JP5881284B2 - Fabrics and textile products - Google Patents

Fabrics and textile products Download PDF

Info

Publication number
JP5881284B2
JP5881284B2 JP2010233710A JP2010233710A JP5881284B2 JP 5881284 B2 JP5881284 B2 JP 5881284B2 JP 2010233710 A JP2010233710 A JP 2010233710A JP 2010233710 A JP2010233710 A JP 2010233710A JP 5881284 B2 JP5881284 B2 JP 5881284B2
Authority
JP
Japan
Prior art keywords
air permeability
fabric
fiber
change rate
dry
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010233710A
Other languages
Japanese (ja)
Other versions
JP2012087427A (en
Inventor
皇二 竹下
皇二 竹下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teijin Frontier Co Ltd
Original Assignee
Teijin Frontier Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teijin Frontier Co Ltd filed Critical Teijin Frontier Co Ltd
Priority to JP2010233710A priority Critical patent/JP5881284B2/en
Publication of JP2012087427A publication Critical patent/JP2012087427A/en
Application granted granted Critical
Publication of JP5881284B2 publication Critical patent/JP5881284B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Knitting Of Fabric (AREA)
  • Yarns And Mechanical Finishing Of Yarns Or Ropes (AREA)
  • Woven Fabrics (AREA)

Description

本発明は、湿潤時における布帛の通気性を乾燥時よりも可逆的に向上させることにより発汗によるムレやベトツキを低減可能な布帛を得ることができる紡績糸、および該紡績糸を用いてなる、布帛および繊維製品に関する。   The present invention uses a spun yarn capable of obtaining a fabric capable of reducing stuffiness and stickiness due to perspiration by reversibly improving the breathability of the fabric when wet, and the spun yarn. The present invention relates to fabrics and textile products.

従来、合成繊維や天然繊維などからなる布帛を、スポーツウエアーやインナーウエアーなどとして用いると、肌からの発汗によりムレやベトツキが発生するという問題があった。
そして、かかる発汗によって生じるムレやベトツキを解消する方法として、例えば、特許文献1や特許文献2では、ポリエステル成分とポリアミド成分とをサイドバイサイド型に貼り合わせた複合長繊維を用いた通気性自己調節布帛が提案されている。
しかしながら、かかる布帛において、湿潤時の通気性が乾燥時に比べて可逆的に向上するものの、湿潤時に布帛の寸法が大きく変化するという問題があった。
Conventionally, when a fabric made of synthetic fiber, natural fiber, or the like is used as sportswear or innerwear, there has been a problem that stuffiness or stickiness occurs due to sweating from the skin.
And as a method of eliminating the stuffiness and stickiness caused by such sweating, for example, in Patent Document 1 and Patent Document 2, a breathable self-adjusting fabric using a composite long fiber in which a polyester component and a polyamide component are bonded to each other side-by-side Has been proposed.
However, such a fabric has a problem that although the breathability when wet is reversibly improved as compared with that when dry, the size of the fabric changes greatly when wet.

特開2006−97147号公報JP 2006-97147 A 特開2006−97176号公報JP 2006-97176 A

本発明は上記の背景に鑑みなされたものであり、その目的は、湿潤時に布帛の寸法を大きく変化させることなく、湿潤時における布帛の通気性を乾燥時よりも可逆的に向上させることが可能な布帛を得ることができる紡績糸、および該紡績糸を用いてなる、布帛および繊維製品を提供することにある。   The present invention has been made in view of the above-described background, and the object thereof is to reversibly improve the breathability of the fabric when wet without significantly changing the size of the fabric when wet. An object of the present invention is to provide a spun yarn capable of obtaining a simple fabric, and a fabric and a textile product using the spun yarn.

本発明者は上記の課題を達成するため鋭意検討した結果、ポリエステル成分とポリアミド成分とがサイドバイサイド型に接合された複合短繊維と、該複合短繊維以外の繊維とを混紡した紡績糸で布帛を構成すると、湿潤時に布帛の寸法を大きく変化させることなく、湿潤時における布帛の通気性を乾燥時よりも可逆的に向上させることが可能となることを見出し、さらに鋭意検討を重ねることにより本発明を完成するに至った。   As a result of intensive studies to achieve the above-mentioned problems, the inventor has obtained a fabric with a spun yarn obtained by blending a composite short fiber in which a polyester component and a polyamide component are joined in a side-by-side manner and a fiber other than the composite short fiber. When configured, it has been found that the air permeability of a fabric when wet can be reversibly improved as compared with that of drying without greatly changing the dimensions of the fabric when wet, and the present invention is further studied by further earnest studies. It came to complete.

かくして、本発明によれば「ポリエステル成分とポリアミド成分とがサイドバイサイド型に接合された複合短繊維と、該複合短繊維以外の、レーヨン繊維または綿繊維またはアクリル短繊維とを10:90〜90:10の範囲内で含む紡績糸を含み、かつ吸水加工を施してなることを特徴とする布帛。」が提供される。 Thus, according to the present invention, “a composite short fiber in which a polyester component and a polyamide component are bonded side-by-side and a rayon fiber, a cotton fiber, or an acrylic short fiber other than the composite short fiber is 10:90 to 90: A fabric comprising a spun yarn contained within a range of 10 and subjected to water absorption processing is provided.

その際、前記ポリエステル成分が、5−ナトリウムスルホイソフタル酸が2.0〜4.5モル%共重合された変性ポリエステルからなることが好ましい。また、前記複合短繊維において、単繊維繊度が0.8〜5dtexの範囲内であることが好ましい。また、前記複合短繊維において、繊維長が30〜160mmの範囲内であることが好ましい。   In that case, it is preferable that the said polyester component consists of a modified polyester by which 2.0-4.5 mol% 5-sodium sulfo isophthalic acid was copolymerized. In the composite short fiber, the single fiber fineness is preferably in the range of 0.8 to 5 dtex. In the composite short fiber, the fiber length is preferably in the range of 30 to 160 mm.

その際、下記式で定義する通気度変化率が10%以上であることが好ましい。
通気度変化率(%)=((湿潤時の通気度)−(乾燥時の通気度))/(乾燥時の通気度
)×100
At that time , the air permeability change rate defined by the following formula is preferably 10% or more.
Air permeability change rate (%) = ((wet air permeability) − (dry air permeability)) / (dry air permeability) × 100

ただし乾燥時とは、試料を温度20℃、湿度65%RH環境下に24時間放置した後の状態であり、湿潤時とは、温度20℃の水を試料に乾燥時の試料重量対比50重量%吸水させた状態であり、通気度は、JIS L 1096−1998 6.27.1 A(フラジール型通気性試験機法)により測定するものとする。   However, when dry, the sample is left for 24 hours in an environment of temperature 20 ° C. and humidity 65% RH, and when wet, water at a temperature of 20 ° C. is 50 wt. The air permeability is measured according to JIS L 1096-1998 6.27.1 A (Fragile type air permeability tester method).

また、下記式で定義する寸法変化率がタテ方向、ヨコ方向ともに−5〜5%の範囲内であることが好ましい。
タテ寸法変化率(%)=((湿潤時のタテ寸法)−(乾燥時のタテ寸法))/(乾燥時のタテ寸法)×100
ヨコ寸法変化率(%)=((湿潤時のヨコ寸法)−(乾燥時のヨコ寸法))/(乾燥時のヨコ寸法)×100
Moreover, it is preferable that the dimensional change rate defined by the following formula is in the range of −5 to 5% in both the vertical and horizontal directions.
Vertical dimension change rate (%) = ((vertical dimension when wet) − (vertical dimension when dry)) / (vertical dimension when dry) × 100
Horizontal dimensional change rate (%) = ((weft horizontal dimension) − (horizontal dimension when dried)) / (horizontal dimension when dried) × 100

ただし、布帛を温度20℃、湿度65%RH環境下に24時間放置した後、布帛と同じ方向にタテ200mm、ヨコ150mmのサイズで試料を採取することにより乾燥時の寸法とし、次いで、該試料に、温度20℃の水を乾燥時の試料重量対比50重量%吸水させた後、湿潤時の寸法を測定するものとする。   However, after allowing the fabric to stand in an environment of temperature 20 ° C. and humidity 65% RH for 24 hours, a sample is taken in the same direction as the fabric in a length of 200 mm and a width of 150 mm to obtain a dry size. Next, water at a temperature of 20 ° C. is absorbed by 50% by weight relative to the weight of the sample at the time of drying, and then the dimension when wet is measured.

また、本発明によれば、前記の布帛を用いてなる、スポーツウエアー、アウターウエアー、インナーウエアー、紳士衣料、婦人衣料、医療用衣料、介護用衣料、浴衣、作業衣、裏地、履物、鞄、帽子、手袋、靴下、寝具、支持帯、カーシート、サポーター、スキンケア用具、化粧用具からなる群より選択されるいずれかの繊維製品が提供される。 Further, according to the present invention, sportswear, outerwear, innerwear, men's clothing, women's clothing, medical clothing, nursing clothing, yukata, work clothing, lining, footwear, heel, Any textile product selected from the group consisting of hats, gloves, socks, bedding, support bands, car seats, supporters, skin care tools, and cosmetic tools is provided.

本発明によれば、湿潤時に布帛の寸法を大きく変化させることなく、湿潤時における布帛の通気性を乾燥時よりも可逆的に向上させることが可能な布帛を得ることができる紡績糸、および該紡績糸を用いてなる、布帛および繊維製品が得られる。   According to the present invention, a spun yarn capable of obtaining a fabric capable of reversibly improving the breathability of the fabric when wet without remarkably changing the size of the fabric when wet, and Fabrics and fiber products using spun yarn are obtained.

以下、本発明の実施の形態について詳細に説明する。
まず、本発明の紡績糸において、複合短繊維はポリエステル成分とポリアミド成分からなり、両成分はサイドバイサイド型に接合されている。
Hereinafter, embodiments of the present invention will be described in detail.
First, in the spun yarn of the present invention, the composite short fiber is composed of a polyester component and a polyamide component, and both components are joined in a side-by-side type.

ここで、ポリエステル成分としては、他方のポリアミド成分との接合性の点で、スルホン酸のアルカリまたはアルカリ土類金属、ホスホニウム塩を有し、かつエステル形成能を有する官能基を1個以上もつ化合物が共重合された、ポリエチレンテレフタレート、ポリトリメチレンテレフタレート、ポリプロピレンテレフタレート、ポリブチレンタレフタレート等の変性ポリエステルが好ましく例示される。なかでも、汎用性およびポリマーコストの点で、前記化合物が共重合された、変性ポリエチレンテレフタレートが特に好ましい。その際、共重合成分としては、5−ナトリウムスルホイソフタル酸およびそのエステル誘導体、5−ホスホニウムイソフタル酸およびそのエステル誘導体、p−ヒドロキシベンゼンスルホン酸ナトリウムなどがあげられる。なかでも、5−ナトリウムスルホイソフタル酸が好ましい。共重合量としては、2.0〜4.5モル%の範囲が好ましい。該共重合量が2.0モル%よりも小さいと、優れた捲縮性能が得られるものの、ポリアミド成分とポリエステル成分との接合界面にて剥離が生じるおそれがある。逆に、該共重合量が4.5モル%よりも大きいと、延伸熱処理の際、ポリエステル成分の結晶化が進みにくくなるため、延伸熱処理温度を上げる必要があり、その結果、糸切れが多発するおそれがある。   Here, as the polyester component, a compound having one or more functional groups having an alkali or alkaline earth metal or phosphonium salt of sulfonic acid and having an ester forming ability in terms of bonding property with the other polyamide component. Preferred examples include modified polyesters such as polyethylene terephthalate, polytrimethylene terephthalate, polypropylene terephthalate, and polybutylene terephthalate. Among these, modified polyethylene terephthalate obtained by copolymerizing the above compound is particularly preferable from the viewpoint of versatility and polymer cost. In this case, examples of the copolymer component include 5-sodium sulfoisophthalic acid and ester derivatives thereof, 5-phosphonium isophthalic acid and ester derivatives thereof, and sodium p-hydroxybenzenesulfonate. Of these, 5-sodium sulfoisophthalic acid is preferable. As a copolymerization amount, the range of 2.0-4.5 mol% is preferable. When the copolymerization amount is less than 2.0 mol%, although excellent crimping performance can be obtained, there is a possibility that peeling occurs at the bonding interface between the polyamide component and the polyester component. On the other hand, if the copolymerization amount is greater than 4.5 mol%, the crystallization of the polyester component becomes difficult to proceed during the stretching heat treatment, and thus it is necessary to raise the stretching heat treatment temperature. There is a risk.

一方のポリアミド成分としては、主鎖中にアミド結合を有するものであれば特に限定されるものではなく、例えば、ナイロン−4、ナイロン−6、ナイロン−66、ナイロン−46、ナイロン−12などがあげられる。なかでも、汎用性、ポリマーコスト、製糸安定性の点で、ナイロン−6およびナイロン−66が好適である。
前記ポリエステル成分および/またはポリアミド成分には、各種の添加剤、例えば、顔料、艶消し剤、防汚剤、蛍光増白剤、難燃剤、安定剤、帯電防止剤、耐光剤、紫外線吸収剤等が含まれていてもよい。
One polyamide component is not particularly limited as long as it has an amide bond in the main chain, and examples thereof include nylon-4, nylon-6, nylon-66, nylon-46, nylon-12, and the like. can give. Among these, nylon-6 and nylon-66 are preferable in terms of versatility, polymer cost, and yarn production stability.
For the polyester component and / or polyamide component, various additives such as pigments, matting agents, antifouling agents, fluorescent whitening agents, flame retardants, stabilizers, antistatic agents, light resistance agents, ultraviolet absorbers, etc. May be included.

前記のサイドバイサイド型に接合された複合短繊維は、任意の断面形状および複合形態をとることができる。通常は特開2006−112009号公報の図1の(イ)、(ロ)のような横断面を有する複合繊維が用いられるが、特開2006−112009号公報の(ハ)のような偏心芯鞘型であってもよい。さらには、三角形や四角形、その断面内に中空部を有するものであってもよい。なかでも、前記(イ)のような丸型が好ましい。両成分の複合比は任意に選定することができるが、通常、ポリエステル成分とポリアミド成分の重量比で(ポリエステル成分:ポリアミド成分)30:70〜70:30(より好ましくは40:60〜60:40)の範囲内であることが好ましい。   The composite short fiber bonded to the side-by-side type can take any cross-sectional shape and composite form. Usually, a composite fiber having a cross section as shown in FIGS. 1A and 1B of JP-A-2006-112009 is used, but an eccentric core as shown in JP-A-2006-112009 (C). It may be a sheath type. Furthermore, you may have a hollow part in the triangle, the square, and the cross section. Among these, the round shape as described in (a) is preferable. Although the composite ratio of both components can be selected arbitrarily, it is usually 30:70 to 70:30 (more preferably 40:60 to 60:60) by weight ratio of the polyester component and the polyamide component (polyester component: polyamide component). 40) is preferable.

前記複合短繊維において、湿潤時における布帛の通気性を乾燥時よりも可逆的に向上させる点および布帛の風合いを損なわせない上で、単繊維繊度が0.8〜5dtexの範囲内であることが好ましい。   In the composite short fiber, the fineness of the single fiber is in the range of 0.8 to 5 dtex, while the air permeability of the fabric when wet is reversibly improved and the texture of the fabric is not impaired. Is preferred.

このように異種ポリマーがサイドバイサイド型に接合された複合繊維は、通常、潜在捲縮性能を有しており、後記のように、染色加工などの熱処理を受けると潜在捲縮性能が発現する。捲縮構造としては、ポリアミド成分が捲縮の内側に位置し、ポリエステル成分が捲縮の外側に位置していることが好ましい。かかる捲縮構造を有する複合繊維は、下記の製造方法により容易に得ることができる。複合繊維がこのような捲縮構造を有していると、湿潤時に、内側のポリアミド成分が膨潤、伸張し、外側のポリエステル成分はほとんど長さ変化を起こさないため、捲縮率が低下する(複合繊維の見かけの長さが長くなる。)。一方、乾燥時には、内側のポリアミド成分が収縮し、外側のポリエステル成分はほとんど長さ変化を起こさないため、捲縮率が増大する(複合繊維の見かけの長さが短くなる。)。   Thus, the composite fiber in which the different types of polymers are joined in a side-by-side manner usually has a latent crimping performance, and the latent crimping performance is exhibited when subjected to a heat treatment such as a dyeing process as described later. As the crimped structure, it is preferable that the polyamide component is located inside the crimp and the polyester component is located outside the crimp. A composite fiber having such a crimped structure can be easily obtained by the following production method. When the composite fiber has such a crimped structure, the inner polyamide component swells and stretches when wet, and the outer polyester component hardly changes in length, so that the crimp rate decreases ( The apparent length of the composite fiber is increased.) On the other hand, at the time of drying, the inner polyamide component shrinks and the outer polyester component hardly changes in length, so that the crimp rate increases (the apparent length of the composite fiber becomes shorter).

まず、固有粘度が0.30〜0.43(オルソクロロフェノールを溶媒として35℃で測定)の、5−ナトリウムスルホイソフタル酸が2.0〜4.5モル%共重合された変性ポリエステルと、固有粘度が1.0〜1.4(m−クレゾールを溶媒として30℃で測定)のポリアミドとを用いてサイドバイサイド型に溶融複合紡糸する。その際、ポリエステル成分の固有粘度が0.43以下であることが好ましい。ポリエステル成分の固有粘度が0.43よりも大きいと、ポリエステル成分の粘度が増大するため、複合繊維の物性がポリエステル単独糸に近くなり、本発明が目的とする紡績糸が得られないおそれがある。逆に、ポリエステル成分の固有粘度が0.30よりも小さいと、溶融粘度が小さくなりすぎて製糸性が低下するとともに毛羽発生が多くなり、品質および生産性が低下するおそれがある。    First, a modified polyester having an intrinsic viscosity of 0.30 to 0.43 (measured at 35 ° C. using orthochlorophenol as a solvent) and 2.0 to 4.5 mol% of 5-sodium sulfoisophthalic acid copolymerized; Using a polyamide having an intrinsic viscosity of 1.0 to 1.4 (measured at 30 ° C. using m-cresol as a solvent), melt composite spinning is performed in a side-by-side manner. In that case, it is preferable that the intrinsic viscosity of a polyester component is 0.43 or less. If the intrinsic viscosity of the polyester component is greater than 0.43, the viscosity of the polyester component increases, so that the physical properties of the composite fiber are close to that of a single polyester yarn, and the spun yarn intended by the present invention may not be obtained. . On the other hand, if the intrinsic viscosity of the polyester component is less than 0.30, the melt viscosity becomes too small and the yarn-making property is lowered and the generation of fluff is increased, which may reduce the quality and productivity.

溶融紡糸の際に用いる紡糸口金としては、特開2000−144518号公報の図1の
ような、高粘度側と低粘度側の吐出孔を分離し、かつ高粘度側吐出線速度を小さくした(
吐出断面積を大きくした)紡糸口金が好適である。そして、高粘度側吐出孔に溶融ポリエ
ステルを通過させ、低粘度側吐出孔に溶融ポリアミドを通過させ冷却固化させることが好
ましい。その際、ポリエステル成分とポリアミド成分との重量比は、前述のとおり、30
:70〜70:30(より好ましくは40:60〜60:40)の範囲内であることが好
ましい。
As the spinneret used for melt spinning, as shown in FIG. 1 of JP-A-2000-144518, the high-viscosity side and low-viscosity side discharge holes are separated and the high-viscosity side discharge linear velocity is reduced (
A spinneret having a large discharge cross-sectional area is preferred. Then, it is preferable that the molten polyester is passed through the high viscosity side discharge holes and the molten polyamide is passed through the low viscosity side discharge holes to be cooled and solidified. At that time, the weight ratio of the polyester component to the polyamide component is 30 as described above.
: 70 to 70:30 (more preferably 40:60 to 60:40) is preferable.

また、溶融複合紡糸した後、一旦巻き取った後に延伸する別延方式を採用してもよいし
、一旦巻き取らずに延伸熱処理を行う直延方式を採用してもよい。その際、紡糸・延伸条
件としては、通常の条件でよい。例えば、直延方式の場合、1000〜3500m/分程
度で紡糸した後、連続して100〜150℃の温度で延伸し巻き取る。延伸倍率は最終時
に得られる複合繊維の切断伸度が10〜60%(好ましくは20〜45%)、切断強度が
3.0〜4.7cN/dtex程度となるよう、適宜選定すればよい。
Further, after the melt composite spinning, a separate stretching method in which the film is once wound and then stretched may be employed, or a direct stretching method in which a stretching heat treatment is performed without winding once may be employed. At that time, the spinning and drawing conditions may be normal conditions. For example, in the case of the direct extension method, after spinning at about 1000 to 3500 m / min, the film is continuously drawn and wound at a temperature of 100 to 150 ° C. The draw ratio may be appropriately selected so that the cut elongation of the composite fiber obtained at the end is 10 to 60% (preferably 20 to 45%) and the cut strength is about 3.0 to 4.7 cN / dtex.

得られた複合繊維は、必要に応じて所望の短繊維に加工する。すなわち、前記複合繊維を連続的に束にするか、あるいは一度ボビンなどに巻き取ったものを解舒して、集束させてトウを形成する。なお、ボビンなどに巻き取った長繊維を解舒する場合は、繊維に付着した長繊維用油剤を洗浄したのちに、紡績用油剤を付与することが好ましい。   The obtained composite fiber is processed into a desired short fiber as necessary. That is, the composite fiber is continuously bundled or once wound on a bobbin or the like is unwound and converged to form a tow. In addition, when unwinding the long fiber wound around the bobbin or the like, it is preferable to apply the spinning oil after washing the long fiber oil adhering to the fiber.

その際、かかる紡績用油剤は、複合繊維に制電性を付与すると共に、繊維間摩擦を下げて開繊性を向上させる油剤を選択することが好ましい。このような油剤を選択することにより、紡績工程における、梳綿機での静電気の発生を抑制し、通過性を向上させることができる。なお、紡績用油剤の付着量(OPU)は0.1%〜0.5%が好ましく、さらには0.2%〜0.4%が好ましい。   In this case, it is preferable to select an oil agent that imparts antistatic properties to the composite fiber and that improves the fiber-opening property by reducing the inter-fiber friction. By selecting such an oil agent, it is possible to suppress the generation of static electricity in the spinning machine in the spinning process and improve the passability. The adhesion amount (OPU) of the spinning oil is preferably 0.1% to 0.5%, more preferably 0.2% to 0.4%.

油剤を付与したトウは、低温で熱セットさせることが好ましい。温度は70℃〜130℃が好ましい。さらに80℃〜120℃がより好ましい。その際、潜在捲縮の発現を抑制し紡績工程中における工程通過性を向上させるために、緊張セットを行うことが好ましく、延伸倍率を1.0〜1.2倍としたうえで、セットすることが好ましい。   It is preferable to heat-set the tow provided with the oil agent at a low temperature. The temperature is preferably 70 ° C to 130 ° C. Furthermore, 80 to 120 degreeC is more preferable. At that time, in order to suppress the expression of latent crimps and improve the process passability in the spinning process, it is preferable to perform tension setting, and set after setting the draw ratio to 1.0 to 1.2 times. It is preferable.

次いで、機械捲縮加工により、複合繊維に捲縮を付与することが好ましい。その際、トウの加熱温度を前記の緊張セット温度以下とすることが望ましく、温度は80℃以下が好ましく、70℃以下がより好ましい。   Next, it is preferable to crimp the composite fiber by mechanical crimping. At that time, it is desirable that the heating temperature of the tow is not higher than the tension setting temperature, and the temperature is preferably 80 ° C. or lower, more preferably 70 ° C. or lower.

また、紡績工程での工程通過性を良好にするためには、捲縮数、捲縮率、および残留捲縮率を適正な範囲内に設定することが重要であり、該捲縮繊維の捲縮数は、5〜20個/25mmの範囲にあることが好ましく、7〜15個/25mmがより好ましい。また、捲縮率は、10〜25%が好ましく、12〜23%がより好ましい。残留捲縮率は5〜20%が好ましく、7〜18%がより好ましい。   In addition, in order to improve the process passability in the spinning process, it is important to set the number of crimps, the crimp ratio, and the residual crimp ratio within an appropriate range. The contraction number is preferably in the range of 5 to 20 pieces / 25 mm, more preferably 7 to 15 pieces / 25 mm. Further, the crimp rate is preferably 10 to 25%, and more preferably 12 to 23%. The residual crimp rate is preferably 5 to 20%, more preferably 7 to 18%.

機械捲縮を付与されたトウは、用途や紡績方法、混合素材など必要に応じて30mm〜160mmの繊維長に切断する。あるいはトウ牽切機により切断して短繊維としてもよい。   The tow imparted with the mechanical crimp is cut into a fiber length of 30 mm to 160 mm as required, such as the use, spinning method, and mixed material. Or it is good also as a short fiber by cut | disconnecting with a tow checker.

一方、該複合短繊維以外の繊維としては、ポリエチレンタレフタレート、ポリトリメチレンテレフタレート、ポリブチレンテレフタレート等のポリエステル、ナイロン6、ナイロン66等のポリアミド、ポリエチレン、ポリプロピレン等のポリオレフィン、アクリル、パラ型もしくはメタ型アラミドなどからなる合成繊維、およびそれらの変性合成繊維、さらには、綿、羊毛、麻、絹などの天然繊維、レーヨン、キュプラなどの再生繊維、半合成繊維など自由に選択できる。   On the other hand, as fibers other than the composite short fiber, polyesters such as polyethylene terephthalate, polytrimethylene terephthalate, polybutylene terephthalate, polyamides such as nylon 6 and nylon 66, polyolefins such as polyethylene and polypropylene, acrylic, para-type, or meta Synthetic fibers made of type aramid and the like, modified synthetic fibers thereof, natural fibers such as cotton, wool, hemp and silk, regenerated fibers such as rayon and cupra, and semi-synthetic fibers can be freely selected.

本発明の紡績糸において、前記複合短繊維と、該複合短繊維以外の繊維とが(複合短繊維:複合短繊維以外の繊維)10:90〜90:10(好ましくは25:75〜75:25)の範囲内で含まれることが肝要である。前記複合繊維の含有量が該範囲よりも小さいと、湿潤時に通気性が性能よく向上しないおそれがあり好ましくない。 逆に、前記複合短繊維の含有量が該範囲より大きいと、湿潤時における紡績糸の寸法変化が大きくなるおそれがあり好ましくない。   In the spun yarn of the present invention, the composite short fiber and the fiber other than the composite short fiber (composite short fiber: fiber other than the composite short fiber) 10:90 to 90:10 (preferably 25:75 to 75: It is important to be included within the range of 25). When the content of the composite fiber is smaller than the above range, air permeability may not be improved when wet, which is not preferable. On the other hand, if the content of the composite short fiber is larger than the above range, the dimensional change of the spun yarn may be increased when wet, which is not preferable.

本発明の紡績糸を製造する方法としては、特に限定されることはなく、公知の紡績方法によって紡績すればよい。特に風合いなどの面から、リング式精紡機や空気精紡機などが好ましく使用できる。   The method for producing the spun yarn of the present invention is not particularly limited, and may be spun by a known spinning method. In particular, from the viewpoint of texture and the like, a ring type spinning machine, an air spinning machine, and the like can be preferably used.

ここで、複合短繊維と他の繊維とをあらかじめ混綿工程にて混綿したのち、梳綿工程を通過させることが好ましく、良好な紡績性が得られ、紡績糸中のネップを減少させ、均斉度を向上させることができ好ましい。また、織編地のピリングを抑制する場合には、旋回気流加撚式空気精紡機などを用いると、紡績糸表面の毛羽が抑えられて、ピリングの発生を抑制することができ好ましい。   Here, it is preferable to mix the composite short fiber and other fibers in advance in the cotton blending process, and then pass through the carding process, so that good spinnability can be obtained, the nep in the spun yarn can be reduced, and the uniformity degree Can be improved. In order to suppress pilling of the woven or knitted fabric, it is preferable to use a swirling air flow twist type air spinning machine or the like because fuzz on the surface of the spun yarn can be suppressed and generation of pilling can be suppressed.

また、かかる紡績糸において、紡績糸に含まれる複合短繊維が潜在捲縮を発現していることが好ましい。かかる潜在捲縮を発現させる方法としては、後記のように該紡績糸を用いて必要に応じて布帛とした後、染色加工などの熱処理を施すことによりらせん状の捲縮を発現させるとよい。   Moreover, in such spun yarn, it is preferable that the composite staple fiber contained in the spun yarn expresses latent crimps. As a method for expressing such latent crimps, it is preferable to develop spiral crimps by applying a heat treatment such as dyeing after forming a fabric as needed using the spun yarn as described below.

次に、本発明の布帛は前記の紡績糸を含む布帛である。その際、前記紡績糸の機能を発現させる上で、前記紡績糸の布帛全重量に対する割合として10重量%以上であることが好ましく、25重量%〜70重量%であることがさらに好ましい。該紡績糸の含有率が10重量%以上であれば、優れた通気性を有しながら、混合する他素材の、特長、風合いを活かした布帛を得ることができる。   Next, the fabric of the present invention is a fabric including the spun yarn. In that case, in order to express the function of the spun yarn, the ratio of the spun yarn to the total weight of the fabric is preferably 10% by weight or more, and more preferably 25% by weight to 70% by weight. When the content of the spun yarn is 10% by weight or more, it is possible to obtain a fabric that takes advantage of the characteristics and texture of other materials to be mixed while having excellent air permeability.

なお、布帛が前記紡績糸と他の繊維とで構成される場合、かかる他の繊維としては特に限定されず、ポリエチレンタレフタレート、ポリトリメチレンテレフタレート、ポリブチレンテレフタレート等のポリエステル、ナイロン6、ナイロン66等のポリアミド、ポリエチレン、ポリプロピレン等のポリオレフィン、アクリル、パラ型もしくはメタ型アラミド、およびそれらの変性合成繊維、さらには、綿、羊毛、麻、絹などの天然繊維、レーヨン、キュプラなどの再生繊維、半合成繊維など衣料に適した繊維であれば自由に選択できる。   When the fabric is composed of the spun yarn and other fibers, the other fibers are not particularly limited, and are polyester such as polyethylene terephthalate, polytrimethylene terephthalate, polybutylene terephthalate, nylon 6, nylon 66, and the like. Polyamide such as polyethylene, polyolefin such as polyethylene, polypropylene, acrylic, para-type or meta-type aramid, and modified synthetic fibers thereof, further natural fibers such as cotton, wool, hemp, silk, regenerated fibers such as rayon and cupra, Any fiber suitable for clothing such as semi-synthetic fiber can be freely selected.

本発明の布帛に、前記の紡績糸と他の繊維が含まれる場合、両者は各々単独糸条で織編物を構成してもよいし、空気混繊糸、合撚糸、複合仮撚捲縮加工糸、引揃え糸などの複合糸として布帛を構成してもよい。 その他には精紡交撚糸、コンパクトヤーン、コアスパンヤーン、各種意匠糸としてもよい。各種フィラメント糸との複合糸としても好都合に使用できる。   When the above-mentioned spun yarn and other fibers are contained in the fabric of the present invention, they may each constitute a woven or knitted fabric with a single yarn, air mixed yarn, mixed twisted yarn, composite false twist crimped processing You may comprise a fabric as composite yarns, such as a thread | yarn and a draw yarn. In addition, fine spinning and twisting yarn, compact yarn, core spun yarn, and various design yarns may be used. It can also be conveniently used as a composite yarn with various filament yarns.

本発明の布帛の構造としては、その織編組織、層数は特に限定されるものではない。例えば、平織、綾織、サテンなどの織組織や、天竺、スムース、フライス、鹿の子、そえ糸編、デンビー、ハーフなどの編組織が好適に例示されるが、これらに限定されるものではない。層数も単層でもよいし、2層以上の多層であってもよい。   As the structure of the fabric of the present invention, the weaving and knitting structure and the number of layers are not particularly limited. For example, woven structures such as plain weave, twill weave, and satin, and knitted structures such as tenshi, smooth, milling, kanoko, knitting yarn, denby, and half are preferably exemplified, but not limited thereto. The number of layers may be a single layer or a multilayer of two or more layers.

本発明の布帛は、例えば、下記の製造方法により製造することができる。まず、前記紡績糸を単独で用いるか、必要に応じて他の繊維も同時に用いて布帛を織編成した後、染色加工などの熱処理により、前記紡績糸に含まれる複合短繊維の捲縮を発現させる。ここで、布帛の織編組織は特に限定されず、前述のものを適宜選定することができる。   The fabric of this invention can be manufactured with the following manufacturing method, for example. First, the spun yarn is used alone or, if necessary, other fabrics are used at the same time, and the fabric is knitted. Let Here, the woven or knitted structure of the fabric is not particularly limited, and the above-described one can be selected as appropriate.

染色加工の温度としては100〜140℃(より好ましくは110〜135℃)、時間としてはトップ温度のキープ時間が5〜40分の範囲内であることが好ましい。かかる条件で、布帛に染色加工を施すことにより、前記複合短繊維は、ポリエステル成分とポリアミド成分との熱収縮差により捲縮を発現する。その際、ポリエステル成分とポリアミド成分として、前述のポリマーを選定することにより、ポリアミド成分が捲縮の内側に位置する捲縮構造となる。   The dyeing temperature is preferably 100 to 140 ° C. (more preferably 110 to 135 ° C.), and the time is preferably the top temperature keeping time within a range of 5 to 40 minutes. By subjecting the fabric to a dyeing process under such conditions, the composite short fiber develops crimp due to a difference in thermal shrinkage between the polyester component and the polyamide component. At that time, by selecting the above-mentioned polymer as the polyester component and the polyamide component, a crimped structure is obtained in which the polyamide component is located inside the crimp.

染色加工が施された布帛には、通常、乾熱ファイナルセットが施される。その際、乾熱ファイナルセットの温度としては120〜200℃(より好ましくは140〜180℃)、時間としては1〜3分の範囲内であることが好ましい。かかる、乾熱ファイナルセットの温度が120℃よりも低いと、染色加工時に発生したシワが残り易く、また、仕上がり製品の寸法安定性が悪くなるおそれがある。逆に、該乾熱ファイナルセットの温度が200℃よりも高いと、染色加工の際に発現した複合短繊維の捲縮が低下したり、繊維が硬化し生地の風合いが硬くなるおそれがある。   The fabric subjected to the dyeing process is usually subjected to a dry heat final set. At that time, the temperature of the dry heat final set is preferably 120 to 200 ° C. (more preferably 140 to 180 ° C.), and the time is preferably within a range of 1 to 3 minutes. When the temperature of the dry heat final set is lower than 120 ° C., wrinkles generated during the dyeing process are likely to remain, and the dimensional stability of the finished product may be deteriorated. On the other hand, if the temperature of the dry heat final set is higher than 200 ° C., the crimp of the composite short fiber developed during the dyeing process may be reduced, or the fiber may be cured and the texture of the fabric may be hardened.

また、かかる布帛に吸水加工を施すことが好ましい。布帛に吸水加工を施すことにより、少量の汗でも通気性が向上しやすくなる。かかる吸水加工としては特に限定されず、ポリエチレングリコールジアクリレートやその誘導体、または、ポリエチレンテレフタレート−ポリエチレングリコール共重合体などの吸水加工剤を布帛に、布帛の重量に対して0.25〜0.50重量%付着させることが好ましく例示される。吸水加工の方法としては、例えば染色加工時に染液に吸水加工剤を混合する浴中加工法や、乾熱ファイナルセット前に、布帛を吸水加工液中にデイッピングしマングルで絞る方法、グラビヤコーテング法、スクリーンプリント法といった塗布による加工方法等が例示される。   Moreover, it is preferable to water-absorb the fabric. By subjecting the fabric to water absorption, the air permeability is easily improved even with a small amount of sweat. Such water-absorbing processing is not particularly limited, and a water-absorbing processing agent such as polyethylene glycol diacrylate or a derivative thereof, or polyethylene terephthalate-polyethylene glycol copolymer is applied to the fabric in an amount of 0.25 to 0.50 based on the weight of the fabric. Preferably it is made to adhere by weight%. Water absorption processing methods include, for example, a bath processing method in which a water absorption processing agent is mixed with a dye solution during dyeing processing, a method in which a fabric is dipped in a water absorption processing solution and squeezed with a mangle before a dry heat final set, a gravure coating method And a processing method by coating such as a screen printing method.

なお、本発明の布帛には、前記の加工以外に、常法の起毛加工、紫外線遮蔽あるいは抗菌剤、消臭剤、防虫剤、蓄光剤、再帰反射剤、マイナスイオン発生剤、撥水剤等の機能を付与する各種加工を付加適用してもよい。   In addition to the above-mentioned processing, the fabric of the present invention includes conventional brushing processing, ultraviolet shielding or antibacterial agent, deodorant, insect repellent, phosphorescent agent, retroreflective agent, negative ion generator, water repellent, etc. Various processings that provide the above function may be additionally applied.

かくして得られた布帛において、布帛に含まれる紡績糸を構成する複合短繊維の捲縮率が、湿潤時に性能良く小さくなるため、みかけ糸長が長くなる。一方、該紡績糸を構成する、複合短繊維以外の繊維は糸長が長くならない。その結果、紡績糸は糸長をあまり変えることなく、紡績糸中に空隙が増えるため、布帛の通気性が向上する。一方、乾燥時には複合短繊維の捲縮率が大きくなるため、複合繊維のみかけ糸長が短くなり、その結果、紡績糸中の空隙が小さくなり布帛の通気性が低下する。このような作用効果により、湿潤時に布帛の寸法を大きく変化させることなく、湿潤時における布帛の通気性を乾燥時よりも可逆的に向上させることが可能となる。   In the fabric thus obtained, the crimp rate of the composite short fiber constituting the spun yarn contained in the fabric is reduced with good performance when wet, so that the apparent yarn length becomes longer. On the other hand, the yarn length other than the composite short fibers constituting the spun yarn does not increase. As a result, since the spun yarn does not change the yarn length so much and voids increase in the spun yarn, the air permeability of the fabric is improved. On the other hand, since the crimp rate of the composite short fiber increases during drying, the apparent yarn length of the composite fiber is shortened. As a result, the gap in the spun yarn is reduced and the air permeability of the fabric is lowered. By such an effect, it is possible to reversibly improve the breathability of the fabric when wet without significantly changing the size of the fabric when wet.

その際、下記式で定義する通気度変化率が10%以上(より好ましくは10〜200%)であることが好ましい。
通気度変化率(%)=((湿潤時の通気度)−(乾燥時の通気度))/(乾燥時の通気度)×100
In that case, it is preferable that the air permeability change rate defined by the following formula is 10% or more (more preferably 10 to 200%).
Air permeability change rate (%) = ((wet air permeability) − (dry air permeability)) / (dry air permeability) × 100

ただし乾燥時とは、試料を温度20℃、湿度65%RH環境下に24時間放置した後の状態であり、湿潤時とは、温度20℃の水を試料に乾燥時の試料重量対比50重量%吸水させた状態であり、通気度は、JIS L 1096−1998 6.27.1 A(フラジール型通気性試験機法)により測定するものとする。   However, when dry, the sample is left for 24 hours in an environment of temperature 20 ° C. and humidity 65% RH, and when wet, water at a temperature of 20 ° C. is 50 wt. The air permeability is measured according to JIS L 1096-1998 6.27.1 A (Fragile type air permeability tester method).

また、下記式で定義する寸法変化率がタテ方向、ヨコ方向ともに−5〜5%の範囲内であることが好ましい。
タテ寸法変化率(%)=((湿潤時のタテ寸法)−(乾燥時のタテ寸法))/(乾燥時のタテ寸法)×100
ヨコ寸法変化率(%)=((湿潤時のヨコ寸法)−(乾燥時のヨコ寸法))/(乾燥時のヨコ寸法)×100
Moreover, it is preferable that the dimensional change rate defined by the following formula is in the range of −5 to 5% in both the vertical and horizontal directions.
Vertical dimension change rate (%) = ((vertical dimension when wet) − (vertical dimension when dry)) / (vertical dimension when dry) × 100
Horizontal dimensional change rate (%) = ((weft horizontal dimension) − (horizontal dimension when dried)) / (horizontal dimension when dried) × 100

ただし、布帛を温度20℃、湿度65%RH環境下に24時間放置した後、布帛と同じ方向にタテ200mm、ヨコ150mmのサイズで試料を採取することにより乾燥時の寸法とし、次いで、該試料に、温度20℃の水を乾燥時の試料重量対比50重量%吸水させた後、湿潤時の寸法を測定するものとする。
なお、本発明の布帛において、着心地や通気性確保の面から、布帛の目付けは300g/m以下(より好ましくは100〜250g/m)であることが好ましい。
However, after allowing the fabric to stand in an environment of temperature 20 ° C. and humidity 65% RH for 24 hours, a sample is taken in the same direction as the fabric in a length of 200 mm and a width of 150 mm to obtain a dry size. Next, water at a temperature of 20 ° C. is absorbed by 50% by weight relative to the weight of the sample at the time of drying, and then the dimension when wet is measured.
In the fabric of the present invention, the basis weight of the fabric is preferably 300 g / m 2 or less (more preferably 100 to 250 g / m 2 ) in terms of comfort and air permeability.

次に、本発明の繊維製品は、前記の紡績糸または前記の布帛を用いてなる、スポーツウエアー、アウターウエアー、インナーウエアー、紳士衣料、婦人衣料、医療用衣料、介護用衣料、浴衣、作業衣、裏地、履物、鞄、帽子、手袋、靴下、寝具、支持帯、カーシート、サポーター、スキンケア用具、化粧用具からなる群より選択されるいずれかの繊維製品である。   Next, the textile product of the present invention is a sportswear, an outerwear, an innerwear, a men's clothing, a women's clothing, a medical clothing, a nursing clothing, a yukata, a working clothing, using the spun yarn or the fabric. , Lining, footwear, heels, hats, gloves, socks, bedding, support belts, car seats, supporters, skin care tools, and cosmetics.

かかる繊維製品は前記の紡績糸または前記の布帛を用いているので、湿潤時に寸法を大きく変化させることなく、湿潤時における通気性を乾燥時よりも可逆的に向上させることが可能となる。   Since such a fiber product uses the spun yarn or the fabric, it is possible to reversibly improve the air permeability at the time of drying compared with the time of drying without greatly changing the size at the time of wetting.

次に本発明の実施例及び比較例を詳述するが、本発明はこれらによって限定されるものではない。なお、実施例中の各測定項目は下記の方法で測定した。   Next, although the Example and comparative example of this invention are explained in full detail, this invention is not limited by these. In addition, each measurement item in an Example was measured with the following method.

<ポリエステルの固有粘度>
オルソクロロフェノールを溶媒として使用し、温度35℃で測定した。
<Intrinsic viscosity of polyester>
Orthochlorophenol was used as a solvent and measured at a temperature of 35 ° C.

<ポリアミドの固有粘度>
m−クレゾールを溶媒として使用し、温度30℃で測定した。
<Intrinsic viscosity of polyamide>
m-cresol was used as a solvent and measured at a temperature of 30 ° C.

<破断強度、破断伸度>
繊維試料を、雰囲気温度25℃、湿度60%RH環境下に一昼夜放置した後、サンプル長さ100mmで引張試験機にセットし、200mm/minの速度で伸長し、破断時の強度(cN/dtex)、伸度(%)を求めた。
<Breaking strength, breaking elongation>
The fiber sample was left in an atmosphere of 25 ° C. and a humidity of 60% RH for one day, then set in a tensile tester with a sample length of 100 mm, stretched at a speed of 200 mm / min, and the strength at break (cN / dtex). ), Elongation (%) was determined.

<複合短繊維の捲縮数、捲縮率および残留捲縮率>
JIS L 1015 に従って測定した。
<The number of crimps of the composite short fiber, the crimp rate and the residual crimp rate>
It measured according to JISL1015.

<通気度変化率>
乾燥時の通気度と湿潤時の通気度を測定し(n数=5)、その平均値を求めたのち、下記の計算式により通気度変化率をもとめた。
通気度変化率(%)=((湿潤時の通気度)−(乾燥時の通気度))/(乾燥時の通気度)×100
ただし乾燥時とは、試料を温度20℃、湿度65%RH環境下に24時間放置した後の状態であり、湿潤時とは、温度20℃の水を試料に乾燥時の試料重量対比50重量%吸水させた状態であり、通気度は、JIS L 1096−1998 6.27.1 A(フラジール型通気性試験機法)により測定した。
<Air permeability change rate>
The air permeability during drying and the air permeability during wetness were measured (n number = 5), and the average value was obtained. Then, the rate of change in air permeability was determined by the following formula.
Air permeability change rate (%) = ((wet air permeability) − (dry air permeability)) / (dry air permeability) × 100
However, when dry, the sample is left for 24 hours in an environment of temperature 20 ° C. and humidity 65% RH, and when wet, water at a temperature of 20 ° C. is 50 wt. The air permeability was measured according to JIS L 1096-1998 6.27.1 A (Fragile type air permeability tester method).

<寸法変化率>
タテ方向の寸法変化率とヨコ方向の寸法変化率を、下記式によりもとめた。
タテ寸法変化率(%)=((湿潤時のタテ寸法)−(乾燥時のタテ寸法))/(乾燥時のタテ寸法)×100
ヨコ寸法変化率(%)=((湿潤時のヨコ寸法)−(乾燥時のヨコ寸法))/(乾燥時のヨコ寸法)×100
ただし、布帛を温度20℃、湿度65%RH環境下に24時間放置した後、布帛と同じ方向にタテ200mm、ヨコ150mmのサイズで試料を採取することにより乾燥時の寸法とし、次いで、該試料に、温度20℃の水を乾燥時の試料重量対比50重量%吸水させた後、湿潤時の寸法を測定するものとする。
<Dimensional change rate>
The dimensional change rate in the vertical direction and the dimensional change rate in the horizontal direction were determined by the following formula.
Vertical dimension change rate (%) = ((vertical dimension when wet) − (vertical dimension when dry)) / (vertical dimension when dry) × 100
Horizontal dimensional change rate (%) = ((weft horizontal dimension) − (horizontal dimension when dried)) / (horizontal dimension when dried) × 100
However, after allowing the fabric to stand in an environment of temperature 20 ° C. and humidity 65% RH for 24 hours, a sample is taken in the same direction as the fabric in a length of 200 mm and a width of 150 mm to obtain a dry size. Next, water at a temperature of 20 ° C. is absorbed by 50% by weight relative to the weight of the sample at the time of drying, and then the dimension when wet is measured.

[実施例1]
固有粘度[η]が1.3のナイロン6と、固有粘度[η]が0.39で2.6モル%の5−ナトリウムスルフォイソフタル酸を共重合させた変性ポリエチレンテレフタレートとをそれぞれ270℃、290℃にて溶融し、特開2000−144518号公報の図1と同様の複合紡糸口金を用い、それぞれ12.7g/分の吐出量にて押し出し、図1(イ)の単糸横断面形状を有するサイドバイサイド型複合繊維を形成させ、冷却固化、油剤を付与した後、糸条を速度1000m/分、温度60℃の予熱ローラーにて予熱し、ついで、該予熱ローラーと、速度3050m/分、温度150℃に加熱された加熱ローラー間で延伸熱処理を行い、巻取り、84dtex/24filの複合繊維を得た。該複合繊維において、破断強度3.4cN/dtex、破断伸度40%であった。
[Example 1]
Nylon 6 having an intrinsic viscosity [η] of 1.3 and modified polyethylene terephthalate copolymerized with 2.6 mol% of 5-sodium sulfoisophthalic acid having an intrinsic viscosity [η] of 0.39 are each 270 ° C. The melt was melted at 290 ° C. and extruded at a discharge rate of 12.7 g / min using a composite spinneret similar to that shown in FIG. 1 of JP-A No. 2000-144518. After forming a side-by-side type composite fiber having a shape, cooling and solidifying and applying an oil agent, the yarn is preheated with a preheating roller at a speed of 1000 m / min and a temperature of 60 ° C., and then the preheating roller and a speed of 3050 m / min. Then, a drawing heat treatment was performed between heating rollers heated to a temperature of 150 ° C., and winding was performed to obtain 84 dtex / 24 fil composite fiber. The composite fiber had a breaking strength of 3.4 cN / dtex and a breaking elongation of 40%.

次いで、前記の84dtex/24filの複合繊維(沸水処理されておらず、捲縮は発現していない。)を集束してトウを作製し、長繊維表面の油剤を除去したのち、紡績油剤を0.3%付着させ、70℃でスチームセットを行った。その後、押し込み式機械捲縮加工を行い、再度120℃で熱セットを行い、繊維長を38mmにカットして捲縮複合短繊維を得た。該捲縮複合短繊維の捲縮数は13.4個/25mm、捲縮率は13.9%、残留捲縮率は12.8%であった。
次いで、この得られた捲縮複合短繊維と、公知のレーヨン繊維の混用率を(捲縮複合短繊維:レーヨン繊維)30重量%:70重量%の比率で混合し、公知の紡績工程である、梳綿工程、精梳綿工程、練条工程、粗紡工程、精紡工程、捲糸工程にて紡績し、英式綿番手40番手の紡績糸を得た。
Next, the 84 dtex / 24 fil composite fiber (not treated with boiling water and not crimped) was collected to produce a tow, and after removing the oil on the surface of the long fiber, the spinning oil was changed to 0. 3% adhered and steam set at 70 ° C. Thereafter, push-type mechanical crimping was performed, heat setting was performed again at 120 ° C., and the fiber length was cut to 38 mm to obtain crimped composite short fibers. The number of crimps of the crimped composite short fiber was 13.4 / 25 mm, the crimp rate was 13.9%, and the residual crimp rate was 12.8%.
Next, the obtained crimped composite short fiber and a known rayon fiber are mixed at a ratio of 30% by weight: 70% by weight (crimped composite short fiber: rayon fiber), which is a known spinning process. Spinning process, spinning process, spinning process, roving process, spinning process, spinning process, and spinning process were carried out to obtain spun yarn with 40th English cotton count.

この紡績糸だけを用いて38インチ×24Gの両面丸編機に仕掛けて両面編地を得た。そして、該編地を、温度130℃、キープ時間15分で染色加工し、複合短繊維の潜在捲縮性能を顕在化させた。その際、吸水加工剤(ポリエチレンテレフタレート−ポリエチレングリコール共重合体)を染液に対して2ml/lの割合にて、染色加工時に同浴処理を行うことにより、編物に吸水加工剤を付与した。次いで、該編地に、温度160℃、時間1分で乾熱ファイナルセットを施した。
得られた編地において、目付けが184g/m、通気度変化率が71%と通気性が大きく向上した。また、寸法変化率はタテ方向で−1.3%、ヨコ方向で1.4%であった。
かかる編地を用いて肌着(シャツ)を縫製し、着用したところ、吸汗時にあまり寸法変化することなく通気性が向上した。また、ナチュラルな外観、非常に柔らかい風合いを有しており、吸汗性、冷感性に優れ、非常に着用快適性に優れていた。
A double-sided knitted fabric was obtained by using only this spun yarn and setting it on a 38 inch × 24 G double-sided circular knitting machine. The knitted fabric was dyed at a temperature of 130 ° C. and a keeping time of 15 minutes to reveal the latent crimp performance of the composite short fibers. At that time, the water-absorbing processing agent (polyethylene terephthalate-polyethylene glycol copolymer) was applied to the knitted fabric at the rate of 2 ml / l, and the water-absorbing processing agent was imparted to the knitted fabric. Next, a dry heat final set was applied to the knitted fabric at a temperature of 160 ° C. for 1 minute.
In the obtained knitted fabric, the weight per unit area was 184 g / m 2 , the air permeability change rate was 71%, and the air permeability was greatly improved. The dimensional change rate was −1.3% in the vertical direction and 1.4% in the horizontal direction.
When an underwear (shirt) was sewed and worn using such a knitted fabric, the air permeability improved without much dimensional change during sweat absorption. Moreover, it had a natural appearance and a very soft texture, was excellent in sweat absorption and cooling sensation, and very comfortable in wearing.

[実施例2]
実施例1において、レーヨン繊維にかえて公知の綿繊維を用いること以外は実施例1と同様にした。
得られた編地において、目付けが205g/m、通気度変化率が80%と通気性が大きく向上した。また、寸法変化率はタテ方向で−0.4%、ヨコ方向で−0.7%であった。
かかる編地を用いて肌着(シャツ)を縫製し、着用したところ、吸汗時にあまり寸法変化することなく通気性が向上した。また、ナチュラルな外観、柔らかい風合いを有しており、吸汗性、吸湿性に優れ、非常に着用快適性に優れていた。
[Example 2]
In Example 1, it carried out similarly to Example 1 except using a well-known cotton fiber instead of a rayon fiber.
In the obtained knitted fabric, the weight per unit area was 205 g / m 2 , the air permeability change rate was 80%, and the air permeability was greatly improved. Further, the dimensional change rate was −0.4% in the vertical direction and −0.7% in the horizontal direction.
When an underwear (shirt) was sewed and worn using such a knitted fabric, the air permeability improved without much dimensional change during sweat absorption. Moreover, it had a natural appearance and a soft texture, was excellent in sweat absorption and moisture absorption, and was very excellent in wearing comfort.

[実施例3]
実施例1において、レーヨン繊維にかえて公知のアクリル短繊維を用いること以外は実施例1と同様にした。
得られた編地において、目付けが191g/m、通気度変化率が53%と通気性が向上した。また、寸法変化率はタテ方向−0.7%、ヨコ方向−0.7%であった。
かかる編地を用いて肌着(シャツ)を縫製し、着用したところ、吸汗時にあまり寸法変化することなく通気性が向上した。また、軽量で、柔らかい風合いを有しており、吸汗性、保温性が良く、非常に着用快適性に優れていた。
[Example 3]
In Example 1, it carried out similarly to Example 1 except using a well-known acrylic short fiber instead of a rayon fiber.
In the obtained knitted fabric, the weight per unit area was 191 g / m 2 , the air permeability change rate was 53%, and the air permeability was improved. The dimensional change rate was -0.7% in the vertical direction and -0.7% in the horizontal direction.
When an underwear (shirt) was sewed and worn using such a knitted fabric, the air permeability improved without much dimensional change during sweat absorption. In addition, it was lightweight and had a soft texture, good sweat absorption and heat retention, and was very comfortable to wear.

[比較例1]
実施例1において、公知のレーヨン繊維だけで紡績糸を構成する(レーヨン繊維混用率100重量%)こと以外は、実施例1と同様にした。
得られた編地において、目付けが190g/m、通気度変化率が−12%と通気性が悪化した。また、寸法変化率はタテ方向−2.9%、ヨコ方向−6.7%であった。
かかる編地を用いて肌着(シャツ)を縫製し、着用したところ、柔らかい風合いを有しており、吸汗性は良いが、発汗時に通気性、乾燥性が悪く、ムレやべとつきがあった。
[Comparative Example 1]
In Example 1, it was carried out similarly to Example 1 except comprising a spun yarn only with a well-known rayon fiber (rayon fiber mixing rate 100 weight%).
In the obtained knitted fabric, the weight per unit area was 190 g / m 2 , and the air permeability change rate was −12%. Further, the dimensional change rate was -2.9% in the vertical direction and -6.7% in the horizontal direction.
When an underwear (shirt) was sewed and worn using such a knitted fabric, it had a soft texture and good sweat absorption, but the breathability and dryness were poor when sweating, and there was swelling and stickiness.

[比較例2]
実施例2において、公知の綿繊維だけで紡績糸を構成する(綿繊維混用率100重量%)こと以外は、実施例2と同様にした。
得られた編地において、目付けが195g/m、通気度変化率が6%と通気性がほとんど向上しなかった。また、寸法変化率はタテ方向−0.7%、ヨコ方向−0.7%であった。
かかる編地を用いて肌着(シャツ)を縫製し、着用したところ、柔らかい風合いを有していたが、発汗時に通気性、乾燥性が悪く、ムレやべとつきがあった。
[Comparative Example 2]
In Example 2, the same procedure as in Example 2 was performed except that the spun yarn was composed of only known cotton fibers (cotton fiber mixture ratio: 100% by weight).
In the obtained knitted fabric, the basis weight was 195 g / m 2 , the air permeability change rate was 6%, and the air permeability was hardly improved. The dimensional change rate was -0.7% in the vertical direction and -0.7% in the horizontal direction.
When an underwear (shirt) was sewed and worn using such a knitted fabric, it had a soft texture, but when breathing, the breathability and dryness were poor, and there was stuffiness and stickiness.

[比較例3]
実施例3において、公知のアクリル短繊維だけで紡績糸を構成する(アクリル短繊維混用率100重量%)こと以外は、実施例3と同様にした。
得られた編地において、目付けが175g/m2、通気度変化率が6%と通気性がほとんど向上しなかった。また、寸法変化率はタテ方向−1.3%、ヨコ方向−2.2%であった。
かかる編地を用いて肌着(シャツ)を縫製し、着用したところ、軽量で柔らかい風合いを有しているが、吸汗性、通気性が悪く、発汗時にムレやべとつき感があった。
[Comparative Example 3]
Example 3 was the same as Example 3 except that the spun yarn was composed only of known acrylic short fibers (acrylic short fiber mixture ratio: 100% by weight).
In the obtained knitted fabric, the basis weight was 175 g / m 2 , the air permeability change rate was 6%, and the air permeability was hardly improved. The rate of dimensional change was -1.3% in the vertical direction and -2.2% in the horizontal direction.
When an underwear (shirt) was sewed and worn using such a knitted fabric, it had a light and soft texture, but was poor in sweat absorption and breathability, and had a feeling of stuffiness and stickiness when sweating.

[比較例4]
実施例1において、紡績にかえて、84dtex/24filの複合繊維(長繊維)だけを使用して、38インチ×28Gの両面丸編機に仕掛けて両面編地を得ること以外は実施例1と同様にした。
得られた編地において、目付けが189g/m、通気度変化率が301%と通気性が大きく向上した。また、寸法変化率はタテ方向で12.0%、ヨコ方向で−8.9%と、大きく寸法が変化した。
かかる編地を用いてシャツを縫製し、着用したところ、通気性、乾燥性は良いが、編地の寸法変化が大きかった。また、生地に膨らみがなく、風合い、肌触りは満足のいくものではなかった。
[Comparative Example 4]
Example 1 is the same as Example 1 except that instead of spinning, only a 84 dtex / 24 fil composite fiber (long fiber) is used and a double-sided knitted machine of 38 inches × 28 G is set to obtain a double-sided knitted fabric. The same was done.
In the obtained knitted fabric, the weight per unit area was 189 g / m 2 , the air permeability change rate was 301%, and the air permeability was greatly improved. The dimensional change rate was 12.0% in the vertical direction and -8.9% in the horizontal direction, and the dimensions changed greatly.
When a shirt was sewn and worn using such a knitted fabric, breathability and drying were good, but the dimensional change of the knitted fabric was large. In addition, the dough did not swell and the texture and feel were not satisfactory.

本発明によれば、湿潤時に布帛の寸法を大きく変化させることなく、湿潤時における布帛の通気性を乾燥時よりも可逆的に向上させることが可能な布帛を得ることができる紡績糸、および該紡績糸を用いてなる、布帛および繊維製品が提供され、その工業的価値は極めて大である。   According to the present invention, a spun yarn capable of obtaining a fabric capable of reversibly improving the breathability of the fabric when wet without remarkably changing the size of the fabric when wet, and Fabrics and textile products using spun yarn are provided, and their industrial value is extremely large.

Claims (7)

ポリエステル成分とポリアミド成分とがサイドバイサイド型に接合された複合短繊維と、該複合短繊維以外の、レーヨン繊維または綿繊維またはアクリル短繊維とを10:90〜90:10の範囲内で含む紡績糸を含み、かつ吸水加工を施してなることを特徴とする布帛。 A spun yarn comprising a composite short fiber in which a polyester component and a polyamide component are bonded side-by-side, and rayon fiber, cotton fiber, or acrylic short fiber other than the composite short fiber in a range of 10:90 to 90:10 And a water-absorbing process. 前記ポリエステル成分が、5−ナトリウムスルホイソフタル酸が2.0〜4.5モル%共重合された変性ポリエステルからなる、請求項1に記載の布帛。   The fabric according to claim 1, wherein the polyester component is a modified polyester obtained by copolymerizing 2.0 to 4.5 mol% of 5-sodium sulfoisophthalic acid. 下記式で定義する通気度変化率が10%以上である、請求項1または請求項2に記載の布帛。
通気度変化率(%)=((湿潤時の通気度)−(乾燥時の通気度))/(乾燥時の通気度)×100
ただし乾燥時とは、試料を温度20℃、湿度65%RH環境下に24時間放置した後の状態であり、湿潤時とは、温度20℃の水を試料に乾燥時の試料重量対比50重量%吸水させた状態であり、通気度は、JIS L 1096−1998 6.27.1 A(フラジール型通気性試験機法)により測定するものとする。
The fabric according to claim 1 or 2, wherein an air permeability change rate defined by the following formula is 10% or more.
Air permeability change rate (%) = ((wet air permeability) − (dry air permeability)) / (dry air permeability) × 100
However, when dry, the sample is left for 24 hours in an environment of temperature 20 ° C. and humidity 65% RH, and when wet, water at a temperature of 20 ° C. is 50 wt. The air permeability is measured according to JIS L 1096-1998 6.27.1 A (Fragile type air permeability tester method).
下記式で定義する寸法変化率がタテ方向、ヨコ方向ともに−5〜5%の範囲内である、請求項1〜3のいずれかに記載の布帛。
タテ寸法変化率(%)=((湿潤時のタテ寸法)−(乾燥時のタテ寸法))/(乾燥時のタテ寸法)×100
ヨコ寸法変化率(%)=((湿潤時のヨコ寸法)−(乾燥時のヨコ寸法))/(乾燥時のヨコ寸法)×100
ただし、布帛を温度20℃、湿度65%RH環境下に24時間放置した後、布帛と同じ方向にタテ200mm、ヨコ150mmのサイズで試料を採取することにより乾燥時の寸法とし、次いで、該試料に、温度20℃の水を乾燥時の試料重量対比50重量%吸水させた後、湿潤時の寸法を測定するものとする。
The fabric according to any one of claims 1 to 3, wherein a dimensional change rate defined by the following formula is in the range of -5 to 5% in both the vertical and horizontal directions.
Vertical dimension change rate (%) = ((vertical dimension when wet) − (vertical dimension when dry)) / (vertical dimension when dry) × 100
Horizontal dimensional change rate (%) = ((weft horizontal dimension) − (horizontal dimension when dried)) / (horizontal dimension when dried) × 100
However, after allowing the fabric to stand in an environment of temperature 20 ° C. and humidity 65% RH for 24 hours, a sample is taken in the same direction as the fabric in a length of 200 mm and a width of 150 mm to obtain a dry size. Next, water at a temperature of 20 ° C. is absorbed by 50% by weight relative to the weight of the sample at the time of drying, and then the dimension when wet is measured.
前記複合短繊維において、単繊維繊度が0.8〜5dtexの範囲内である、請求項1〜4のいずれかに記載の布帛。   The fabric according to any one of claims 1 to 4, wherein the composite short fiber has a single fiber fineness in a range of 0.8 to 5 dtex. 前記複合短繊維において、繊維長が30〜160mmの範囲内である、請求項1〜5のいずれかに記載の布帛。   The fabric according to any one of claims 1 to 5, wherein the composite short fiber has a fiber length in a range of 30 to 160 mm. 請求項1〜6のいずれかに記載の布帛を用いてなる、スポーツウエアー、アウターウエアー、インナーウエアー、紳士衣料、婦人衣料、医療用衣料、介護用衣料、浴衣、作業衣、裏地、履物、鞄、帽子、手袋、靴下、寝具、支持帯、カーシート、サポーター、スキンケア用具、化粧用具からなる群より選択されるいずれかの繊維製品。   Sportswear, outerwear, innerwear, men's clothing, women's clothing, medical clothing, nursing clothing, yukata, work clothing, lining, footwear, heels, comprising the fabric according to any one of claims 1 to 6. , Any textile product selected from the group consisting of hats, gloves, socks, bedding, support bands, car seats, supporters, skin care tools, and cosmetic tools.
JP2010233710A 2010-10-18 2010-10-18 Fabrics and textile products Active JP5881284B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010233710A JP5881284B2 (en) 2010-10-18 2010-10-18 Fabrics and textile products

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010233710A JP5881284B2 (en) 2010-10-18 2010-10-18 Fabrics and textile products

Publications (2)

Publication Number Publication Date
JP2012087427A JP2012087427A (en) 2012-05-10
JP5881284B2 true JP5881284B2 (en) 2016-03-09

Family

ID=46259355

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010233710A Active JP5881284B2 (en) 2010-10-18 2010-10-18 Fabrics and textile products

Country Status (1)

Country Link
JP (1) JP5881284B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2703347T3 (en) * 2014-09-03 2019-03-08 Teijin Ltd Fabric and textile product
JP6449616B2 (en) * 2014-10-23 2019-01-09 帝人株式会社 Fabric and textile product and method for treating fabric
CA2989988C (en) 2015-08-31 2023-08-29 Teijin Frontier Co., Ltd. Cloth and fibrous product
KR101594290B1 (en) * 2015-11-16 2016-02-16 티씨케이텍스타일 주식회사 Stretch fabric comprising polyester latent crimp staple fiber and preparation method thereof
JP7434881B2 (en) 2019-12-23 2024-02-21 東レ株式会社 ventilation variable fabric

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5172614A (en) * 1974-12-21 1976-06-23 Teijin Ltd KASADAKASHINSHUKUSEIBOSEKISHINO SEIZOHOHO
JP2752367B2 (en) * 1988-04-13 1998-05-18 株式会社クラレ Composite woven / knitted fabric
JPH0376818A (en) * 1989-08-17 1991-04-02 Teijin Ltd Polyamide/polyester two-component fiber and its production
JP2801333B2 (en) * 1990-01-18 1998-09-21 帝人株式会社 Fiber structure
JP3157644B2 (en) * 1993-03-23 2001-04-16 株式会社クラレ Humidity-controlling fiber and method for producing the same
JP4414851B2 (en) * 2004-09-28 2010-02-10 帝人ファイバー株式会社 Woven knitted fabrics and textile products that improve air permeability when wet
JP2003041462A (en) * 2001-07-24 2003-02-13 Teijin Ltd Woven/knitted fabric with air self-regulating permeability function
JP2007031926A (en) * 2005-06-21 2007-02-08 Toray Ind Inc Woven fabric of polyamide/polyester conjugate fiber and method for producing the same
JP5188747B2 (en) * 2007-05-16 2013-04-24 ユニチカトレーディング株式会社 Cool-sensitive fabric

Also Published As

Publication number Publication date
JP2012087427A (en) 2012-05-10

Similar Documents

Publication Publication Date Title
JP6577589B2 (en) Fabrics and textile products
EP1803844B1 (en) Woven or knit fabric containing crimped composite fiber having its air permeability enhanced by water wetting and relevant clothing
CA2579211C (en) Crimped filament-containing woven or knitted fabric manifesting roughness upon wetting with water, process for producing the same and textile products made therefrom
JP2003041462A (en) Woven/knitted fabric with air self-regulating permeability function
JP2006118062A (en) Woven/knitted fabric reducing its porosity when wetted, and method for producing the same, and related textile product
JP4414851B2 (en) Woven knitted fabrics and textile products that improve air permeability when wet
TW201807275A (en) Yarn, fabric, and fiber product
JP5881284B2 (en) Fabrics and textile products
JP2006264309A (en) Multilayer structure varying in three-dimentional structure by absorbing water and textile product
JP5433259B2 (en) Composite spun yarn, production method thereof, and fabric using the composite spun yarn
JP2009024272A (en) Knitted fabric and fibrous product excellent in cool feeling
JP2006207053A (en) Three-layer structure woven or knitted fabric and textile product
JP2004124348A (en) Composite woven fabric
JP2006214056A (en) Woven fabric
JP2008297657A (en) Quilting cloth, bedding and down jacket
JP2006207052A (en) Raised fabric and textile product
JP2019173224A (en) socks
JP2009074187A (en) Multi-layered structure woven or knitted fabric and fiber product
JP4567500B2 (en) Fabrics and textiles whose structure is three-dimensionally changed by water absorption
JP2009167565A (en) Stretchable knitted fabric, method for producing the same, and textile product
JP4414854B2 (en) Water-repellent knitted fabrics and textiles that improve air permeability when absorbing moisture
JP2008248445A (en) Polyester knitted fabric and method for producing the same and fiber product
JP5456115B2 (en) Woven knitted fabric with unevenness caused by wetting, manufacturing method thereof, and textile product
JP2010059570A (en) Woven fabric and textile product
JP2006207065A (en) Garment exerting ventilation effect when wetted

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20130122

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130729

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140306

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140318

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140417

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141118

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141212

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150602

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150710

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160105

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160202

R150 Certificate of patent or registration of utility model

Ref document number: 5881284

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250