくは0.5〜2dtex)、単糸数20〜200本(より好ましくは30〜100本)の範囲内であることが好ましい。なお、交絡数が20〜60ケ/m程度となるようにインターレース空気加工および/または通常の仮撚捲縮加工が他の繊維に施されていてもさしつかえない。   When the woven fabric is composed of the composite fiber and fibers other than the composite fiber, the other fibers are not particularly limited, and polyesters such as polyethylene terephthalate, polytrimethylene terephthalate, and polybutylene terephthalate, Polyamides such as nylon 6 and nylon 66, polyolefins such as polyethylene and polypropylene, acrylic, para-type or meta-type aramid, and modified synthetic fibers thereof, as well as fibers suitable for clothing such as natural fibers, regenerated fibers, and semi-synthetic fibers If so, you can choose freely. Among these, polyethylene terephthalate, polypropylene terephthalate, polybutylene terephthalate, and the above-mentioned in terms of dimensional stability when wet and compatibility with the above-mentioned composite fibers (mixing property, knitting / weaving property, dyeability) A polyester fiber made of a modified polyester in which a copolymer component is copolymerized is preferable. Further, the single yarn fineness and the number of single yarns (number of filaments) of such other fibers are not particularly limited, but in order to increase the hygroscopicity of the woven or knitted fabric and restore the wrinkles with good performance when absorbing moisture, the single yarn fineness of 0.1 to 5 dtex (more preferably 0.5 to 2 dtex) and the number of single yarns 20 to 200 (more preferably 30 to 100) are preferable. It should be noted that interlaced air processing and / or normal false twist crimping may be applied to other fibers so that the number of entanglements is about 20 to 60 pieces / m.

本発明の織物に、前記の複合繊維と他の繊維が含まれる場合、両者は各々単独糸条で織物を構成してもよいし、空気混繊糸、合撚糸、複合仮撚捲縮加工糸、引揃え糸などの複合糸として織編物を構成してもよい。   When the composite fiber and other fibers are included in the woven fabric of the present invention, both may constitute the woven fabric with a single yarn, or an air mixed yarn, a mixed twisted yarn, a composite false twisted crimped yarn The knitted or knitted fabric may be configured as a composite yarn such as an aligned yarn.

織物の構造としては、その織組織、層数は特に限定されるものではない。例えば、平織、綾織、サテンなどの織組織が好適に例示されるが、これらに限定されるものではない。層数も単層でもよいし、2層以上の多層であってもよい。   As the structure of the woven fabric, the woven structure and the number of layers are not particularly limited. For example, woven structures such as plain weave, twill, satin and the like are preferably exemplified, but are not limited thereto. The number of layers may be a single layer or a multilayer of two or more layers.

次に、本発明の織物において、該織物から抜出した前記複合繊維が捲縮構造を有しており、前記複合繊維の乾燥時の捲縮率をDC(%)、吸湿時の捲縮率をHC(%)とするとき、DC−HC≧5(%)(好ましくは、50(%)≧DC−HC≧10(%))であることが肝要である。DC−HCが5%未満では、乾燥時に比べて吸湿時に皺が性能よく回復しないおそれがあり、好ましくない。 Next, in the woven fabric of the present invention, the conjugate fiber extracted from the woven fabric has a crimped structure, the crimp rate when drying the conjugate fiber is DC F (%), and the crimp rate when absorbing moisture. when to the HC F (%), DC F -HC F ≧ 5 (%) ( preferably, 50 (%) ≧ DC F -HC F ≧ 10 (%)) it is important to be. If DC F -HC F is less than 5%, the soot may not be recovered with good performance when it absorbs moisture compared to when it is dried, which is not preferable.

ここで、織物中における複合繊維の捲縮率は、下記の方法により測定する。まず、織物を温度20℃、湿度65%RHの雰囲気中に24時間放置した後、該織物から織物と同じ方向の30cm×30cmの小片を裁断する(n数=5)。次いで、各々の小片から、複合繊維を取り出し、1.76mN/dtex(200mg/de)の荷重をかけて糸長L0fを測定し、除重1分後0.0176mN/dtex(2mg/de)の荷重をかけて糸長L1fを測定する。さらにこの糸を温度30℃、湿度90%RH環境下に24時間放置した後、1.76mN/dtex(200mg/de)の荷重をかけて糸長L0f’を測定し、除重1分後0.0176mN/dtex(2mg/de)の荷重をかけて糸長L1f’を測定する。以上の測定数値から下記の計算式にて、乾燥時の捲縮率DC(%)、吸湿時の捲縮率HC(%)、乾燥時と吸湿時の捲縮率差(DC−HC)(%)を算出する。なお、n数は5でその平均値を求める。なお、前記の測定は雰囲気中から取り出した試料を直ちに行うものとする。
乾燥時の捲縮率DC(%)=((L0f−L1f)/L0f)×100
吸湿時の捲縮率HC(%)=(L0f’−L1f’)/L0f’)×100
Here, the crimp rate of the composite fiber in the woven fabric is measured by the following method. First, the fabric is left in an atmosphere of a temperature of 20 ° C. and a humidity of 65% RH for 24 hours, and then a 30 cm × 30 cm piece in the same direction as the fabric is cut from the fabric (n number = 5). Subsequently, the composite fiber was taken out from each piece, and the yarn length L0f was measured by applying a load of 1.76 mN / dtex (200 mg / de), and after 1 minute of dewetting, 0.0176 mN / dtex (2 mg / de). A load is applied to measure the yarn length L1f. Further, this yarn was allowed to stand for 24 hours in a temperature of 30 ° C. and a humidity of 90% RH, and then the yarn length L0f ′ was measured by applying a load of 1.76 mN / dtex (200 mg / de). The yarn length L1f ′ is measured under a load of 0.176 mN / dtex (2 mg / de). More of at equation below from the measured numerical percentage of crimp DC F (%) upon drying, crimp ratio HC F (%) at the time of moisture absorption, dry and crimp ratio difference during moisture absorption (DC F - HC F ) (%) is calculated. Note that n is 5 and the average value is obtained. In addition, the said measurement shall immediately perform the sample taken out from atmosphere.
Crimp rate during drying DC F (%) = ((L0f−L1f) / L0f) × 100
Crimp rate at the time of moisture absorption HC F (%) = (L0f′−L1f ′) / L0f ′) × 100

本発明において、織物の態様としては、(1)前記の複合繊維が経糸および緯糸のうちどちらか一方に配され、他の繊維が他方に配されてなる織物、(2)前記の複合繊維と他の繊維とが、各々織物の構成糸条として、1本交互または複数本交互に配されてなる織物、(3)前記の複合繊維と他の繊維とが、前記の複合繊維が芯部に位置し、他の繊維が鞘部に位置する芯鞘型複合糸として織物に含まれる織物、(4)織物前記の複合繊維と他の繊維とが、引き揃えられて織組織の経糸および/または緯糸に配されてなる織物、などが例示される。   In the present invention, as a form of the woven fabric, (1) the woven fabric in which the above-mentioned conjugate fiber is arranged on one of the warp and the weft and the other fiber is arranged on the other, (2) the above-mentioned conjugate fiber and Each of the other fibers, as a constituent yarn of the woven fabric, is a woven fabric in which one or a plurality of yarns are alternately arranged. (3) The above-mentioned composite fiber and the other fiber have the above-mentioned composite fiber at the core. A woven fabric included in the woven fabric as a core-sheath type composite yarn in which the other fibers are positioned in the sheath portion, and (4) the woven fabric, and the above-mentioned composite fibers and other fibers are drawn together to produce a warp and / or a woven structure Examples include woven fabrics arranged on wefts.

本発明の織物は例えば下記の製造方法によって容易に得ることができる。
まず、固有粘度が0.30〜0.43(オルソクロロフェノールを溶媒として35℃で測定)の、5−ナトリウムスルホイソフタル酸が2.0〜4.5モル%共重合された変性ポリエステルと、固有粘度が1.0〜1.4(m−クレゾールを溶媒として30℃で測定)のポリアミドとを用いてサイドバイサイド型に溶融複合紡糸する。その際、ポリエステル成分の固有粘度が0.43以下であることが特に重要である。ポリエステル成分の固有粘度が0.43よりも大きいと、ポリエステル成分の粘度が増大するため、複合繊維の物性がポリエステル単独糸に近くなり、本発明が目的とする織物が得られないおそれがある。逆に、ポリエステル成分の固有粘度が0.30よりも小さいと、溶融粘度が小さくなりすぎて製糸性が低下するとともに毛羽発生が多くなり、品質および生産性が低下するおそれがある。
The fabric of the present invention can be easily obtained, for example, by the following production method.
First, a modified polyester having an intrinsic viscosity of 0.30 to 0.43 (measured at 35 ° C. using orthochlorophenol as a solvent) and 2.0 to 4.5 mol% of 5-sodium sulfoisophthalic acid copolymerized; Using a polyamide having an intrinsic viscosity of 1.0 to 1.4 (measured at 30 ° C. using m-cresol as a solvent), melt composite spinning is performed in a side-by-side manner. At that time, it is particularly important that the intrinsic viscosity of the polyester component is 0.43 or less. If the intrinsic viscosity of the polyester component is greater than 0.43, the viscosity of the polyester component increases, so that the physical properties of the composite fiber are close to that of a single polyester yarn, and the woven fabric intended by the present invention may not be obtained. On the other hand, if the intrinsic viscosity of the polyester component is less than 0.30, the melt viscosity becomes too small and the yarn-making property is lowered and the generation of fluff is increased, which may reduce the quality and productivity.

溶融紡糸の際に用いる紡糸口金としては、特開2000−144518号公報の図1のような、高粘度側と低粘度側の吐出孔を分離し、かつ高粘度側吐出線速度を小さくした(吐出断面積を大きくした)紡糸口金が好適である。そして、高粘度側吐出孔に溶融ポリエステルを通過させ、低粘度側吐出孔に溶融ポリアミドを通過させ冷却固化させることが好ましい。その際、ポリエステル成分とポリアミド成分との重量比は、前述のとおり、30:70〜70:30(より好ましくは40:60〜60:40)の範囲内であることが好ましい。   As the spinneret used for melt spinning, as shown in FIG. 1 of JP-A-2000-144518, the high-viscosity side and low-viscosity side discharge holes are separated and the high-viscosity side discharge linear velocity is reduced ( A spinneret having a large discharge cross-sectional area is preferred. Then, it is preferable that the molten polyester is passed through the high viscosity side discharge holes and the molten polyamide is passed through the low viscosity side discharge holes to be cooled and solidified. In that case, it is preferable that the weight ratio of a polyester component and a polyamide component exists in the range of 30: 70-70: 30 (more preferably 40: 60-60: 40) as above-mentioned.

また、溶融複合紡糸した後、一旦巻き取った後に延伸する別延方式を採用してもよいし、一旦巻き取らずに延伸熱処理を行う直延方式を採用してもよい。その際、紡糸・延伸条件としては、通常の条件でよい。例えば、直延方式の場合、1000〜3300m/分程度で紡糸した後、連続して100〜150℃の温度で延伸し巻き取る。延伸倍率は最終時に得られる複合繊維の切断伸度が10〜60%(好ましくは20〜45%)、切断強度が3.0〜4.7cN/dtex程度となるよう、適宜選定すればよい。   Further, after the melt composite spinning, a separate stretching method in which the film is once wound and then stretched may be employed, or a direct stretching method in which a stretching heat treatment is performed without winding once may be employed. At that time, the spinning and drawing conditions may be normal conditions. For example, in the case of the direct extension method, after spinning at about 1000 to 3300 m / min, the film is continuously drawn and wound at a temperature of 100 to 150 ° C. The draw ratio may be appropriately selected so that the cut elongation of the composite fiber obtained at the end is 10 to 60% (preferably 20 to 45%) and the cut strength is about 3.0 to 4.7 cN / dtex.

ここで、前記の複合繊維が、下記の要件(1)および(2)を同時に満足することが好ましい。
(1)乾燥時における複合繊維の捲縮率DCが1.5〜13%(好ましくは2〜6%)の範囲内である。
(2)前記捲縮率DCと、湿潤時における複合繊維の捲縮率HCとの差(DC−HC)が0.5%以上(好ましくは1〜5%)である。
Here, it is preferable that the composite fiber satisfies the following requirements (1) and (2) at the same time.
(1) The crimp ratio DC of the composite fiber at the time of drying is in the range of 1.5 to 13% (preferably 2 to 6%).
(2) The difference (DC-HC) between the crimp rate DC and the crimp rate HC of the composite fiber when wet is 0.5% or more (preferably 1 to 5%).

ただし、乾燥時とは、試料を温度20℃、湿度65%RH環境下に24時間放置した後の状態であり、一方、湿潤時とは、試料を温度20℃の水中に2時間浸漬した後の状態であり、乾燥時における捲縮率DCおよび湿潤時における捲縮率HCは、下記の方法で測定した値を用いることとする。   However, when dry, the sample is left in a 20 ° C., 65% RH environment for 24 hours, while when wet, the sample is immersed in water at 20 ° C. for 2 hours. In this state, the crimping rate DC at the time of drying and the crimping rate HC at the time of wetness are values measured by the following methods.

まず、枠周:1.125mの巻き返し枠を用いて、荷重:49/50mN×9×トータルテックス(0.1gf×トータルデニール)をかけて一定の速度で巻き返し、巻き数:10回の小綛をつくり、該小綛をねじり2重の輪状にしたものに49/2500mN×20×9×トータルテックス(2mg×20×トータルデニール)の初荷重をかけたまま沸水中に入れて30分間処理し、該沸水処理の後100℃の乾燥機にて30分間乾燥し、その後さらに初荷重をかけたまま160℃の乾熱中に入れ5分間処理する。該乾熱処理の後に初荷重を除き、温度20℃、湿度65%RH環境下に24時間以上放置した後、前記の初荷重および98/50mN×20×9×トータルテックス(0.2gf×20×トータルデニール)の重荷重を負荷し、綛長:L0を測定し、直ちに重荷重のみを取り除き、除重1分後の綛長:L1を測定する。さらにこの綛を初荷重をかけたまま温度20℃の水中に2時間浸漬した後取り出し、ろ紙(大きさ30cm×30cm)にて0.69mN/cm(70mgf/cm)の圧力を5秒間かけて軽く水を拭き取った後、初荷重および重荷重を負荷し綛長:L0’を測定し、直ちに重荷重のみを取り除き、除重1分後の綛長:L1’を測定する。以上の測定数値から下記の計算式にて、乾燥時の捲縮率DC(%)、湿潤時の捲縮率HC(%)、乾燥時と湿潤時の捲縮率差(DC−HC)(%)を算出する。
乾燥時の捲縮率DC(%)=((L0−L1)/L0)×100
湿潤時の捲縮率HC(%)=(L0’−L1’)/L0’)×100
First, using a rewind frame with a frame circumference of 1.125 m, a load was applied at 49/50 mN × 9 × total tex (0.1 gf × total denier) at a constant speed, and the number of turns was 10 times. , Twisted into a double ring, and put it in boiling water for 30 minutes with initial load of 49 / 2500mN x 20 x 9 x total tex (2mg x 20 x total denier) Then, after the boiling water treatment, it is dried for 30 minutes in a dryer at 100 ° C., and is further placed in a dry heat of 160 ° C. for 5 minutes with the initial load applied. After the dry heat treatment, the initial load was removed and the sample was allowed to stand for 24 hours or more in a temperature of 20 ° C. and a humidity of 65% RH. Then, the initial load and 98/50 mN × 20 × 9 × total tex (0.2 gf × 20 × Apply a heavy load of total denier), measure the heel length: L0, immediately remove only the heavy load, and measure the heel length: L1 after 1 minute of dewetting. Further, the soot was immersed in water at a temperature of 20 ° C. for 2 hours with the initial load applied, and then taken out. The filter paper (size 30 cm × 30 cm) was applied with a pressure of 0.69 mN / cm 2 (70 mgf / cm 2 ) for 5 seconds. After lightly wiping off the water, an initial load and a heavy load are applied, and the heel length: L0 ′ is measured. Only the heavy load is removed immediately, and the heel length: L1 ′ after 1 minute of dewetting is measured. From the above measurement values, the following formulas are used to calculate the crimp rate DC (%) at the time of drying, the crimp rate HC (%) at the time of wetness, and the crimp rate difference between the dry and wet conditions (DC-HC) ( %).
Crimp rate during drying DC (%) = ((L0−L1) / L0) × 100
Crimp rate HC (%) when wet = (L0′−L1 ′) / L0 ′) × 100

前記の湿潤時における複合繊維の捲縮率HCとしては、0.5〜10.0%(好ましくは1〜3%)の範囲内であることが好ましい。   The crimp rate HC of the composite fiber when wet is preferably in the range of 0.5 to 10.0% (preferably 1 to 3%).

次いで、前記複合繊維に常法により撚りを施した後、該複合繊維を単独で用いるか、他の繊維も同時に用いて、常法により織物を織成した後、染色加工などの熱処理により前記複合繊維の捲縮を発現させる。
ここで、織物を織成する際、前述のように、重量基準で織物全重量に対して、20重量%以上(好ましくは40重量%以上)であることが肝要である。また、織組織は特に限定されず、前述のものを適宜選定することができる。
Next, after twisting the composite fiber by a conventional method, the composite fiber is used alone, or other fibers are used at the same time, and a woven fabric is woven by a conventional method, followed by heat treatment such as dyeing. Expresses crimps.
Here, when weaving the woven fabric, as described above, it is important that the amount is 20% by weight or more (preferably 40% by weight or more) based on the weight of the woven fabric. Further, the woven structure is not particularly limited, and the above-described one can be selected as appropriate.

前記染色加工の温度としては100〜140℃(より好ましくは110〜135℃)、時間としてはトップ温度のキープ時間が5〜40分の範囲内であることが好ましい。かかる条件で、織物に染色加工を施すことにより、前記複合繊維は、ポリエステル成分とポリアミド成分との熱収縮差により捲縮を発現する。その際、ポリエステル成分とポリアミド成分として、前述のポリマーを選定することにより、ポリアミド成分が捲縮の内側に位置する捲縮構造となる。   The dyeing temperature is preferably 100 to 140 ° C. (more preferably 110 to 135 ° C.), and the time is preferably the top temperature keeping time within a range of 5 to 40 minutes. By subjecting the fabric to a dyeing process under such conditions, the conjugate fiber develops crimps due to a difference in thermal shrinkage between the polyester component and the polyamide component. At that time, by selecting the above-mentioned polymer as the polyester component and the polyamide component, a crimped structure is obtained in which the polyamide component is located inside the crimp.

染色加工が施された織物には、通常、乾熱ファイナルセットが施される。その際、乾熱ファイナルセットの温度としては120〜200℃(より好ましくは140〜180℃)、時間としては1〜3分の範囲内であることが好ましい。かかる、乾熱ファイナルセットの温度が120℃よりも低いと、染色加工時に発生したシワが残り易く、また、仕上がり製品の寸法安定性が悪くなるおそれがある。逆に、該乾熱ファイナルセットの温度が200℃よりも高いと、染色加工の際に発現した複合繊維の捲縮が低下したり、繊維が硬化し生地の風合いが硬くなるおそれがある。   A dry heat final set is usually applied to a woven fabric that has been dyed. At that time, the temperature of the dry heat final set is preferably 120 to 200 ° C. (more preferably 140 to 180 ° C.), and the time is preferably within a range of 1 to 3 minutes. If the temperature of the dry heat final set is lower than 120 ° C., wrinkles generated during the dyeing process are likely to remain, and the dimensional stability of the finished product may be deteriorated. On the other hand, if the temperature of the dry heat final set is higher than 200 ° C., the crimp of the composite fiber developed during the dyeing process may decrease, or the fiber may harden and the texture of the fabric may become hard.

かくして得られた織物において、織物中の複合繊維の可動性(捲縮変化)を確保するため織物のカバーファクターCFが3300以下(好ましくは1800〜3200)の範囲内であることが肝要である。カバーファクターCFが3300よりも大きいと吸湿時に皺が回復しないおそれがある。ただし、カバーファクターCFは下記式により定義される。
CF=(DWp/1.1)1/2×MWp+(DWf/1.1)1/2×MWf
[DWpは経糸総繊度(dtex)、MWpは経糸織密度(本/2.54cm)、DWfは緯糸総繊度(dtex)、MWfは緯糸織密度(本/2.54cm)である。]
In the woven fabric thus obtained, it is important that the cover factor CF of the woven fabric is within the range of 3300 or less (preferably 1800 to 3200) in order to ensure the mobility (crimp change) of the composite fiber in the woven fabric. If the cover factor CF is larger than 3300, wrinkles may not be recovered upon moisture absorption. However, the cover factor CF is defined by the following equation.
CF = (DWp / 1.1) 1/2 × MWp + (DWf / 1.1) 1/2 × MWf
[DWp is the total warp fineness (dtex), MWp is the warp weave density (main / 2.54 cm), DWf is the total weft fineness (dtex), and MWf is the weft weave density (main / 2.54 cm). ]

本発明の織物において、使用により付与された皺が、吸湿時に複合繊維の捲縮率が可逆的に変化することにより皺が回復する。その際、かかる皺回復性としては、吸湿による織物の皺回復性が2級以上であることが好ましい。ただし、織物の皺回復性は下記の方法で測定するものとする。ただし、織物の皺回復性は下記の方法で測定するものとする。まず、試験片として織物と同じ方向に経8cm緯25cmの試験片(長方形)を3枚採取し、短辺の1cmを縫い代とし輪状に縫い合わせる。その後、図1に示すように、該試験片を直径6cmの円筒の下部まで通した後、さらにその上から円筒にぴったりくっつくように39.2N(4kgf)の円筒荷重を加えて30分間皺付けを行う。除重後、試験片の縫い糸をほどき、3時間放置した後、該試験片を図2に示す判定標準写真と並べて比較判定し、乾燥時の判定級(A1)とする。その後、該試験片を温度30℃、相対湿度90%の恒温恒湿層に1時間投入し、取り出して1時間経過後の皺付きの状況を再度、前記の判定標準写真と並べて比較判定し、吸湿後の判定級(A2)とする。そして、皺回復性を下記式により算出する。
皺回復性(級)=(吸湿後の判定級(A2))−(乾燥時の判定級(A1))
In the woven fabric of the present invention, wrinkles recovered by use are recovered by reversibly changing the crimp rate of the composite fiber when absorbing moisture. In this case, as the wrinkle recovery property, it is preferable that the wrinkle recovery property of the woven fabric by moisture absorption is second or higher. However, the wrinkle recovery property of the woven fabric shall be measured by the following method. However, the wrinkle recovery property of the woven fabric shall be measured by the following method. First, three test pieces (rectangular) having a length of 8 cm and a length of 25 cm are collected as test pieces in the same direction as the fabric, and 1 cm on the short side is sewn into a ring shape with a seam allowance. Thereafter, as shown in FIG. 1, after passing the test piece to the bottom of a cylinder having a diameter of 6 cm, a cylindrical load of 39.2 N (4 kgf) is further applied so that the test piece is closely attached to the cylinder from above, and brazed for 30 minutes. I do. After dewetting, the test piece is unwound and left for 3 hours, and then the test piece is compared with the judgment standard photograph shown in FIG. 2 to make a judgment grade (A1) when drying. Thereafter, the test piece is placed in a constant temperature and humidity layer at a temperature of 30 ° C. and a relative humidity of 90% for 1 hour, taken out, and the state of wrinkles after 1 hour has passed is again compared with the above judgment standard photograph for comparison and judgment. It is set as the judgment grade (A2) after moisture absorption. And wrinkle recovery property is computed by the following formula.
Wrinkle recovery (class) = (judgment class after moisture absorption (A2)) − (judgment class during drying (A1))

なお、本発明の織物には、前記の加工以外に、常法の起毛加工、紫外線遮蔽あるいは抗菌剤、消臭剤、防虫剤、蓄光剤、再帰反射剤、マイナスイオン発生剤、吸水剤等の機能を付与する各種加工を付加適用してもよい。   In addition to the above-described processing, the fabric of the present invention includes conventional brushing processing, ultraviolet shielding or antibacterial agents, deodorants, insect repellents, phosphorescent agents, retroreflective agents, negative ion generators, water absorbing agents, etc. Various processes for imparting functions may be additionally applied.

次に、本発明の繊維製品は、前記の織物を用いてなる、アウター用衣料、ブラウス、ドレスシャツ、およびYシャツからなる群より選択される繊維製品である。かかる繊維製品は前記の織物を用いているので、使用により皺が付与されても、入浴後の浴室等の湿気や消臭スプレーなどの湿気により皺が容易に回復する。   Next, the textile product of the present invention is a textile product selected from the group consisting of an outer garment, a blouse, a dress shirt, and a Y-shirt, using the woven fabric. Since such textiles use the above-mentioned woven fabric, even if wrinkles are given by use, wrinkles are easily recovered by moisture such as bathroom after bathing or moisture such as deodorizing spray.

以下、実施例をあげて本発明を詳細に説明するが、本発明はこれらによって何ら限定されるものではない。なお、実施例中の各物性は下記の方法により測定したものである。   EXAMPLES Hereinafter, although an Example is given and this invention is demonstrated in detail, this invention is not limited at all by these. In addition, each physical property in an Example is measured with the following method.

<ポリエステルの固有粘度>オルソクロロフェノールを溶媒として使用し温度35℃で測定した。 <Intrinsic Viscosity of Polyester> Measured at a temperature of 35 ° C. using orthochlorophenol as a solvent.

<ポリアミドの固有粘度>m−クレゾールを溶媒として使用し温度30℃で測定した。 <Intrinsic viscosity of polyamide> The viscosity was measured at 30 ° C. using m-cresol as a solvent.

<破断強度、破断伸度>繊維試料を、雰囲気温度25℃、湿度60%RHの恒温恒湿に保たれた部屋に一昼夜放置した後、サンプル長さ100mmで(株)島津製作所製引張試験機テンシロンにセットし、200mm/minの速度で伸張し、破断時の強度(cN/dtex)、伸度(%)を測定した。なお、n数5でその平均値を求めた。 <Breaking strength, breaking elongation> After leaving the fiber sample in a room maintained at a constant temperature and humidity of 25 ° C. and a humidity of 60% RH for a day and night, a tensile tester manufactured by Shimadzu Corporation with a sample length of 100 mm It was set on Tensilon, stretched at a speed of 200 mm / min, and the strength at break (cN / dtex) and elongation (%) were measured. In addition, the average value was calculated | required by n number 5.

<仮撚捲縮加工糸条の捲縮率>供試フィラメント糸条を、周長が1.125mの検尺機のまわりに巻きつけて、乾繊度が3333dtexのかせを調製した。
前記かせを、スケール板の吊り釘に懸垂して、その下部分に6grf(5.9cN)の初荷重を付加し、さらに600grf(588cN)の重荷重をかけ、1分後にかせの長さL0を測定した。その後、直ちに、前記かせから重荷重を除き、スケール板の吊り釘から外し、このかせを沸騰水中に20分間浸漬して、捲縮を発現させる。沸騰水処理後のかせを沸騰水から取り出し、かせに含まれる水分をろ紙により吸収除去し、室温において24時間風乾した。この風乾されたかせを、スケール板の吊り釘に懸垂し、その下部分に、600grf(588cN)の重荷重をかけ、1分後にかせの長さL1を測定し、その後かせから重荷重を外し、1分後にかせの長さL2を測定した。初荷重は測定中は常時付加しておく。仮撚捲縮加工糸条の捲縮率(CP)を、下記式により算出した。
CP(%)=((L1−L2)/L0)×100
<Crimping ratio of false twisted crimped yarn> A test filament yarn was wound around a measuring machine having a circumference of 1.125 m to prepare a skein having a dryness of 3333 dtex.
The skein is suspended from a hanging nail of the scale plate, an initial load of 6 grf (5.9 cN) is applied to the lower part thereof, and a heavy load of 600 grf (588 cN) is further applied, and the skein length L0 after 1 minute. Was measured. Immediately thereafter, the heavy load is removed from the skein, removed from the hanging nail of the scale plate, and this skein is immersed in boiling water for 20 minutes to develop crimps. The skein after the boiling water treatment was taken out from the boiling water, the moisture contained in the skein was absorbed and removed with a filter paper, and air-dried at room temperature for 24 hours. The air-dried skein is hung on a hanging nail of a scale plate, and a heavy load of 600 grf (588 cN) is applied to the lower part thereof. After 1 minute, the skein length L1 is measured, and then the heavy load is removed from the skein. The skein length L2 was measured after 1 minute. The initial load is always applied during measurement. The crimp rate (CP) of the false twist crimped yarn was calculated by the following formula.
CP (%) = ((L1-L2) / L0) × 100

<複合繊維の捲縮率>枠周:1.125mの巻き返し枠を用いて、荷重:49/50mN×9×トータルテックス(0.1gf×トータルデニール)をかけて一定の速度で巻き返し、巻き数:10回の小綛をつくり、該小綛をねじり2重の輪状にしたものに49/2500mN×20×9×トータルテックス(2mg×20×トータルデニール)の初荷重をかけたまま沸水中に入れて30分間処理し、該沸水処理の後100℃の乾燥機にて30分間乾燥し、その後さらに初荷重をかけたまま160℃の乾熱中に入れ5分間処理した。該乾熱処理の後に初荷重を除き、温度20℃、湿度65%RH環境下に24時間以上放置した後、前記の初荷重および98/50mN×20×9×トータルテックス(0.2gf×20×トータルデニール)の重荷重を負荷し、綛長:L0を測定し、直ちに重荷重のみを取り除き、除重1分後の綛長:L1を測定した。さらにこの綛を初荷重をかけたまま温度20℃の水中に2時間浸漬した後取り出し、ろ紙(大きさ30cm×30cm)にて0.69mN/cm(70mgf/cm)の圧力を5秒間かけて軽く水を拭き取った後、初荷重および重荷重を負荷し綛長:L0’を測定し、直ちに重荷重のみを取り除き、除重1分後の綛長:L1’を測定する。以上の測定数値から下記の計算式にて、乾燥時の捲縮率DC(%)、湿潤時の捲縮率HC(%)、乾燥時と湿潤時の捲縮率差(DC−HC)(%)を算出した。なお、n数は5で平均値を求めた。
乾燥時の捲縮率DC(%)=((L0−L1)/L0)×100
湿潤時の捲縮率HC(%)=(L0’−L1’)/L0’)×100
<Crimping rate of composite fiber> Frame circumference: Using a rewind frame of 1.125 m, the load was 49/50 mN × 9 × total tex (0.1 gf × total denier) and wound at a constant speed. : Make 10 gavel and twist it into a double ring shape and put it in boiling water with initial load of 49 / 2500mN x 20 x 9 x total tex (2mg x 20 x total denier) It was treated for 30 minutes, and after the boiling water treatment, it was dried in a dryer at 100 ° C. for 30 minutes, and then further placed in a dry heat of 160 ° C. for 5 minutes with the initial load applied. After the dry heat treatment, the initial load was removed and the sample was allowed to stand for 24 hours or more in a temperature of 20 ° C. and a humidity of 65% RH. Then, the initial load and 98/50 mN × 20 × 9 × total tex (0.2 gf × 20 × A heavy load of (total denier) was applied, the heel length: L0 was measured, only the heavy load was immediately removed, and the heel length: L1 after 1 minute of dewetting was measured. Further, the soot was immersed in water at a temperature of 20 ° C. for 2 hours with the initial load applied, and then taken out. The filter paper (size 30 cm × 30 cm) was applied with a pressure of 0.69 mN / cm 2 (70 mgf / cm 2 ) for 5 seconds. After lightly wiping off the water, an initial load and a heavy load are applied, and the heel length: L0 ′ is measured. Only the heavy load is removed immediately, and the heel length: L1 ′ after 1 minute of dewetting is measured. From the above measurement values, the following formulas are used to calculate the crimp rate DC (%) at the time of drying, the crimp rate HC (%) at the time of wetness, and the crimp rate difference between the dry and wet conditions (DC-HC) ( %) Was calculated. In addition, the number of n was 5, and the average value was obtained.
Crimp rate during drying DC (%) = ((L0−L1) / L0) × 100
Crimp rate HC (%) when wet = (L0′−L1 ′) / L0 ′) × 100

<織物中における複合繊維の捲縮率>織物を温度20℃、湿度65%RHの雰囲気中に24時間放置した後、該織物から織物と同じ方向の30cm×30cmの小片を裁断した(n数=5)。次いで、各々の小片から、複合繊維を取り出し、1.76mN/dtex(200mg/de)の荷重をかけて糸長L0fを測定し、除重1分後0.0176mN/dtex(2mg/de)の荷重をかけて糸長L1fを測定した。さらにこの糸を温度30℃、湿度90%RH環境下に24時間放置した後、1.76mN/dtex(200mg/de)の荷重をかけて糸長L0f’を測定し、除重1分後0.0176mN/dtex(2mg/de)の荷重をかけて糸長L1f’を測定した。以上の測定数値から下記の計算式にて、乾燥時の捲縮率DC(%)、吸湿時の捲縮率HC(%)、乾燥時と吸湿時の捲縮率差(DC−HC)(%)を算出した。なお、n数は5でその平均値を求めた。また、前記の測定は雰囲気中から取り出した試料を直ちに行った。
乾燥時の捲縮率DC(%)=((L0f−L1f)/L0f)×100
吸湿時の捲縮率HC(%)=(L0f’−L1f’)/L0f’)×100
<Crimping rate of composite fiber in fabric> After leaving the fabric in an atmosphere of temperature 20 ° C. and humidity 65% RH for 24 hours, 30 cm × 30 cm pieces in the same direction as the fabric were cut from the fabric (n number) = 5). Subsequently, the composite fiber was taken out from each piece, and the yarn length L0f was measured by applying a load of 1.76 mN / dtex (200 mg / de), and after 1 minute of dewetting, 0.0176 mN / dtex (2 mg / de). A load was applied to measure the yarn length L1f. Further, this yarn was allowed to stand for 24 hours in a temperature of 30 ° C. and a humidity of 90% RH, and then the yarn length L0f ′ was measured by applying a load of 1.76 mN / dtex (200 mg / de). The yarn length L1f ′ was measured by applying a load of 0.176 mN / dtex (2 mg / de). More of at equation below from the measured numerical percentage of crimp DC F (%) upon drying, crimp ratio HC F (%) at the time of moisture absorption, dry and crimp ratio difference during moisture absorption (DC F - HC F) was calculated (%). In addition, n number was set to 5 and the average value was calculated | required. The measurement was performed immediately on a sample taken out from the atmosphere.
Crimp rate during drying DC F (%) = ((L0f−L1f) / L0f) × 100
Crimp rate at the time of moisture absorption HC F (%) = (L0f′−L1f ′) / L0f ′) × 100

<撚数>市販のショッパー型検撚器で撚数(T/m)を測定した。 <Number of twists> The number of twists (T / m) was measured with a commercially available shopper type tester.

<皺回復性>温度20℃、湿度65%RHの雰囲気中で、試験片として 織物と同じ方向に経8cm緯25cmの試験片(長方形)を3枚採取し、短辺の1cmを縫い代とし輪状に縫い合わせた。その後、図1に示すように、該試験片を直径6cmの円筒の下部まで通した後、さらにその上から円筒にぴったりくっつくように39.2N(4kgf)の円筒荷重を加えて30分間皺付けを行った。除重後、試験片の縫い糸をほどき、3時間放置した後、該試験片を図2に示す判定標準写真と並べて比較判定し、乾燥時の判定級(A1)とした。この際、照明は洗濯外観試験方法の低角照明を用いた。
その後、該試験片を温度30℃、相対湿度90%の恒温恒湿層に1時間投入し、取り出して1時間経過後の皺付きの状況を再度、前記の判定標準写真と並べて比較判定し、吸湿後の判定級(A2)とした。そして、皺回復性を下記式により算出した。
皺回復性(級)=(吸湿後の判定級(A2))−(乾燥時の判定級(A1))
<Wrinkle recovery property> In an atmosphere of temperature 20 ° C and humidity 65% RH, three test pieces (rectangular) measuring 8cm and 25cm in the same direction as the fabric were sampled, and 1cm on the short side was used as a ring. Stitched together. Thereafter, as shown in FIG. 1, after passing the test piece to the bottom of a cylinder having a diameter of 6 cm, a cylindrical load of 39.2 N (4 kgf) is further applied so that the test piece is closely attached to the cylinder from above, and brazed for 30 minutes. Went. After the weight removal, the test piece was unwound and allowed to stand for 3 hours, and then the test piece was placed side by side with the judgment standard photograph shown in FIG. 2 to make a judgment grade (A1) during drying. At this time, the low-angle illumination of the washing appearance test method was used as the illumination.
Thereafter, the test piece is placed in a constant temperature and humidity layer at a temperature of 30 ° C. and a relative humidity of 90% for 1 hour, taken out, and the state of wrinkles after 1 hour has passed is again compared with the above judgment standard photograph for comparison and judgment. It was set as the judgment grade (A2) after moisture absorption. And wrinkle recovery property was computed by the following formula.
Wrinkle recovery (class) = (judgment class after moisture absorption (A2)) − (judgment class during drying (A1))

<カバーファクターCF>下記式により算出した。
CF=(DWp/1.1)1/2×MWp+(DWf/1.1)1/2×MWf
ただし、DWpは経糸総繊度(dtex)、MWpは経糸織密度(本/2.54cm)、DWfは緯糸総繊度(dtex)、MWfは緯糸織密度(本/2.54cm)である。
<Cover factor CF> It was calculated by the following formula.
CF = (DWp / 1.1) 1/2 × MWp + (DWf / 1.1) 1/2 × MWf
However, DWp is the total warp fineness (dtex), MWp is the warp weave density (main / 2.54 cm), DWf is the total weft fineness (dtex), and MWf is the weft weave density (main / 2.54 cm).

[ 実施例1 ]
固有粘度[η]が1.3のナイロン6と、固有粘度[η]が0.39で2.6モル%の5−ナトリウムスルフォイソフタル酸を共重合させた変性ポリエチレンテレフタレートとをそれぞれ270℃、290℃にて溶融し、特開2000−144518号公報の図1と同様の複合紡糸口金を用い、それぞれ12.7g/分の吐出量にて押し出し、特開2006−97176号公報の図1(イ)の単繊維横断面形状を有するサイドバイサイド型複合繊維を形成させ、冷却固化、油剤を付与した後、糸条を速度1000m/分、温度60℃の予熱ローラーにて予熱し、ついで、該予熱ローラーと、速度3050m/分、温度150℃に加熱された加熱ローラー間で延伸熱処理を行い、巻取り、84dtex/24filの複合繊維を得た。該複合繊維において、破断強度3.4cN/dtex、破断伸度40%であった。また、該複合繊維に沸水処理を施して捲縮率を測定したところ、乾燥時の捲縮率DCが3.3%、湿潤時の捲縮率HCが1.6%、乾燥時の捲縮率DCと湿潤時の捲縮率HCとの差(DC−HC)が1.7%であった。
[Example 1]
Nylon 6 having an intrinsic viscosity [η] of 1.3 and modified polyethylene terephthalate copolymerized with 2.6 mol% of 5-sodium sulfoisophthalic acid having an intrinsic viscosity [η] of 0.39 are each 270 ° C. 1 was melted at 290 ° C. and extruded at a discharge rate of 12.7 g / min using a composite spinneret similar to that shown in FIG. 1 of JP-A-2000-144518, and FIG. 1 of JP-A-2006-97176. After forming the side-by-side type composite fiber having the cross-sectional shape of the single fiber of (a), cooling and solidifying and applying an oil agent, the yarn is preheated with a preheating roller at a speed of 1000 m / min and a temperature of 60 ° C., A drawing heat treatment was performed between a preheating roller and a heating roller heated to a temperature of 150 ° C. at a speed of 3050 m / min, and wound to obtain 84 dtex / 24 fil composite fiber. The composite fiber had a breaking strength of 3.4 cN / dtex and a breaking elongation of 40%. Further, when the crimp rate was measured by performing boiling water treatment on the composite fiber, the crimp rate DC when dried was 3.3%, the crimp rate HC when wet was 1.6%, and the crimp rate when dried. The difference between the rate DC and the crimp rate HC when wet (DC-HC) was 1.7%.

次いで、経糸用として、捲縮率20%の通常のポリエチレンテレフタレートマルチフィラメント仮撚捲縮加工糸条(84dtex/72fil)にS方向に600回/mの撚りを掛けたものを用意した。一方、緯糸用として、前記複合繊維をS方向に1200回/mの撚りを掛けた後、70℃の温度で30分間撚り止めセットを実施したものを用意した。そして、通常のラピア織機を使用して、織密度を経105本/2.54cm、緯密度83本/2.54cmにて平組織で製織し織物を得た。
そして、該織物を、温度80℃にて1分間精錬処理を実施後、温度130℃、キープ時間15分間にて通常の染色加工を施し、複合繊維の潜在捲縮性能を顕在化させた後、温度160℃、時間1分で乾熱ファイナルセットを施した。
Next, a normal polyethylene terephthalate multifilament false twist crimped yarn (84 dtex / 72 fil) with a crimp rate of 20% was prepared by applying a twist of 600 times / m in the S direction. On the other hand, for wefts, the composite fiber was twisted 1200 times / m in the S direction and then twisted for 30 minutes at a temperature of 70 ° C. was prepared. Then, using a normal lapier loom, weaving was performed with a plain structure at a weaving density of 105 / 2.54 cm and a weft density of 83 / 2.54 cm to obtain a woven fabric.
Then, after carrying out a refining treatment for 1 minute at a temperature of 80 ° C., the fabric is subjected to a normal dyeing process at a temperature of 130 ° C. and a keeping time of 15 minutes, and the latent crimping performance of the composite fiber is revealed. A dry heat final set was applied at a temperature of 160 ° C. for 1 minute.

得られた織物において、カバーファクターCFは1953であった。また、乾燥時の判定級(A1)は2級で、恒温恒湿層から取り出した後の級判定(吸湿後の判定級(A2))は4−5級であり、2.5級の皺回復性であった。また、該織物から抜き取った複合繊維において、乾燥時の捲縮率DCFが64%、吸湿時の捲縮率HCFが32%、乾燥時と吸湿時の捲縮率差(DC−HC)が32%であった。また、該織物から抜き取った複合繊維の撚数を測定したところ1215T/mであった。
次いで、該織物を用いてブラウスを縫製した後着用することにより皺を付与したところ、かかる皺が入浴後の浴室等の湿気により容易に回復した。
In the obtained woven fabric, the cover factor CF was 1953. Moreover, the judgment grade (A1) at the time of drying is the second grade, the grade judgment after taking out from the constant temperature and humidity layer (judgment grade after moisture absorption (A2)) is the fourth grade, and the second grade It was recoverable. Further, in the composite fiber extracted from the woven fabric, the crimp rate DCF at the time of drying is 64%, the crimp rate HCF at the time of moisture absorption is 32%, and the crimp rate difference between the time of drying and moisture absorption (DC F −HC F ) Was 32%. Moreover, it was 1215 T / m when the twist number of the composite fiber extracted from this textile fabric was measured.
Next, when the sewed blouse was used to sew the blouse, the sash was applied to the sack, and the sewage was easily recovered by moisture in the bathroom after bathing.

[比較例1]
固有粘度[η]が1.3のナイロン6と、固有粘度[η]が0.48で2.6モル%の5−ナトリウムスルフォイソフタル酸を共重合させた変性ポリエチレンテレフタレートとをそれぞれ270℃、290℃にて溶融し、特開2000−144518号公報の図1と同様の複合紡糸口金を用い、それぞれ12.7g/分の吐出量にて押し出し、図1(イ)の単糸横断面形状を有するサイドバイサイド型複合繊維を形成させ、冷却固化、油剤を付与した後、糸条を速度1000m/分、温度60℃の予熱ローラーにて予熱し、ついで、該予熱ローラーと、速度2700m/分、温度150℃に加熱された加熱ローラー間で延伸熱処理を行い、巻取り、84dtex/24filの複合繊維を得た。該複合繊維において、破断強度2.3cN/dtex、破断伸度41%であった。また、該複合繊維に沸水処理を施して捲縮率を測定したところ、乾燥時の捲縮率DCが1.2%、湿潤時の捲縮率HCが3.9%、乾燥時の捲縮率DCと湿潤時の捲縮率HCとの差(DC−HC)が−2.7%であった。
[Comparative Example 1]
Nylon 6 having an intrinsic viscosity [η] of 1.3 and modified polyethylene terephthalate copolymerized with 2.6 mol% of 5-sodium sulfoisophthalic acid having an intrinsic viscosity [η] of 0.48 are each 270 ° C. The melt was melted at 290 ° C. and extruded at a discharge rate of 12.7 g / min using a composite spinneret similar to that shown in FIG. 1 of JP-A No. 2000-144518. After forming a side-by-side type composite fiber having a shape, cooling and solidifying, and applying an oil agent, the yarn is preheated with a preheating roller at a speed of 1000 m / min and a temperature of 60 ° C., and then the preheating roller and a speed of 2700 m / min. Then, a drawing heat treatment was performed between heating rollers heated to a temperature of 150 ° C., and winding was performed to obtain 84 dtex / 24 fil composite fiber. The composite fiber had a breaking strength of 2.3 cN / dtex and a breaking elongation of 41%. Further, when the crimp rate was measured by performing boiling water treatment on the composite fiber, the crimp rate DC when dried was 1.2%, the crimp rate HC when wet was 3.9%, and the crimp rate when dried. The difference (DC−HC) between the rate DC and the crimp rate HC when wet was −2.7%.

次いで、前記の複合繊維を用いて、実施例1と同様に織物を製織した後、染色加工、撥水加工、および乾熱ファイナルセットを施した。
得られた織物において、カバーファクターCFは1894であった。また、乾燥時の判定級(A1)は2級で、恒温恒湿層から取り出した後の級判定(吸湿後の判定級(A2))は3級であり、1級の皺回復性であった。また、該織物から抜き取った複合繊維において、乾燥時の捲縮率DCが56%、吸湿時の捲縮率HCが62%、乾燥時と吸湿時の捲縮率差(DC−HC)が−6%であった。また、該織物から抜き取った複合繊維の撚数を測定したところ1210T/mであった。
Next, a woven fabric was woven using the above-mentioned conjugate fiber in the same manner as in Example 1, and then dyeing, water repellent, and dry heat final set were performed.
In the obtained woven fabric, the cover factor CF was 1894. In addition, the judgment grade (A1) at the time of drying is grade 2, and the grade judgment after taking out from the constant temperature and humidity layer (judgment grade after moisture absorption (A2)) is grade 3. It was. Further, in the composite fibers withdrawn from said textile, percentage of crimp DC F 56% during drying, percentage of crimp HC F when moisture 62%, percentage of crimp difference during dry and moisture (DC F -HC F ) was -6%. Moreover, it was 1210 T / m when the twist number of the composite fiber extracted from this textile fabric was measured.

[比較例2]
実施例1において、織物組織を5枚朱子に変更し、最終的に得られた織物のカバーファクターCFを3450と大きくすること以外は実施例1と同様にした。
得られた織物において、乾燥時の判定級(A1)は2級で、恒温恒湿層から取り出した後の級判定(吸湿後の判定級(A2))は3級であり、1級の皺回復性であった。
[Comparative Example 2]
Example 1 was the same as Example 1 except that the fabric structure was changed to five satin and the cover factor CF of the finally obtained fabric was increased to 3450.
In the obtained woven fabric, the judgment grade (A1) at the time of drying is the second grade, the grade judgment after taking out from the constant temperature and humidity layer (judgment grade after moisture absorption (A2)) is the third grade, It was recoverable.

本発明によれば、ポリエステル成分とポリアミド成分とがサイドバイサイド型に接合された複合繊維を含む織物であって、使用によって付与された皺が吸湿により容易に回復する性能を有する織物および該織物を用いてなる繊維製品が得られ、その工業的価値は極めて大である。   According to the present invention, a woven fabric including a composite fiber in which a polyester component and a polyamide component are bonded in a side-by-side manner, and a woven fabric having a performance in which wrinkles provided by use are easily recovered by moisture absorption, and the woven fabric are used. And the industrial value is extremely great.

皺回復性の評価方法を模式的に示す図である。It is a figure which shows typically the evaluation method of wrinkle recovery property. 皺回復性の判定標準写真である。It is a standard photo of recovery judgment.

符号の説明Explanation of symbols

1:円筒
2:荷重
3:試料
1: Cylindrical 2: Load 3: Sample

Claims (11)

ポリエステル成分とポリアミド成分とがサイドバイサイド型に接合された複合繊維を、織物の全重量に対して20重量%以上含む織物であって、該織物から抜出した前記複合繊維が捲縮構造を有しており、該複合繊維の乾燥時の捲縮率をDC(%)、吸湿時の捲縮率をHC(%)とするとき、DC−HC≧5(%)であり、かつ織物のカバーファクターCFが3300以下であることを特徴とする織物。
ただし、乾燥時とは、試料を温度20℃、湿度65%RH環境下に24時間放置した後の状態であり、一方、吸湿時とは、試料を温度30℃、湿度90%RH環境下に24時間放置した後の状態であり、また、カバーファクターCFは下記式により定義される。
CF=(DWp/1.1)1/2×MWp+(DWf/1.1)1/2×MWf
[DWpは経糸総繊度(dtex)、MWpは経糸織密度(本/2.54cm)、DWfは緯糸総繊度(dtex)、MWfは緯糸織密度(本/2.54cm)である。]
A woven fabric containing a composite fiber in which a polyester component and a polyamide component are bonded side-by-side in an amount of 20% by weight or more based on the total weight of the woven fabric, and the composite fiber extracted from the woven fabric has a crimped structure. cage, said DC F (%) the percentage of crimp upon drying of the composite fiber, when the percentage of crimp moisture absorption and HC F (%), a DC F -HC F ≧ 5 (% ), and textiles A fabric having a cover factor CF of 3300 or less.
However, during drying, the sample is left for 24 hours in a temperature of 20 ° C. and humidity of 65% RH. On the other hand, when moisture is absorbed, the sample is placed in a temperature of 30 ° C. and humidity of 90% RH. This is the state after standing for 24 hours, and the cover factor CF is defined by the following equation.
CF = (DWp / 1.1) 1/2 × MWp + (DWf / 1.1) 1/2 × MWf
[DWp is the total warp fineness (dtex), MWp is the warp weave density (main / 2.54 cm), DWf is the total weft fineness (dtex), and MWf is the weft weave density (main / 2.54 cm). ]
ポリエステル成分が、5−ナトリウムスルホイソフタル酸が2.0〜4.5モル%共重合された変性ポリエステルからなる、請求項1に記載の織物。   The textile fabric according to claim 1, wherein the polyester component is a modified polyester copolymerized with 2.0 to 4.5 mol% of 5-sodium sulfoisophthalic acid. 前記の複合繊維が600T/m以上の撚りが施された撚り糸である、請求項1または請求項2に記載の織物。   The woven fabric according to claim 1 or 2, wherein the composite fiber is a twisted yarn subjected to a twist of 600 T / m or more. 織物が、前記複合繊維と他の繊維とで構成される、請求項1〜3のいずれかに記載の織物。   The woven fabric according to any one of claims 1 to 3, wherein the woven fabric is composed of the composite fiber and other fibers. 前記の複合繊維が経糸および緯糸のうちどちらか一方に配され、他の繊維が他方に配されてなる、請求項4に記載の織物。   The woven fabric according to claim 4, wherein the composite fiber is disposed on one of the warp and the weft and the other fiber is disposed on the other. 前記の複合繊維と他の繊維とが、各々織物の構成糸条として、1本交互または複数本交互に配されてなる、請求項4に記載の織物。   The woven fabric according to claim 4, wherein the composite fiber and the other fibers are arranged alternately one by one or plurally as constituent yarns of the woven fabric. 前記の複合繊維と他の繊維とが、前記の複合繊維が芯部に位置し、他の繊維が鞘部に位置する芯鞘型複合糸として織物に含まれる、請求項4に記載の織物。   The woven fabric according to claim 4, wherein the conjugate fiber and the other fibers are included in the woven fabric as a core-sheath type composite yarn in which the conjugate fiber is located in the core portion and the other fibers are located in the sheath portion. 他の繊維がポリエステル繊維である、請求項4〜7のいずれかに記載の織物。   The woven fabric according to any one of claims 4 to 7, wherein the other fibers are polyester fibers. 染色加工が施されてなる、請求項1〜8のいずれかに記載の織物。   The woven fabric according to any one of claims 1 to 8, which is dyed. 吸湿による織物の皺回復性が2級以上である、請求項1〜9のいずれかに記載の織物。
ただし、織物の皺回復性は下記の方法で測定するものとする。まず、温度20℃、湿度65%RHの雰囲気中で、試験片として 織物と同じ方向に経8cm緯25cmの試験片(長方形)を3枚採取し、短辺の1cmを縫い代とし輪状に縫い合わせる。その後、図1に示すように、該試験片を直径6cmの円筒の下部まで通した後、さらにその上から円筒にぴったりくっつくように39.2N(4kgf)の円筒荷重を加えて30分間皺付けを行う。除重後、試験片の縫い糸をほどき、3時間放置した後、該試験片を図2に示す判定標準写真と並べて比較判定し、乾燥時の判定級(A1)とする。その後、該試験片を温度30℃、相対湿度90%の恒温恒湿層に1時間投入し、取り出して1時間経過後の皺付きの状況を再度、前記の判定標準写真と並べて比較判定し、吸湿後の判定級(A2)とする。そして、皺回復性を下記式により算出する。
皺回復性(級)=(吸湿後の判定級(A2))−(乾燥時の判定級(A1))
The woven fabric according to any one of claims 1 to 9, wherein the wrinkle recovery property of the woven fabric by moisture absorption is 2 or more.
However, the wrinkle recovery property of the woven fabric shall be measured by the following method. First, in an atmosphere of temperature 20 ° C. and humidity 65% RH, three test pieces (rectangles) having a length of 8 cm and a length of 25 cm are collected as test pieces in the same direction as the fabric, and 1 cm on the short side is sewn into a ring shape. Thereafter, as shown in FIG. 1, after passing the test piece to the bottom of a cylinder having a diameter of 6 cm, a cylindrical load of 39.2 N (4 kgf) is further applied so that the test piece is closely attached to the cylinder from above, and brazed for 30 minutes. I do. After dewetting, the test piece is unwound and left for 3 hours, and then the test piece is compared with the judgment standard photograph shown in FIG. 2 to make a judgment grade (A1) when drying. Thereafter, the test piece is placed in a constant temperature and humidity layer at a temperature of 30 ° C. and a relative humidity of 90% for 1 hour, taken out, and the state of wrinkles after 1 hour has passed is again compared with the above judgment standard photograph for comparison and judgment. It is set as the judgment grade (A2) after moisture absorption. And wrinkle recovery property is computed by the following formula.
Wrinkle recovery (class) = (judgment class after moisture absorption (A2)) − (judgment class during drying (A1))
請求項1〜10のいずれかに記載の織物を用いてなる、アウター用衣料、ブラウス、ドレスシャツ、およびYシャツからなる群より選択される繊維製品。   A textile product selected from the group consisting of an outer garment, a blouse, a dress shirt, and a Y-shirt, wherein the textile according to any one of claims 1 to 10 is used.
JP2007209411A 2007-08-10 2007-08-10 Woven fabric and textile product Pending JP2009041148A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007209411A JP2009041148A (en) 2007-08-10 2007-08-10 Woven fabric and textile product

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007209411A JP2009041148A (en) 2007-08-10 2007-08-10 Woven fabric and textile product

Publications (1)

Publication Number Publication Date
JP2009041148A true JP2009041148A (en) 2009-02-26

Family

ID=40442184

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007209411A Pending JP2009041148A (en) 2007-08-10 2007-08-10 Woven fabric and textile product

Country Status (1)

Country Link
JP (1) JP2009041148A (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH073554A (en) * 1993-06-17 1995-01-06 Asahi Chem Ind Co Ltd Production of false-twisted hollow polyester yarn
JP2003041462A (en) * 2001-07-24 2003-02-13 Teijin Ltd Woven/knitted fabric with air self-regulating permeability function
JP2005264389A (en) * 2004-03-19 2005-09-29 Teijin Fibers Ltd Woven fabric and textile product with air permeability improved in wet condition
JP2006097147A (en) * 2004-09-28 2006-04-13 Teijin Fibers Ltd Woven or knitted fabric and fiber product in which air permeability is improved when moistened
JP2006097176A (en) * 2004-09-29 2006-04-13 Teijin Fibers Ltd Water repellent woven or knitted fabric and fiber product in which air permeability is improved when moistened
JP2006118062A (en) * 2004-10-19 2006-05-11 Teijin Fibers Ltd Woven/knitted fabric reducing its porosity when wetted, and method for producing the same, and related textile product

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH073554A (en) * 1993-06-17 1995-01-06 Asahi Chem Ind Co Ltd Production of false-twisted hollow polyester yarn
JP2003041462A (en) * 2001-07-24 2003-02-13 Teijin Ltd Woven/knitted fabric with air self-regulating permeability function
JP2005264389A (en) * 2004-03-19 2005-09-29 Teijin Fibers Ltd Woven fabric and textile product with air permeability improved in wet condition
JP2006097147A (en) * 2004-09-28 2006-04-13 Teijin Fibers Ltd Woven or knitted fabric and fiber product in which air permeability is improved when moistened
JP2006097176A (en) * 2004-09-29 2006-04-13 Teijin Fibers Ltd Water repellent woven or knitted fabric and fiber product in which air permeability is improved when moistened
JP2006118062A (en) * 2004-10-19 2006-05-11 Teijin Fibers Ltd Woven/knitted fabric reducing its porosity when wetted, and method for producing the same, and related textile product

Similar Documents

Publication Publication Date Title
CA2579211C (en) Crimped filament-containing woven or knitted fabric manifesting roughness upon wetting with water, process for producing the same and textile products made therefrom
KR102571047B1 (en) fabrics and textiles
KR101220658B1 (en) Woven or knit fabric containing crimped composite fiber having its air permeability enhanced by water wetting and relevant clothing
US20080085398A1 (en) Crimped Filament-Containing Woven Or Knitted Fabric With Decreasing Air Space Upon Wetting With Water, Process For Producing The Same And Textile Products Therefrom
JP4414851B2 (en) Woven knitted fabrics and textile products that improve air permeability when wet
JP2006207053A (en) Three-layer structure woven or knitted fabric and textile product
JP5881284B2 (en) Fabrics and textile products
JP2006207052A (en) Raised fabric and textile product
JP5468998B2 (en) Heat-shielding woven and textile products
JP2010059570A (en) Woven fabric and textile product
JP4414854B2 (en) Water-repellent knitted fabrics and textiles that improve air permeability when absorbing moisture
JP2019173224A (en) socks
JP5456115B2 (en) Woven knitted fabric with unevenness caused by wetting, manufacturing method thereof, and textile product
JP2008248445A (en) Polyester knitted fabric and method for producing the same and fiber product
JP2006207065A (en) Garment exerting ventilation effect when wetted
JP2009041148A (en) Woven fabric and textile product
JP5996915B2 (en) Shoes and shoes
JP6271908B2 (en) Sewing thread for feather products and feather products
JP2023083772A (en) Fabric and textile product

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100512

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20110707

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20110707

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111121

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111129

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120911