JP2006097176A - Water repellent woven or knitted fabric and fiber product in which air permeability is improved when moistened - Google Patents

Water repellent woven or knitted fabric and fiber product in which air permeability is improved when moistened Download PDF

Info

Publication number
JP2006097176A
JP2006097176A JP2004283758A JP2004283758A JP2006097176A JP 2006097176 A JP2006097176 A JP 2006097176A JP 2004283758 A JP2004283758 A JP 2004283758A JP 2004283758 A JP2004283758 A JP 2004283758A JP 2006097176 A JP2006097176 A JP 2006097176A
Authority
JP
Japan
Prior art keywords
knitted fabric
woven
water
repellent
air permeability
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004283758A
Other languages
Japanese (ja)
Other versions
JP4414854B2 (en
Inventor
Satoshi Yasui
聡 安井
Masato Yoshimoto
正人 吉本
Shigeru Morioka
茂 森岡
Takashi Yamaguchi
尊志 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teijin Frontier Co Ltd
Original Assignee
Teijin Fibers Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2004283758A priority Critical patent/JP4414854B2/en
Application filed by Teijin Fibers Ltd filed Critical Teijin Fibers Ltd
Priority to KR1020077006960A priority patent/KR101220658B1/en
Priority to CA 2579144 priority patent/CA2579144C/en
Priority to PCT/JP2005/018238 priority patent/WO2006035968A1/en
Priority to CN2005800328852A priority patent/CN101031679B/en
Priority to EP05788318.3A priority patent/EP1803844B1/en
Priority to US11/663,730 priority patent/US20080132133A1/en
Priority to TW94133493A priority patent/TWI354041B/en
Publication of JP2006097176A publication Critical patent/JP2006097176A/en
Application granted granted Critical
Publication of JP4414854B2 publication Critical patent/JP4414854B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a water-repellent woven or knitted fabric and a fiber product in which air permeability is improved in good performance at the time when moistened, compared with the time when dried and to provide a method for producing the woven or knitted fabric. <P>SOLUTION: Melt spinning is carried out in side by side type by using a modified polyester in which 2.0-4.5 mol% 5-sodium sulfoisophthalic acid having 0.30-0.43 intrinsic viscosity is copolymerized and a polyamide having 1.0-1.4 intrinsic viscosity to afford a conjugate fiber and a woven or knitted fabric is formed so that air permeability at the time when dried becomes ≤50 cc/cm<SP>2</SP>/s by using the conjugate fiber and heat treatment such as dyeing and finishing of the woven or knitted fabric is carried out. As a result, crimping of the conjugate fiber is carried out to provide a woven or knitted fabric satisfying the formula: DC<SB>F</SB>-HC<SB>F</SB>≥10(%) when crimp percent obtained when the conjugate fiber is dried is defined as DC<SB>F</SB>(%) and crimp percent obtained when the conjugate fiber is moistened is defined as HC<SB>F</SB>(%) and then water-repellent finishing is applied to the woven or knitted fabric. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、発汗によるムレ感を低減することができる撥水性織編物に関する。さらに詳しくは、ポリエステル成分とポリアミド成分とがサイドバイサイド型に接合された複合繊維を含む撥水性織編物であって、吸湿時における織編物の通気性が乾燥時よりも可逆的に性能よく向上する撥水性織編物および繊維製品に関するものである。   The present invention relates to a water-repellent woven or knitted fabric that can reduce stuffiness caused by sweating. More specifically, the water-repellent woven or knitted fabric includes a composite fiber in which a polyester component and a polyamide component are bonded side-by-side, and the air permeability of the woven or knitted fabric at the time of moisture absorption is improved reversibly and better than that at the time of drying. The present invention relates to a water-based knitted fabric and a textile product.

従来、スキーウエアー、ウインドブレーカー、アウトドアウエアー等のスポーツ用衣料や、レインコート、紳士・婦人用コート等のアウター用衣料などの用途に、撥水性織編物が使用されている。   Conventionally, water-repellent knitted fabrics have been used for sports clothing such as ski wear, windbreakers, outdoor wear, and outer clothing such as raincoats and gentleman / woman coats.

かかる撥水性織編物としては、ポリエステル繊維やナイロン繊維などからなる高密度織編物に撥水加工、フィルムコーテイング、フィルムラミネートなどを施した撥水性織編物が知られている。   As such a water-repellent woven or knitted fabric, a water-repellent woven or knitted fabric obtained by subjecting a high-density woven or knitted fabric made of polyester fiber or nylon fiber to water-repellent finishing, film coating, film lamination, or the like is known.

しかしながら、フィルムコーテイングやフィルムラミネートを施した撥水性織編物では、耐水性に優れる反面、通気性がほとんどないため、衣服内のムレた空気が排出されないため発汗時に不快感を感じるという問題があった。また、高密度織物に撥水加工を施した撥水性織編物では、衣服内のムレた空気が排出され易くなっているものの、衣服内のムレを解消するまでには至らず、運動により発汗した際、衣服内がムレて不快感が生じるという問題があった。   However, the water-repellent woven or knitted fabric with film coating or film lamination has excellent water resistance, but there is almost no breathability, so there is a problem of feeling uncomfortable when sweating because the stuffy air in the clothes is not discharged. . In addition, the water-repellent woven or knitted fabric with water-repellent finishing applied to the high-density fabric makes it easy for the air in the garment to be discharged, but does not eliminate the stuffiness in the garment. In this case, there is a problem that the inside of the clothes becomes dull and uncomfortable.

このような発汗によって生じるムレを解消する方法として、発汗時に織編物の通気性が向上することにより衣服内に滞留する水分を効果的に放出させ、一方、発汗が停止すると織編物の通気性が低下することにより水分の過剰な放散による寒気を抑制し、常に着心地を快適に保つことのできる通気性自己調節織編物が提案されている。   As a method of eliminating the stuffiness caused by sweating, the air permeability of the woven or knitted fabric is effectively released during sweating, thereby effectively releasing moisture staying in the garment. A breathable self-regulating woven or knitted fabric has been proposed that can suppress cold due to excessive diffusion of moisture by lowering and can always keep comfort.

例えば、特許文献1では、ポリエステルとポリアミドの異質ポリマーを貼りあわせたサイドバイサイド型複合繊維を用いた通気性自己調節織編物が提案されている。しかしながら、かかる織編物において、確かに吸湿時の通気性が乾燥時よりも可逆的に向上するものの、その通気性の変化量は小さく、さらに性能のよい通気性自己調節織編物の提案がのぞまれている。   For example, Patent Document 1 proposes a breathable self-regulating woven or knitted fabric using a side-by-side type composite fiber in which different polymers of polyester and polyamide are bonded together. However, in such a woven or knitted fabric, although the breathability during moisture absorption is improved reversibly as compared with that during drying, the change in the breathability is small, and the proposal of a breathable self-adjusting woven or knitted fabric with better performance is recommended. It is rare.

また、通気性自己調節織編物としては、吸湿性ポリマーからなり、加撚された合成繊維マルチフィラメント糸条を用いたもの(例えば、特許文献2参照)や、アセテート繊維を用いたもの(例えば、特許文献3参照)なども提案されている。   In addition, as the breathable self-regulating woven or knitted fabric, one made of a hygroscopic polymer and using twisted synthetic fiber multifilament yarn (for example, see Patent Document 2) or one using acetate fiber (for example, Patent Document 3) has also been proposed.

なお本発明者らは、特願2004−256628号において、ポリエステル成分とポリアミド成分とが接合された複合繊維であって、性能のよい通気性自己調節織編物を得ることが可能な複合繊維を提案している。   In addition, in the Japanese Patent Application No. 2004-256628, the present inventors have proposed a composite fiber in which a polyester component and a polyamide component are joined, and capable of obtaining a high-performance breathable self-regulating woven or knitted fabric. is doing.

特開2003−41462号公報JP 2003-41462 A 特開平10−77544号公報Japanese Patent Laid-Open No. 10-77544 特開2002−180323号公報JP 2002-180323 A

本発明は上記の背景に鑑みなされたものであり、その目的は、ポリエステル成分とポリアミド成分とがサイドバイサイド型に接合された複合繊維を含む撥水性織編物であって、吸湿時における織編物の通気性が、乾燥時よりも可逆的に性能よく向上する撥水性織編物および繊維製品を提供することにある。   The present invention has been made in view of the above-described background, and an object of the present invention is a water-repellent woven or knitted fabric including a composite fiber in which a polyester component and a polyamide component are joined in a side-by-side manner. The object of the present invention is to provide a water-repellent woven or knitted fabric and a textile product whose properties are reversibly improved with better performance than when dried.

本発明者らは上記の課題を達成するため鋭意検討した結果、ポリエステルとポリアミドの異質ポリマーを貼りあわせたサイドバイサイド型複合繊維を用いて撥水性織編物を織編成する際、該織編物から抜出した前記複合繊維が、潜在捲縮性能が発現してなる捲縮構造を有し、かつ吸湿時と乾燥時において特定の捲縮率を有していると、所望の撥水性織編物および繊維製品が得られることを見出し、さらに鋭意検討を重ねることにより本発明を完成するに至った。   As a result of intensive studies to achieve the above-mentioned problems, the present inventors have extracted from a woven or knitted fabric when knitting a water-repellent woven or knitted fabric using side-by-side type composite fibers bonded with different polymers of polyester and polyamide. When the composite fiber has a crimped structure in which latent crimping performance is expressed and has a specific crimp rate at the time of moisture absorption and drying, a desired water-repellent knitted fabric and fiber product can be obtained. The present invention has been completed by finding out that it can be obtained and by further intensive studies.

かくして、本発明によれば「ポリエステル成分とポリアミド成分とがサイドバイサイド型に接合された複合繊維を、織編物の全重量に対して10重量%以上含む織編物であって、該織編物に撥水加工が施されており、かつ乾燥時の通気性が50cc/cm/s以下であり、該織編物から抜出した前記複合繊維が、潜在捲縮性能が発現してなる捲縮構造を有しており、該複合繊維の乾燥時の捲縮率をDC(%)、吸湿時の捲縮率をHC(%)とするとき、DC−HC≧10(%)であることを特徴とする吸湿時に通気性が向上する撥水性織編物。」が提供される。 Thus, according to the present invention, “a woven or knitted fabric containing 10% by weight or more of a composite fiber in which a polyester component and a polyamide component are bonded side-by-side with respect to the total weight of the woven or knitted fabric. The composite fiber that has been processed and has a breathability of 50 cc / cm 2 / s or less during drying, and has a crimped structure in which latent crimping performance is exhibited, is obtained from the woven or knitted fabric. and has, DC F (%) the percentage of crimp upon drying of the composite fibers, when the percentage of crimp moisture absorption and HC F (%), that it is a DC F -HC F ≧ 10 (% ) A water-repellent woven or knitted fabric with improved air permeability when absorbing moisture is provided.

ただし、乾燥時とは、試料を温度20℃、湿度65%RH環境下に24時間放置した後の状態であり、一方、吸湿時とは、試料を温度30℃、湿度90%RH環境下に24時間放置した後の状態である。   However, during drying, the sample is left for 24 hours in a temperature of 20 ° C. and humidity of 65% RH. On the other hand, when moisture is absorbed, the sample is placed in a temperature of 30 ° C. and humidity of 90% RH. This is the state after being left for 24 hours.

ここで、ポリエステル成分が、5−ナトリウムスルホイソフタル酸が2.0〜4.5モル%共重合された変性ポリエステルであることが好ましい。かかる複合繊維は、無撚糸、または300T/m以下の撚りが施された甘撚り糸であることが好ましい。   Here, the polyester component is preferably a modified polyester obtained by copolymerizing 2.0 to 4.5 mol% of 5-sodium sulfoisophthalic acid. Such a composite fiber is preferably a non-twisted yarn or a sweet twisted yarn subjected to a twist of 300 T / m or less.

本発明の織編物は、前記複合繊維と、前記複合繊維以外の繊維(すなわち、非捲縮もしくは吸湿時に捲縮率が実質的に変化しない捲縮繊維であり、以下単に「他の繊維」ということもある。)とで構成されていてもよい。その際、該織編物の経方向および/または緯方向の伸縮率が10%以上であることが好ましい。   The woven or knitted fabric of the present invention is a composite fiber and a fiber other than the composite fiber (that is, a crimped fiber in which the crimp rate does not substantially change during non-crimping or moisture absorption, and hereinafter simply referred to as “other fiber”. May also be configured). At that time, it is preferable that the warp direction and / or the weft direction stretch rate of the woven or knitted fabric is 10% or more.

本発明の織編物において、織編物が2層以上の多層構造織編物であって、該織編物の少なくとも一層に、該層を構成する総繊維重量のうち30重量%以上となるように前記複合繊維が含まれていてもよい。また、前記の複合繊維と他の繊維とが、丸編組織の複合ループを形成していてもよい。また、前記の複合繊維と他の繊維とが、引き揃えられて織組織の経糸および/または緯糸に配されていてもよい。また、前記の複合繊維と他の繊維とが、各々織編物の構成糸条として、1本交互または複数本交互に配されていてもよい。さらに、前記の複合繊維と他の繊維とが、前記の複合繊維が芯部に位置し、他の繊維が鞘部に位置する芯鞘型複合糸として織編物に含まれていてもよい。なお、他の繊維がポリエステル繊維であることが好ましい。   In the woven or knitted fabric of the present invention, the woven or knitted fabric is a multi-layered woven or knitted fabric having two or more layers, and at least one layer of the woven or knitted fabric is 30% by weight or more of the total fiber weight constituting the layer. Fibers may be included. Moreover, the composite fiber and other fibers may form a composite loop of a circular knitted structure. Further, the above-described composite fiber and other fibers may be arranged and arranged on the warp and / or the weft of the woven structure. Moreover, the said composite fiber and another fiber may be distribute | arranged by turns one by one or multiple turns as a constituent yarn of a woven / knitted fabric, respectively. Furthermore, the composite fiber and other fibers may be included in the woven or knitted fabric as a core-sheath type composite yarn in which the composite fiber is located in the core and the other fibers are located in the sheath. In addition, it is preferable that another fiber is a polyester fiber.

本発明の織編物には染色加工が施されていることが好ましい。また、吸湿時における織編物の通気性が、乾燥時よりも30%以上高くなることが好ましい。   The woven or knitted fabric of the present invention is preferably subjected to a dyeing process. Moreover, it is preferable that the air permeability of the woven or knitted fabric at the time of moisture absorption is 30% or more higher than that at the time of drying.

本発明の織編物は、アウター用衣料、スポーツ用衣料、インナー用衣料などの繊維製品に好適に使用することができる。   The woven or knitted fabric of the present invention can be suitably used for textile products such as outer clothing, sports clothing, and inner clothing.

本発明によれば、乾燥時に比べて吸湿時に通気性が可逆的に性能よく向上する撥水性織編物が得られる。かかる撥水性織編物をアウター用衣料、スポーツ用衣料、インナー用衣料などとして使用すると、発汗時に織編物の通気性が向上することにより衣服内に滞留する水分が効果的に放出され、一方、発汗が停止すると織編物の通気性が低下することにより水分の過剰な放散による寒気が抑制され、常に快適な着心地を保つことができる。   According to the present invention, it is possible to obtain a water-repellent woven or knitted fabric whose air permeability is reversibly improved when performing moisture absorption as compared with drying. When such a water-repellent woven or knitted fabric is used as an outer garment, a sports garment, an inner garment or the like, moisture retention in the garment is effectively released by improving the air permeability of the woven or knitted fabric during sweating. When the suspending is stopped, the air permeability of the woven or knitted fabric is lowered, so that the cold due to excessive diffusion of moisture is suppressed, and a comfortable wearing feeling can always be maintained.

以下、本発明の実施の形態について詳細に説明する。
本発明において、複合繊維はポリエステル成分とポリアミド成分とからなり、両成分はサイドバイサイド型に接合されている。
Hereinafter, embodiments of the present invention will be described in detail.
In the present invention, the composite fiber is composed of a polyester component and a polyamide component, and both components are joined in a side-by-side manner.

ここで、ポリエステル成分としては、他方のポリアミド成分との接着性の点で、スルホン酸のアルカリまたはアルカリ土類金属、ホスホニウム塩を有し、かつエステル形成能を有する官能基を1個以上もつ化合物が共重合された、ポリエチレンテレフタレート、ポリプロピレンテレフタレート、ポリブチレンタレフタレート等の変性ポリエステルが好ましく例示される。なかでも、汎用性およびポリマーコストの点で、前記化合物が共重合された、変性ポリエチレンテレフタレートが特に好ましい。その際、共重合成分としては、5−ナトリウムスルホイソフタル酸およびそのエステル誘導体、5−ホスホニウムイソフタル酸およびそのエステル誘導体、p−ヒドロキシベンゼンスルホン酸ナトリウムなどがあげられる。なかでも、5−ナトリウムスルホイソフタル酸が好ましい。共重合量としては、2.0〜4.5モル%の範囲が好ましい。該共重合量が2.0モル%よりも小さいと、優れた捲縮性能が得られるものの、ポリアミド成分とポリエステル成分との接合界面にて剥離が生じるおそれがある。逆に、該共重合量が4.5モル%よりも大きいと、延伸熱処理の際、ポリエステル成分の結晶化が進みにくくなるため、延伸熱処理温度を上げる必要があり、その結果、糸切れが多発するおそれがある。   Here, as the polyester component, a compound having one or more functional groups having an alkali or alkaline earth metal or phosphonium salt of sulfonic acid and having an ester forming ability in terms of adhesiveness to the other polyamide component. Preferred examples thereof include modified polyesters such as polyethylene terephthalate, polypropylene terephthalate, and polybutylene terephthalate. Among these, modified polyethylene terephthalate obtained by copolymerizing the above compound is particularly preferable from the viewpoint of versatility and polymer cost. In this case, examples of the copolymer component include 5-sodium sulfoisophthalic acid and ester derivatives thereof, 5-phosphonium isophthalic acid and ester derivatives thereof, and sodium p-hydroxybenzenesulfonate. Of these, 5-sodium sulfoisophthalic acid is preferable. As a copolymerization amount, the range of 2.0-4.5 mol% is preferable. When the copolymerization amount is less than 2.0 mol%, although excellent crimping performance can be obtained, there is a possibility that peeling occurs at the bonding interface between the polyamide component and the polyester component. On the other hand, if the copolymerization amount is greater than 4.5 mol%, the crystallization of the polyester component becomes difficult to proceed during the stretching heat treatment, and thus it is necessary to raise the stretching heat treatment temperature. There is a risk.

一方のポリアミド成分としては、主鎖中にアミド結合を有するものであれば特に限定されるものではなく、例えば、ナイロン−4、ナイロン−6、ナイロン−66、ナイロン−46、ナイロン−12などがあげられる。なかでも、汎用性、ポリマーコスト、製糸安定性の点で、ナイロン−6およびナイロン−66が好適である。   One polyamide component is not particularly limited as long as it has an amide bond in the main chain, and examples thereof include nylon-4, nylon-6, nylon-66, nylon-46, nylon-12, and the like. can give. Among these, nylon-6 and nylon-66 are preferable in terms of versatility, polymer cost, and yarn production stability.

なお、前記ポリエステル成分およびポリアミド成分には、公知の添加剤、例えば、顔料、顔料、艶消し剤、防汚剤、蛍光増白剤、難燃剤、安定剤、帯電防止剤、耐光剤、紫外線吸収剤等が含まれていてもよい。   The polyester component and the polyamide component include known additives such as pigments, pigments, matting agents, antifouling agents, fluorescent whitening agents, flame retardants, stabilizers, antistatic agents, light-resistant agents, and ultraviolet absorption agents. An agent or the like may be included.

前記のサイドバイサイド型に接合された複合繊維は、任意の断面形状および複合形態をとることができる。図1は、本発明で使用されるサイドバイサイド型に接合された複合繊維の拡大横断面図を例示したものである。通常は(イ)、(ロ)のような横断面を有する複合繊維が用いられるが、(ハ)のような偏心芯鞘型であってもよい。さらには、三角形や四角形、その断面内に中空部を有するものであってもよい。なかでも、図1の(イ)のように、丸型であると、吸湿時に通気性が性能よく向上し好ましい。両成分の複合比は任意に選定することができるが、通常、ポリエステル成分とポリアミド成分の重量比で30:70〜70:30(より好ましくは40:60〜60:40)の範囲内であることが好ましい。   The composite fiber joined to the side-by-side type can take any cross-sectional shape and composite form. FIG. 1 illustrates an enlarged cross-sectional view of a composite fiber bonded to a side-by-side type used in the present invention. Usually, a composite fiber having a cross section like (A) or (B) is used, but an eccentric core-sheath type like (C) may be used. Furthermore, you may have a hollow part in the triangle, the square, and the cross section. In particular, as shown in FIG. 1A, a round shape is preferable because air permeability is improved when moisture is absorbed. Although the composite ratio of both components can be selected arbitrarily, it is usually in the range of 30:70 to 70:30 (more preferably 40:60 to 60:40) by weight ratio of the polyester component and the polyamide component. It is preferable.

前記複合繊維の単糸繊度、単糸数(フィラメント数)としては特に限定されないが、単糸繊度1〜10dtex(より好ましくは2〜5dtex)、単糸数10〜200本(より好ましくは20〜100本)の範囲内であることが好ましい。   The single yarn fineness and the number of single yarns (number of filaments) of the composite fiber are not particularly limited, but the single yarn fineness is 1 to 10 dtex (more preferably 2 to 5 dtex), and the number of single yarns is 10 to 200 (more preferably 20 to 100). ) Is preferable.

また、本発明の織編物に含まれる複合繊維は、潜在捲縮性能が発現してなる捲縮構造を有している必要がある。異種ポリマーがサイドバイサイド型に接合された複合繊維は、通常、潜在捲縮性能を有しており、後記のように、染色加工等で熱処理を受けると潜在捲縮性能が発現する。捲縮構造としては、ポリアミド成分が捲縮の内側に位置し、ポリエステル成分が捲縮の外側に位置していることが好ましい。かかる捲縮構造を有する複合繊維は、後記の製造方法により容易に得ることができる。複合繊維がこのような捲縮構造を有していると、吸湿時に、内側のポリアミド成分が膨潤、伸張し、外側のポリエステル成分はほとんど長さ変化を起こさないため、捲縮率が低下する(複合繊維の見かけの長さが長くなる。)。一方、乾燥時には、内側のポリアミド成分が収縮し、外側のポリエステル成分はほとんど長さ変化を起こさないため、捲縮率が増大する(複合繊維の見かけの長さが短くなる。)。このように、吸湿時に、複合繊維の捲縮率が可逆的に低下するため、織編物内の空隙率が高まり、通気性が向上する。   Moreover, the composite fiber contained in the woven or knitted fabric of the present invention needs to have a crimped structure in which latent crimping performance is expressed. A composite fiber in which different types of polymers are joined in a side-by-side manner usually has latent crimping performance, and the latent crimping performance is manifested when subjected to heat treatment such as dyeing as described later. As the crimped structure, it is preferable that the polyamide component is located inside the crimp and the polyester component is located outside the crimp. The composite fiber having such a crimped structure can be easily obtained by the production method described later. When the composite fiber has such a crimped structure, the inner polyamide component swells and stretches during moisture absorption, and the outer polyester component hardly undergoes a change in length, resulting in a lower crimp rate ( The apparent length of the composite fiber is increased.) On the other hand, at the time of drying, the inner polyamide component shrinks and the outer polyester component hardly changes in length, so that the crimp rate increases (the apparent length of the composite fiber becomes shorter). Thus, since the crimp rate of the composite fiber is reversibly lowered during moisture absorption, the porosity in the woven or knitted fabric is increased, and air permeability is improved.

かかる通気性は、JIS L 1096−1998、6.27.1、A(フラジール型通気性試験機法)により測定された値(cc/cm/s)で、吸湿時の通気性が、乾燥時の通気性よりも高いことが肝要である。その際、吸湿時の通気性が、乾燥時の通気性よりも30%以上(好ましくは80〜500%)高いことが好ましい。通気性の変化率が30%よりも小さいと、発汗時にムレ感の問題が発生しやすくなるおそれがある。 The air permeability is a value (cc / cm 2 / s) measured according to JIS L 1096-1998, 6.27.1, A (Fragile type air permeability tester method). It is important that the air permeability is higher than the time. In that case, it is preferable that the air permeability at the time of moisture absorption is 30% or more (preferably 80 to 500%) higher than the air permeability at the time of drying. If the rate of change in air permeability is less than 30%, the problem of stuffiness may occur when sweating.

ただし、通気性の変化率を下記式により算出する。
通気性の変化率(%)=((吸湿時の通気性)−(乾燥時の通気性))/(乾燥時の通気性)×100
However, the change rate of air permeability is calculated by the following formula.
Percent change in breathability (%) = ((breathability during moisture absorption) − (breathability during drying)) / (breathability during drying) × 100

前記の複合繊維は、吸湿時に、容易に捲縮が低下し通気性が性能よく向上する上で、無撚糸、または300T/m以下の撚りが施された甘撚り糸であることが好ましい。特に、無撚糸であることが好ましい。強撚糸のように、強い撚りが付与されていると、吸湿時に捲縮が低下しにくく好ましくない。なお、交絡数が20〜60ケ/m程度となるようにインターレース空気加工および/または通常の仮撚捲縮加工が施されていてもさしつかえない。   The above-mentioned composite fiber is preferably a non-twisted yarn or a sweet twisted yarn subjected to twisting of 300 T / m or less in order to easily reduce crimp and improve the air permeability when moisture is absorbed. In particular, non-twisted yarn is preferable. When a strong twist is imparted like a strongly twisted yarn, it is not preferable that crimping is difficult to decrease during moisture absorption. It should be noted that interlaced air processing and / or normal false twist crimping may be performed so that the number of entanglements is about 20 to 60 pieces / m.

本発明の織編物には、前記の複合繊維が含まれている。その際、織編物中に含まれる複合繊維の含有量は、重量基準で織編物全重量に対して、10重量%以上(より好ましくは40重量%以上)であることが肝要である。複合繊維の含有量が10重量%よりも小さいと、吸湿時に通気性が性能よく向上しないおそれがある。   The woven or knitted fabric of the present invention contains the above-described conjugate fiber. At that time, it is important that the content of the composite fiber contained in the woven or knitted fabric is 10% by weight or more (more preferably 40% by weight or more) based on the total weight of the woven or knitted fabric. If the content of the composite fiber is less than 10% by weight, the air permeability may not be improved with good performance during moisture absorption.

また織編物が、前記複合繊維と前記複合繊維以外の他の繊維とで構成される場合、かかる他の繊維としては特に限定されず、ポリエチレンタレフタレート、ポリトリメチレンテレフタレート、ポリブチレンテレフタレート等のポリエステル、ナイロン6、ナイロン66等のポリアミド、ポリエチレン、ポリプロピレン等のポリオレフィン、アクリル、パラ型もしくはメタ型アラミド、およびそれらの変性合成繊維、さらには、天然繊維、再生繊維、半合成繊維など衣料に適した繊維であれば自由に選択できる。なかでも、湿潤時の寸法安定性や、前記複合繊維との相性(混繊性、交編・交織性、染色性)の点で、ポリエチレンテレフタレート、ポリプロピレンテレフタレート、ポリブチレンタレフタレートや、これらに前記共重合成分が共重合された変性ポリエステルからなるポリエステル繊維が好適である。また、かかる他の繊維の単糸繊度、単糸数(フィラメント数)としては特に限定されないが、織編物の吸湿性を高め、吸湿時に通気性を性能よく向上させる上で、単糸繊度0.1〜5dtex(より好ましくは0.5〜2dtex)、単糸数20〜200本(より好ましくは30〜100本)の範囲内であることが好ましい。なお、交絡数が20〜60ケ/m程度となるようにインターレース空気加工および/または通常の仮撚捲縮加工が他の繊維に施されていてもさしつかえない。   When the woven or knitted fabric is composed of the composite fiber and fibers other than the composite fiber, the other fibers are not particularly limited, and polyesters such as polyethylene terephthalate, polytrimethylene terephthalate, and polybutylene terephthalate. Suitable for clothing such as polyamides such as nylon 6 and nylon 66, polyolefins such as polyethylene and polypropylene, acrylic, para-type or meta-type aramid, and modified synthetic fibers thereof, as well as natural fibers, regenerated fibers, and semi-synthetic fibers Any fiber can be selected. Among these, polyethylene terephthalate, polypropylene terephthalate, polybutylene terephthalate, and the above-mentioned in terms of dimensional stability when wet and compatibility with the above-mentioned composite fiber (mixing property, knit / woven fabric, dyeability) A polyester fiber made of a modified polyester in which a copolymer component is copolymerized is preferable. Further, the single yarn fineness and the number of single yarns (number of filaments) of such other fibers are not particularly limited. However, in order to increase the hygroscopicity of the woven or knitted fabric and improve the air permeability at the time of moisture absorption, the single yarn fineness is 0.1. It is preferable to be within a range of ˜5 dtex (more preferably 0.5 to 2 dtex) and a single yarn number of 20 to 200 (more preferably 30 to 100). It should be noted that interlaced air processing and / or normal false twist crimping may be applied to other fibers so that the number of entanglements is about 20 to 60 pieces / m.

本発明の織編物に、前記の複合繊維と他の繊維が含まれる場合、両者は各々単独糸条で織編物を構成してもよいし、空気混繊糸、合撚糸、複合仮撚捲縮加工糸、引揃え糸などの複合糸として織編物を構成してもよい。   When the woven or knitted fabric of the present invention includes the above-mentioned composite fiber and other fibers, each of them may constitute a woven or knitted fabric with a single yarn, or an air-mixed yarn, a twisted yarn, or a composite false twisted crimp. The knitted or knitted fabric may be configured as a composite yarn such as processed yarn or assorted yarn.

織編物の構造としては、その織編組織、層数は特に限定されるものではない。例えば、平織、綾織、サテンなどの織組織や、天竺、スムース、フライス、鹿の子、そえ糸編、デンビー、ハーフなどの編組織が好適に例示されるが、これらに限定されるものではない。層数も単層でもよいし、2層以上の多層であってもよい。   As the structure of the woven or knitted fabric, the woven or knitted structure and the number of layers are not particularly limited. For example, woven structures such as plain weave, twill weave, and satin, and knitted structures such as tenshi, smooth, milling, kanoko, knitting yarn, denby, and half are preferably exemplified, but not limited thereto. The number of layers may be a single layer or a multilayer of two or more layers.

本発明の織編物において、織編物中の複合繊維の可動性(捲縮変化)を確保するため、経方向および/または緯方向の伸縮率が10%以上(より好ましくは20%以上、特に好ましくは25〜150%)であることが好ましい。   In the woven or knitted fabric of the present invention, in order to ensure the mobility (crimp change) of the composite fiber in the woven or knitted fabric, the warp and / or weft stretch ratio is 10% or more (more preferably 20% or more, particularly preferably). Is preferably 25 to 150%.

次に、本発明の織編物において、該織編物から抜出した前記複合繊維が、潜在捲縮性能が発現してなる捲縮構造を有しており、前記複合繊維の乾燥時の捲縮率をDC(%)、吸湿時の捲縮率をHC(%)とするとき、DC−HC≧10(%)(好ましくは、50(%)≧DC−HC≧10(%))であることが肝要である。DC−HCが10%未満では、乾燥時に比べて吸湿時に通気性が性能よく向上しないおそれがあり、好ましくない。 Next, in the woven or knitted fabric of the present invention, the conjugate fiber extracted from the woven or knitted fabric has a crimped structure in which a latent crimping performance is expressed, and the crimped rate when the conjugate fiber is dried is set. DC F (%), when the percentage of crimp moisture absorption and HC F (%), DC F -HC F ≧ 10 (%) ( preferably, 50 (%) ≧ DC F -HC F ≧ 10 (% )) Is essential. If DC F -HC F is less than 10%, the air permeability may not be improved when hygroscopic compared with the case of drying, which is not preferable.

ここで、織編物中における複合繊維の捲縮率は、下記の方法により測定する。まず、織編物を温度20℃、湿度65%RHの雰囲気中に24時間放置した後、該織編物から織編物と同じ方向の30cm×30cmの小片を裁断する(n数=5)。次いで、各々の小片から、複合繊維を取り出し、1.76mN/dtex(200mg/de)の荷重をかけて糸長L0fを測定し、除重1分後0.0176mN/dtex(2mg/de)の荷重をかけて糸長L1fを測定する。さらにこの糸を温度30℃、湿度90%RH環境下に24時間放置した後、1.76mN/dtex(200mg/de)の荷重をかけて糸長L0f’を測定し、除重1分後0.0176mN/dtex(2mg/de)の荷重をかけて糸長L1f’を測定する。以上の測定数値から下記の計算式にて、乾燥時の捲縮率DC(%)、吸湿時の捲縮率HC(%)、乾燥時と吸湿時の捲縮率差(DC−HC)(%)を算出する。なお、n数は5でその平均値を求める。
乾燥時の捲縮率DC(%)=((L0f−L1f)/L0f)×100
吸湿時の捲縮率HC(%)=(L0f’−L1f’)/L0f’)×100
Here, the crimp rate of the composite fiber in the woven or knitted fabric is measured by the following method. First, after leaving the woven or knitted fabric to stand in an atmosphere of a temperature of 20 ° C. and a humidity of 65% RH for 24 hours, a small piece of 30 cm × 30 cm in the same direction as the woven or knitted fabric is cut from the woven or knitted fabric (n number = 5). Subsequently, the composite fiber was taken out from each piece, and the yarn length L0f was measured by applying a load of 1.76 mN / dtex (200 mg / de), and after 1 minute of dewetting, 0.0176 mN / dtex (2 mg / de). A load is applied to measure the yarn length L1f. Further, this yarn was allowed to stand for 24 hours in a temperature of 30 ° C. and a humidity of 90% RH, and then the yarn length L0f ′ was measured by applying a load of 1.76 mN / dtex (200 mg / de). The yarn length L1f ′ is measured under a load of 0.176 mN / dtex (2 mg / de). More of at equation below from the measured numerical percentage of crimp DC F (%) upon drying, crimp ratio HC F (%) at the time of moisture absorption, dry and crimp ratio difference during moisture absorption (DC F - HC F ) (%) is calculated. Note that n is 5 and the average value is obtained.
Crimp rate during drying DC F (%) = ((L0f−L1f) / L0f) × 100
Crimp rate at the time of moisture absorption HC F (%) = (L0f′−L1f ′) / L0f ′) × 100

また、本発明の撥水性織編物には撥水加工が施されている必要がある。かかる撥水処理は、通常のものでよい。例えば、特許第3133227号公報や特公平4−5786号公報に記載された方法が好適である。すなわち、撥水剤として市販のふっ素系撥水剤(例えば、旭硝子(株)製、アサヒガードLS−317)を使用し、必要に応じてメラミン樹脂、触媒を混合して撥水剤の濃度が3〜15重量%程度の加工剤とし、ピックアップ率50〜90%程度で、該加工剤を用いて織編物の表面を処理する方法である。加工剤で織編物の表面を処理する方法としては、パッド法、スプレー法などが例示され、なかでも、加工剤を織編物内部まで浸透させる上でパッド法が最も好ましい。   Further, the water-repellent woven or knitted fabric of the present invention needs to be water-repellent. Such water repellent treatment may be a normal one. For example, the methods described in Japanese Patent No. 3133227 and Japanese Patent Publication No. 4-5786 are suitable. That is, a commercially available fluorine-based water repellent (for example, Asahi Guard LS-317, manufactured by Asahi Glass Co., Ltd.) is used as the water repellent, and the concentration of the water repellent is adjusted by mixing melamine resin and catalyst as necessary. In this method, the surface of the woven or knitted fabric is treated with the processing agent at a pickup rate of about 50 to 90% with a processing agent of about 3 to 15% by weight. Examples of the method for treating the surface of the woven or knitted fabric with the processing agent include a pad method and a spray method. Among them, the pad method is most preferable for allowing the processing agent to penetrate into the woven or knitted fabric.

なお、前記ピックアップ率とは、加工剤の織編物(加工剤付与前)重量に対する重量割合(%)である。   In addition, the said pick-up rate is a weight ratio (%) with respect to the woven / knitted fabric (before processing agent provision) weight of a processing agent.

撥水加工後の織編物の撥水性としては、JIS L 1092 6.2(スプレー試験)で4点以上が好ましく、より好ましくは5点(最高点)である。   The water repellency of the woven or knitted fabric after the water repellent processing is preferably 4 points or more, more preferably 5 points (highest point) in JIS L 1092 6.2 (spray test).

次に、本発明の織編物において、乾燥時における通気性が、JIS L 1096−1998、6.27.1、A(フラジール型通気性試験機法)により測定された値(cc/cm/s)で、50cc/cm/s以下(好ましくは、5〜40cc/cm/s)である必要がある。通気性が50cc/cm/sよりも大きいと、防風性が不十分であるため、スポーツ衣料やアウター衣料用途として不適であるだけでなく、撥水加工を施しても耐水性が不十分となるおそれがある。 Next, in the woven or knitted fabric of the present invention, the air permeability at the time of drying was measured according to JIS L 1096-1998, 6.27.1, A (Fragile type air permeability tester method) (cc / cm 2 / s) and 50 cc / cm 2 / s or less (preferably 5 to 40 cc / cm 2 / s). If the air permeability is larger than 50 cc / cm 2 / s, the windproof property is insufficient, so that it is not suitable for sports clothing and outer clothing, and water resistance is insufficient even when water repellent treatment is applied. There is a risk.

通気性を上記範囲内とするためには、織編物の密度を適正化すればよい。例えば、糸条の総繊度が84デシテックスの場合、織物であれば、経糸密度(本/2.54cm)×緯糸密度(本/2.54cm)で6000以上、編物であれば、コース密度(本/2.54cm)×ウエール密度(本/2.54cm)で3000以上とすればよい。   In order to make the air permeability within the above range, the density of the woven or knitted fabric may be optimized. For example, when the total fineness of the yarn is 84 dtex, if it is a woven fabric, the warp density (main / 2.54 cm) × the weft density (main / 2.54 cm) is 6000 or more. /2.54 cm) × Wale density (lines / 2.54 cm) and 3000 or more.

本発明において、織編物の態様としては、(1)織編物が2層以上の多層構造織編物であって、該織編物の少なくとも一層に、該層を構成する総繊維重量のうち30重量%以上となるように前記複合繊維が含まれる織編物、(2)前記の複合繊維と他の繊維とが丸編組織の複合ループを形成してなる織編物、(3)前記の複合繊維と他の繊維とが引き揃えられて織組織の経糸および/または緯糸に配されてなる織編物、(4)前記の複合繊維と他の繊維とが各々織編物の構成糸条として、1本交互または複数本交互に配されてなる織編物、(5)前記の複合繊維と他の繊維とが、複合繊維が芯部に位置し、他の繊維が鞘部に位置する芯鞘型複合糸として織編物に含まれる織編物、などが例示される。   In the present invention, the mode of the woven or knitted fabric is as follows. (1) The woven or knitted fabric is a multilayered woven or knitted fabric having two or more layers, and at least one layer of the woven or knitted fabric is 30% by weight of the total fiber constituting the layer. A woven or knitted fabric containing the composite fiber as described above, (2) a woven or knitted fabric in which the composite fiber and other fibers form a composite loop of a circular knitted structure, and (3) the composite fiber and others. A woven or knitted fabric in which the fibers of the woven fabric are arranged and arranged on the warp and / or the weft of the woven structure, (4) each of the above-mentioned composite fibers and the other fibers are used as constituent yarns of the woven or knitted fabric. A woven or knitted fabric in which a plurality of yarns are alternately arranged. (5) The composite fiber and the other fiber are woven as a core-sheath type composite yarn in which the composite fiber is located in the core portion and the other fibers are located in the sheath portion. Examples thereof include woven and knitted fabrics included in the knitted fabric.

また、織編物中に前記複合繊維と他の繊維とが含まれる場合、乾燥時において、複合繊維の糸長を(A)、他の繊維の糸長を(B)とするとき、A<Bとなっていると、吸湿時に通気性が向上しやすく好ましい。逆に、A>BかA=Bの場合、複合繊維が吸湿により捲縮率が低下して伸張される際、ゆとり量がなく、他の繊維が追従できないため、織編物の空隙率が低下してしまい、吸湿時に通気性が向上しないおそれがある。   Further, when the woven / knitted fabric contains the composite fiber and other fibers, when drying, the yarn length of the composite fiber is (A) and the yarn length of the other fiber is (B). If it becomes, it is easy to improve air permeability at the time of moisture absorption, and it is preferable. On the other hand, when A> B or A = B, when the composite fiber is stretched due to a decrease in the crimp rate due to moisture absorption, there is no clearance and other fibers cannot follow, so the porosity of the woven or knitted fabric decreases. As a result, the air permeability may not be improved when moisture is absorbed.

ここで、糸長の測定は以下の方法で行うものとする。まず、織編物を温度20℃、湿度65%RHの雰囲気中に24時間放置した後、該織編物から、30cm×30cmの小片を裁断する(n数=5)。続いて、各小片から、複合繊維糸条および他の繊維糸条を1本ずつ取り出し、複合繊維糸条の糸長A(mm)、他の繊維糸条の糸長B(mm)を測定する。その際、非弾性糸の場合は1.76mN/dtex(200mg/de)、弾性糸の場合は0.0088mN/dtex(1mg/de)の荷重をかけて測定する。ここで、小片から取り出す複合繊維糸条および他の繊維糸条とは織編物中において同一方向のものである必要がある。例えば、複合繊維糸条を織物の経糸(緯糸)から取り出す場合、他方の他の繊維糸条も経糸(緯糸)から取り出す必要がある。また、複合繊維糸条および他の繊維糸条が、複合糸として織編物を構成する場合には、裁断された小片(30cm×30cm)から複合糸を取り出し(n数=5)、さらに複合糸から複合繊維糸条と他の繊維糸条とを取り出して前記と同様にして測定するものとする。   Here, the yarn length is measured by the following method. First, after leaving the woven or knitted fabric to stand in an atmosphere of a temperature of 20 ° C. and a humidity of 65% RH for 24 hours, a 30 cm × 30 cm small piece is cut from the woven or knitted fabric (n number = 5). Subsequently, the composite fiber yarn and other fiber yarns are taken out one by one from each piece, and the yarn length A (mm) of the composite fiber yarn and the yarn length B (mm) of the other fiber yarn are measured. . At that time, in the case of an inelastic yarn, the load is 1.76 mN / dtex (200 mg / de), and in the case of an elastic yarn, a load of 0.0088 mN / dtex (1 mg / de) is applied. Here, the composite fiber yarn taken out from the small piece and the other fiber yarn need to be in the same direction in the woven or knitted fabric. For example, when the composite fiber yarn is taken out from the warp (weft) of the fabric, the other fiber yarn needs to be taken out from the warp (weft). When the composite fiber yarn and other fiber yarns constitute a woven or knitted fabric as the composite yarn, the composite yarn is taken out from the cut pieces (30 cm × 30 cm) (n number = 5), and further the composite yarn The composite fiber yarn and other fiber yarn are taken out from the above and measured in the same manner as described above.

前記のように、複合繊維糸条と他の繊維糸条との糸長差をもうける方法としては、以下の方法が例示される。例えば、複合繊維糸条と他の繊維糸条とを用いて、前記の織編物を製編織する際、他の繊維糸条の沸水収縮率を15%以下(より好ましくは10%以下)とする方法や、複合繊維糸条と他の繊維糸条とを複合加工する際、他の繊維糸条をオーバーフィードさせる方法などが例示される。   As described above, the following method is exemplified as a method for obtaining a yarn length difference between a composite fiber yarn and another fiber yarn. For example, when the woven or knitted fabric is knitted or woven using a composite fiber yarn and another fiber yarn, the boiling water shrinkage of the other fiber yarn is 15% or less (more preferably 10% or less). Examples thereof include a method and a method of overfeeding other fiber yarns when composite processing of the composite fiber yarns and other fiber yarns is performed.

本発明の織編物において、織編物中の複合繊維の可動性(捲縮変化)を確保するため、目付けは300g/m以下(より好ましくは100〜250g/m)であることが好ましい。 In woven or knitted fabric of the present invention, in order to ensure mobility of the conjugate fiber of the woven or knitted fabric (crimped change), it is preferred basis weight is 300 g / m 2 or less (more preferably 100 to 250 g / m 2).

本発明の織編物は下記の製造方法によって容易に得ることができる。
まず、固有粘度が0.30〜0.43(オルソクロロフェノールを溶媒として35℃で測定)の、5−ナトリウムスルホイソフタル酸が2.0〜4.5モル%共重合された変性ポリエステルと、固有粘度が1.0〜1.4(m−クレゾールを溶媒として30℃で測定)のポリアミドとを用いてサイドバイサイド型に溶融複合紡糸する。その際、ポリエステル成分の固有粘度が0.43以下であることが特に重要である。ポリエステル成分の固有粘度が0.43よりも大きいと、ポリエステル成分の粘度が増大するため、複合繊維の物性がポリエステル単独糸に近くなり、本発明が目的とする織編物が得られず好ましくない。逆に、ポリエステル成分の固有粘度が0.30よりも小さいと、溶融粘度が小さくなりすぎて製糸性が低下するとともに毛羽発生が多くなり、品質および生産性が低下するおそれがある。
The woven or knitted fabric of the present invention can be easily obtained by the following production method.
First, a modified polyester having an intrinsic viscosity of 0.30 to 0.43 (measured at 35 ° C. using orthochlorophenol as a solvent) and 2.0 to 4.5 mol% of 5-sodium sulfoisophthalic acid copolymerized; Using a polyamide having an intrinsic viscosity of 1.0 to 1.4 (measured at 30 ° C. using m-cresol as a solvent), melt composite spinning is performed in a side-by-side manner. At that time, it is particularly important that the intrinsic viscosity of the polyester component is 0.43 or less. If the intrinsic viscosity of the polyester component is larger than 0.43, the viscosity of the polyester component increases, so that the physical properties of the composite fiber are close to those of a single polyester yarn, and the woven or knitted fabric intended by the present invention cannot be obtained. On the other hand, if the intrinsic viscosity of the polyester component is less than 0.30, the melt viscosity becomes too small and the yarn-making property is lowered and the generation of fluff is increased, which may reduce the quality and productivity.

溶融紡糸の際に用いる紡糸口金としては、特開2000−144518号公報の図1のような、高粘度側と低粘度側の吐出孔を分離し、かつ高粘度側吐出線速度を小さくした(吐出断面積を大きくした)紡糸口金が好適である。そして、高粘度側吐出孔に溶融ポリエステルを通過させ、低粘度側吐出孔に溶融ポリアミドを通過させ冷却固化させることが好ましい。その際、ポリエステル成分とポリアミド成分との重量比は、前述のとおり、30:70〜70:30(より好ましくは40:60〜60:40)の範囲内であることが好ましい。   As the spinneret used for melt spinning, as shown in FIG. 1 of JP-A-2000-144518, the high-viscosity side and low-viscosity side discharge holes are separated and the high-viscosity side discharge linear velocity is reduced ( A spinneret having a large discharge cross-sectional area is preferred. Then, it is preferable that the molten polyester is passed through the high viscosity side discharge holes and the molten polyamide is passed through the low viscosity side discharge holes to be cooled and solidified. In that case, it is preferable that the weight ratio of a polyester component and a polyamide component exists in the range of 30: 70-70: 30 (more preferably 40: 60-60: 40) as above-mentioned.

また、溶融複合紡糸した後、一旦巻き取った後に延伸する別延方式を採用してもよいし、一旦巻き取らずに延伸熱処理を行う直延方式を採用してもよい。その際、紡糸・延伸条件としては、通常の条件でよい。例えば、直延方式の場合、1000〜3500m/分程度で紡糸した後、連続して100〜150℃の温度で延伸し巻き取る。延伸倍率は最終時に得られる複合繊維の切断伸度が10〜60%(好ましくは20〜45%)、切断強度が3.0〜4.7cN/dtex程度となるよう、適宜選定すればよい。   Further, after the melt composite spinning, a separate stretching method in which the film is once wound and then stretched may be employed, or a direct stretching method in which a stretching heat treatment is performed without winding once may be employed. At that time, the spinning and drawing conditions may be normal conditions. For example, in the case of the direct extension method, after spinning at about 1000 to 3500 m / min, the film is continuously drawn and wound at a temperature of 100 to 150 ° C. The draw ratio may be appropriately selected so that the cut elongation of the composite fiber obtained at the end is 10 to 60% (preferably 20 to 45%) and the cut strength is about 3.0 to 4.7 cN / dtex.

ここで、前記の複合繊維が、下記の要件(1)および(2)を同時に満足することが好ましい。
(1)乾燥時における複合繊維の捲縮率DCが1.5〜13%(好ましくは2〜6%)の範囲内である。
(2)捲縮率DCと、湿潤時における複合繊維の捲縮率HCとの差(DC−HC)が0.5%以上(好ましくは1〜5%)である。
Here, it is preferable that the composite fiber satisfies the following requirements (1) and (2) at the same time.
(1) The crimp ratio DC of the composite fiber at the time of drying is in the range of 1.5 to 13% (preferably 2 to 6%).
(2) The difference (DC-HC) between the crimp rate DC and the crimp rate HC of the composite fiber when wet is 0.5% or more (preferably 1 to 5%).

ただし、乾燥時とは、試料を温度20℃、湿度65%RH環境下に24時間放置した後の状態であり、一方、湿潤時とは、試料を温度20℃の水中に2時間浸漬した直後の状態であり、乾燥時における捲縮率DCおよび湿潤時における捲縮率HCは、下記の方法で測定した値を用いることとする。   However, when dry, the sample is left in a 20 ° C., 65% RH environment for 24 hours, while when wet, the sample is immediately immersed in water at 20 ° C. for 2 hours. In this state, the crimping rate DC at the time of drying and the crimping rate HC at the time of wetness are values measured by the following methods.

まず、枠周:1.125mの巻き返し枠を用いて、荷重:49/50mN×9×トータルテックス(0.1gf×トータルデニール)をかけて一定の速度で巻き返し、巻き数:10回の小綛をつくり、該小綛をねじり2重の輪状にしたものに49/2500mN×20×9×トータルテックス(2mg×20×トータルデニール)の初荷重をかけたまま沸水中に入れて30分間処理し、該沸水処理の後100℃の乾燥機にて30分間乾燥し、その後さらに初荷重をかけたまま160℃の乾熱中に入れ5分間処理する。該乾熱処理の後に初荷重を除き、温度20℃、湿度65%RH環境下に24時間以上放置した後、前記の初荷重および98/50mN×20×9×トータルテックス(0.2gf×20×トータルデニール)の重荷重を負荷し、綛長:L0を測定し、直ちに重荷重のみを取り除き、除重1分後の綛長:L1を測定する。さらにこの綛を初荷重をかけたまま温度20℃の水中に2時間浸漬した後取り出し、ろ紙にて0.69mN/cm(70mgf/cm)の圧力で軽く水を拭き取った後、初荷重および重荷重を負荷し綛長:L0’を測定し、直ちに重荷重のみを取り除き、除重1分後の綛長:L1’を測定する。以上の測定数値から下記の計算式にて、乾燥時の捲縮率(DC)、湿潤時の捲縮率(HC)、乾燥時と湿潤時の捲縮率差(DC−HC)を算出する。
乾燥時の捲縮率DC(%)=((L0−L1)/L0)×100
湿潤時の捲縮率HC(%)=(L0’−L1’)/L0’)×100
前記の湿潤時における複合繊維の捲縮率HCとしては、0.5〜10.0%(好ましくは1〜3%)の範囲内であることが好ましい。
First, using a rewind frame with a frame circumference of 1.125 m, a load was applied at 49/50 mN × 9 × total tex (0.1 gf × total denier) at a constant speed, and the number of turns was 10 times. , Twisted into a double ring, and put it in boiling water for 30 minutes with initial load of 49 / 2500mN x 20 x 9 x total tex (2mg x 20 x total denier) Then, after the boiling water treatment, it is dried for 30 minutes in a dryer at 100 ° C., and is further placed in a dry heat of 160 ° C. for 5 minutes with the initial load applied. After the dry heat treatment, the initial load was removed and the sample was allowed to stand for 24 hours or more in a temperature of 20 ° C. and a humidity of 65% RH. Then, the initial load and 98/50 mN × 20 × 9 × total tex (0.2 gf × 20 × Apply a heavy load of total denier), measure the heel length: L0, immediately remove only the heavy load, and measure the heel length: L1 after 1 minute of dewetting. Further, the soot was immersed in water at a temperature of 20 ° C. for 2 hours with the initial load applied, taken out, and after lightly wiping off the water with a filter paper at a pressure of 0.69 mN / cm 2 (70 mgf / cm 2 ), the initial load was applied. Then, a heavy load is applied, and the heel length: L0 ′ is measured, and only the heavy load is immediately removed, and the heel length: L1 ′ after 1 minute of dewetting is measured. Based on the above measurement values, the crimping rate during drying (DC), the crimping rate during wetness (HC), and the difference in crimping rate between dry and wet (DC-HC) are calculated using the following formula. .
Crimp rate during drying DC (%) = ((L0−L1) / L0) × 100
Crimp rate HC (%) when wet = (L0′−L1 ′) / L0 ′) × 100
The crimp rate HC of the composite fiber when wet is preferably in the range of 0.5 to 10.0% (preferably 1 to 3%).

ここで、乾燥時における複合繊維の捲縮率DCが1.5%よりも小さいと、吸湿時の捲縮変化量が小さくなるため、織編物の通気性変化量も小さくなるおそれがある。逆に、乾燥時における複合繊維の捲縮率DCが13%よりも大きい場合は、捲縮が強すぎて吸湿時に捲縮が変化しにくく、やはり織編物の通気性変化量も小さくなるおそれがある。また、乾燥時における複合繊維の捲縮率HCとの差(DC−HC)が0.5%より小さい場合も、織編物の通気性変化量も小さくなるおそれがある。   Here, if the crimp ratio DC of the composite fiber at the time of drying is less than 1.5%, the amount of change in crimp at the time of moisture absorption is small, so that the amount of change in air permeability of the woven or knitted fabric may be small. On the contrary, when the crimp ratio DC of the composite fiber at the time of drying is larger than 13%, the crimp is too strong and the crimp does not easily change at the time of moisture absorption, and the change in air permeability of the woven or knitted fabric may also be reduced. is there. In addition, even when the difference (DC-HC) from the crimp ratio HC of the composite fiber during drying is smaller than 0.5%, the air permeability change amount of the woven or knitted fabric may be small.

次いで、前記複合繊維を単独で用いるか、他の繊維も同時に用いて、乾燥時の通気性が50cc/cm/s以下となるように織編物密度を適宜選定して織編物を織編成した後、染色加工などの熱処理により前記複合繊維の捲縮を発現させる。 Subsequently, the composite fiber is used alone or other fibers are used at the same time, and the woven / knitted fabric is knitted by appropriately selecting the woven / knitted fabric density so that the air permeability during drying is 50 cc / cm 2 / s or less. Thereafter, the crimp of the composite fiber is expressed by heat treatment such as dyeing.

ここで、織編物を織編成する際、前述のように、重量基準で織編物全重量に対して、10重量%以上(好ましくは40重量%以上)であることが肝要である。また、織編組織は特に限定されず、前述のものを適宜選定することができる。   Here, when weaving the knitted or knitted fabric, as described above, it is important that the amount is 10% by weight or more (preferably 40% by weight or more) with respect to the total weight of the woven or knitted fabric based on the weight. Further, the woven or knitted structure is not particularly limited, and the above-described one can be selected as appropriate.

前記染色加工の温度としては100〜140℃(より好ましくは110〜135℃)、時間としてはトップ温度のキープ時間が5〜40分の範囲内であることが好ましい。かかる条件で、織編物に染色加工を施すことにより、前記複合繊維は、ポリエステル成分とポリアミド成分との熱収縮差により捲縮を発現する。その際、ポリエステル成分とポリアミド成分として、前述のポリマーを選定することにより、ポリアミド成分が捲縮の内側に位置する捲縮構造となる。   The dyeing temperature is preferably 100 to 140 ° C. (more preferably 110 to 135 ° C.), and the time is preferably the top temperature keeping time within a range of 5 to 40 minutes. By applying a dyeing process to the woven or knitted fabric under such conditions, the composite fiber develops crimp due to a difference in thermal shrinkage between the polyester component and the polyamide component. At that time, by selecting the above-mentioned polymer as the polyester component and the polyamide component, a crimped structure is obtained in which the polyamide component is located inside the crimp.

染色加工が施された織編物には、通常、乾熱ファイナルセットが施される。その際、乾熱ファイナルセットの温度としては120〜200℃(より好ましくは140〜180℃)、時間としては1〜3分の範囲内であることが好ましい。かかる、乾熱ファイナルセットの温度が120℃よりも低いと、染色加工時に発生したシワが残り易く、また、仕上がり製品の寸法安定性が悪くなるおそれがある。逆に、該乾熱ファイナルセットの温度が200℃よりも高いと、染色加工の際に発現した複合繊維の捲縮が低下したり、繊維が硬化し生地の風合いが硬くなるおそれがある。   A dry heat final set is usually applied to the woven or knitted fabric subjected to the dyeing process. At that time, the temperature of the dry heat final set is preferably 120 to 200 ° C. (more preferably 140 to 180 ° C.), and the time is preferably within a range of 1 to 3 minutes. When the temperature of the dry heat final set is lower than 120 ° C., wrinkles generated during the dyeing process are likely to remain, and the dimensional stability of the finished product may be deteriorated. On the other hand, if the temperature of the dry heat final set is higher than 200 ° C., the crimp of the composite fiber developed during the dyeing process may be reduced, or the fiber may be cured and the texture of the fabric may be hardened.

また、かかる織編物に撥水加工を施す必要がある。かかる撥水加工は、前述のような通常の撥水加工でよい。   Moreover, it is necessary to perform water-repellent finishing on such a woven or knitted fabric. Such water repellent finish may be the usual water repellent finish as described above.

かくして得られた撥水性織編物において、織編物に含まれる複合繊維の捲縮率が、吸湿時に性能良く低下するため、複合繊維の糸長が長くなり、その結果、織編物中の空隙が大きくなり通気性が向上する。一方、乾燥時には複合繊維の捲縮率が大きくなるため、複合繊維の糸長が短くなり、その結果、織編物中の空隙が小さくなり通気性が低下する。   In the water-repellent woven or knitted fabric thus obtained, the crimp rate of the composite fiber contained in the woven or knitted fabric is reduced in performance at the time of moisture absorption, so that the yarn length of the composite fiber becomes long, resulting in a large gap in the woven or knitted fabric. The breathability is improved. On the other hand, since the crimp rate of the composite fiber increases during drying, the yarn length of the composite fiber is shortened. As a result, the voids in the woven or knitted fabric are reduced and the air permeability is lowered.

なお、本発明の織編物には、前記の加工以外に、常法の起毛加工、紫外線遮蔽あるいは抗菌剤、消臭剤、防虫剤、蓄光剤、再帰反射剤、マイナスイオン発生剤、吸水剤等の機能を付与する各種加工を付加適用してもよい。   In addition to the above-mentioned processing, the woven or knitted fabric of the present invention includes conventional brushed processing, ultraviolet shielding or antibacterial agent, deodorant, insect repellent, phosphorescent agent, retroreflective agent, negative ion generator, water absorbing agent, etc. Various processings that provide the above function may be additionally applied.

以下、実施例をあげて本発明を詳細に説明するが、本発明はこれらによって何ら限定されるものではない。なお、実施例中の各物性は下記の方法により測定したものである。   EXAMPLES Hereinafter, although an Example is given and this invention is demonstrated in detail, this invention is not limited at all by these. In addition, each physical property in an Example is measured with the following method.

<ポリエステルの固有粘度>オルソクロロフェノールを溶媒として使用し温度35℃で測定した。 <Intrinsic Viscosity of Polyester> Measured at a temperature of 35 ° C. using orthochlorophenol as a solvent.

<ポリアミドの固有粘度>m−クレゾールを溶媒として使用し温度30℃で測定した。 <Intrinsic viscosity of polyamide> The viscosity was measured at 30 ° C. using m-cresol as a solvent.

<破断強度、破断伸度>繊維試料を、雰囲気温度25℃、湿度60%RHの恒温恒湿に保たれた部屋に一昼夜放置した後、サンプル長さ100mmで(株)島津製作所製引張試験機テンシロンにセットし、200mm/minの速度で伸張し、破断時の強度(cN/dtex)、伸度(%)を測定した。なお、n数5でその平均値を求めた。 <Breaking strength, breaking elongation> After leaving the fiber sample in a room maintained at a constant temperature and humidity of 25 ° C. and a humidity of 60% RH for a day and night, a tensile tester manufactured by Shimadzu Corporation with a sample length of 100 mm It was set on Tensilon, stretched at a speed of 200 mm / min, and the strength at break (cN / dtex) and elongation (%) were measured. In addition, the average value was calculated | required by n number 5.

<沸水収縮率>JIS L 1013−1998、7.15で規定される方法により、沸水収縮率(熱水収縮率)(%)を測定した。なお、n数3でその平均値を求めた。 <Boiling water shrinkage rate> The boiling water shrinkage rate (hot water shrinkage rate) (%) was measured by the method defined in JIS L 1013-1998, 7.15. In addition, the average value was calculated | required by n number 3.

<複合繊維の捲縮率>枠周:1.125mの巻き返し枠を用いて、荷重:49/50mN×9×トータルテックス(0.1gf×トータルデニール)をかけて一定の速度で巻き返し、巻き数:10回の小綛をつくり、該小綛をねじり2重の輪状にしたものに49/2500mN×20×9×トータルテックス(2mg×20×トータルデニール)の初荷重をかけたまま沸水中に入れて30分間処理し、該沸水処理の後100℃の乾燥機にて30分間乾燥し、その後さらに初荷重をかけたまま160℃の乾熱中に入れ5分間処理した。該乾熱処理の後に初荷重を除き、温度20℃、湿度65%RH環境下に24時間以上放置した後、前記の初荷重および98/50mN×20×9×トータルテックス(0.2gf×20×トータルデニール)の重荷重を負荷し、綛長:L0を測定し、直ちに重荷重のみを取り除き、除重1分後の綛長:L1を測定した。さらにこの綛を初荷重をかけたまま温度20℃の水中に2時間浸漬した後取り出し、ろ紙(大きさ30cm×30cm)にて0.69mN/cm(70mgf/cm)の圧力を5秒間かけて軽く水を拭き取った後、初荷重および重荷重を負荷し綛長:L0’を測定し、直ちに重荷重のみを取り除き、除重1分後の綛長:L1’を測定する。以上の測定数値から下記の計算式にて、乾燥時の捲縮率DC(%)、湿潤時の捲縮率HC(%)、乾燥時と湿潤時の捲縮率差(DC−HC)(%)を算出した。なお、n数は5で平均値を求めた。
乾燥時の捲縮率DC(%)=((L0−L1)/L0)×100
湿潤時の捲縮率HC(%)=(L0’−L1’)/L0’)×100
<Crimping rate of composite fiber> Frame circumference: Using a rewind frame of 1.125 m, the load was 49/50 mN × 9 × total tex (0.1 gf × total denier) and wound at a constant speed. : Make 10 gavel and twist it into a double ring shape and put it in boiling water with initial load of 49 / 2500mN x 20 x 9 x total tex (2mg x 20 x total denier) It was treated for 30 minutes, and after the boiling water treatment, it was dried in a dryer at 100 ° C. for 30 minutes, and then further placed in a dry heat of 160 ° C. for 5 minutes with the initial load applied. After the dry heat treatment, the initial load was removed and the sample was allowed to stand for 24 hours or more in a temperature of 20 ° C. and a humidity of 65% RH. Then, the initial load and 98/50 mN × 20 × 9 × total tex (0.2 gf × 20 × A heavy load of (total denier) was applied, the heel length: L0 was measured, only the heavy load was immediately removed, and the heel length: L1 after 1 minute of dewetting was measured. Further, the soot was immersed in water at a temperature of 20 ° C. for 2 hours with the initial load applied, and then taken out. The filter paper (size 30 cm × 30 cm) was applied with a pressure of 0.69 mN / cm 2 (70 mgf / cm 2 ) for 5 seconds. After lightly wiping off the water, an initial load and a heavy load are applied, and the heel length: L0 ′ is measured. Only the heavy load is removed immediately, and the heel length: L1 ′ after 1 minute of dewetting is measured. From the above measurement values, the following formulas are used to calculate the crimp rate DC (%) at the time of drying, the crimp rate HC (%) at the time of wetness, and the crimp rate difference between the dry and wet conditions (DC-HC) ( %) Was calculated. In addition, the number of n was 5, and the average value was obtained.
Crimp rate during drying DC (%) = ((L0−L1) / L0) × 100
Crimp rate HC (%) when wet = (L0′−L1 ′) / L0 ′) × 100

<織編物中における複合繊維の捲縮率>織編物を温度20℃、湿度65%RHの雰囲気中に24時間放置した後、該織編物から織編物と同じ方向の30cm×30cmの小片を裁断する(n数=5)。次いで、各々の小片から、複合繊維を取り出し、1.76mN/dtex(200mg/de)の荷重をかけて糸長L2を測定し、除重1分後0.0176mN/dtex(2mg/de)の荷重をかけて糸長L3を測定する。さらにこの糸を温度30℃、湿度90%RH環境下に24時間放置した後、1.76mN/dtex(200mg/de)の荷重をかけて糸長L2’を測定し、除重1分後0.0176mN/dtex(2mg/de)の荷重をかけて糸長L3’を測定する。以上の測定数値から下記の計算式にて、乾燥時の捲縮率DC(%)、吸湿時の捲縮率HC(%)、乾燥時と吸湿時の捲縮率差(DC−HC)(%)を算出した。なお、n数は5で平均値を求めた。
乾燥時の捲縮率DC(%)=((L0f−L1f)/L1f)×100
吸湿時の捲縮率HC(%)=(L0f’−L1f’)/L1f’)×100
<Crimping rate of composite fiber in woven / knitted fabric> After leaving the woven / knitted fabric in an atmosphere at a temperature of 20 ° C. and a humidity of 65% RH for 24 hours, a small piece of 30 cm × 30 cm in the same direction as the woven / knitted fabric is cut from the woven / knitted fabric. (N number = 5). Subsequently, the composite fiber was taken out from each piece, and the yarn length L2 was measured by applying a load of 1.76 mN / dtex (200 mg / de). After 1 minute of dewetting, 0.0176 mN / dtex (2 mg / de) A load is applied to measure the yarn length L3. Further, this yarn was allowed to stand for 24 hours in a temperature of 30 ° C. and a humidity of 90% RH, and then the yarn length L2 ′ was measured by applying a load of 1.76 mN / dtex (200 mg / de). The yarn length L3 ′ is measured with a load of 0.176 mN / dtex (2 mg / de). More of at equation below from the measured numerical percentage of crimp DC F (%) upon drying, crimp ratio HC F (%) at the time of moisture absorption, dry and crimp ratio difference during moisture absorption (DC F - HC F) was calculated (%). In addition, the number of n was 5, and the average value was obtained.
Crimp rate during drying DC F (%) = ((L0f−L1f) / L1f) × 100
Crimp rate at the time of moisture absorption HC F (%) = (L0f′−L1f ′) / L1f ′) × 100

<通気性>JIS L 1096−1998、6.27.1、A(フラジール型通気性試験機法)により乾燥時の通気性(cc/cm/s)と湿潤時の通気性(cc/cm/s)を測定した。ただし、乾燥時とは、試料を温度20℃、湿度65%RH環境下に24時間放置した後の状態であり、吸湿時とは、温度30℃、湿度90%RH環境下に24時間放置した後の状態であり、それぞれ通気性(n数=5)を測定し、その平均を求めた。そして、通気性の変化率を下記式により算出した。
通気性の変化率(%)=((吸湿時の通気性)−(乾燥時の通気性))/(乾燥時の通気性)×100
<Breathability> According to JIS L 1096-1998, 6.27.1, A (Fragile breathability tester method), the breathability when dried (cc / cm 2 / s) and the breathability when wet (cc / cm 2 / s) was measured. However, when dry, the sample was left for 24 hours in an environment of 20 ° C. and humidity of 65% RH, and when absorbed, it was left for 24 hours in an environment of 30 ° C. and humidity of 90% RH. Each of the following states was measured for air permeability (n number = 5), and the average was obtained. And the change rate of air permeability was computed by the following formula.
Percent change in breathability (%) = ((breathability during moisture absorption) − (breathability during drying)) / (breathability during drying) × 100

<織編物の伸張率>荷重を1/10(1.47N=0.15kgf)に変更すること以外は、JIS L 1096 8.14。1、B法(定荷重法)と同じ方法で、織編物の経および緯方向の伸張率(%)を求めた。なお、n数は5で平均値を求めた。 <Elongation ratio of woven / knitted fabric> Except for changing the load to 1/10 (1.47N = 0.15kgf), the same method as JIS L 1096 8.14.1, B method (constant load method) The warp and the stretch rate (%) in the weft direction were determined. In addition, the number of n was 5, and the average value was obtained.

<糸長の測定>まず、織編物を温度20℃、湿度65%RHの雰囲気中に24時間放置した後、該織編物から、30cm×30cmの小片を裁断する(n数=5)。続いて、各小片から、複合繊維糸条および他の繊維糸条を1本ずつ取り出し、複合繊維糸条の糸長A(mm)、他の繊維糸条の糸長B(mm)を測定した。その際、非弾性糸の場合は1.76mN/dtex(200mg/de)、弾性糸の場合は0.0088mN/dtex(1mg/de)の荷重をかけて測定した。なお、n数は5で平均値を求めた。 <Measurement of Yarn Length> First, the woven or knitted fabric is left in an atmosphere at a temperature of 20 ° C. and a humidity of 65% RH for 24 hours, and then a 30 cm × 30 cm small piece is cut from the woven or knitted fabric (n number = 5). Subsequently, the composite fiber yarn and other fiber yarns were taken out one by one from each piece, and the yarn length A (mm) of the composite fiber yarn and the yarn length B (mm) of the other fiber yarn were measured. . At that time, in the case of an inelastic yarn, the measurement was performed with a load of 1.76 mN / dtex (200 mg / de), and in the case of an elastic yarn, a load of 0.0088 mN / dtex (1 mg / de). In addition, the number of n was 5, and the average value was obtained.

<撥水性>JIS L 1092 6.2(スプレー試験)により撥水性を測定した。 <Water Repellency> Water repellency was measured according to JIS L 1092 6.2 (spray test).

[実施例1]
固有粘度[η]が1.3のナイロン6と、固有粘度[η]が0.39で2.6モル%の5−ナトリウムスルフォイソフタル酸を共重合させた変性ポリエチレンテレフタレートとをそれぞれ270℃、290℃にて溶融し、特開2000−144518号公報の図1と同様の複合紡糸口金を用い、それぞれ12.7g/分の吐出量にて押し出し、図1(イ)の単糸横断面形状を有するサイドバイサイド型複合繊維を形成させ、冷却固化、油剤を付与した後、糸条を速度1000m/分、温度60℃の予熱ローラーにて予熱し、ついで、該予熱ローラーと、速度3050m/分、温度150℃に加熱された加熱ローラー間で延伸熱処理を行い、巻取り、84dtex/24filの複合繊維を得た。該複合繊維において、破断強度3.4cN/dtex、破断伸度40%であった。また、該複合繊維に沸水処理を施して捲縮率を測定したところ、乾燥時の捲縮率DCが3.3%、湿潤時の捲縮率HCが1.6%、乾燥時の捲縮率DCと湿潤時の捲縮率HCとの差(DC−HC)が1.7%であった。
[Example 1]
Nylon 6 having an intrinsic viscosity [η] of 1.3 and modified polyethylene terephthalate copolymerized with 2.6 mol% of 5-sodium sulfoisophthalic acid having an intrinsic viscosity [η] of 0.39 are each 270 ° C. The melt was melted at 290 ° C. and extruded at a discharge rate of 12.7 g / min using a composite spinneret similar to that shown in FIG. 1 of JP-A No. 2000-144518. After forming a side-by-side type composite fiber having a shape, cooling and solidifying and applying an oil agent, the yarn is preheated with a preheating roller at a speed of 1000 m / min and a temperature of 60 ° C., and then the preheating roller and a speed of 3050 m / min. Then, a drawing heat treatment was performed between heating rollers heated to a temperature of 150 ° C., and winding was performed to obtain 84 dtex / 24 fil composite fiber. The composite fiber had a breaking strength of 3.4 cN / dtex and a breaking elongation of 40%. Further, when the crimp rate was measured by performing boiling water treatment on the composite fiber, the crimp rate DC when dried was 3.3%, the crimp rate HC when wet was 1.6%, and the crimp rate when dried. The difference between the rate DC and the crimp rate HC when wet (DC-HC) was 1.7%.

次いで、通常の28ゲージトリコット編機を使用して、前記複合繊維をフルセットでバック筬に通し、捲縮率20%の通常のポリエチレンテレフタレートマルチフィラメント仮撚捲縮加工糸条(33dtex/36fil)をフルセットでフロント筬に通し、ハーフ組織(バック10−12、フロント23−10)の編物、80コース/2.54cmの機上密度にてハーフ組織の編物を編成した。   Next, using an ordinary 28-gauge tricot knitting machine, the composite fiber is passed through a back rivet in a full set, and a normal polyethylene terephthalate multifilament false-filament crimped yarn (33 dtex / 36 fil) with a crimp rate of 20% is used. Was passed through the front ridge in a full set, and a knitted fabric having a half structure (back 10-12, front 23-10) and a knitted fabric having a half structure were formed at an on-machine density of 80 courses / 2.54 cm.

そして、該編物を、温度130℃、キープ時間15分で染色加工し、複合繊維の潜在捲縮性能を顕在化させた後、フッ素樹脂系撥水加工液を用いてパデング処理し、次いで100℃の温度で乾燥させ、温度160℃、時間1分で乾熱ファイナルセットを施した。   The knitted fabric is dyed at a temperature of 130 ° C. and a keeping time of 15 minutes to reveal the latent crimp performance of the composite fiber, and then padded with a fluororesin-based water repellent liquid, and then 100 ° C. And was subjected to a dry heat final set at a temperature of 160 ° C. for 1 minute.

得られた編物において、目付け220g/m、経方向の伸張率13%、緯方向の伸張率30%、撥水性5点、乾燥時の通気性45cc/cm/s、吸湿時の通気性64cc/cm/s、通気性の変化率42%と吸湿時に通気性が大きく向上し満足なものであった。また、該編物から抜き取った複合繊維において、乾燥時の捲縮率DCが64%、吸湿時の捲縮率HCが32%、乾燥時と吸湿時の捲縮率差(DC−HC)が32%であった。 In the obtained knitted fabric, the basis weight is 220 g / m 2 , the warp direction stretch rate is 13%, the weft direction stretch rate is 30%, the water repellency is 5 points, the air permeability during drying is 45 cc / cm 2 / s, and the air permeability when moisture is absorbed. The air permeability was greatly improved at 64 cc / cm 2 / s and the air permeability change rate was 42%, which was satisfactory. Further, in the composite fiber was drawn from the knitted product, percentage of crimp DC F 64% during drying, percentage of crimp HC F during moisture absorption 32%, crimp index difference in drying time and moisture (DC F -HC F ) was 32%.

[比較例1]
固有粘度[η]が1.3のナイロン6と、固有粘度[η]が0.48で2.6モル%の5−ナトリウムスルフォイソフタル酸を共重合させた変性ポリエチレンテレフタレートとをそれぞれ270℃、290℃にて溶融し、特開2000−144518号公報の図1と同様の複合紡糸口金を用い、それぞれ12.7g/分の吐出量にて押し出し、図1(イ)の単糸横断面形状を有するサイドバイサイド型複合繊維を形成させ、冷却固化、油剤を付与した後、糸条を速度1000m/分、温度60℃の予熱ローラーにて予熱し、ついで、該予熱ローラーと、速度2700m/分、温度150℃に加熱された加熱ローラー間で延伸熱処理を行い、巻取り、84dtex/24filの複合繊維を得た。該複合繊維において、破断強度2.3cN/dtex、破断伸度41%であった。また、該複合繊維に沸水処理を施して捲縮率を測定したところ、乾燥時の捲縮率DCが1.2%、湿潤時の捲縮率HCが3.9%、乾燥時の捲縮率DCと湿潤時の捲縮率HCとの差(DC−HC)が−2.7%であった。
[Comparative Example 1]
Nylon 6 having an intrinsic viscosity [η] of 1.3 and modified polyethylene terephthalate copolymerized with 2.6 mol% of 5-sodium sulfoisophthalic acid having an intrinsic viscosity [η] of 0.48 are each 270 ° C. The melt was melted at 290 ° C. and extruded at a discharge rate of 12.7 g / min using a composite spinneret similar to that shown in FIG. 1 of JP-A No. 2000-144518. After forming a side-by-side type composite fiber having a shape, cooling and solidifying, and applying an oil agent, the yarn is preheated with a preheating roller at a speed of 1000 m / min and a temperature of 60 ° C., and then the preheating roller and a speed of 2700 m / min. Then, a drawing heat treatment was performed between heating rollers heated to a temperature of 150 ° C., and winding was performed to obtain 84 dtex / 24 fil composite fiber. The composite fiber had a breaking strength of 2.3 cN / dtex and a breaking elongation of 41%. Further, when the crimp rate was measured by performing boiling water treatment on the composite fiber, the crimp rate DC when dried was 1.2%, the crimp rate HC when wet was 3.9%, and the crimp rate when dried. The difference (DC−HC) between the rate DC and the crimp rate HC when wet was −2.7%.

次いで、前記の複合繊維を用いて、実施例1と同様に編物を製編した後、染色加工、撥水加工、および乾熱ファイナルセットを施した。   Next, a knitted fabric was knitted using the above-mentioned composite fiber in the same manner as in Example 1, and then dyed, water-repellent, and dry heat final set were applied.

得られた編物において、目付け210g/m、経方向の伸張率12%、緯方向の伸張率22%、、撥水性5点、乾燥時の通気性54cc/cm/s、吸湿時の通気性41cc/cm/s、通気性の変化率−24%と吸湿時に通気性が低下してしまい不満足なものであった。また、該編物から抜き取った複合繊維において、乾燥時の捲縮率DCが56%、吸湿時の捲縮率HCが62%、乾燥時と吸湿時の捲縮率差(DC−HC)が−6%であった。 The obtained knitted fabric has a basis weight of 210 g / m 2 , a warp direction elongation rate of 12%, a weft direction elongation rate of 22%, 5 points of water repellency, a breathability of 54 cc / cm 2 / s when dried, and aeration when moisture is absorbed. It was unsatisfactory because the air permeability decreased at the time of moisture absorption, and the air permeability was reduced by 41 cc / cm 2 / s. Further, in the composite fiber was drawn from the knitted product, percentage of crimp DC F 56% during drying, percentage of crimp HC F during moisture absorption 62%, crimp index difference in drying time and moisture (DC F -HC F ) was -6%.

本発明によれば、織編物の通気性が、吸湿時に、乾燥時よりも可逆的に性能よく向上する撥水性織編物および繊維製品が得られ、その工業的価値は極めて大である。   According to the present invention, it is possible to obtain a water-repellent woven or knitted fabric and a fiber product in which the air permeability of the woven or knitted fabric is improved reversibly and better than when it is dried, and its industrial value is extremely large.

本発明で用いられる複合繊維の単糸横断面形状を例示した模式図である。It is the schematic diagram which illustrated the single yarn cross-sectional shape of the composite fiber used by this invention.

符号の説明Explanation of symbols

P:ポリエステル成分
N:ポリアミド成分
P: Polyester component N: Polyamide component

Claims (14)

ポリエステル成分とポリアミド成分とがサイドバイサイド型に接合された複合繊維を、織編物の全重量に対して10重量%以上含む織編物であって、該織編物に撥水加工が施されており、かつ乾燥時の通気性が50cc/cm/s以下であり、該織編物から抜出した前記複合繊維が、潜在捲縮性能が発現してなる捲縮構造を有しており、該複合繊維の乾燥時の捲縮率をDC(%)、吸湿時の捲縮率をHC(%)とするとき、DC−HC≧10(%)であることを特徴とする吸湿時に通気性が向上する撥水性織編物。
ただし、乾燥時とは、試料を温度20℃、湿度65%RH環境下に24時間放置した後の状態であり、一方、吸湿時とは、試料を温度30℃、湿度90%RH環境下に24時間放置した後の状態である。
A woven or knitted fabric comprising 10% by weight or more of a composite fiber in which a polyester component and a polyamide component are bonded in a side-by-side manner with respect to the total weight of the woven / knitted fabric, and the woven / knitted fabric is subjected to a water-repellent finish, and The air permeability during drying is 50 cc / cm 2 / s or less, and the conjugate fiber extracted from the woven or knitted fabric has a crimped structure in which latent crimping performance is expressed. DC F (%) the percentage of crimp time, when the percentage of crimp moisture absorption and HC F (%), ventilation during moisture absorption, which is a DC F -HC F ≧ 10 (% ) is Improved water-repellent knitted fabric.
However, during drying, the sample is left for 24 hours in a temperature of 20 ° C. and humidity of 65% RH. On the other hand, when moisture is absorbed, the sample is placed in a temperature of 30 ° C. and humidity of 90% RH. This is the state after being left for 24 hours.
ポリエステル成分が、5−ナトリウムスルホイソフタル酸が2.0〜4.5モル%共重合された変性ポリエステルからなる、請求項1に記載の吸湿時に通気性が向上する撥水性織編物。   The water-repellent woven or knitted fabric with improved breathability upon moisture absorption according to claim 1, wherein the polyester component comprises a modified polyester copolymerized with 2.0 to 4.5 mol% of 5-sodium sulfoisophthalic acid. 前記の複合繊維が、無撚糸、または300T/m以下の撚りが施された甘撚り糸である
、請求項1または請求項2に記載の吸湿時に通気性が向上する撥水性織編物。
The water-repellent woven or knitted fabric with improved breathability upon moisture absorption according to claim 1 or 2, wherein the conjugate fiber is a non-twisted yarn or a sweet-twisted yarn with a twist of 300 T / m or less.
織編物が、前記複合繊維と他の繊維とで構成される、請求項1〜3のいずれかに記載の吸湿時に通気性が向上する撥水性織編物。   The water-repellent woven or knitted fabric with improved breathability upon moisture absorption according to any one of claims 1 to 3, wherein the woven or knitted fabric is composed of the composite fiber and other fibers. 織編物の経方向および/または緯方向の伸縮率が10%以上である、請求項1〜4のいずれかに記載の吸湿時に通気性が向上する撥水性織編物。   The water-repellent woven or knitted fabric with improved breathability upon moisture absorption according to any one of claims 1 to 4, wherein the warp and stretch directions in the warp and knitted fabrics are 10% or more. 織編物が2層以上の多層構造織編物であって、該織編物の少なくとも一層に、該層を構成する総繊維重量のうち30重量%以上となるように前記複合繊維が含まれる、請求項5に記載の吸湿時に通気性が向上する撥水性織編物。   The woven or knitted fabric is a multilayered woven or knitted fabric having two or more layers, and the composite fiber is contained in at least one layer of the woven or knitted fabric so as to be 30% by weight or more of the total weight of the fibers constituting the layer. 5. A water-repellent woven or knitted fabric having improved air permeability upon moisture absorption. 前記の複合繊維と他の繊維とが、丸編組織の複合ループを形成してなる、請求項5に記載の吸湿時に通気性が向上する撥水性織編物。   The water-repellent woven or knitted fabric having improved air permeability when absorbing moisture according to claim 5, wherein the composite fiber and another fiber form a composite loop of a circular knitted structure. 前記の複合繊維と他の繊維とが、引き揃えられて織組織の経糸および/または緯糸に配されてなる、請求項5に記載の吸湿時に通気性が向上する撥水性織編物。   The water-repellent woven or knitted fabric having improved air permeability when absorbing moisture according to claim 5, wherein the composite fiber and other fibers are aligned and arranged on the warp and / or the weft of the woven structure. 前記の複合繊維と他の繊維とが、各々織編物の構成糸条として、1本交互または複数本交互に配されてなる、請求項5に記載の吸湿時に通気性が向上する撥水性織編物。   6. The water-repellent woven or knitted fabric with improved breathability upon moisture absorption according to claim 5, wherein the composite fibers and other fibers are each arranged as one or more alternating yarns as constituent yarns of the woven or knitted fabric. . 前記の複合繊維と他の繊維とが、前記の複合繊維が芯部に位置し、他の繊維が鞘部に位置する芯鞘型複合糸として織編物に含まれる、請求項5に記載の吸湿時に通気性が向上する撥水性織編物。   The moisture absorption according to claim 5, wherein the conjugate fiber and the other fibers are included in the woven or knitted fabric as a core-sheath type composite yarn in which the conjugate fiber is located in the core portion and the other fibers are located in the sheath portion. Water-repellent woven knitted fabric that sometimes improves air permeability. 他の繊維がポリエステル繊維である、請求項4〜10のいずれかに記載の吸湿時に通気性が向上する撥水性織編物。   The water-repellent woven or knitted fabric with improved breathability upon moisture absorption according to any one of claims 4 to 10, wherein the other fibers are polyester fibers. 染色加工が施されてなる、請求項1〜11のいずれかに記載の吸湿時に通気性が向上する撥水性織編物。   The water-repellent woven or knitted fabric with improved breathability upon moisture absorption according to any one of claims 1 to 11, which is dyed. 吸湿時における織編物の通気性が、乾燥時よりも30%以上高くなる、請求項1〜12のいずれかに記載の吸湿時に通気性が向上する撥水性織編物。   The water-repellent woven or knitted fabric having improved air permeability when absorbing moisture according to any one of claims 1 to 12, wherein the air permeability of the woven or knitted fabric when absorbing moisture is 30% or more higher than that when drying. 請求項1〜13のいずれかに記載の撥水性織編物を用いてなる、アウター用衣料、スポーツ用衣料、およびインナー用衣料からなる群より選択される繊維製品。   A textile product selected from the group consisting of an outer garment, a sports garment, and an inner garment using the water-repellent woven or knitted fabric according to any one of claims 1 to 13.
JP2004283758A 1994-09-29 2004-09-29 Water-repellent knitted fabrics and textiles that improve air permeability when absorbing moisture Active JP4414854B2 (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
JP2004283758A JP4414854B2 (en) 2004-09-29 2004-09-29 Water-repellent knitted fabrics and textiles that improve air permeability when absorbing moisture
CA 2579144 CA2579144C (en) 2004-09-28 2005-09-27 Woven or knitted fabric and clothes containing crimped composite filaments and having an air permeability which increases when the fabric is wetted with water
PCT/JP2005/018238 WO2006035968A1 (en) 2004-09-28 2005-09-27 Woven or knit fabric containing crimped composite fiber having its air permeability enhanced by water wetting and relevant clothing
CN2005800328852A CN101031679B (en) 2004-09-28 2005-09-27 Woven or knit fabric containing crimped composite fiber having its air permeability enhanced by water wetting and relevant clothing
KR1020077006960A KR101220658B1 (en) 2004-09-28 2005-09-27 Woven or knit fabric containing crimped composite fiber having its air permeability enhanced by water wetting and relevant clothing
EP05788318.3A EP1803844B1 (en) 2004-09-28 2005-09-27 Woven or knit fabric containing crimped composite fiber having its air permeability enhanced by water wetting and relevant clothing
US11/663,730 US20080132133A1 (en) 1994-09-29 2005-09-27 Woven or Knitted Fabric and Clothes Containing Crimped Composite Filaments and Having an Air Permeability Which Increases When the Fabric is Wetted With Water
TW94133493A TWI354041B (en) 2004-09-28 2005-09-27 Woven or knitted fabric and cloth containing crimp

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004283758A JP4414854B2 (en) 2004-09-29 2004-09-29 Water-repellent knitted fabrics and textiles that improve air permeability when absorbing moisture

Publications (2)

Publication Number Publication Date
JP2006097176A true JP2006097176A (en) 2006-04-13
JP4414854B2 JP4414854B2 (en) 2010-02-10

Family

ID=36237257

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004283758A Active JP4414854B2 (en) 1994-09-29 2004-09-29 Water-repellent knitted fabrics and textiles that improve air permeability when absorbing moisture

Country Status (1)

Country Link
JP (1) JP4414854B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008075196A (en) * 2006-09-20 2008-04-03 Komatsu Seiren Co Ltd Method for producing water-repellent textile product
JP2008285790A (en) * 2007-05-21 2008-11-27 Mitsubishi Rayon Co Ltd Crimped conjugate fiber and method for producing the same, and air permeability-variable woven/knitted fabric containing the crimped conjugate fiber and method for producing the woven/knitted fabric
JP2009041148A (en) * 2007-08-10 2009-02-26 Teijin Fibers Ltd Woven fabric and textile product
JP2009074188A (en) * 2007-09-19 2009-04-09 Teijin Fibers Ltd Circular knitted fabric and textile product
JP2016097074A (en) * 2014-11-21 2016-05-30 帝人株式会社 futon

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008075196A (en) * 2006-09-20 2008-04-03 Komatsu Seiren Co Ltd Method for producing water-repellent textile product
JP2008285790A (en) * 2007-05-21 2008-11-27 Mitsubishi Rayon Co Ltd Crimped conjugate fiber and method for producing the same, and air permeability-variable woven/knitted fabric containing the crimped conjugate fiber and method for producing the woven/knitted fabric
JP2009041148A (en) * 2007-08-10 2009-02-26 Teijin Fibers Ltd Woven fabric and textile product
JP2009074188A (en) * 2007-09-19 2009-04-09 Teijin Fibers Ltd Circular knitted fabric and textile product
JP2016097074A (en) * 2014-11-21 2016-05-30 帝人株式会社 futon

Also Published As

Publication number Publication date
JP4414854B2 (en) 2010-02-10

Similar Documents

Publication Publication Date Title
KR101220658B1 (en) Woven or knit fabric containing crimped composite fiber having its air permeability enhanced by water wetting and relevant clothing
JP2006118062A (en) Woven/knitted fabric reducing its porosity when wetted, and method for producing the same, and related textile product
CA2579211C (en) Crimped filament-containing woven or knitted fabric manifesting roughness upon wetting with water, process for producing the same and textile products made therefrom
JP6577589B2 (en) Fabrics and textile products
JP4414851B2 (en) Woven knitted fabrics and textile products that improve air permeability when wet
JP6469950B2 (en) Anti-stain fabric and textile products
JP2006264309A (en) Multilayer structure varying in three-dimentional structure by absorbing water and textile product
JP2006207053A (en) Three-layer structure woven or knitted fabric and textile product
JP5881284B2 (en) Fabrics and textile products
JP2006207052A (en) Raised fabric and textile product
JP2008297657A (en) Quilting cloth, bedding and down jacket
JP4414854B2 (en) Water-repellent knitted fabrics and textiles that improve air permeability when absorbing moisture
JP4567500B2 (en) Fabrics and textiles whose structure is three-dimensionally changed by water absorption
JP5456115B2 (en) Woven knitted fabric with unevenness caused by wetting, manufacturing method thereof, and textile product
JP2010059570A (en) Woven fabric and textile product
JP2006207065A (en) Garment exerting ventilation effect when wetted
JP5996915B2 (en) Shoes and shoes
JP5420879B2 (en) Shoe material
JP2009074188A (en) Circular knitted fabric and textile product
KR20230107544A (en) knitted fabric
JP2018100458A (en) Composite fiber and production method thereof
JP2009041148A (en) Woven fabric and textile product

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061218

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090825

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091009

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091027

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091120

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121127

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4414854

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131127

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131127

Year of fee payment: 4

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131127

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250