JP5996915B2 - Shoes and shoes - Google Patents

Shoes and shoes Download PDF

Info

Publication number
JP5996915B2
JP5996915B2 JP2012093216A JP2012093216A JP5996915B2 JP 5996915 B2 JP5996915 B2 JP 5996915B2 JP 2012093216 A JP2012093216 A JP 2012093216A JP 2012093216 A JP2012093216 A JP 2012093216A JP 5996915 B2 JP5996915 B2 JP 5996915B2
Authority
JP
Japan
Prior art keywords
fabric
shoe material
fiber
wet
air permeability
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012093216A
Other languages
Japanese (ja)
Other versions
JP2013220190A (en
Inventor
安井 聡
聡 安井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teijin Frontier Co Ltd
Original Assignee
Teijin Frontier Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teijin Frontier Co Ltd filed Critical Teijin Frontier Co Ltd
Priority to JP2012093216A priority Critical patent/JP5996915B2/en
Publication of JP2013220190A publication Critical patent/JP2013220190A/en
Application granted granted Critical
Publication of JP5996915B2 publication Critical patent/JP5996915B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Woven Fabrics (AREA)
  • Footwear And Its Accessory, Manufacturing Method And Apparatuses (AREA)
  • Knitting Of Fabric (AREA)
  • Yarns And Mechanical Finishing Of Yarns Or Ropes (AREA)
  • Multicomponent Fibers (AREA)

Description

本発明は、湿潤時に通気性が向上する靴材および該靴材を用いてなる靴に関する。   The present invention relates to a shoe material having improved air permeability when wet and a shoe using the shoe material.

従来、靴材としては、靴の用途によって、天然皮革、合成皮革、綿布などの天然繊維や、合成繊維、これらの複合素材などが主に使用されている(例えば、特許文献1、特許文献2参照)。
例えば、天然皮革は紳士・婦人用に、合成繊維はジョギングシューズ等のスポーツ用、大人や子供用のカジュアルシューズ等に多く使用されている。
Conventionally, as a shoe material, natural fibers such as natural leather, synthetic leather, and cotton, synthetic fibers, and composite materials thereof are mainly used depending on the use of shoes (for example, Patent Document 1 and Patent Document 2). reference).
For example, natural leather is often used for gentlemen and women, and synthetic fibers are used for sports such as jogging shoes and casual shoes for adults and children.

しかしながら、天然繊維を用いた靴材では、吸水性に優れるものの速乾性に劣るという問題があった。また、合成繊維を用いた靴材では、速乾性に優れるものの、吸水性、摩擦力が著しく劣るため、発汗量が他の身体部位と比べ少ない足部でも、夏場のマラソン等、過酷な使用条件では、靴材自体は殆ど汗を吸収せず、足のムレによる不快感、運動時に靴内で足がすべる問題があった。   However, the shoe material using natural fibers has a problem that it is excellent in water absorption but inferior in quick drying. In addition, the shoe material using synthetic fibers is excellent in quick-drying, but has extremely poor water absorption and frictional force. However, the shoe material itself hardly absorbs sweat, causing discomfort due to foot stuffiness, and problems that the foot slips in the shoe during exercise.

特開2001−340102号公報JP 2001-340102 A 特開2010−104575号公報JP 2010-104575 A

本発明は上記の背景に鑑みなされたものであり、その目的は、湿潤時に通気性が向上する靴材および該靴材を用いてなる靴を提供することにある。   The present invention has been made in view of the above background, and an object of the present invention is to provide a shoe material having improved breathability when wet and a shoe using the shoe material.

本発明者は上記の課題を達成するため鋭意検討した結果、湿潤時に捲縮率が低下する捲縮繊維Aを含む布帛を用いて靴材を構成すると、湿潤時に通気性が向上する靴材が得られることを見出し、さらに鋭意検討を重ねることにより本発明を完成するに至った。   As a result of intensive studies to achieve the above-mentioned problems, the present inventors have found that when a shoe material is formed using a fabric containing a crimped fiber A that has a reduced crimp rate when wet, the shoe material has improved breathability when wet. The present invention has been completed by finding out that it can be obtained and by further intensive studies.

かくして、本発明によれば「靴の部材として用いられ、湿潤時に捲縮率が低下する捲縮繊維Aと、非捲縮繊維または湿潤時に捲縮率が変化しない捲縮繊維である繊維Bとを含む布帛を用いてなり、かつ前記布帛において下記式で定義する通気性の変化率が5%以上であり、かつ前記布帛が3層構造織編組織を有しており、かつ3層構造織編組織の少なくともどちらか一方の最外層がメッシュ組織であり、かつ前記捲縮繊維Aと繊維Bが3層構造織編組織の中間層にストライプ状に配されてなり、かつ湿潤時に靴材の表面に凹凸が発現することを特徴とする靴材。」が提供される。
通気性の変化率(%)=((湿潤時の通気性)−(乾燥時の通気性))/(乾燥時の通気性)×100
Thus, according to the present invention, “a crimped fiber A that is used as a member of a shoe and has a reduced crimp rate when wet, and a fiber B that is a non-crimped fiber or a crimped fiber whose crimp rate does not change when wet” A change rate of air permeability defined by the following formula in the fabric is 5% or more, and the fabric has a three-layer structure weave and knitting structure, and the three-layer structure weave At least one of the outermost layers of the knitted structure is a mesh structure, and the crimped fibers A and fibers B are arranged in stripes on the intermediate layer of the three-layer structure woven knitted structure. A shoe material characterized in that the surface has irregularities is provided.
Percent change in air permeability (%) = ((air permeability when wet) − (air permeability when dry)) / (air permeability when dry) × 100

また、前記捲縮繊維Aが、ポリエステル成分とポリアミド成分とがサイドバイサイド型に接合された複合繊維であることが好ましい。その際、前記ポリエステル成分が、5−ナトリウムスルホイソフタル酸が2.0〜4.5モル%共重合された変性ポリエステルからなることが好ましい。また、前記布帛が、前記捲縮繊維Aと、非捲縮繊維または湿潤時に捲縮率が変化しない捲縮繊維である繊維Bとで構成されることが好ましい。   The crimped fiber A is preferably a composite fiber in which a polyester component and a polyamide component are joined in a side-by-side manner. In that case, it is preferable that the said polyester component consists of a modified polyester by which 2.0-4.5 mol% 5-sodium sulfo isophthalic acid was copolymerized. Moreover, it is preferable that the said fabric is comprised with the said crimped fiber A and the fiber B which is a crimped fiber which does not change a crimp rate when it is a non-crimped fiber or when wet.

本発明の靴材において、前記捲縮繊維Aと繊維Bが3層構造織編物の少なくともどちらか一方の最外層にストライプ状に配されていることが好ましい。
本発明の靴材において、布帛の厚さが1〜5mmの範囲内であることが好ましい。また、布帛の目付けが200〜500g/mの範囲内であることが好ましい。
また、本発明によれば、前記の靴材を用いてなる靴が提供される。
Oite shoes material of the present invention, it is preferable that arranged in stripes on at least one of the outermost layer of the crimped fibers A and B are three-layer structure woven or knitted fabric.
In the shoe material of the present invention, the thickness of the fabric is preferably in the range of 1 to 5 mm. Moreover, it is preferable that the fabric weight is in the range of 200 to 500 g / m 2 .
Moreover, according to this invention, the shoes using the said shoe material are provided.

本発明によれば、湿潤時に通気性が向上する靴材および該靴材を用いてなる靴が得られる。   According to the present invention, a shoe material having improved breathability when wet and a shoe using the shoe material are obtained.

以下、本発明の実施の形態について詳細に説明する。
本発明の靴材には湿潤時に捲縮率が低下する捲縮繊維Aを含む布帛が含まれており、靴材にかかる布帛が含まれることにより、湿潤時に靴材の通気性が向上する。
ここで、前記捲縮繊維Aにおいて、以下の方法で測定して、乾燥時における捲縮率DCと湿潤時における捲縮率HCとの差(DC−HC)が0.5%以上であることが好ましい。
Hereinafter, embodiments of the present invention will be described in detail.
The shoe material of the present invention includes a fabric containing a crimped fiber A that reduces the crimp rate when wet. By including the fabric of the shoe material, the breathability of the shoe material is improved when wet.
Here, in the crimped fiber A, the difference between the crimp rate DC during drying and the crimp rate HC during wetness (DC-HC) is 0.5% or more as measured by the following method. Is preferred.

すなわち、布帛を温度20℃、湿度65%RHの雰囲気中に24時間放置した後、該布帛から布帛と同じ方向の30cm×30cmの小片を裁断する(n数=5)。次いで、各々の小片から、繊維を取り出し、1.76mN/dtex(200mg/de)の荷重をかけて糸長L0を測定し、除重1分後0.0176mN/dtex(2mg/de)の荷重をかけて糸長L1を測定する。さらにこの糸を温度20℃の水中に2時間浸漬した後取り出し、ろ紙(大きさ30cm×30cm)にて0.69mN/cm(70mgf/cm)の圧力を5秒間かけて軽く水を拭き取った後、1.76mN/dtex(200mg/de)の荷重をかけて糸長L0’を測定し、除重1分後0.0176mN/dtex(2mg/de)の荷重をかけて糸長L1’を測定する。以上の測定数値から下記の計算式にて、乾燥時の捲縮率DC(%)、湿潤時の捲縮率HC(%)、乾燥時と湿潤時の捲縮率差(DC−HC)(%)を算出した。なお、n数は5で平均値を求めた。
乾燥時の捲縮率DC(%)=((L0−L1)/L0)×100
湿潤時の捲縮率HC(%)=(L0’−L1’)/L0’)×100
前記捲縮繊維Aとしては、ポリエステル成分とポリアミド成分とからなり、両成分はサイドバイサイド型に接合されている複合繊維が好ましい。
That is, after the fabric is left in an atmosphere of a temperature of 20 ° C. and a humidity of 65% RH for 24 hours, a small piece of 30 cm × 30 cm in the same direction as the fabric is cut from the fabric (n number = 5). Subsequently, the fiber is taken out from each piece, and the yarn length L0 is measured by applying a load of 1.76 mN / dtex (200 mg / de), and after 1 minute of dewetting, a load of 0.0176 mN / dtex (2 mg / de) To measure the yarn length L1. Further, the yarn was immersed in water at a temperature of 20 ° C. for 2 hours and then taken out, and then lightly wiped off with a filter paper (size 30 cm × 30 cm) at a pressure of 0.69 mN / cm 2 (70 mgf / cm 2 ) for 5 seconds. After that, the yarn length L0 ′ was measured by applying a load of 1.76 mN / dtex (200 mg / de), and after 1 minute of dewetting, the yarn length L1 ′ was applied by applying a load of 0.0176 mN / dtex (2 mg / de). Measure. From the above measurement values, the following formulas are used to calculate the crimp rate DC (%) at the time of drying, the crimp rate HC (%) at the time of wetness, and the crimp rate difference between the dry and wet conditions (DC-HC) ( %) Was calculated. In addition, the number of n was 5, and the average value was obtained.
Crimp rate during drying DC (%) = ((L0−L1) / L0) × 100
Crimp rate HC (%) when wet = (L0′−L1 ′) / L0 ′) × 100
The crimped fiber A is preferably a composite fiber composed of a polyester component and a polyamide component, and both components joined in a side-by-side manner.

前記ポリエステル成分としては、他方のポリアミド成分との接着性の点で、スルホン酸のアルカリまたはアルカリ土類金属、ホスホニウム塩を有し、かつエステル形成能を有する官能基を1個以上もつ化合物が共重合された、ポリエチレンテレフタレート、ポリプロピレンテレフタレート、ポリブチレンタレフタレート等の変性ポリエステルが好ましく例示される。なかでも、汎用性およびポリマーコストの点で、前記化合物が共重合された、変性ポリエチレンテレフタレートが特に好ましい。その際、共重合成分としては、5−ナトリウムスルホイソフタル酸およびそのエステル誘導体、5−ホスホニウムイソフタル酸およびそのエステル誘導体、p−ヒドロキシベンゼンスルホン酸ナトリウムなどがあげられる。なかでも、5−ナトリウムスルホイソフタル酸が好ましい。共重合量としては、2.0〜4.5モル%の範囲が好ましい。該共重合量が2.0モル%よりも小さいと、優れた捲縮性能が得られるものの、ポリアミド成分とポリエステル成分との接合界面にて剥離が生じるおそれがある。逆に、該共重合量が4.5モル%よりも大きいと、延伸熱処理の際、ポリエステル成分の結晶化が進みにくくなるため、延伸熱処理温度を上げる必要があり、その結果、糸切れが多発するおそれがある。   As the polyester component, a compound having at least one functional group having an alkali or alkaline earth metal or phosphonium salt of sulfonic acid and having an ester forming ability is used in terms of adhesion to the other polyamide component. Preferred examples thereof include polymerized modified polyesters such as polyethylene terephthalate, polypropylene terephthalate, and polybutylene terephthalate. Among these, modified polyethylene terephthalate obtained by copolymerizing the above compound is particularly preferable from the viewpoint of versatility and polymer cost. In this case, examples of the copolymer component include 5-sodium sulfoisophthalic acid and ester derivatives thereof, 5-phosphonium isophthalic acid and ester derivatives thereof, and sodium p-hydroxybenzenesulfonate. Of these, 5-sodium sulfoisophthalic acid is preferable. As a copolymerization amount, the range of 2.0-4.5 mol% is preferable. When the copolymerization amount is less than 2.0 mol%, although excellent crimping performance can be obtained, there is a possibility that peeling occurs at the bonding interface between the polyamide component and the polyester component. On the other hand, if the copolymerization amount is greater than 4.5 mol%, the crystallization of the polyester component becomes difficult to proceed during the stretching heat treatment, and thus it is necessary to raise the stretching heat treatment temperature. There is a risk.

一方のポリアミド成分としては、主鎖中にアミド結合を有するものであれば特に限定されるものではなく、例えば、ナイロン−4、ナイロン−6、ナイロン−66、ナイロン−46、ナイロン−12などがあげられる。なかでも、汎用性、ポリマーコスト、製糸安定性の点で、ナイロン−6およびナイロン−66が好適である。
なお、前記ポリエステル成分およびポリアミド成分には、公知の添加剤、例えば、顔料、顔料、艶消し剤、防汚剤、蛍光増白剤、難燃剤、安定剤、帯電防止剤、耐光剤、紫外線吸収剤等が含まれていてもよい。
One polyamide component is not particularly limited as long as it has an amide bond in the main chain, and examples thereof include nylon-4, nylon-6, nylon-66, nylon-46, nylon-12, and the like. can give. Among these, nylon-6 and nylon-66 are preferable in terms of versatility, polymer cost, and yarn production stability.
The polyester component and the polyamide component include known additives such as pigments, pigments, matting agents, antifouling agents, fluorescent whitening agents, flame retardants, stabilizers, antistatic agents, light-resistant agents, and ultraviolet absorption agents. An agent or the like may be included.

前記のサイドバイサイド型に接合された複合繊維は、任意の断面形状および複合形態をとることができる。例えば、サイドバイサイド型に接合されたものや偏心芯鞘型であってもよい。さらには、三角形や四角形、その断面内に中空部を有するものであってもよい。両成分の複合比は任意に選定することができるが、通常、ポリエステル成分とポリアミド成分の重量比で30:70〜70:30(より好ましくは40:60〜60:40)の範囲内であることが好ましい。   The composite fiber joined to the side-by-side type can take any cross-sectional shape and composite form. For example, it may be a side-by-side type or an eccentric core-sheath type. Furthermore, you may have a hollow part in the triangle, the square, and the cross section. Although the composite ratio of both components can be selected arbitrarily, it is usually in the range of 30:70 to 70:30 (more preferably 40:60 to 60:40) by weight ratio of the polyester component and the polyamide component. It is preferable.

前記捲縮繊維Aの単糸繊度、単糸数(フィラメント数)としては特に限定されないが、単糸繊度1〜10dtex(より好ましくは2〜5dtex)、単糸数10〜200本(より好ましくは20〜100本)の範囲内であることが好ましい。   Although the single yarn fineness and the number of single yarns (number of filaments) of the crimped fiber A are not particularly limited, the single yarn fineness is 1 to 10 dtex (more preferably 2 to 5 dtex), and the number of single yarns is 10 to 200 (more preferably 20 to 20). 100) is preferable.

異種ポリマーがサイドバイサイド型に接合された複合繊維は、通常、潜在捲縮性能を有しており、後記のように、染色加工等で熱処理を受けると潜在捲縮性能が発現する。捲縮構造としては、ポリアミド成分が捲縮の内側に位置し、ポリエステル成分が捲縮の外側に位置していることが好ましい。かかる捲縮構造を有する複合繊維(捲縮繊維A)は、後記の製造方法により容易に得ることができる。捲縮繊維Aがこのような捲縮構造を有していると、湿潤時に、内側のポリアミド成分が膨潤、伸張し、外側のポリエステル成分はほとんど長さ変化を起こさないため、捲縮率が低下する(捲縮繊維Aの見かけの長さが長くなる。)。一方、乾燥時には、内側のポリアミド成分が収縮し、外側のポリエステル成分はほとんど長さ変化を起こさないため、捲縮率が増大する(捲縮繊維Aの見かけの長さが短くなる。)。このように、湿潤時に、捲縮繊維Aの捲縮率が可逆的に低下するため、布帛(靴材)の空隙率が高まり、通気性が向上する。   A composite fiber in which different types of polymers are joined in a side-by-side manner usually has latent crimping performance, and the latent crimping performance is manifested when subjected to heat treatment such as dyeing as described later. As the crimped structure, it is preferable that the polyamide component is located inside the crimp and the polyester component is located outside the crimp. The composite fiber (crimped fiber A) having such a crimped structure can be easily obtained by the production method described later. When the crimped fiber A has such a crimped structure, the inner polyamide component swells and stretches when wet, and the outer polyester component hardly changes in length, so that the crimp rate decreases. (The apparent length of the crimped fiber A becomes longer.) On the other hand, at the time of drying, the inner polyamide component shrinks and the outer polyester component hardly changes in length, so that the crimp rate increases (the apparent length of the crimped fiber A becomes shorter). Thus, since the crimp rate of the crimped fiber A is reversibly lowered when wet, the porosity of the fabric (shoe material) is increased, and the air permeability is improved.

かかる通気性は、JIS L 1096−1998、6.27.1、A(フラジール型通気性試験機法)により測定された値(cc/cm/s)であり、下記式で定義する通気性の変化率が5%以上(好ましくは5〜30%)であることが好ましい。通気性の変化率が5%よりも小さいと、発汗時にムレ感の問題が発生しやすくなるおそれがある。
通気性の変化率(%)=((湿潤時の通気性)−(乾燥時の通気性))/(乾燥時の通気性)×100
The air permeability is a value (cc / cm 2 / s) measured by JIS L 1096-1998, 6.27.1, A (Fragile type air permeability tester method) and is defined by the following formula. Is preferably 5% or more (preferably 5 to 30%). If the rate of change in air permeability is less than 5%, the problem of stuffiness may occur when sweating.
Percent change in air permeability (%) = ((air permeability when wet) − (air permeability when dry)) / (air permeability when dry) × 100

ただし、乾燥時とは、試料を温度20℃、湿度65%RH環境下に24時間放置した後の状態であり、一方、湿潤時とは、試料を温度20℃の水中に2時間浸漬した直後、一対のろ紙の間にはさみ、0.69mN/cmの圧力を5秒間かけて軽く水を拭き取った後
の状態であり、それぞれ通気性(n数=5)を測定し、その平均を求める。
However, when dry, the sample is left in a 20 ° C., 65% RH environment for 24 hours, while when wet, the sample is immediately immersed in water at 20 ° C. for 2 hours. The state after sandwiching between a pair of filter papers and lightly wiping off water with a pressure of 0.69 mN / cm 2 for 5 seconds, and measuring the air permeability (n number = 5), respectively, and calculating the average .

前記の捲縮繊維Aは、湿潤時に、容易に捲縮が低下し通気性が性能よく向上する上で、無撚糸、または300T/m以下の撚りが施された甘撚り糸であることが好ましい。特に、無撚糸であることが好ましい。強撚糸のように、強い撚りが付与されていると、湿潤時に捲縮が低下しにくく好ましくない。なお、交絡数が20〜60ケ/m程度となるようにインターレース空気加工および/または通常の仮撚捲縮加工が施されていてもさしつかえない。   The crimped fiber A is preferably a non-twisted yarn or a sweet twisted yarn subjected to twisting of 300 T / m or less in order to easily reduce crimp and improve air permeability when wet. In particular, non-twisted yarn is preferable. When a strong twist is imparted like a strong twisted yarn, it is not preferred that crimps are difficult to decrease when wet. It should be noted that interlaced air processing and / or normal false twist crimping may be performed so that the number of entanglements is about 20 to 60 pieces / m.

本発明において、靴材を構成する布帛には前記の捲縮繊維Aが含まれている。その際、布帛中に含まれる捲縮繊維Aの含有量は、重量基準で布帛全重量に対して、10重量%以上(より好ましくは40重量%以上)であることが好ましい。捲縮繊維Aの含有量が10重量%よりも小さいと、湿潤時に通気性が性能よく向上しないおそれがある。   In the present invention, the above-described crimped fiber A is included in the fabric constituting the shoe material. At that time, the content of the crimped fiber A contained in the fabric is preferably 10% by weight or more (more preferably 40% by weight or more) with respect to the total weight of the fabric on a weight basis. If the content of the crimped fiber A is less than 10% by weight, the air permeability may not be improved with good performance when wet.

布帛が、前記捲縮繊維Aと、非捲縮繊維または湿潤時に捲縮率が変化しない捲縮繊維である繊維Bとで構成される場合、かかる繊維Bの種類としては特に限定されず、ポリエチレンタレフタレート、ポリトリメチレンテレフタレート、ポリブチレンテレフタレート等のポリエステル、ナイロン6、ナイロン66等のポリアミド、ポリエチレン、ポリプロピレン等のポリオレフィン、アクリル、パラ型もしくはメタ型アラミド、およびそれらの変性合成繊維、さらには、天然繊維、再生繊維、半合成繊維など自由に選択できる。なかでも、湿潤時の寸法安定性や、前記複合繊維との相性(混繊性、交編・交織性、染色性)の点で、ポリエチレンテレフタレート、ポリプロピレンテレフタレート、ポリブチレンタレフタレートや、これらに前記共重合成分が共重合された変性ポリエステルからなるポリエステル繊維が好適である。   When the fabric is composed of the above-described crimped fibers A and fibers B that are non-crimped fibers or crimped fibers that do not change the crimp rate when wet, the type of the fibers B is not particularly limited, and polyethylene Polyesters such as tarephthalate, polytrimethylene terephthalate, polybutylene terephthalate, polyamides such as nylon 6 and nylon 66, polyolefins such as polyethylene and polypropylene, acrylic, para-type or meta-type aramid, and their modified synthetic fibers, Natural fiber, recycled fiber, semi-synthetic fiber, etc. can be freely selected. Among these, polyethylene terephthalate, polypropylene terephthalate, polybutylene terephthalate, and the above-mentioned in terms of dimensional stability when wet and compatibility with the above-mentioned composite fibers (mixing property, knitting / weaving property, dyeability) A polyester fiber made of a modified polyester in which a copolymer component is copolymerized is preferable.

前記繊維Bの単糸繊度、単糸数(フィラメント数)としては特に限定されないが、靴材(布帛)の吸水性を高め、湿潤時に通気性を性能よく向上させる上で、単糸繊度0.1〜50dtex(より好ましくは0.5〜50dtex)、単糸数1〜200本(より好ましくは1〜100本)の範囲内であることが好ましい。なお、交絡数が20〜60ケ/m程度となるようにインターレース空気加工および/または通常の仮撚捲縮加工が繊維Bに施されていてもさしつかえない。   The single yarn fineness and the number of single yarns (number of filaments) of the fiber B are not particularly limited. However, in order to increase the water absorption of the shoe material (fabric) and improve the air permeability when wet, the single yarn fineness is 0.1. It is preferable to be within a range of ˜50 dtex (more preferably 0.5 to 50 dtex) and a single yarn number of 1 to 200 (more preferably 1 to 100). The fiber B may be subjected to interlaced air processing and / or normal false twist crimping so that the number of entanglements is about 20 to 60 pieces / m.

なお、本発明でいう「湿潤時に捲縮率が変化しない」とは、前記の方法により測定される、乾燥時における捲縮率DCと湿潤時における捲縮率HCとの差(DC−HC)が0.5%未満(好ましくは0%)のものをいう。
また、前記捲縮繊維Aと繊維Bは、各々単独糸条で布帛を構成してもよいし、空気混繊糸、合撚糸、複合仮撚捲縮加工糸、引揃え糸などの複合糸として布帛を構成してもよい。
In the present invention, “the crimping rate does not change when wet” means the difference between the crimping rate DC during drying and the crimping rate HC during wetness (DC−HC) as measured by the method described above. Is less than 0.5% (preferably 0%).
The crimped fiber A and the fiber B may each constitute a fabric with a single yarn, or as a composite yarn such as an air-mixed yarn, a mixed twisted yarn, a composite false twisted crimped yarn, or an aligned yarn. You may comprise a fabric.

本発明において、布帛の構造として、その織編組織、層数は特に限定されるものではなく、不織布でもよいし、織物でもよいし、編物でもよい。例えば、平織、綾織、サテンなどの織組織を有する織物や、天竺、スムース、フライス、鹿の子、そえ糸編、デンビー、ハーフなどの編組織を有する編物が好適に例示されるが、これらに限定されるものではない。層数も単層でもよいし、2層以上の多層であってもよい。なかでも、布帛が、表裏の最外層(地組織部)とこれらの地組織部を連結する中間層(結接糸)とで構成される3層構造織編組織を有する織編物(特に好ましくはダブルラッセル編物である。)であると、湿潤時に通気性が向上するだけでなく、布帛(靴材)にクッション性も付加され好ましい。特に、中間層(結接糸)に、繊度が30〜50dtexのモノフィラメント(好ましくはポリエステルモノフィラメント)からなる繊維Bを配すると特に優れたクッション性が得られ好ましい。また、3層構造織編組織の少なくともどちらか一方の最外層をメッシュ組織とすることも、通気性が向上し好ましい。   In the present invention, the woven / knitted structure and the number of layers of the fabric structure are not particularly limited, and may be a nonwoven fabric, a woven fabric, or a knitted fabric. For example, woven fabrics having a woven structure such as plain weave, twill weave, and satin, and knitted fabrics having a knitted structure such as tenji, smooth, milling, kanoko, knitting yarn, denby, and half are preferably exemplified, but are not limited thereto. It is not something. The number of layers may be a single layer or a multilayer of two or more layers. Among them, the fabric is a woven or knitted fabric having a three-layered woven or knitted structure (particularly preferably) composed of outermost layers (ground texture portions) on the front and back sides and an intermediate layer (connecting yarn) connecting these ground texture portions. Double raschel knitted fabrics) are preferred because they not only improve air permeability when wet, but also add cushioning properties to the fabric (shoe material). In particular, it is preferable to provide a fiber B made of a monofilament (preferably a polyester monofilament) having a fineness of 30 to 50 dtex in the intermediate layer (binding yarn) because particularly excellent cushioning properties can be obtained. In addition, it is preferable that the outermost layer of at least one of the three-layer woven or knitted structure has a mesh structure because air permeability is improved.

前記捲縮繊維Aが中間層に配される場合、前記捲縮繊維Aと繊維Bが3層構造織編組織の中間層にストライプ状に配されていると、湿潤時に靴材の表面に凹凸が発現し、足との接触面積が低下してムレ感を低減することができ好ましい。
その際、前記捲縮繊維Aが中間層を構成する領域の巾が2〜20mmであり、かつ繊維Bが中間層を構成する領域の巾が2〜20mmであると、湿潤時に靴材の表面に適度な大きさ差の凹凸が発現し、足との接触面積が低下してムレ感を低減することができ好ましい。
When the crimped fiber A is arranged in an intermediate layer, the crimped fiber A and the fiber B are unevenly formed on the surface of the shoe material when wet if the crimped fiber A and the fiber B are arranged in a stripe shape in the intermediate layer of the three-layer structure woven / knitted structure It is preferable that the contact area with the foot is reduced and the feeling of stuffiness is reduced.
At that time, if the width of the region where the crimped fiber A constitutes the intermediate layer is 2 to 20 mm and the width of the region where the fiber B constitutes the intermediate layer is 2 to 20 mm, the surface of the shoe material when wet It is preferable that unevenness with an appropriate difference in size is developed, and the contact area with the foot is reduced to reduce the feeling of stuffiness.

また、前記捲縮繊維Aが3層構造織編物の少なくともどちらか一方の最外層に配される場合、前記捲縮繊維Aと繊維Bがストライプ状に配されていることが好ましい。
その際、前記捲縮繊維Aが最外層を構成する領域の巾が2〜20mmであり、かつ繊維Bが最外層を構成する領域の巾が2〜20mmであると、湿潤時に布帛(靴材)の寸法を維持しつつ通気性を向上させることができ好ましい。
Moreover, when the said crimped fiber A is distribute | arranged to the outermost layer of at least any one of 3 layer structure woven / knitted fabric, it is preferable that the said crimped fiber A and the fiber B are distribute | arranged to stripe form.
At that time, if the width of the region in which the crimped fiber A constitutes the outermost layer is 2 to 20 mm and the width of the region in which the fiber B constitutes the outermost layer is 2 to 20 mm, The air permeability can be improved while maintaining the dimensions of

本発明において、布帛の厚さとしては、優れたクッション性および軽量性の点で厚さが1〜5mmの範囲内であることが好ましい。該厚さが1mmよりも小さいとクッション性が損なわれるおそれがある。逆に、該厚さが5mmよりも大きいと軽量性が損なわれるおそれがある。   In the present invention, the thickness of the fabric is preferably in the range of 1 to 5 mm in terms of excellent cushioning properties and light weight. If the thickness is less than 1 mm, cushioning properties may be impaired. Conversely, when the thickness is greater than 5 mm, the lightness may be impaired.

また、本発明において、布帛の目付けが200〜500g/mの範囲内であることが好ましい。該目付けが、200g/mよりも小さいと、クッション性が損なわれるおそれがある。逆に、該目付けが500g/mよりも大きいと、軽量性が損なわれるおそれがある。 Moreover, in this invention, it is preferable that the fabric weight of a fabric exists in the range of 200-500 g / m < 2 >. If the basis weight is smaller than 200 g / m 2 , cushioning properties may be impaired. Conversely, if the basis weight is larger than 500 g / m 2 , the lightness may be impaired.

本発明の靴材は例えば以下の製造方法で製造することができる。
まず、固有粘度が0.30〜0.43(オルソクロロフェノールを溶媒として35℃で測定)の、5−ナトリウムスルホイソフタル酸が2.0〜4.5モル%共重合された変性ポリエステルと、固有粘度が1.0〜1.4(m−クレゾールを溶媒として30℃で測定)のポリアミドとを用いてサイドバイサイド型に溶融複合紡糸する。その際、ポリエステル成分の固有粘度が0.43以下であることが好ましい。ポリエステル成分の固有粘度が0.43よりも大きいと、ポリエステル成分の粘度が増大するため、複合繊維の物性がポリエステル単独糸に近くなり、本発明が目的とする靴材が得られないおそれがある。逆に、ポリエステル成分の固有粘度が0.30よりも小さいと、溶融粘度が小さくなりすぎて製糸性が低下するとともに毛羽発生が多くなり、品質および生産性が低下するおそれがある。
The shoe material of the present invention can be manufactured, for example, by the following manufacturing method.
First, a modified polyester having an intrinsic viscosity of 0.30 to 0.43 (measured at 35 ° C. using orthochlorophenol as a solvent) and 2.0 to 4.5 mol% of 5-sodium sulfoisophthalic acid copolymerized; Using a polyamide having an intrinsic viscosity of 1.0 to 1.4 (measured at 30 ° C. using m-cresol as a solvent), melt composite spinning is performed in a side-by-side manner. In that case, it is preferable that the intrinsic viscosity of a polyester component is 0.43 or less. When the intrinsic viscosity of the polyester component is larger than 0.43, the viscosity of the polyester component increases, so that the physical properties of the composite fiber are close to those of a single polyester yarn, and the shoe material intended by the present invention may not be obtained. . On the other hand, if the intrinsic viscosity of the polyester component is less than 0.30, the melt viscosity becomes too small and the yarn-making property is lowered and the generation of fluff is increased, which may reduce the quality and productivity.

溶融紡糸の際に用いる紡糸口金としては、特開2000−144518号公報の図1のような、高粘度側と低粘度側の吐出孔を分離し、かつ高粘度側吐出線速度を小さくした(吐出断面積を大きくした)紡糸口金が好適である。そして、高粘度側吐出孔に溶融ポリエステルを通過させ、低粘度側吐出孔に溶融ポリアミドを通過させ冷却固化させることが好ましい。その際、ポリエステル成分とポリアミド成分との重量比は、前述のとおり、30:70〜70:30(より好ましくは40:60〜60:40)の範囲内であることが好ましい。   As the spinneret used for melt spinning, as shown in FIG. 1 of JP-A-2000-144518, the high-viscosity side and low-viscosity side discharge holes are separated and the high-viscosity side discharge linear velocity is reduced ( A spinneret having a large discharge cross-sectional area is preferred. Then, it is preferable that the molten polyester is passed through the high viscosity side discharge holes and the molten polyamide is passed through the low viscosity side discharge holes to be cooled and solidified. In that case, it is preferable that the weight ratio of a polyester component and a polyamide component exists in the range of 30: 70-70: 30 (more preferably 40: 60-60: 40) as above-mentioned.

また、溶融複合紡糸した後、一旦巻き取った後に延伸する別延方式を採用してもよいし、一旦巻き取らずに延伸熱処理を行う直延方式を採用してもよい。その際、紡糸・延伸条件としては、通常の条件でよい。例えば、直延方式の場合、1000〜3500m/分程度で紡糸した後、連続して100〜150℃の温度で延伸し巻き取る。延伸倍率は最終時に得られる複合繊維の切断伸度が10〜60%(好ましくは20〜45%)、切断強度が3.0〜4.7cN/dtex程度となるよう、適宜選定することが好ましい。   Further, after the melt composite spinning, a separate stretching method in which the film is once wound and then stretched may be employed, or a direct stretching method in which a stretching heat treatment is performed without winding once may be employed. At that time, the spinning and drawing conditions may be normal conditions. For example, in the case of the direct extension method, after spinning at about 1000 to 3500 m / min, the film is continuously drawn and wound at a temperature of 100 to 150 ° C. The draw ratio is preferably appropriately selected so that the cut elongation of the composite fiber obtained at the end is 10 to 60% (preferably 20 to 45%) and the cut strength is about 3.0 to 4.7 cN / dtex. .

次いで、前記複合繊維を単独で用いるか、他の繊維Bも同時に用いて織編物などの布帛を織編成して布帛を得た後、染色加工などの熱処理により前記複合繊維の捲縮を発現させて捲縮繊維Aとする。織編組織は特に限定されず、前述のものを適宜選定することができる。   Next, the composite fiber is used alone, or other fibers B are used at the same time to fabricate a fabric such as a woven or knitted fabric to obtain a fabric, and then the crimp of the composite fiber is expressed by a heat treatment such as a dyeing process. To crimped fiber A. The woven or knitted structure is not particularly limited, and the above-described one can be appropriately selected.

前記染色加工の温度としては100〜140℃(より好ましくは110〜135℃)、時間としてはトップ温度のキープ時間が5〜40分の範囲内であることが好ましい。かかる条件で、布帛に染色加工を施すことにより、前記複合繊維は、ポリエステル成分とポリアミド成分との熱収縮差により捲縮を発現し捲縮繊維Aとなる。その際、ポリエステル成分とポリアミド成分として、前述のポリマーを選定することにより、ポリアミド成分が捲縮の内側に位置する捲縮構造となる。   The dyeing temperature is preferably 100 to 140 ° C. (more preferably 110 to 135 ° C.), and the time is preferably the top temperature keeping time within a range of 5 to 40 minutes. By subjecting the fabric to a dyeing process under such conditions, the composite fiber develops crimps due to a difference in thermal shrinkage between the polyester component and the polyamide component, and becomes a crimped fiber A. At that time, by selecting the above-mentioned polymer as the polyester component and the polyamide component, a crimped structure is obtained in which the polyamide component is located inside the crimp.

染色加工が施された布帛には、通常、乾熱ファイナルセットが施される。その際、乾熱ファイナルセットの温度としては120〜200℃(より好ましくは140〜180℃)、時間としては1〜3分の範囲内であることが好ましい。かかる、乾熱ファイナルセットの温度が120℃よりも低いと、染色加工時に発生したシワが残り易く、また、仕上がり製品の寸法安定性が悪くなるおそれがある。逆に、該乾熱ファイナルセットの温度が200℃よりも高いと、染色加工の際に発現した複合繊維の捲縮が低下したり、繊維が硬化し靴材の風合いが硬くなるおそれがある。   The fabric subjected to the dyeing process is usually subjected to a dry heat final set. At that time, the temperature of the dry heat final set is preferably 120 to 200 ° C. (more preferably 140 to 180 ° C.), and the time is preferably within a range of 1 to 3 minutes. When the temperature of the dry heat final set is lower than 120 ° C., wrinkles generated during the dyeing process are likely to remain, and the dimensional stability of the finished product may be deteriorated. On the other hand, if the temperature of the dry heat final set is higher than 200 ° C., the crimp of the composite fiber developed during the dyeing process may be reduced, or the fiber may be cured and the texture of the shoe material may be hardened.

また、かかる布帛に吸水加工を施してもよい。布帛に吸水加工を施すことにより、少量の汗でも通気性が向上しやすくなる。かかる吸水加工としては特に限定されず、ポリエチレングリコールジアクリレートやその誘導体、または、ポリエチレンテレフタレート−ポリエチレングリコール共重合体などの吸水加工剤を布帛に、布帛の重量に対して0.25〜0.50重量%付着させることが好ましく例示される。吸水加工の方法としては、例えば染色加工時に染液に吸水加工剤を混合する浴中加工法や、乾熱ファイナルセット前に、靴材(織編物)を吸水加工液中にデイッピングしマングルで絞る方法、グラビヤコーテング法、スクリーンプリント法といった塗布による加工方法等が例示される。
かかる布帛には、前記の加工以外に、常法の起毛加工、紫外線遮蔽あるいは抗菌剤、消臭剤、防虫剤、蓄光剤、再帰反射剤、マイナスイオン発生剤、撥水剤等の機能を付与する各種加工を付加適用してもよい。
Moreover, you may give a water absorption process to this fabric. By subjecting the fabric to water absorption, the air permeability is easily improved even with a small amount of sweat. Such water-absorbing processing is not particularly limited, and a water-absorbing processing agent such as polyethylene glycol diacrylate or a derivative thereof, or polyethylene terephthalate-polyethylene glycol copolymer is applied to the fabric in an amount of 0.25 to 0.50 based on the weight of the fabric. Preferably it is made to adhere by weight%. Examples of water-absorbing processing include processing in a bath where a water-absorbing agent is mixed with the dyeing solution during dyeing processing, or dipping shoe materials (woven or knitted fabric) into the water-absorbing processing solution and squeezing with a mangle before the dry heat final set. Examples thereof include processing methods such as coating methods, gravure coating methods, and screen printing methods.
In addition to the above-mentioned processing, such fabrics are provided with functions such as conventional brushing processing, ultraviolet shielding or antibacterial agents, deodorants, insect repellents, phosphorescent agents, retroreflective agents, negative ion generators, water repellents, etc. Various processings may be additionally applied.

本発明の靴材は前記の布帛を用いてなるものである。その際、前記の布帛だけで靴材を構成してもよいし、他の布帛と組合せたり、前記の布帛に飾り物等を適宜付加したり、さらには縫製等を行って靴材としてもよい。
かくして得られた靴材において、布帛に含まれる捲縮繊維Aの捲縮率が、湿潤時に性能良く小さくなるため、捲縮繊維Aの見かけ長さが長くなり、その結果、靴材(布帛)の空隙が大きくなり通気性が向上する。一方、乾燥時には捲縮繊維Aの捲縮率が大きくなるため、捲縮繊維Aの見かけ長さが短くなり、その結果、靴材(布帛)の通気性が低下する。
The shoe material of the present invention uses the above-mentioned fabric. At that time, the shoe material may be composed of only the above-mentioned fabric, or may be combined with another fabric, or an ornament or the like may be appropriately added to the above-mentioned fabric, or may be sewn and used as the shoe material.
In the shoe material thus obtained, the crimped rate of the crimped fiber A contained in the fabric is reduced with good performance when wet, so that the apparent length of the crimped fiber A is increased. As a result, the shoe material (fabric) The air gap becomes larger and the air permeability is improved. On the other hand, the crimped ratio of the crimped fiber A is increased during drying, so that the apparent length of the crimped fiber A is shortened. As a result, the breathability of the shoe material (fabric) is lowered.

次に、本発明の靴は前記の靴材を用いてなる靴である。かかる靴には、全ての靴やシューズや履物が含まれ、運動靴、ビジネス靴、婦人靴、ハイヒール、学用靴、室内靴、スリッパ、サンダルなどが含まれる。かかる靴は前記の靴材を用いているので湿潤時に通気性が向上しムレ感を低減することができる。   Next, a shoe of the present invention is a shoe using the above-mentioned shoe material. Such shoes include all shoes, shoes and footwear, and include athletic shoes, business shoes, women's shoes, high heels, school shoes, indoor shoes, slippers, sandals and the like. Since such a shoe uses the above-mentioned shoe material, the breathability is improved when wet and the feeling of stuffiness can be reduced.

以下、実施例をあげて本発明を詳細に説明するが、本発明はこれらによって何ら限定されるものではない。なお、実施例中の各物性は下記の方法により測定したものである。   EXAMPLES Hereinafter, although an Example is given and this invention is demonstrated in detail, this invention is not limited at all by these. In addition, each physical property in an Example is measured with the following method.

(1)ポリエステルの固有粘度
オルソクロロフェノールを溶媒として使用し温度35℃で測定した。
(1) Intrinsic viscosity of polyester Measured at 35 ° C. using orthochlorophenol as a solvent.

(2)ポリアミドの固有粘度
m−クレゾールを溶媒として使用し温度30℃で測定した。
(2) Intrinsic viscosity of polyamide Measured at 30 ° C. using m-cresol as a solvent.

(3)破断強度、破断伸度
繊維試料を、雰囲気温度25℃、湿度60%RHの恒温恒湿に保たれた部屋に一昼夜放置した後、サンプル長さ100mmで(株)島津製作所製引張試験機テンシロンにセットし、200mm/minの速度で伸張し、破断時の強度(cN/dtex)、伸度(%)を測定した。なお、n数5でその平均値を求めた。
(3) Breaking strength, breaking elongation After leaving a fiber sample in a room maintained at a constant temperature and humidity of an atmospheric temperature of 25 ° C. and a humidity of 60% RH for a day and night, a tensile test made by Shimadzu Corporation with a sample length of 100 mm It was set on a machine tensilon, stretched at a speed of 200 mm / min, and the strength at break (cN / dtex) and elongation (%) were measured. In addition, the average value was calculated | required by n number 5.

(4)沸水収縮率
JIS L 1013−1998、7.15で規定される方法により、沸水収縮率(熱水収縮率)(%)を測定した。なお、n数3でその平均値を求めた。
(4) Boiling water shrinkage The boiling water shrinkage (hot water shrinkage) (%) was measured by the method defined in JIS L 1013-1998, 7.15. In addition, the average value was calculated | required by n number 3.

(5)編成工程前の複合繊維の捲縮率
枠周:1.125mの巻き返し枠を用いて、荷重:49/50mN×9×トータルテックス(0.1gf×トータルデニール)をかけて一定の速度で巻き返し、巻き数:10回の小綛をつくり、該小綛をねじり2重の輪状にしたものに49/2500mN×20×9×トータルテックス(2mg×20×トータルデニール)の初荷重をかけたまま沸水中に入れて30分間処理し、該沸水処理の後100℃の乾燥機にて30分間乾燥し、その後さらに初荷重をかけたまま160℃の乾熱中に入れ5分間処理した。該乾熱処理の後に初荷重を除き、温度20℃、湿度65%RH環境下に24時間以上放置した後、前記の初荷重および98/50mN×20×9×トータルテックス(0.2gf×20×トータルデニール)の重荷重を負荷し、綛長:L0を測定し、直ちに重荷重のみを取り除き、除重1分後の綛長:L1を測定した。さらにこの綛を初荷重をかけたまま温度20℃の水中に2時間浸漬した後取り出し、ろ紙(大きさ30cm×30cm)にて0.69mN/cm(70mgf/cm)の圧力を5秒間かけて軽く水を拭き取った後、初荷重および重荷重を負荷し綛長:L0’を測定し、直ちに重荷重のみを取り除き、除重1分後の綛長:L1’を測定する。以上の測定数値から下記の計算式にて、乾燥時の捲縮率DC(%)、湿潤時の捲縮率HC(%)、乾燥時と湿潤時の捲縮率差(DC−HC)(%)を算出した。なお、n数は5で平均値を求めた。
乾燥時の捲縮率DC(%)=((L0−L1)/L0)×100
湿潤時の捲縮率HC(%)=(L0’−L1’)/L0’)×100
(5) Crimp rate of the composite fiber before the knitting process Frame circumference: Using a rewind frame of 1.125 m, load: 49/50 mN × 9 × total tex (0.1 gf × total denier), constant speed Rewind and make a small number of 10 turns. Twist the small piece into a double ring shape and apply an initial load of 49/2500 mN x 20 x 9 x total tex (2 mg x 20 x total denier) It was placed in boiling water for 30 minutes, and after the boiling water treatment, it was dried in a dryer at 100 ° C. for 30 minutes. Thereafter, it was further placed in dry heat at 160 ° C. for 5 minutes with the initial load applied. After the dry heat treatment, the initial load was removed and the sample was allowed to stand for 24 hours or more in a temperature of 20 ° C. and a humidity of 65% RH. Then, the initial load and 98/50 mN × 20 × 9 × total tex (0.2 gf × 20 × A heavy load of (total denier) was applied, the heel length: L0 was measured, only the heavy load was immediately removed, and the heel length: L1 after 1 minute of dewetting was measured. Further, the soot was immersed in water at a temperature of 20 ° C. for 2 hours with the initial load applied, and then taken out. The filter paper (size 30 cm × 30 cm) was applied with a pressure of 0.69 mN / cm 2 (70 mgf / cm 2 ) for 5 seconds. After lightly wiping off the water, an initial load and a heavy load are applied, and the heel length: L0 ′ is measured. Only the heavy load is removed immediately, and the heel length: L1 ′ after 1 minute of dewetting is measured. From the above measurement values, the following formulas are used to calculate the crimp rate DC (%) at the time of drying, the crimp rate HC (%) at the time of wetness, and the crimp rate difference between the dry and wet conditions (DC-HC) ( %) Was calculated. In addition, the number of n was 5, and the average value was obtained.
Crimp rate during drying DC (%) = ((L0−L1) / L0) × 100
Crimp rate HC (%) when wet = (L0′−L1 ′) / L0 ′) × 100

(6)布帛中における捲縮繊維の捲縮率
布帛を温度20℃、湿度65%RHの雰囲気中に24時間放置した後、該布帛から布帛と同じ方向の30cm×30cmの小片を裁断する(n数=5)。次いで、各々の小片から、繊維を取り出し、1.76mN/dtex(200mg/de)の荷重をかけて糸長L0を測定し、除重1分後0.0176mN/dtex(2mg/de)の荷重をかけて糸長L1を測定する。さらにこの糸を温度20℃の水中に2時間浸漬した後取り出し、ろ紙(大きさ30cm×30cm)にて0.69mN/cm(70mgf/cm)の圧力を5秒間かけて軽く水を拭き取った後、1.76mN/dtex(200mg/de)の荷重をかけて糸長L0’を測定し、除重1分後0.0176mN/dtex(2mg/de)の荷重をかけて糸長L1’を測定する。以上の測定数値から下記の計算式にて、乾燥時の捲縮率DC(%)、湿潤時の捲縮率HC(%)、乾燥時と湿潤時の捲縮率差(DC−HC)(%)を算出した。なお、n数は5で平均値を求めた。
乾燥時の捲縮率DC(%)=((L0−L1)/L0)×100
湿潤時の捲縮率HC(%)=(L0’−L1’)/L0’)×100
(6) Crimp rate of crimped fibers in the fabric After the fabric is left in an atmosphere of a temperature of 20 ° C. and a humidity of 65% RH for 24 hours, a small piece of 30 cm × 30 cm in the same direction as the fabric is cut from the fabric ( n number = 5). Subsequently, the fiber is taken out from each piece, and the yarn length L0 is measured by applying a load of 1.76 mN / dtex (200 mg / de), and after 1 minute of dewetting, a load of 0.0176 mN / dtex (2 mg / de) To measure the yarn length L1. Further, the yarn was immersed in water at a temperature of 20 ° C. for 2 hours and then taken out, and then lightly wiped off with a filter paper (size 30 cm × 30 cm) at a pressure of 0.69 mN / cm 2 (70 mgf / cm 2 ) for 5 seconds. After that, the yarn length L0 ′ was measured by applying a load of 1.76 mN / dtex (200 mg / de), and after 1 minute of dewetting, the yarn length L1 ′ was applied by applying a load of 0.0176 mN / dtex (2 mg / de). Measure. From the above measurement values, the following formulas are used to calculate the crimp rate DC (%) at the time of drying, the crimp rate HC (%) at the time of wetness, and the crimp rate difference between the dry and wet conditions (DC-HC) ( %) Was calculated. In addition, the number of n was 5, and the average value was obtained.
Crimp rate during drying DC (%) = ((L0−L1) / L0) × 100
Crimp rate HC (%) when wet = (L0′−L1 ′) / L0 ′) × 100

(7)通気性
JIS L 1096−1998、6.27.1、A(フラジール型通気性試験機法)により乾燥時の通気性(cc/cm/s)と湿潤時の通気性(cc/cm/s)を測定した。ただし、乾燥時とは、試料を温度20℃、湿度65%RH環境下に24時間放置した後の状態であり、一方、湿潤時とは、試料を温度20℃の水中に2時間浸漬した直後、一対のろ紙(大きさ50cm×50cm)の間にはさみ、490N/m(50kgf/m)の圧力で1分間加重し繊維間に存在する水分を取り除いた状態であり、それぞれ通気性(n数=5)を測定し、その平均を求めた。そして、通気性の変化率を下記式により算出した。
通気性の変化率(%)=((湿潤時の通気性)−(乾燥時の通気性))/(乾燥時の通気性)×100
(7) Breathability According to JIS L 1096-1998, 6.27.1, A (Fragile Breathability Tester Method), breathability when dried (cc / cm 2 / s) and breathability when wet (cc / cm 2 / s). However, when dry, the sample is left in a 20 ° C., 65% RH environment for 24 hours, while when wet, the sample is immediately immersed in water at 20 ° C. for 2 hours. , Sandwiched between a pair of filter papers (size: 50 cm × 50 cm), weighted for 1 minute at a pressure of 490 N / m 2 (50 kgf / m 2 ) to remove moisture present between the fibers, n number = 5) was measured, and the average was obtained. And the change rate of air permeability was computed by the following formula.
Percent change in air permeability (%) = ((air permeability when wet) − (air permeability when dry)) / (air permeability when dry) × 100

(8)靴材の凹凸変化
試験者が目視にて湿潤による凹凸変化を、「変化なし」、「わずかに変化する」、「変化する」の3段階に判定した。
(8) Unevenness change of shoe material Unevenness change due to wetting was visually determined by the examiner in three stages: “no change”, “slightly change”, and “change”.

[実施例1]
固有粘度[η]が1.3のナイロン6と、固有粘度[η]が0.39で2.6モル%の5−ナトリウムスルフォイソフタル酸を共重合させた変性ポリエチレンテレフタレートとをそれぞれ270℃、290℃にて溶融し、特開2000−144518号公報の図1と同様の複合紡糸口金を用い、それぞれ12.7g/分の吐出量にて押し出し、サイドバイサイド型複合繊維を形成させ、冷却固化、油剤を付与した後、糸条を速度1000m/分、温度60℃の予熱ローラーにて予熱し、ついで、該予熱ローラーと、速度3050m/分、温度150℃に加熱された加熱ローラー間で延伸熱処理を行い、巻取り、84dtex/24filの複合繊維(捲縮繊維A)を得た。該複合繊維において、破断強度3.4cN/dtex、破断伸度40%であった。また、該複合繊維に沸水処理を施して捲縮率を測定したところ、乾燥時の捲縮率DCが3.3%、湿潤時の捲縮率HCが1.6%、乾燥時の捲縮率DCと湿潤時の捲縮率HCとの差(DC−HC)が1.7%であった。
次いで、22ゲージ6枚筬のダブルラッセル機を使用して釜間3mmに調整し、下記の糸使いおよび組織にて3層構造編物を編成した。
[Example 1]
Nylon 6 having an intrinsic viscosity [η] of 1.3 and modified polyethylene terephthalate copolymerized with 2.6 mol% of 5-sodium sulfoisophthalic acid having an intrinsic viscosity [η] of 0.39 are each 270 ° C. Melted at 290 ° C., extruded using a composite spinneret similar to that shown in FIG. 1 of JP 2000-144518 A, at a discharge rate of 12.7 g / min to form side-by-side type composite fibers, and cooled and solidified. After applying the oil agent, the yarn is preheated with a preheating roller at a speed of 1000 m / min and a temperature of 60 ° C., and then stretched between the preheating roller and a heating roller heated at a speed of 3050 m / min and a temperature of 150 ° C. It heat-processed and wound up and obtained 84 dtex / 24fil of composite fiber (crimped fiber A). The composite fiber had a breaking strength of 3.4 cN / dtex and a breaking elongation of 40%. Further, when the crimp rate was measured by performing boiling water treatment on the composite fiber, the crimp rate DC when dried was 3.3%, the crimp rate HC when wet was 1.6%, and the crimp rate when dried. The difference between the rate DC and the crimp rate HC when wet (DC-HC) was 1.7%.
Subsequently, using a 22 gauge 6 sheet double raschel machine, the distance between the hooks was adjusted to 3 mm, and a three-layered knitted fabric was knitted with the following thread use and structure.

Figure 0005996915
Figure 0005996915

なお、表層(使用の際に外気側に位置する層)は、L1、L2の糸で構成され、中間層はL3、L4の糸で構成され、裏層(使用の際に足側に位置する層)は、L5、L6の糸で構成されていた。
得られた編物を乾熱180℃でプレセットした後、130℃の高圧染色し、さらに最終セットとして170℃の乾熱セットを行い、靴材とした。
得られた編物(靴材)において、目付けは251g/m、厚さは2.7mm、乾燥時の通気性は83cc/cm/s、湿潤時の通気性は89cc/cm/sであり、通気性の変化率は7.2%であった。また、湿潤により凹凸がわずかに変化した。また、該編物に含まれる捲縮繊維Aは湿潤時に捲縮率が低下するものであり、乾燥時と湿潤時の捲縮率差が1%以上であった。また、該編物はL1、L2で構成される表層がメッシュ組織で、L3、L4から構成される中間層が8mm幅ごとに構成糸条が切り替わるボーダー状で、L5、L6から構成される裏層からなる編物であった。
次に、該編物(靴材)を用いて運動靴を得て使用したところ、発汗時に靴内がムレにくく快適であった。
The surface layer (the layer located on the outside air side when used) is composed of L1 and L2 yarns, the intermediate layer is composed of L3 and L4 yarns, and the back layer (located on the foot side when used) Layer) was composed of L5 and L6 yarns.
The obtained knitted fabric was pre-set at a dry heat of 180 ° C. and then dyed at a high pressure of 130 ° C., and a dry heat set at 170 ° C. was performed as a final set to obtain a shoe material.
In the obtained knitted fabric (shoe material), basis weight 251 g / m 2, thickness is 2.7 mm, breathable when dry 83cc / cm 2 / s, breathable wet in 89cc / cm 2 / s Yes, the rate of change in air permeability was 7.2%. Also, the unevenness slightly changed due to wetting. Further, the crimped fiber A contained in the knitted fabric has a reduced crimp rate when wet, and the crimp rate difference between dry and wet was 1% or more. The knitted fabric has a mesh structure in the surface layer composed of L1 and L2, and a back layer composed of L5 and L6, in which the intermediate layer composed of L3 and L4 has a border shape in which the constituent yarns are switched every 8 mm. It was a knitting made of
Next, when the athletic shoes were obtained and used using the knitted fabric (shoe material), the inside of the shoes was not stuffy and comfortable when sweating.

[実施例2]
実施例1と同じ複合繊維を用い、22ゲージ5枚筬のダブルラッセル機を使用し、下記の糸使いおよび組織にて3層構造編物を編成した。
[Example 2]
Using the same conjugate fiber as in Example 1, a 22 gauge 5 sheet double raschel machine was used to knit a three-layer structure knitted fabric with the following yarn use and structure.

Figure 0005996915
Figure 0005996915

なお、表層(使用の際に外気側に位置する層)は、L1、L2の糸で構成され、中間層はL3の糸で構成され、裏層(使用の際に足側に位置する層)は、L4、L5の糸で構成されていた。
得られた編物を乾熱180℃でプレセットした後、130℃の高圧染色し、さらに最終セットとして170℃の乾熱セットを行い、靴材とした。
得られた編物(靴材)において、目付けは244g/m、厚さは2.8mm、乾燥時の通気性は168cc/cm/s、湿潤時の通気性は183cc/cm/sであり、通気性の変化率は8.9%であった。また、湿潤により凹凸が変化した。また、該編物に含まれる捲縮繊維Aは湿潤時に捲縮率が低下するものであり、乾燥時と湿潤時の捲縮率差が1%以上であった。また、該編物はL1、L2で構成される表層がメッシュ組織で10mm幅ごとに構成糸条が切り替わるボーダー状で、L3から構成される中間層と、L4、L5から構成される裏層からなる編物であった。
The surface layer (layer located on the outside air side when used) is composed of L1 and L2 yarns, the intermediate layer is composed of L3 yarns, and the back layer (layer located on the foot side when used) Consisted of L4 and L5 yarns.
The obtained knitted fabric was pre-set at a dry heat of 180 ° C. and then dyed at a high pressure of 130 ° C., and a dry heat set at 170 ° C. was performed as a final set to obtain a shoe material.
In the obtained knitted fabric (shoe material), the basis weight is 244 g / m 2 , the thickness is 2.8 mm, the breathability when dried is 168 cc / cm 2 / s, and the breathability when wet is 183 cc / cm 2 / s. Yes, the rate of change in air permeability was 8.9%. Further, the unevenness was changed by wetting. Further, the crimped fiber A contained in the knitted fabric has a reduced crimp rate when wet, and the crimp rate difference between dry and wet was 1% or more. Further, the knitted fabric has a mesh structure in which the surface layer is a mesh structure and has a border shape in which the constituent yarns are switched every 10 mm width, and includes an intermediate layer composed of L3 and a back layer composed of L4 and L5. It was a knitted fabric.

[比較例1]
22ゲージ5枚筬のダブルラッセル機を使用し、下記の糸使いおよび組織にて3層構造編物を編成した。
[Comparative Example 1]
Using a 22 gauge 5 sheet double raschel machine, a three-layered knitted fabric was knitted with the following thread use and structure.

Figure 0005996915
Figure 0005996915

なお、表層(使用の際に外気側に位置する層)は、L1、L2の糸で構成され、中間層はL3の糸で構成され、裏層(使用の際に足側に位置する層)は、L4、L5の糸で構成されていた。
得られた編物を乾熱180℃でプレセットした後、130℃の高圧染色し、さらに最終セットとして170℃の乾熱セットを行い、靴材とした。
得られた編物において、目付けは225g/m2、厚さは2.8mm、乾燥時の通気性は410cc/cm/s、湿潤時の通気性は410cc/cm/sであり、通気性の変化率は0%であった。また、湿潤により凹凸が変化はなかった。また、該編物はL1、L2で構成される表層がメッシュ組織で、L3から構成される中間層と、L4、L5から構成される裏層からなる編物であった。
次に、該編物(靴材)を用いて運動靴を得て使用したところ、発汗時に靴内がムレて不快であった。
The surface layer (layer located on the outside air side when used) is composed of L1 and L2 yarns, the intermediate layer is composed of L3 yarns, and the back layer (layer located on the foot side when used) Consisted of L4 and L5 yarns.
The obtained knitted fabric was pre-set at a dry heat of 180 ° C. and then dyed at a high pressure of 130 ° C., and a dry heat set at 170 ° C. was performed as a final set to obtain a shoe material.
In the obtained knitted fabric, the basis weight was 225 g / m2, the thickness was 2.8 mm, the air permeability when dried was 410 cc / cm 2 / s, and the air permeability when wet was 410 cc / cm 2 / s. The rate of change was 0%. Also, the unevenness did not change due to wetting. Further, the knitted fabric was a knitted fabric having a surface layer composed of L1 and L2 having a mesh structure, an intermediate layer composed of L3, and a back layer composed of L4 and L5.
Next, when an athletic shoe was obtained and used using the knitted fabric (shoe material), the inside of the shoe was stuffy and uncomfortable when sweating.

本発明によれば、湿潤時に通気性が向上する靴材および該靴材を用いてなる靴が得られ、その工業的価値は極めて大である。   ADVANTAGE OF THE INVENTION According to this invention, the shoe material which improves air permeability at the time of wetness, and the shoes using this shoe material are obtained, The industrial value is very large.

Claims (7)

靴の部材として用いられ、湿潤時に捲縮率が低下する捲縮繊維Aと、非捲縮繊維または湿潤時に捲縮率が変化しない捲縮繊維である繊維Bとを含む布帛を用いてなり、かつ前記布帛において下記式で定義する通気性の変化率が5%以上であり、かつ前記布帛が3層構造織編組織を有しており、かつ3層構造織編組織の少なくともどちらか一方の最外層がメッシュ組織であり、かつ前記捲縮繊維Aと繊維Bが3層構造織編組織の中間層にストライプ状に配されてなり、かつ湿潤時に靴材の表面に凹凸が発現することを特徴とする靴材。
通気性の変化率(%)=((湿潤時の通気性)−(乾燥時の通気性))/(乾燥時の通気性)×100
A fabric comprising a crimped fiber A that is used as a member of a shoe and has a reduced crimp rate when wet, and a fiber B that is a non-crimped fiber or a crimped fiber that does not change crimp rate when wet , And the change rate of the air permeability defined by the following formula in the fabric is 5% or more, the fabric has a three-layer structure woven / knitted structure, and at least one of the three-layer structure woven / knitted structure The outermost layer is a mesh structure, and the crimped fibers A and fibers B are arranged in stripes on the intermediate layer of the three-layer structure knitting and knitting structure, and irregularities appear on the surface of the shoe material when wet. A characteristic shoe material.
Percent change in air permeability (%) = ((air permeability when wet) − (air permeability when dry)) / (air permeability when dry) × 100
前記捲縮繊維Aが、ポリエステル成分とポリアミド成分とがサイドバイサイド型に接合された複合繊維である、請求項1に記載の靴材。   The shoe material according to claim 1, wherein the crimped fiber A is a composite fiber in which a polyester component and a polyamide component are bonded in a side-by-side manner. 前記ポリエステル成分が、5−ナトリウムスルホイソフタル酸が2.0〜4.5モル%共重合された変性ポリエステルからなる、請求項2に記載の靴材。 The shoe material according to claim 2 , wherein the polyester component is a modified polyester obtained by copolymerizing 2.0 to 4.5 mol% of 5-sodium sulfoisophthalic acid. 前記捲縮繊維Aと繊維Bが3層構造織編物の少なくともどちらか一方の最外層にストライプ状に配されてなる、請求項1〜のいずれかに記載の靴材。 The shoe material according to any one of claims 1 to 3 , wherein the crimped fibers A and fibers B are arranged in a stripe pattern on at least one of the outermost layers of the three-layer structure woven or knitted fabric. 布帛の厚さが1〜5mmの範囲内である、請求項1〜4のいずれかに記載の靴材。The shoe material according to any one of claims 1 to 4, wherein the fabric has a thickness of 1 to 5 mm. 布帛の目付けが200〜500g/mThe fabric weight is 200 to 500 g / m 2 の範囲内である、請求項1〜5のいずれかに記載の靴材。The shoe material in any one of Claims 1-5 which is in the range of these. 請求項1〜6のいずれかに記載の靴材を用いてなる靴。A shoe using the shoe material according to claim 1.
JP2012093216A 2012-04-16 2012-04-16 Shoes and shoes Active JP5996915B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012093216A JP5996915B2 (en) 2012-04-16 2012-04-16 Shoes and shoes

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012093216A JP5996915B2 (en) 2012-04-16 2012-04-16 Shoes and shoes

Publications (2)

Publication Number Publication Date
JP2013220190A JP2013220190A (en) 2013-10-28
JP5996915B2 true JP5996915B2 (en) 2016-09-21

Family

ID=49591613

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012093216A Active JP5996915B2 (en) 2012-04-16 2012-04-16 Shoes and shoes

Country Status (1)

Country Link
JP (1) JP5996915B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5870985B2 (en) 2013-10-23 2016-03-01 トヨタ自動車株式会社 Driving assistance device
JP7288039B2 (en) * 2019-02-28 2023-06-06 株式会社アシックス shoes

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4505212B2 (en) * 2003-01-10 2010-07-21 美津濃株式会社 Shoes and double raschel warp knitted fabric used therefor
JP2005102933A (en) * 2003-09-30 2005-04-21 Mizuno Corp Shoe
JP2005118931A (en) * 2003-10-15 2005-05-12 New-Era Co Ltd Robot hand
JP2006112009A (en) * 2004-10-15 2006-04-27 Teijin Fibers Ltd Woven or knit fabric developing unevenness by wetting, method for producing the same and textile product
JP2006207053A (en) * 2005-01-26 2006-08-10 Teijin Fibers Ltd Three-layer structure woven or knitted fabric and textile product

Also Published As

Publication number Publication date
JP2013220190A (en) 2013-10-28

Similar Documents

Publication Publication Date Title
KR101220720B1 (en) Woven/knit fabric including crimped fiber and becoming rugged upon humidification, process for producing the same, and textile product
KR101220658B1 (en) Woven or knit fabric containing crimped composite fiber having its air permeability enhanced by water wetting and relevant clothing
JP6577589B2 (en) Fabrics and textile products
JP2006118062A (en) Woven/knitted fabric reducing its porosity when wetted, and method for producing the same, and related textile product
JP4414851B2 (en) Woven knitted fabrics and textile products that improve air permeability when wet
JP2006207053A (en) Three-layer structure woven or knitted fabric and textile product
JP2010163712A (en) Sock
JP2006264309A (en) Multilayer structure varying in three-dimentional structure by absorbing water and textile product
JP2009024272A (en) Knitted fabric and fibrous product excellent in cool feeling
JP2006207052A (en) Raised fabric and textile product
JP5881284B2 (en) Fabrics and textile products
JP5996915B2 (en) Shoes and shoes
JP4567500B2 (en) Fabrics and textiles whose structure is three-dimensionally changed by water absorption
JP2009074187A (en) Multi-layered structure woven or knitted fabric and fiber product
JP4414854B2 (en) Water-repellent knitted fabrics and textiles that improve air permeability when absorbing moisture
JP5456115B2 (en) Woven knitted fabric with unevenness caused by wetting, manufacturing method thereof, and textile product
JP2010059570A (en) Woven fabric and textile product
JP2019173224A (en) socks
JP2006207065A (en) Garment exerting ventilation effect when wetted
JP5420879B2 (en) Shoe material
WO2022113695A1 (en) Woven/knitted article
JP2007231453A (en) Moisture-sensitive crimped conjugate fiber
JP2018100458A (en) Composite fiber and production method thereof
JP2009041148A (en) Woven fabric and textile product

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150115

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151215

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20151216

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160201

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160628

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160712

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160802

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160825

R150 Certificate of patent or registration of utility model

Ref document number: 5996915

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250